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ABSTRACT

While scaling laws for large language models (LLMs) during pre-training have
been extensively studied, their behavior under reinforcement learning (RL) post-
training remains largely unexplored. This paper presents a systematic empirical
investigation of scaling behaviors in RL-based post-training, with a particular fo-
cus on mathematical reasoning. Based on a set of experiments across the full
Qwen2.5 dense model series (0.5B to 72B), we characterize how model scale,
data volume, and computational budget interact to shape performance. Our anal-
ysis leads to four key findings: ❶ Under a fixed computational budget, larger
models trained for fewer steps consistently outperform smaller models trained
for more steps. ❷ Given a fixed amount of training data, larger models achieve
superior sample efficiency, yielding lower loss. ❸ In data-constrained regimes,
repeated reuse of high-quality data proves highly effective, as final performance
is primarily governed by the total number of optimization steps rather than the
uniqueness of samples. ❹ These scaling behaviors are robust across both base
and instruction-tuned models, which share similar learning dynamics (e.g., larger
models show faster convergence) even while differing in absolute accuracy. We
further show that the relationship between test loss, compute, and data can be
modeled by a predictive power-law with an analytic learning efficiency term k(N)
that demonstrates an efficiency saturation effect as model size increases. Collec-
tively, these results provide a principled foundation and practical guidelines for
efficiently scaling the reasoning capabilities of LLMs through RL post-training.

1 INTRODUCTION

The rapid progress of large language models (LLMs) has made elucidating their scaling laws a mat-
ter of central importance. These laws, which capture the intricate relationships between model archi-
tecture, parameter size, computational cost, data availability, and downstream performance (Kaplan
et al., 2020; Hoffmann et al., 2022), are invaluable not only because they illuminate the latent fac-
tors governing learning dynamics, but also because they provide actionable guidance on how to
distribute scarce computational resources most effectively (Li et al., 2025a). While extensive efforts
have clarified scaling behavior, the scaling behavior of reinforcement learning (RL) post-training for
LLM reasoning remains underexplored.

During pretraining, Kaplan et al. (2020) show that cross-entropy loss follows smooth power-law
scaling in model size, dataset size, and training compute, implying that larger models trained for
fewer steps are compute-optimal. Hoffmann et al. (2022) refine this by showing that, under fixed
compute, scaling parameters and tokens proportionally is optimal, since many large models are
undertrained. Extending to neural-based RL, Hilton et al. (2023) empirically demonstrates that
the intrinsic performance of convolutional neural networks (CNNs) optimized via reinforcement
learning also scales like power-law with model capacity and environment interaction.

Recently, RL has become the predominant post-training strategy for enhancing the reasoning abil-
ities of LLMs, particularly in mathematics, a domain that demands long-horizon, compositional
reasoning (Ferrag et al., 2025; DeepSeek-AI, 2025; Kimi Team, 2025; Ahn et al., 2024). Given the
recent works applying RL for LLM reasoning, it is crucial to understand how to scale RL training

1
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effectively for reasoning tasks. In this work, we aim to fill this research gap with an extensive em-
pirical study on models of varying scales. Defining the normalized test error rate as Test Loss (L),
we formalize the resource allocation challenge as a series of constrained optimization problems:

1. The Compute-Constrained Scenario: Given a fixed computational budget C, we seek the
model size N (and corresponding data allocation D) that minimizes the final loss:

argmin
N, D

L(N,D) s.t. FLOPs(N,D) = Cconst, (1)

2. The Data-Constrained Scenario: For a fixed amount of unique training data D, we aim
to determine the model size N that yields the lowest test loss under this data limitation:

argmin
N, C

L(N,C) s.t. D = Dconst, (2)

3. The Data Reuse Scenario: With a fixed number of optimization steps S, we investigate
the impact of the data reuse factor τ—the number of times each unique example is revis-
ited—on the final loss. In this setting, the total number of processed samples is constrained
as Dunique × τ = Sconst. Formally:

argmin
τ, C

L(τ, C) s.t. Dunique × τ = Sconst, (3)

To empirically answer these questions, we fine-tune 63 LLMs with reinforcement learning on 50k
mathematics problems, based on the Qwen2.5 model family (Qwen et al., 2025). Figure 1 shows
that, within the 0.5B-72B range, the loss reduction brought by RL follows an approximately log-
linear trend with compute and data size. Importantly, larger models not only have better initial
performance but also generally have more efficiency in computation and data utilization during the
optimization process. Through deeper analysis, we find that the scaling behavior exhibits meaning-
ful predictivity, and further reveals that the efficiency gains from increasing model scale diminish
gradually, leading to a saturation effect for larger-scale models.
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base model, fitted on 0.5B-32B and extrapolated on
72B.

Figure 1: Training Data Fiited on 0.5B-32B with Extrapolation on 72B: In both cases, larger models
consistently exhibit higher learning efficiency than smaller models.

We further analyze the data-constrained regime, where we demonstrate that data reuse is a highly
effective strategy. We validate the generality of our findings through extensive ablation studies
on both base and instruct model series. Besides, we also study the impact of the rollout number
in the GRPO algorithm (Shao et al., 2024). These investigations establish fundamental scaling
relationships for RL post-training, providing a quantitative foundation and practical guidelines for
resource-efficient model refinement.

Specifically, our key findings can be summarized as follows:

• In our experiment scale, larger models, starting with stronger initial performance, con-
sistently achieve better compute and data efficiency in RL post-training for mathematical
reasoning. However, the marginal gains in this efficiency diminish gradually, revealing a
saturation trend as model scale increases.

2
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• The scaling law exhibits predictive capability, allowing us to forecast the training efficiency
of larger models and predict the remaining training trajectory from early training data.

• In data-limited settings, repeated exposure to a small dataset is nearly as effective as using
larger corpora, highlighting data reuse as a practical strategy.

• In math reasoning, scaling behaviors are robust across both base and instruction models
and GRPO hyperparameters, providing actionable guidance for resource-efficient RL post-
training.

2 EXPERIMENTAL SETUP

We describe the experimental setup for studying scaling behavior in RL post-training of LLMs for
mathematical reasoning, including the model family, training and evaluation data, and evaluation
protocol in this section. Full details are provided in Appendix A.

Models and Framework. We use the Qwen2.5 model family (0.5B, 1.5B, 3B, 7B, and 14B pa-
rameters) (Qwen et al., 2025), which shares the same architecture, so that parameter count is the
only variable in our scaling analysis. All experiments are run with the VeRL framework (Sheng
et al., 2024), a large-scale RL platform for LLMs ensuring consistency and reproducibility.

RL Algorithm. We use Group Relative Policy Optimization (GRPO) (Shao et al., 2024) for RL
fine-tuning. GRPO estimates advantages by normalizing rewards across responses sampled from
the same prompt, yielding a stable signal with lower memory cost. Specifically, for each question
q, GRPO samples a group of outputs{o1, o2, · · · , oG} from the old policy πθold , and the objective is
defined as

LGRPO =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
ρ(θ) Âi,t, clip

(
ρ(θ), 1− ε, 1 + ε

)
Âi,t

]
− βDKL

}
, (4)

w here ρ(θ) =
πθ(oi,t|q, oi,<t)

πθold
(oi,t|q, oi,<t)

is the important sampling weight. For each output oi, a reward
model or rule is used to yield the reward signal r = {r1, r2, · · · , rG}. The advantage is computed
as

Âi,t =
ri −mean(r)

std(r)
. (5)

Dataset settings. The training data is the mathematics subset of the guru-RL-92k dataset from
the Reasoning360 project (Cheng et al., 2025), which is carefully curated through deduplication and
difficulty filtering. We further sort the problems by increasing difficulty (decreasing pass rate, eval-
uated by Qwen2.5-7B model) to enable curriculum learning. The evaluation data consists of two
parts. To derive scaling laws, we use a held-out set of 500 in-domain math problems sampled from
the training distribution. To assess generalization, we evaluate on a broader benchmark suite span-
ning mathematics (AIME2024 (Patel et al., 2024), AMC2023 (KnovelEng, 2025), GSM8K (Cobbe
et al., 2021), MATH500 (Lightman et al., 2023)), code (HumanEval (Chen et al., 2021)), logic (Ze-
bra Puzzle(Lin, 2024)), and science (SuperGPQA (Team et al., 2025)). More details about dataset
settings can be found in Appendix A.1.

Prompt Setting. To ensure stable behavior during RL training and evaluation, we use structured
prompts tailored to each domain. For example, all mathematics problems are prepended with the
Chain-of-Thought prompt (Wei et al., 2023): “You are a knowledgeable math assistant. Answer the
following questions and think step by step”. More prompt templates for all related domains could
be found in Appendix A.3.

Evaluation Process. We compute the Pass@1 score using a binary reward signal derived from
a deterministic, rule-based process. For each problem, a script extracts the final answer from the
model output (e.g., within a \boxed{} for math) and compares it to the ground truth. A reward
of 1 is given for a correct match and 0 otherwise. This signal is not only used to calculate test loss
during evaluation, but also as the reward during RL training.

3
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Metric. Our primary evaluation metric is the test loss (L), a proxy for reward-based performance
in the RL setting. Formally, L = 1 − (R/Rmax), where R is the number of correct solutions
and Rmax the total. We adopt the term ”test loss” for consistency with foundational neural scaling
law literature (Kaplan et al. (2020)). Obviously, the goal of maximizing reward in RL training is
equivalent to minimizing the test loss L.

3 EMPIRICAL RESULTS AND SCALING LAWS

This section presents a comprehensive empirical investigation into the scaling behavior of RL for
post-training LLMs. Our experiments are designed to address the core questions posed in Eq. 1,
Eq. 2, and Eq. 3. We first examine scaling behaviors under compute and data constraints, then
analyze independent scaling dimensions, data reuse strategies, and finally evaluate generalization
performance together with an ablation study on the GRPO group size G (Eq. 4). To ensure robust
conclusions, each configuration is repeated three times for both base and instruct models.Their
statistical uncertainty analysis, including Average Standard Deviation and Standard Error of the
Mean (SEM), are provided in Appendix C.3.

3.1 COMPUTE-OPTIMAL SCALING

Observation 1

Within the model parameter range of 0.5B to 72B, RL post-training under a fixed compu-
tational budget C is compute-optimal when prioritizing the training of larger models rather
than extending the training duration of smaller models.
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(a) Test loss vs training compute with extrapola-
tion on 72B for base model
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(d) Test loss vs training compute with extrapolation
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Figure 2: Compute Scaling and Predictive Capability from 0.5B-72B for Base and Instruct Models

In the compute-constrained setting (Eq. 1), we train 0.5B–14B models and measure test loss as a
function of cumulative FLOPs C. As shown in Figure 2, larger models consistently outperform
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smaller ones under the same compute budget for both base and instruct variants. These plots include
both Inter-model Extrapolation (fitted on 0.5B-32B and extrapolated on 72B) and Intra-model Pre-
diction (predicting the remainder of training from initial steps) to demonstrate the predictive power
of our derived scaling law. The loss–compute relationship follows a log-linear trend, which can be
modeled by a power law:

log(L(N,C)) = −kC(N) · log(C) + EC(N), where kC(N) =

(
KCmax

1 + NC

N

)
(6)

To demonstrate the predictive capability of the proposed formula Eq 6, we evaluate it in two distinct
extrapolation settings:

1. Inter-model Extrapolation: We fit the law’s parameters on smaller models (0.5B–32B) to
calculate the learning efficiency (kC(N)) of 72B model. As shown in Figure 2a and 2b, the
predicted efficiency aligns closely with the actual 72B performance.

2. Intra-model Prediction: We fit the law using only early training steps to forecast the re-
maining trajectory for a specific model, shown in Figure 2c and 2d.

We further analyze learning efficiency term kC(N) in Eq. 6. As Figure 4a shows, kC(N) grows
with model size N , meaning larger models consistently have higher learning efficiency. However,
the efficiency gain from model scale is not uniformly linear. Beyond 32B, the increase in kC(N)
diminishes, leading to efficiency saturation.

3.2 DATA-OPTIMAL SCALING

Observation 2

Within the model range of 0.5B to 72B, for a fixed volume of unique training data D, larger
models demonstrate superior sample efficiency, consistently achieving lower test loss.
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(a) Test loss vs data size with extrapolation on
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Figure 3: Data Scaling and Predictive Capability from 0.5B-72B for Base and Instruct Models
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In the data-constrained setting (Eq. 2), we train models with varying parameter counts N on fixed
amounts of unique samples D. As shown in Figure 3, larger models consistently achieve lower test
loss and higher sample efficiency across both base and instruct variants. The loss–data relationship
follows a power law similar to the compute setting:

log(L(N,D)) = −kD(N) · log(D) + ED(N), where kD(N) =

(
KDmax

1 + ND

N

)
(7)

Mirroring the analysis in Section 3.1, we evaluate the extrapolative capability of our data scaling
law (Eq. 7) in two settings:

1. Inter-model Extrapolation: By fitting parameters on smaller models (0.5B–32B), we accu-
rately predict the data efficiency (kD(N)) on 72B model, as illustrated in Figure 3a and
3b.

2. Intra-model Prediction: We forecast the loss trajectory for the remainder of the training
process using only early-stage data, shown in Figure 3c and 3d.

We adopt the same analytic form for the data efficiency coefficient kD(N) as we did for compute. As
illustrated in Figure 4b, kD(N) follows a saturation curve identical to kC(N): while larger models
excel at extracting knowledge from each data point, the efficiency gains diminish at scales beyond
32B. The unified functional form across both compute and data domains reflects the theoretical
consistency of our scaling law.
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Figure 4: Fitted learning efficiency coefficient k(N) for Base and Instruct models: Intra-model
and inter-model predictions exhibit nearly identical growth trends, with efficiency gains starting to
diminish beyond the 32B model.

3.3 SCALING UP MODEL SIZE

Observation 3

When trained to converge on sufficiently large datasets, test loss decreases monotonically
with model size, though the trend deviates from a strict power law.

We train models of varying sizes to convergence and compare their final test loss. As shown in
Figure 5a, larger models consistently achieve lower loss, improving monotonically with scale. The
curve deviates from a strict power law: smaller models show weaker gains, suggesting diminishing
returns at low parameter counts. A likely reason is that larger models inherit richer pre-trained
representations, which reinforcement fine-tuning exploits for greater improvements than parameter
growth alone would predict. Figure 5b further shows that as RL training progresses, larger models
generate longer responses except for 32B model. This correlates with higher accuracy, indicating
greater test-time scaling efficiency: additional inference tokens yield larger gains in bigger models.

We also benchmark our RL-tuned Qwen2.5 models (Qwen et al., 2025) against state-of-the-art open-
source reasoning systems, including Qwen3 (Yang et al., 2025) and GPT-OSS (OpenAI et al., 2025),
detailed in Table 4. On our held-out set, the 32B and 72B models match or surpass dense Qwen3
counterparts of similar size, highlighting the effectiveness of RL post-training. Mixture-of-experts
models such as Qwen3 and GPT-OSS achieve approximate loss at much larger scales (235B), with
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GPT-OSS-120B currently leading. These comparisons suggest that scaling across 0.5B-72B will be
necessary to fully characterize post-training behavior and compete with frontier MoE systems.
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Figure 5: Analysis of model scaling properties shows the effectiveness of our training process in this
empirical study.

3.4 SCALING WITH CONSTRAINED DATA AND REUSE

Observation 4

Performance in data-constrained settings is primarily determined by the total number of
parameter update steps (S). For a fixed S, the final test loss is remarkably insensitive to the
data reuse factor (τ ), with no significant degradation up to τ = 25.
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Figure 6: Plot shows the final test loss of a 7B Base (left) and Instruct (right) model trained with a
fixed toal number of samples but varying the data reuse factor τ .

We further consider the data-reuse scenario (Eq. 3), where high-quality data is limited but can be
revisited multiple times. To simulate this, we partition the training set into smaller subsets while pre-
serving the difficulty distribution (Details provided in Appendix A.4). Each subset is cycled through
multiple times, with the reuse factor τ controlling how often each unique example is revisited. The
total number of update steps S is fixed across runs, and curriculum ordering is maintained so that
problems are always presented from easy to hard. This ensures that performance differences arise
solely from the degree of data reuse, rather than distributional or scheduling artifacts.

As shown in Figure 6, performance remains nearly unchanged for τ ≤ 25, while moderate degrada-
tion appears as τ increases further. At τ = 100, we observe clear signs of overfitting, indicating that
repeated reuse eventually harms generalization. Overall, these results suggest that final performance
is primarily governed by the total number of optimization steps rather than sample uniqueness, and
that moderate data reuse is an effective strategy for RL fine-tuning with limited datasets.
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3.5 DOMAIN TRANSFER
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Figure 7: The effect of domain transfer, illustrated with the Qwen2.5-72B-Instruct model.
Observation 5

RL post-training on mathematical reasoning yields generalization improvements on in-
domain tasks with varying difficulty, but shows negligible transfer to out-of-domain tasks.

We also investigate the generalization capabilities of the reinforcement learning fine-tuning (RFT)
models by evaluating them on a suite of unseen in-domain tasks with varying difficulty and out-of-
domain (OOD) tasks. More results are in Appendix B.1.

In-Domain Generalization. Figure 7 shows consistent improvements on unseen mathematics
tasks outside the training set. On benchmarks, from easy to hard, including GSM8K, MATH-500,
AMC2023, AIME2024, test loss steadily decreases with training compute, suggesting that RL post-
training enhances transferable reasoning skills within mathematics.

Out-of-Domain Generalization. As shown in Figure 7, results on OOD tasks are markedly dif-
ferent. For code generation (HumanEval) and STEM problems (SuperGPQA), performance
gains marginally, indicating that RL fine-tuning is highly specialized. On logical reasoning
(zebra puzzle), performance degrades for larger models, suggesting that intensive optimization
on mathematical reasoning may interfere with or ”damage” other distinct reasoning abilities.

3.6 ABLATION ON GRPO HYPERPARAMETERS

Observation 6

A larger GRPO rollout group size (G) is consistently more data-efficient, while the compute-
optimal G grows with the total computational budget.

We conducted an ablation study on the rollout group size G, a key GRPO hyperparameter that
controls how many responses are sampled per prompt. This directly affects both the compute per
update and the stability of the training signal. We tested G ∈ {4, 8, 16, 32} on the 7B models.

Data-centric View. Figure 8b and 8d shows that larger rollout sizes consistently yield better sample
efficiency: G = 32 achieves the lowest test loss for the same number of unique samples. This
supports the intuition that more responses per question provide a stronger advantage estimate and
thus more effective gradient updates.

Compute-centric View. The optimal rollout size G is not fixed but shifts with the training budget.
This implies that practitioners should tune G according to available compute rather than relying on
a universal setting. We attribute this dynamic to the trade-off between the higher variance reduction
from larger G and the additional FLOPs it consumes, which makes small G preferable at low budgets
but large G superior when ample compute is available.
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(b) 7B-Base: Loss vs. Data Size
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(d) 7B-Instruct: Loss vs. Data Size

Figure 8: Effects of GRPO rollout size on training efficiency: (a–b) show compute/data scaling for
7B-Base; (c–d) for 7B-Instruct.

4 RELATED WORK

Foundational Scaling Laws of Neural Language Models. Foundational scaling studies show lan-
guage modeling loss follows smooth power-laws in model size N , data D, and compute C (Kaplan
et al., 2020), with compute-optimal training prescribing near lockstep growth of parameters and
tokens under fixed FLOPs (Hoffmann et al., 2022). Later analyses attribute earlier discrepancies
to embedding/non-embedding parameter accounting, last-layer costs, optimizer warmup, and scale-
sensitive hyperparameters (Pearce & Song, 2024; Porian et al., 2024), while data-centric refinements
examine pruning efficiency (Sorscher et al., 2022), repetition effects (Hernandez et al., 2022), gzip-
based complexity predictors (Pandey, 2024), constrained or synthetic regimes (Muennighoff et al.,
2023; Qin et al., 2025), and task transfer (e.g., translation) (Isik et al., 2024). Test-time compute
amplification supplies an inference analogue to classical training laws (Snell et al., 2024).

RL post-training in LLMs. In RL, power-law trends similarly link capacity, interaction compute,
and performance (Hilton et al., 2023); scaling RFT across horizon and compute improves math-
ematical and coding reasoning (DeepSeek-AI, 2025; Kimi Team, 2025; Mai et al., 2025b; Zhang
et al., 2025a;b), while extended schedules (Liu et al., 2025), ultra-low-shot or single-example RL
(Wang et al., 2025), and minimal-data efficiency paradigms (Li et al., 2025b) probe data–compute
tradeoffs. Instability and uneven gains highlight fragile optimization (Zeng et al., 2025a; Yue et al.,
2025), and multi-domain mixtures reveal both synergy and interference across math, code, and logic
(Li et al., 2025c; Cheng et al., 2025).

Mathematical Reasoning with LLMs. Mathematical reasoning amplifies these dynamics: ac-
curacy generally scales upward while verification behaviors remain inconsistent (Touvron et al.,
2023); corpus volume and quality jointly shape attainable curves (Ye et al., 2024); multi-task math-
generalist training diverges from specialist scaling trajectories (Yue et al., 2023); and RL with code
execution induces additional behaviors such as emergent tool use concentrated in math problem solv-
ing (Zeng et al., 2025b). Collectively, evidence indicates that reasoning performance is governed by
interacting axes of model size, data distribution/quality, training (supervised vs. RL) paradigm, and
allocation of both training and inference compute, while unified laws for mathematical reasoning
remain only partially characterized.
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5 DISCUSSION

Scaling Dependence on Evaluation Environment and Metrics. Reinforcement learning optimizes
directly for environment rewards (Sutton & Barto, 2018), which in principle allows unbounded capa-
bility—as demonstrated by AlphaZero mastering board games (Silver et al., 2017), AlphaFold pre-
dicting protein structures (Jumper et al., 2021), and frontier LLMs such as Gemini-2.5-Pro achieving
IMO-level performance (Huang & Yang, 2025). In contrast, text-based LLMs lack a well-defined
RL environment, forcing us to rely on human-curated datasets as proxies. Test loss thus serves
as a pragmatic but imperfect metric: it is monotonic and convergent, yet heavily dependent on
dataset construction and task difficulty, with different benchmarks (e.g., GSM8K vs. AIME, Sec-
tion 3.5) showing distinct convergence rates. This task dependence makes the absolute coefficients
of our fitted scaling laws (k(N), E) difficult to interpret universally. Prior work proposed “intrinsic
performance”—the minimum compute needed to reach a target reward—as a normalization across
environments (Hilton et al., 2023), but we did not find an analogous measure in large-scale LLMs.
Establishing principled, environment-independent evaluation protocols remains an open and critical
challenge for RL-based scaling studies.

Scaling Dependence on Model Scale. Our study of models from 0.5B to 72B parameters shows
that larger models exhibit greater sample and compute efficiency in RL post-training. This parameter
range allows us to precisely characterize the scaling limits. We found that these advantages do not
extend indefinitely. Our analytic learning efficiency term k(N) in Eq.6 and Eq.7, explicitly confirms
that the efficiency gains follow a saturation curve toward a limit (Kmax). This finding implies that
scaling up models beyond a certain point, while still yielding absolute performance gains, suffers
from diminishing marginal returns in efficiency.

Dependence on RL Algorithm. Our analysis is based on GRPO, a mainstream and stable RL post-
training algorithm for LLMs that uses an actor-only design and normalizes rewards across responses.
Comparative study with alternative RL algorithms (Cui et al., 2025) reports minor differences in
training curves. Whether more advanced algorithms can significantly improve sample efficiency or
stability—and thereby reshape the scaling frontier—remains an important open question.

Future of LLM Agent. The integration of reinforcement learning with agentic LLMs is increasingly
viewed as a promising direction (Zhang et al., 2025a;b). Both theoretical and empirical studies
show that augmentations such as external tool use and long-term memory can substantially boost
model performance (Lin & Xu, 2025; Houliston et al., 2025; Mai et al., 2025a). We anticipate
that such agentic mechanisms will markedly improve the scaling behavior of RL-trained LLMs: by
offloading deterministic computations to tools and focusing learning on high-level decision making,
these models could achieve much higher efficiency, effectively shifting the performance frontier
upward for a given compute or data budget. Understanding the scaling laws of these agentic systems
is, therefore, a key and exciting avenue for future research.

6 CONCLUSION

This study presents the systematic exploration of scaling laws for reinforcement learning post-
training of large language models in mathematical reasoning. Through 54 controlled experiments
across the Qwen2.5 family, we show that larger models consistently achieve superior compute and
data efficiency, that performance in data-limited regimes depends primarily on the total number of
optimization steps rather than data uniqueness, and that moderate data reuse can be highly effective
without harming generalization. While RL post-training reliably strengthens in-domain reason-
ing, its transfer to out-of-domain tasks remains limited, underscoring the trade-off between special-
ization and breadth. Our ablation further identifies rollout size in GRPO as a practical lever tied
to compute budgets. Taken together, these findings offer principled and actionable guidelines for
resource-efficient RL fine-tuning and suggest promising directions for further exploration of scaling
and generalization in LLM reasoning.
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7 STATEMENT

7.1 ETHICS STATEMENT

The authors have read and adhered to the ICLR Code of Ethics. This work is foundational in na-
ture, focusing on the scaling properties of large language models in the domain of mathematical
reasoning. Our research exclusively utilizes publicly available and previously published resources,
including open-source models (e.g., Qwen2.5) and established datasets (e.g.,guru-RL-92k), thereby
mitigating concerns related to data privacy, human subjects, or the release of sensitive information.
The application domain of mathematical problem-solving does not inherently present risks of direct
societal harm. The primary ethical consideration associated with this work is the environmental
impact of the computational resources required for large-scale model training, a challenge com-
mon to the field. We believe that by providing insights into efficient resource allocation, our work
contributes positively to mitigating this concern for future research.

7.2 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. All aspects of our experimental
design are detailed to facilitate this. The specific models used (Qwen2.5 series), are described in
Section 2. The training and evaluation datasets, including our held-out set, are also detailed in Sec-
tion 2, with a full breakdown provided in Appendix A.1. Our reinforcement learning methodology
is based on the GRPO algorithm, and all relevant hyperparameters used for training and evaluation
are listed in Appendix A.2. The evaluation protocol, including the precise definition of our Test
Loss metric and the prompt templates for all tasks, is outlined in Section 2 and Appendix A.3. All
figures and observations presented are directly generated from the raw data collected during our
experiments. At last, we provide the experiment source code in Supplementary Material along with
the submission.
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A EXPERIMENT SETUP DETAILS

This section provides a detailed breakdown of the datasets and hyperparameters used in our experi-
ments, supplementing the information provided in the main text.

A.1 DATASET DETAILS

Our training was conducted on a curated mathematics dataset. For evaluation, especially for analyz-
ing generalization (as mentioned in the main text), we utilized a comprehensive suite of benchmarks
spanning multiple domains. The composition of this evaluation suite is detailed in Table 1.

Table 1: Composition of the multi-domain evaluation suite.

Dataset Samples Huggingface Tag Domain
Held-out Data 500 LLM360/guru-RL-92k Math
aime2024 30 Maxwell-Jia/AIME 2024 Math
amc2023 40 knoveleng/AMC-23 Math
codegen humaneval 164 openai/openai humaneval Code
gsm8k 1319 openai/gsm8k Math
logic zebra puzzle 200 LLM360/guru-RL-92k Logical Reasoning
math 500 HuggingFaceH4/MATH-500 Math
stem supergpqa 200 LLM360/guru-RL-92k STEM

Total 2953

A.2 HYPERPARAMETER CONFIGURATION

All experiments were conducted with a consistent set of hyperparameters for the Group Relative
Policy Optimization (GRPO) algorithm to ensure a fair comparison across different model sizes and
configurations. The key hyperparameters are listed in Table 2.

Table 2: GRPO training hyperparameters used across all experiments.

Hyperparameter Value

Learning Rate 1.0× 10−6

Batch Size 512
KL Loss Coefficient 0.001
Rollout Temperature (Training) 1.0
Rollout Temperature (Evaluation) 0.7
Clip Ratio (High & Low) 0.2
Input Sequence Length 2048
Output Sequence Length 4096

A.3 PROMPT TEMPLATES

This section details the specific prompt templates used for evaluating models on different domains.
For each task, the model was provided with the corresponding instruction prepended to the problem
statement <question>.
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Table 3: Prompt templates used for different evaluation domains.

Domain Prompt Template
Mathematics You are a knowledgeable math assistant. Answer

the following questions and think step by
step\n<question>\nPlease output the final answer
within \\boxed{}.

Code Write a complete, self-contained Python solution
to the following problem. Your solution must
include all necessary imports and the full
function definition, including the signature
exactly as specified. Do not modify the function
signature or docstring.\n<question>

Logic Solve the following puzzle\n<question>\nPlease
return the final answer in <answer> </answer>
tags, for example <answer> {"header":
["Position", "Nationality", "Job"], "rows":
[["1", "british", "plumber"], ["2", "polish",
"carpenter"]]} </answer>.

Science (STEM) You are a knowledgeable assistant. Answer the
following questions and think step by step \n
<question> \n put your final answer option within
\\boxed{}. Only put the letter in the box, e.g.
\\boxed{A}. There is only one correct answer

A.4 DATA REUSE EXPERIMENT SETUP

 = 1

 = 2

 = 5

 = 20

 = 25

 = 50

 = 100

Figure 9: Data Reuse Schema

To systematically evaluate the effect of
data reuse under constrained data sce-
narios, we design controlled experiments
where all runs are trained with the same
total data size but different levels of data
repetition. Each run randomly samples a
subset from the full training corpus and re-
peats this subset sufficiently many times
to exactly match the target data budget
(i.e., subset size × τ = total data size).
Unlike Muennighoff et al. (2023), subsets
are sampled independently for each run
rather than sampling within the larger sub-
sets, to mitigate sampling bias and balance
stochasticity across conditions. To remain
consistent with the Curriculum Learning
setting of the main experiments, examples
within each subset are ordered by increasing difficulty; across epochs, this difficulty schedule is
preserved and repeated rather than reshuffled, as illustrated in Figure 9.

B ADDITIONAL EXPERIMENT RESULTS

This section provides supplementary experimental results that support and extend the analyses pre-
sented in the main body of the paper.
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B.1 PERFORMANCE ON IN-DOMAIN AND OUT-OF-DOMAIN TASKS

To assess how the mathematical reasoning capabilities acquired during RL fine-tuning generalize,
we evaluated our models on a comprehensive suite of unseen benchmarks. We categorize these into
two groups: in-domain different tasks (other mathematics datasets) and out-of-domain tasks (e.g.,
code, science, logic). The results are presented in Figure 10 and Figure 11.
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Figure 10: Test loss on in-domain and out-of-domain benchmarks vs data size for Base models. It
shows modest positive transfer on in-domain tasks, with limited or negative transfer on OOD tasks.

In-Domain Generalization (Different Mathematical Tasks). On mathematics benchmarks not
included in our training set (such as GSM8K, MATH, AIME, and AMC), we observe a generally
positive transfer of learned skills. For most of these tasks, the test loss shows a modest but consistent
decrease as training progresses, particularly for the larger models. This suggests that the model’s
enhanced reasoning ability is not overfitted to the training distribution and is applicable to a wider
range of mathematical problems.

Out-of-Domain Generalization. When evaluating on tasks outside of mathematics, the generaliza-
tion is more limited. For both code generation (HumanEval) and science problems (SuperGPQA),
performance remains largely static throughout the training process across all model sizes, with test
loss curves staying flat. This indicates that the specialized mathematical reasoning skills do not
readily transfer to these domains. A noteworthy phenomenon is observed in the logical reasoning
task (Zebra Puzzle): the largest models (particularly the 14B variants) show a degradation in perfor-
mance (an increase in test loss) as training progresses, suggesting a potential negative transfer effect
where intensive optimization on mathematical reasoning may interfere with capabilities required for
certain types of logical puzzles.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

5000 10000 50000
0.4

0.6

0.8

Holdout Validation

5000 10000 50000

0.2

0.4

GSM8K

5000 10000 50000

0.2

0.4

0.6

0.8
CodeGen - HumanEval

5000 10000 50000

0.6

0.7

0.8

0.9
SuperGPQA

5000 10000 50000

0.2

0.4

0.6

MATH-500

5000 10000 50000

0.7

0.8

0.9

1
Logic - Zebra Puzzle

5000 10000 50000

0.4

0.6

0.8

AMC2023

5000 10000 50000
0.7

0.8

0.9

1
AIME2024

Data Size

Te
st

 L
os

s

0.5B 1.5B 3B 7B 14B 32B 72B

Figure 11: Test loss on in-domain and out-of-domain benchmarks vs data size for Instruct models. It
shows modest positive transfer on in-domain tasks, with limited or negative transfer on OOD tasks.
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B.2 PEFORMANCE COMPARED WITH ADVANCE MODELS
Model Family Model Identifier Pass@1 Score
Models from Our Study (Post-RFT)
Qwen2.5-Base 0.5B 0.070

1.5B 0.116
3B 0.182
7B 0.338
14B 0.450
32B 0.540
72B 0.607

Qwen2.5-Instruct 0.5B 0.078
1.5B 0.138
3B 0.216
7B 0.380
14B 0.488
32B 0.590
72B 0.617

External SOTA Models (for Comparison)
Qwen3 0.6B 0.178

1.7B 0.288
4B 0.418
8B 0.366
14B 0.388
30B (A3B) 0.528
32B 0.412
235B (A22B) 0.602

GPT-OSS 20B 0.556
120B 0.660

Table 4: Performance of various models on the held-out evaluation set.

To contextualize the performance of our models and the difficulty of our primary evaluation metric,
we benchmarked a range of external, state-of-the-art (SOTA) models on our held-out mathematics
test set. The results are presented in Table 4. The performance of our Qwen2.5 models reflects
their final scores after the completion of reinforcement learning fine-tuning (RFT), while others are
benchmarked directly.

C FORMULA FITTING AND DERIVATION

C.1 FLOPS CALCULATION METHODOLOGY

The computational cost for a LLM is primarily determined by the number of non-embedding pa-
rameters (N ) and the number of processed tokens (T ). The costs for the fundamental operations
are:

• Forward Pass Cost: The cost of a single forward pass is approximately Cfwd ≈ 2NT
FLOPs.

• Backward Pass Cost: The backward pass is approximately twice as expensive as the
forward pass, so Cbwd ≈ 4NT FLOPs.

A full training step, which includes one forward and one backward pass for the gradient update,
therefore has a total computational cost of:

Ctrain = Cfwd + Cbwd ≈ 2NT + 4NT = 6NT FLOPs. (8)

FLOPsstep = 6×N × Tstep (9)

By recording the exact number of processed tokens T per step, we compute the cumulative FLOPs
reported throughout this paper as the sum of these per-step calculations over the course of training.

C.2 COEFFICIENT COMPARISON

We consider the two laws

lnL(N,C) = − kC(N) lnC + EC(N), (10)
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and

lnL(N,D) = − kD(N) lnD + ED(N), (11)

are consistent under the linkage C = NDϕ where ϕ > 0 is a constant for simplification.

Claim. Under C = NDϕ, the slopes coincide and the intercepts differ by a known shift:

kC(N) = kD(N) = k(N), (12)

EC(N) = ED(N) + k(N) ln
(
Nϕ
)
. (13)

Proof. Substitute C = NDϕ into equation 10:

lnL(N,C) = − kC(N) ln
(
NDϕ

)
+ EC(N)

= − kC(N)
[
lnD + ln(Nϕ)

]
+ EC(N)

= − kC(N) lnD +
(
EC(N)− kC(N) ln(Nϕ)

)
.

Comparing this with equation 11, i.e., lnL(N,D) = − kD(N) lnD + ED(N), equality for all
D > 0 forces the coefficients of lnD and the constants to match:

kD(N) = kC(N) =: k(N), ED(N) = EC(N)− k(N) ln(Nϕ).

Rearranging the second identity yields equation 13. □

The observation from Figure 4 also matches with this conclusion.

C.3 FITTING FOR K AND E

Table 5: Uncertainty Analysis for raw data: Base and Instruct Models (Holdout Score)

Model Base Instruct
Test Loss Avg Std SEM Test Loss Avg Std SEM

0.5B 0.9419 0.0082 0.0048 0.9458 0.0073 0.0042
1B 0.9129 0.0091 0.0053 0.8988 0.0098 0.0057
3B 0.8582 0.0129 0.0074 0.8281 0.0112 0.0065
7B 0.7148 0.0147 0.0085 0.6777 0.0142 0.0082
14B 0.6051 0.0149 0.0086 0.5588 0.0143 0.0083
32B 0.4937 0.0056 0.0032 0.4579 0.0127 0.0073
72B 0.4359 0.0143 0.0082 0.4320 0.0140 0.0081

Table 6: Comparison of kmax and N0 Parameters Across Fitting Scenarios

Source Metric Scenario kmax N0 (B) R2

Base L(N,C) Intra-model 0.1349 13.09 0.9955
L(N,C) Inter-model 0.1518 17.37 0.9944
L(N,D) Intra-model 0.1348 11.52 0.9953
L(N,D) Inter-model 0.1631 16.95 0.9947

Instruct L(N,C) Intra-model 0.1276 17.27 0.9970
L(N,C) Inter-model 0.1443 28.33 0.9950
L(N,D) Intra-model 0.1325 17.08 0.9970
L(N,D) Inter-model 0.1484 27.15 0.9949
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Figure 12: Response length vs. Data size. Left: Base models. Right: Instruct models.

E STATEMENTS

E.1 THE USE OF LARGE LANGUAGE MODELS

We used Large Language Model (LLM) to refine our initial draft. This process included checking
for obvious grammatical and syntactical errors, as well as making the language more formal and
academic. We reviewed the content generated by the LLM to ensure that no prohibited generated
content appeared in the article.
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