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Abstract

Many of language models’ impressive capabilities originate from their in-context1

learning: based on instructions or examples, they can infer and perform new tasks2

without weight updates. In this work, we investigate when representations for new3

tasks are formed in language models, and how these representations change over4

the course of context. We focus on “transferrable” task representations—vector5

representations that can restore task context in another instance of the model,6

even without the full prompt. We show that these representations evolve in non-7

monotonic and sporadic ways, and are distinct from a more inert representation of8

high-level task categories that persists throughout the context. Specifically, models9

often condense multiple evidence into these transferrable task representations,10

which align well with the performance improvement based on more examples11

in the context. However, this accrual process exhibits strong locality along the12

sequence dimension, coming online only at certain tokens—despite task identity13

being reliably decodable throughout the context. Moreover, these local but trans-14

ferrable task representations tend to capture minimal “task scopes”, such as a15

semantically-independent subtask, and models rely on more temporally-distributed16

representations to support longer and composite tasks. This two-fold locality17

(temporal and semantic) underscores a kind of just-in-time computational process18

underlying language models’ ability to adapt to new evidence and learn new tasks19

on the fly.20

1 Introduction21

Much of the excitement about large language models began with the discovery that they exhibit22

In-Context Learning (ICL; Brown et al., 2020): the emergent ability to learn tasks from few-shot23

examples in context. This discovery has led to a variety of works exploring the behavioral features of24

ICL (e.g. Sclar et al., 2024; Min et al., 2022). Other works have studied the dynamics of ICL, and25

how performance improves with increasing numbers of few-shot examples (Agarwal et al., 2024;26

Anil et al., 2024). The strong behavioral success of ICL led to substantial interest in understanding27

the mechanistic basis of these capabilities. Work on interpreting the mechanisms responsible for28

ICL has led to discoveries such as induction heads (e.g. Olsson et al., 2022) and how ICL implicitly29

refines a model of in-context evidence (e.g. Akyürek et al., 2022; Von Oswald et al., 2023).30

Recently, several works have identified internal, vector-form task representations that can be extracted31

from a model’s forward pass on a few-shot prompt (Todd et al., 2024; Hendel et al., 2023). Importantly,32

these task representations not only capture general task information, but can be used to restore the33

appropriate task context during the model’s forward pass on a zero-shot prompt. This transfer effect34

is observed by intervening with that representation at the appropriate place in the model’s residual35

stream—such that task context is reinstantiated and the model can perform the task without any36
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Figure 1: Understanding how task representations develop over context. A. A schematic of extracting
transferrable task representations and restoring task contexts in zero-shot settings. The highlighted
tokens indicate the source and target for extracting and injecting task representations. B. Transferrable
task representations restore task accuracy on zero-shot prompts. Results are aggregated over all
models for simple tasks (see Appendix A). Error bars indicate the 95% CI over tasks. C. An overview
of the development of transferrable task representations over context, i.e. the recontextualized zero-
shot accuracy for task representations extracted from different tokens throughout the context.

explicit instructions or demonstrations. These “transferrable” task representations have been shown to37

exist across a variety of tasks and presentation formats, and even capture transferrable task knowledge38

across modalities (Davidson et al., 2025; Huang et al., 2024; Luo et al., 2024).39

The discovery of transferrable task representations raises several intriguing questions about their40

dynamics and generality. How and when are these internal task representations formed throughout41

the context? How do these dynamics depend upon task complexity? A simple, intuitive hypothesis42

is that these representations develop gradually, e.g. at a rate that depends on task complexity. The43

representations might accrue evidence from each example and refine monotonically into a more44

stable, robust task representation. This view aligns with the behavioral findings that models perform45

better with more examples in-context (Agarwal et al., 2024; Anil et al., 2024).46

We set out to understand how the dynamics of ICL (within and across examples) are exhibited47

representationally within the model, by investigating task representations. Our findings suggest a48

more complicated picture of the computational process that support language models’ adaptation to a49

new task:50

• For simple tasks, we find two types of task representations in language models: an inert51

representation of task identity is more continuously present throughout the context, but52

transferrable task representations only activate sporadically at key tokens.53

• These fleeting but transferrable task representations often condense evidence from multiple54

examples but tend to capture minimal task scopes, as their ability to guide model behavior55

decays over longer generation and across independent subtask contexts.56

• Models do not appear to condense task knowledge into local task representations in more57

complicated tasks that require state tracking or chaining multiple subtasks together.58

• Finally, models can form distinct representations to support generating the same responses59

when solving tasks independently vs. as part of a broader context.60

Overall, these results give us a window into language models’ changing state when inferring and61

solving new tasks in context, but paint a complex and nuanced picture of the dynamics of this state.62

There are different types of task representations—identifiable vs. transferrable—that evolve over the63

context in distinct ways. The representations of tasks also depend on the task complexity and the64

surrounding context structure in which a task is embedded. These results may have implications for65

both the science of understanding models, and practical applications of mechanistic interpretability66

for analysis and safety.67
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2 Methods68

Tasks For our analyses, we built upon tasks from prior work on transferrable task representations69

(Hendel et al., 2023; Todd et al., 2024). The tasks we examine include a diverse set of natural70

language tasks (e.g., finding the antonym of a query word, translating an English word to French)71

and algorithmic tasks (e.g., counting or extracting a target word from a list of input words). In72

addition to these simple, single-token generation tasks from the previous literature, we also test a73

range of new tasks to explore model behavior in longer generation settings. These include: repeating74

a simple task three times (e.g. ANTONYM X 3 requires finding the antonyms of three input words),75

extracting multiple words from a query word list (e.g., choose the first and last words from a word76

list), and reversing or shifting an entire word list. Finally, we also explore a set of “mixed-generation”77

tasks, where the model needs to infer and perform different tasks on each word in a word list. (See78

Appendix A for the full set of tasks.)79

There are 512 query-answer pairs for each task (except for two smaller datasets: COUNTRY-CAPITAL80

contains 197 samples, and PRODUCT-COMPANY contains 494 samples). These query-answer pairs81

are formatted into few-shot prompts with alternating "Q:" and "A:" turns, as shown in Figure 1A.82

Models We focus our analyses on the open-weight Gemma V3 pre-trained models, including the83

4B, 12B, and 27B-sized models (Team et al., 2025).84

Extracting in-context task representations We primarily investigate task vectors discovered in85

(Hendel et al., 2023) as a window to study language models’ in-context task representations. We86

extract task vectors from few-shot prompts consisting of query-answer pairs and a test query as shown87

in Figure 1A. Task vectors are the layer residual activations extracted from the last token before88

answer generation in the few-shot prompts (in the example in Figure 1A, this corresponds to the89

highlighted colon). Hendel et al. (2023) showed that task vectors can reinstate task performance even90

without any additional context and with a different query—when task vectors are patched onto (i.e.,91

overwrite) the layer residual activations of the last token, they can recontextualize the model with92

the appropriate task context and enable the model to generate the task output without any few-shot93

examples in-context.94

We replicate and extend the procedure outlined in Hendel et al. (2023). For each model and task, we95

first search for the layer that best captures the task representation, using 50 queries from the dataset96

as the development set and in an 8-shot setting. As in prior work, we replace the real test queries with97

dummy queries sampled from the dataset to extract query-agnostic, general task representations. We98

searched among every 3 layers starting at layer 2 (0-indexed) for the 4B and 12B models (covering99

both the local-attention layers and global attention layers in Gemma V3 models; Team et al., 2025),100

and every 6 layers starting from layer 5 in the 27B model. The layer that restores the highest task101

accuracy on zero-shot prompts in the development set is designated as the layer that best captures the102

representation for a given task, and subsequently used to extract task vectors and restore task contexts103

for the remainder, held-out queries in the dataset. Consistent with prior results, we generally find that104

task vectors extracted and injected at middle layers restore the highest task accuracy on zero-shot105

prompts, for all model sizes.106

Evaluating task accuracy We compare the average accuracy for the sampled responses across a107

few settings: standard zero-shot, recontextualized zero-shot setting (with task vector intervention),108

and few-shot. For simplicity, responses for all tasks are graded by exact string matches against the109

ground-truth answer. This underestimates the model performance in some tasks (e.g. for antonym110

and translation tasks), but we use the same grading scheme across all settings and compare relative111

performances. For longer-generation and mixed-generation tasks, we evaluate each of the multiple112

outputs separately by exact match (e.g., in ANTONYM X 3, we compare each of the three output words113

with the correct answer), and report the mean accuracy across all outputs in the longer response.114

Examining the dynamics of task representations Once we determine the best layer for each task115

using the last colon token, we evaluate how well the colon token representations condense the k-shot116

information in a prompt. We do this by extracting task vectors at the colon token for a k-shot prompt,117

and then evaluating the recontextualized zero-shot accuracy when the task vectors are patched into118

a zero-shot prompt. We repeat this analysis for k in 1, 2, 4, 8, 16, 32. We also experimented with119

allowing the best layer to vary depending on k, but found very similar results.120
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Figure 2: Sporadic & inconsistent evidence accrual in language models. A. Task vectors extracted
from the last colon token in each example capture evidence accrual on most tasks (11 out of 14).
However, on three “hard-to-transfer” tasks, task vectors do not capture this evidence accumulation,
even though the models (behaviorally) do learn from more examples. The solid bars indicate
recontextualized zero-shot accuracy (via task vectors), and light bars in the background indicate
8-shot accuracy (without task vectors). The dotted lines indicate the ratio of the recontextualized
zero-shot accuracy against 8-shot accuracy. B. Most other format tokens in the context do not robustly
form transferrable task representations that support recontextualization on zero-shot, but task identity
is reliably decodable in their residual activations. Here, we report the task identity decoding accuracy
at the mode best layer at which transferrable task representations form in the second ":" token. See
the main text and Appendix C for more details.

We also studied whether transferrable task representations form in tokens other than the final colon121

token. In particular, we extracted layer residual token activations for other tokens in the context,122

including the "Q", the ":" following "Q", the "A", and the new-line token before "A". We patched these123

token activations onto the corresponding token in the zero-shot prompt at the same layer. For each of124

the non-final tokens, we repeated the search for the layer that best captures task representations. All125

token representations were evaluated on the extent to which they restored task accuracy on zero-shot126

prompts.127

3 Results128

How do language models infer new tasks in-context? We leverage the ability for in-context task129

representations to restore task contexts to understand how models accrue evidence and refine task130

representations. We find that language models indeed form stronger task representations that ag-131

gregates in-context evidence. However, this evidence accrual process is surprisingly non-gradual132

and happens in a sporadic way for most tasks (Figure 1C). In particular, effective and transferrable133

task representations form only at certain tokens in the context, and tend to capture the minimal “task134

scope.” For some tasks, models also do not appear to condense task information into local task135

representations. Below, we discuss these findings in more detail.136

3.1 Local task representations can accrue evidence137

Task representations can reflect evidence accrual. Consistent with the behavioral performance138

gain from including more examples in-context (e.g., Anil et al., 2024), we find that transferrable task139

representations in models also reflect increased task certainty with increased context. As shown in140

Figure 2A, task vectors extracted from more examples are better at restoring task performance in141

zero-shot settings, such that the ratio between the recontextualized zero-shot accuracy and few-shot142

accuracy stays relatively stable across the number of examples. This suggests that language models143

condense information from multiple examples and form better task representations, even when the144

task representations extracted are fairly local (i.e., at the last token in the prompt).145

... but not for all types of tasks. However, we did not observe evidence accrual in 3 out of 14146

of the simple tasks (Figure 2A, hard-to-transfer tasks). Specifically, for CHOOSE_MIDDLE_OF_5,147
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COUNT_COLOR_IN_3, and COUNT_FRUIT_IN_3 tasks, we found that local task representations148

(extracted from the last token) were not able to take advantage of more examples for task transfer149

to zero-shot settings, even though models improved substantially at solving the task when given150

more examples in the prompt. One interpretation is that some tasks require more state-tracking (such151

as counting), and that these may necessitate additional inference processes that the models do not152

condense into local task representations. Alternatively, these inference processes cannot be effectively153

re-activated by the injection of the extracted task representations.154

How evidence accrual leads task representations to converge. For the eleven other simple155

tasks where we successfully observed evidence accrual, we sought to understand how the task156

representations themselves changed over more examples (Figure 3A). As we increased the number157

of examples in context, we generally found reduced variance among task vectors extracted from158

different k-shot samples. This suggests that, as models gain evidence, in-context task representations159

tend to denoise or converge to more stable representations. The magnitude (L2-norm) of the task160

vectors also tends to decrease over time. However, there were noticeable differences between tasks161

and models. Some tasks seem to converge to stable representations faster (i.e., with fewer examples;162

see also a visualization of the representational trajectories in Figure S2). However, for certain tasks,163

the magnitude of the task representations first increases then decreases given more examples. We164

note that for this analysis, we look at the task representations extracted from the mode best layer165

across different tasks. This is to control for magnitude difference of the residual activations across166

layers and make a fair comparison. Although the best layer for transferrable task representations167

does sometimes differ across tasks, the best layer across tasks tend to reside in the middle layer range168

across all model sizes, consistent with prior findings (Hendel et al., 2023).169

A. Variance and direction of task representation updates B. t-SNE projection of all task representations

Figure 3: Analyses of extracted task representations. A. The extracted task vectors (at the last colon
token) decrease in both variance and magnitude with more examples, exhibiting a general tendency
to condense evidence and converge onto stable task representations. The solid line shows the average
across tasks, the transparent lines show the individual tasks. B. Extracted task vectors form distinct
clusters. When a given task was evaluated independently vs embedded within a larger task structure
(e.g. "repeat [X task] 3 times"), the task vectors were similar but distinguishable. Figure shows results
from the 27B model; see other models in Figure S4.

3.2 Task representations exhibit temporal locality170

The analyses above confirm that, intuitively, in-context task representations can successfully benefit171

from increasing evidence in context (along the “temporal” dimension), and converge to better172

representations that restore task contexts more robustly. To understand the full temporal profile of this173

accrual process, we repeated the task vector recontextualization experiment on other tokens in the174

prompt, which revealed that the transferrable task representations do not strengthen monotonically.175

Transferrable task representations are not found in most tokens. We extracted task vectors from176

the format tokens in the prompt, including "Q", the ":" following "Q", "A", and the new-line token177

before the "A". We tested whether these extracted representations can also restore the corresponding178

task contexts when patched onto the forward pass in the zero-shot prompt (as before, we patched at the179

same layer, but onto the corresponding format token instead of the last colon). As shown in Figure 2B,180

transferrable task representations generally do not robustly form in the residual activations across181

layers in these tokens, even though these tokens are also shared across examples, tasks, and contexts.182
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This is true across the number of examples provided in the prompt, leading to the developmental183

trajectory of in-context task representations shown in Figure 1C.184

We observed nearly zero recontextualized zero-shot accuracy for all these tokens in most tasks, except185

some restoration success in PRODUCT-COMPANY, COLOR_V_ANIMAL_3, CHOOSE_FIRST_OF_5,186

and the longer-generation tasks discussed below (see Figure S3). In general, it seems that an effective,187

transferrable task representation in language models only forms sparingly; in few-shot settings, this188

often means a just-in-time task representation at the token just before answer generation for each189

query.190

... but a robust task identity signal persists throughout the context. Intriguingly, however, task191

identity is almost perfectly decodable in the representations extracted from all the different format192

tokens, even though the formats are shared across the tasks and contexts. To study this, we trained193

simple, single-layer linear decoders to predict the task category (among the eleven simple tasks that194

we observed evidence accrual) from the residual activations of each format token. We report the test195

accuracy on the 25% held-out token activations extracted following eight examples in Figure 2B and196

Appendix C, but found high task identity decoding accuracy across these tokens following different197

number of examples. This decodability success may be partly due to vocabulary differences for the198

tasks, but the accuracy is close to ceiling, and not all tasks are distinguishable in this way. We note199

that task identity is not perfectly decodable in the token activations in early layers, but generally200

reaches high accuracy in mid and late layers. This suggests that the model is generally task-sensitive,201

but instantiates transferrable task representations only at particular timepoints in the context.202

3.3 Task representations exhibit scope locality203

A. Recontextualization in longer-generation tasks

B. Recontextualization in mixed-generation tasks

Figure 4: Reinstantiated task contexts in longer- and mixed-generation tasks often decay over longer
generation, especially for tasks that can be decomposed into semantically-independent subtasks. This
suggests a tendency for models to only activate transferrable representations for small task scopes.
A. Left: recontextualized zero-shot accuracy compared to zero-shot and 8-shot accuracy on longer-
generation tasks. Right: recontextualized accuracy for each output unit across models, conditioned
on sequences where models generated full correct responses with eight examples in-context. An
output unit usually corresponds to a single word and is occasionally a short phrase (e.g. the capital of
a country). B. Visualization as in A, but for mixed-generation tasks.

We have seen evidence that transferrable task representations tend to be temporally local. That leads204

to the question of whether they have a lasting effect over generation – that is, are the restored task205

contexts in the zero-shot forward pass also fleeting in nature? Prior work has mostly focused on206

simple, single-token output tasks. To study the semantic scope of task representations, we tested to207

what extent restored task contexts can support longer generation beyond the first token. Building208

on the simple tasks from prior work, we evaluated models on a set of longer-generation and mixed-209

6



generation tasks, including repeating a simple task multiple times on different input words, list-level210

tasks that operate over multiple words, and inferring/performing different tasks on different words211

(see Methods and Appendix A).212

Transferrable task representations tend to support a semantically-independent task scope. In213

these experiments, we find further evidence of the locality of in-context task representations. Overall,214

the recontextualized zero-shot accuracy of tasks that require longer and mixed answers is substantially215

lower than that in tasks that require shorter answers (Figure 4, left; also see Figure S1). Across a216

range of tasks, we find that the recontextualized zero-shot accuracy decreases for each output word217

(Figure 4, right), suggesting that the restored task contexts “fade” over longer generation.218

Models seem to be consistently decomposing tasks and forming local task representations that capture219

a minimal “task scope”. For example, in CHOOSE_FIRST_MIDDLE_LAST_OF_5, the reinstantiated220

task context only supported generating the first word, suggesting that further token generations rely221

on additional representations instantiated by a separate mechanism while processing the previously-222

generated tokens. This effect is very pronounced in the mixed-generation tasks, as all models form223

strong local task contexts that only encapsulate the first subtask in a multi-task chain and defer224

representing later subtasks. Interestingly, the extracted task representations that support generating225

responses for the same simple task when it appears independently or as a first task in a repeated or226

mixed-task context can be distinct (Figure 3B). This can potentially reflect the inert sensitivity to227

the broader mixed-task context, as well as conveying information relevant for later subtasks to be228

activated, even though these signals are not sufficient to directly restore execution of later subtasks.229

The restored task contexts do support longer generation to some extent in some tasks, including230

repeating a simple task multiple times and the list-level tasks (i.e. reversing or shifting a word list).231

Overall, these results suggest that language models may be automatically segmenting semantically-232

independent task scopes when possible, such that task representations for longer or composite tasks233

are offloaded onto multiple tokens.234

4 Related work235

Since the discovery that large language models exhibit emergent in-context learning (Brown et al.,236

2020), there has been substantial interest in investigating this capability and its mechanistic basis.237

From a behavioral perspective, many subsequent works have explored how ICL could develop from238

implicit meta-learning of data properties (Xie et al., 2022; Chan et al., 2022), and how this may239

relate to the broader set of language model capabilities (Chen et al., 2024; Lampinen et al., 2024).240

Some of this work has focused on the surprising fragility of ICL to subtle prompt changes (e.g. Sclar241

et al., 2024); conversely, others have highlighted how ICL may be overly robust, allowing “learning”242

common tasks even if the labels are randomized (Min et al., 2022). One particularly relevant focus243

of behavioral work on ICL has been on the dynamics of in-context learning; for example, how244

adding many example shots can improve performance on difficult tasks, or even those discouraged in245

post-training (Agarwal et al., 2024; Anil et al., 2024).246

From a mechanistic perspective, Olsson et al. (2022) showed how induction heads could support247

in-context learning, and other work has studied how they might develop over training (Edelman et al.,248

2024; Singh et al., 2025). More recently, attention has turned to cases where models may create249

internal task representations, that can be extracted from few-shot prompts and then injected (without250

the few-shot examples in context) to induce task performance. Hendel et al. (2023) demonstrated an251

instance of such task representations: representations at intermediate layers of the model at a key252

token that can be injected to mimic the effect of a few-shot prompt. Concurrent work from Todd253

et al. (2024) identified “function vectors,” which aggregate the effects of multiple attention heads that254

convey task information. Subsequent work has generalized and extended these findings, for example255

exploring how function vectors can emerge from instructions as well as examples (Davidson et al.,256

2025) and how task vectors capture task representations in multimodal models (Huang et al., 2024;257

Luo et al., 2024). Other works have explored how these representations and structures emerge over258

training (Yang et al., 2025; Yin and Steinhardt, 2025), and extended existing methods to more robustly259

restore task contexts in zero-shot settings (Li et al., 2024). Our work builds on these findings and use260

transferrable task contexts as a window to study the dynamics of in-context task representations in261

language models.262
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5 Discussion263

We sought to understand the dynamics of in-context task representations that support language models’264

successful learning of new tasks. Building on prior methods, we evaluated when in the context we can265

extract transferrable task representations from few-shot settings that restore task context in zero-shot266

settings. Our results show that in many tasks, models refine task representations over more evidence267

such that the representations more successfully restore task contexts. However, these transferrable268

task representations only sporadically activate, and seem to best support a minimal task scope (e.g., a269

first irreducible subtask). The dynamics of these effective, transferrable task representations strongly270

contrast with a general sensitivity to high-level task differences that persists throughout the context.271

In addition, we find many cases where models do not appear to condense global task representations272

into a local, token-level representation, such as tasks involving more state tracking and tasks chaining273

different types of subtasks together.274

In general, our results complicate the intuitive picture that the computational process underlying275

language model’s in-context evidence accrual and task inference is smooth and gradual. Models do276

not appear to refine task representations at a per-token basis, not even in a step-wise manner—even277

on a per-example basis, the task state is not sustained, but often fades and reactivates across different278

tokens. That language models elect to condense task evidence onto a single token at intermediate279

layers rather than relying on repeated cross-token attention to aggregate information at multiple280

layers may suggest a general inductive bias to compress knowledge to local representations when281

possible. This may also relate to the success many works have observed on extracting transferrable282

task representations in broad settings, such as following instructions or images (Davidson et al., 2025;283

Huang et al., 2024; Luo et al., 2024), or capturing information for multiple possible task outcomes284

(Xiong et al., 2024).285

However, one trend that arose from these investigations is that language models also do not seem able286

to condense task information into local representations in all cases. Rather, they exhibit a tendency to287

form sharp local contexts for small task units, and offload broader task contexts such as mixed or288

multiple tasks across time. As discussed earlier, even for simple tasks where some intermediate-state289

tracking may be required, successful inference may need to rely on cross-token and cross-layer290

computation (e.g., as shown in Ameisen et al., 2025). In these cases, the effective restoration of291

the computation process may also require intervening multiple components during the forward pass.292

It is also possible that by overriding token activations with task vectors in intermediate layers, the293

models may have lost any task state information formed in earlier layers, and other methods that294

restore task states through additive injection rather than activation patching may be more successful295

at restoring model task states in these tasks (Todd et al., 2024; Li et al., 2024). Understanding how296

more complicated in-context computation develops based on evidence in these tasks and whether297

vector-form task representations can re-activate these inferences are interesting open questions.298

An intriguing direction for future work is to study whether there are mechanistic bases for the strong299

temporal and scope locality we observed in models’ in-context task representations. One possibility300

may be that the residual stream is more stable and easier to learn from during training. This may301

encourage the model to rely more on the residual stream to condense contextual task representations302

rather than relying on the more expensive attention operations. These learning dynamics may drive303

models to conform with an implicit normative consideration to not instantiate task contexts until304

needed and instantiate just the right scope to avoid capacity waste. Some of these features may even305

be exclusive to models pre-trained on natural languages (e.g. Yang et al., 2025).306

Limitation We note a few important limitations of our work. First, we primarily rely on task vectors307

as the method to extract transferrable task representations. This means that our conclusions and308

speculations are bounded by the effectiveness of this method. As we discussed earlier, representations309

for some task contexts may be more distributed, either across tokens and/or across model layers. It310

would be important to confirm if similar dynamics are observed in less-constrained methods such as a311

multi-layer recontextualization (Li et al., 2024). Second, we mostly explored relatively simple tasks,312

including when we investigated longer-generation tasks. It’s possible that many of the dynamics we313

observe here would not generalize to settings with naturalistic languages, especially when the tasks314

are not so cleanly decomposable and a single, semantically-independent task unit is hard to define.315

8



Conclusion We investigated how the dynamics of in-context learning are reflected in the develop-316

ment of language models’ internal task representations. Our results suggest that language models do317

not smoothly refine a global task state in-context. While general task sensitivity persists throughout318

context, models appear to construct effective task representations in a “just-in-time” fashion to solve319

a simple task scope immediately ahead. The fleeting, minimally-scoped nature of these in-context320

task representations provides new insight into the models’ state of inferring and performing tasks321

based on new evidence.322
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A Tasks388

Table 1: Simple/shorter-answer tasks. See Todd et al. (2024) for more details.

Task Name Example
ANTONYM Q: true A: false

COUNTRY-CAPITAL Q: Germany A: Berlin

ENGLISH-FRENCH Q: queens A: reines

PRODUCT-COMPANY Q: Windows XP A: Microsoft

COLOR_V_ANIMAL_3 Q: blue, dolphin, swan A: blue

FRUIT_V_ANIMAL_3 Q: lime, parrot, buffalo A: lime

CHOOSE_FIRST_OF_5 Q: envelope, pasta, cake, toucan, create A: envelope

CHOOSE_MIDDLE_OF_5 Q: candy, charismatic, laptop, realize, eel A: laptop

CHOOSE_LAST_OF_5 Q: affable, believe, carefree, zoom, moray A: moray

WORD_LENGTH Q: negotiate A: 9

COUNT_COLOR_IN_3 Q: snake, gold, indigo A: two

COUNT_FRUIT_IN_3 Q: lime, newt, bunny A: one

POSITION_OF_COLOR_IN_3 Q: monkey, oryx, white A: third

POSITION_OF_FRUIT_IN_3 Q: pear, coyote, capybara A: first

Table 2: Longer-generation tasks.

Task Name Example
ANTONYM X 3 Q: fall, everybody, intact A: rise, nobody, broken

PRODUCT-COMPANY X 3 Q: iWork, Windows NT 3.5, OS X Yosemite A: Apple,
Microsoft, Apple

ALL_BUT_COLOR_IN_3 Q: cat, black, pelican A: cat, pelican

ALL_BUT_FRUIT_IN_3 Q: grape, butterfly, llama A: butterfly, llama

CHOOSE_FIRST_LAST_OF_3 Q: white, house, wallet A: white, wallet

CHOOSE_FIRST_MIDDLE_LAST_OF_5 Q: dolphin, beyond, curtain, pillow, intuitive A: dolphin,
curtain, intuitive

REVERSE_ALL_OF_3 Q: donut, sad, who A: who, sad, donut

REVERSE_ALL_OF_5 Q: she, honest, out, test, frog A: frog, test, out, honest, she

SHIFT_ALL_OF_3 Q: piano, cougar, jackfruit A: cougar, jackfruit, piano

SHIFT_ALL_OF_5 Q: agreeable, flamingo, short, around, jovial A: flamingo,
short, around, jovial, agreeable

11



Table 3: Mixed-generation tasks.

Task Name Example
ANTONYM + PRODUCT-COMPANY Q: opponent, iDisk A: ally, Apple

ENGLISH-FRENCH + ANTONYM Q: liberal, continue A: libéral, stop

PRODUCT-COMPANY + ENGLISH-FRENCH Q: Alfa Romeo MiTo, mask A: Fiat,
masque

ANTONYM + COUNTRY-CAPITAL + ENGLISH-FRENCH Q: upper, Greece, artists A: lower,
Athens, artistes

ENGLISH-FRENCH + PRODUCT-COMPANY + ANTONYM Q: system, Lancia Flavia, unlucky A:
système, Fiat, lucky

COUNTRY-CAPITAL + ANTONYM + PRODUCT-COMPANY Q: Gambia, heavy, Game & Watch A:
Banjul, light, Nintendo

B Additional figures389

|          shorter output tasks         |   |  longer output tasks  |    | mixed tasks |

Figure S1: Recontextualization accuracy for all tasks. Task vectors extracted from 8-shot prompts are
used to reinstantiate task contexts in zero-shot settings. The dotted line indicate the ratio between
recontextualized zero-shot accuracy and 8-shot accuracy.
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Figure S2: Developmental trajectory of task representations over shots. Task representations are the
token activations of the colon token prior to answer generation. We visualize task vectors sourced
from the mode best layer across tasks at which task contexts are best restored in a zero-shot setting.
Representations are first averaged across samples with the same number of examples for each task.

Figure S3: Recontextualized zero-shot accuracy from different format tokens in the prompt. The
colors indicate different models (see Figure S1).
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Figure S4: Task representations across all models and tasks.
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C Additional results390

Table 4: Decoding accuracy for task identity at different tokens. Results shown for token activations
extracted at the 8th example.

token Q 1st : \n A 2nd :
model layer

GEMMA_V3_4B_PT 2 0.933 0.848 0.925 0.899 0.950
5 0.979 0.980 0.816 0.925 0.994
8 0.952 0.986 0.908 0.959 0.996
11 0.950 0.986 0.968 0.984 0.998
14 0.960 0.990 0.988 0.984 0.996
17 0.902 0.994 0.990 0.996 0.996
20 0.918 0.992 0.970 0.982 0.992
23 0.834 0.988 0.992 0.954 0.996
26 0.842 0.865 0.990 0.916 0.992
29 0.811 0.973 0.992 0.922 0.986
32 0.905 0.948 0.992 0.958 0.966

GEMMA_V3_12B_PT 2 0.945 0.896 0.858 0.808 0.963
5 0.886 0.965 0.872 0.959 0.905
8 0.975 0.894 0.866 0.889 0.979
11 0.958 0.940 0.980 0.998 0.986
14 0.980 0.960 0.980 0.988 0.998
17 0.979 0.986 0.956 0.946 0.998
20 0.977 0.990 0.968 0.942 0.998
23 0.963 0.998 0.994 0.933 0.984
26 0.907 1.000 0.998 0.848 0.992
29 0.889 0.994 0.982 0.859 1.000
32 0.924 0.962 0.984 0.742 1.000
35 0.845 0.956 0.952 0.869 0.994
38 0.773 0.942 0.980 0.808 0.986
41 0.756 0.869 0.920 0.772 0.990
44 0.817 0.928 0.984 0.953 0.990
47 0.956 0.971 0.970 0.928 0.968

GEMMA_V3_27B_PT 5 0.929 0.876 0.829 0.879 0.905
11 0.940 0.994 0.865 0.946 0.972
17 0.979 0.990 0.900 0.996 0.996
23 0.973 1.000 0.945 0.960 0.996
29 0.950 0.998 0.994 0.937 0.994
35 0.864 0.988 0.924 0.906 0.994
41 0.936 0.964 0.960 0.827 0.990
47 0.890 0.996 0.912 0.858 0.990
53 0.887 0.980 0.912 0.787 0.968
59 0.863 0.984 0.994 0.977 0.958
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