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Abstract

Estimating mutual information accurately is pivotal across diverse appli-
cations, from machine learning to communications and biology, enabling
us to gain insights into the inner mechanisms of complex systems. Yet,
dealing with high-dimensional data presents a formidable challenge, due to
its size and the presence of intricate relationships. Recently proposed neural
methods employing variational lower bounds on the mutual information
have gained prominence. However, these approaches suffer from either
high bias or high variance, as the sample size and the structure of the loss
function directly influence the training process. In this paper, we propose a
novel class of discriminative mutual information estimators based on the
variational representation of the f -divergence. We investigate the impact
of the permutation function used to obtain the marginal training samples
and present a novel architectural solution based on derangements. The
proposed estimator is flexible since it exhibits an excellent bias/variance
trade-off. The comparison with state-of-the-art neural estimators, through
extensive experimentation within established reference scenarios, shows that
our approach offers higher accuracy and lower complexity.

1 Introduction

The mutual information (MI) between two multivariate random variables, X and Y , is a
fundamental quantity in statistics, representation learning, information theory, communica-
tion engineering and biology (Goldfeld & Greenewald, 2021; Tschannen et al., 2020; Guo
et al., 2005; Pluim et al., 2003). It quantifies the statistical dependence between X and Y
by measuring the amount of information obtained about X via the observation of Y , and it
is defined as

I(X;Y ) = E(x,y)∼pXY (x,y)

[
log

pXY (x,y)

pX(x)pY (y)

]
. (1)

Unfortunately, computing I(X;Y ) is challenging since the joint probability density function
pXY (x,y) and the marginals pX(x), pY (y) are usually unknown, especially when dealing
with high-dimensional data. Some recent techniques (Papamakarios et al., 2017; Letizia &
Tonello, 2022) have demonstrated that neural networks can be leveraged as probability density
function estimators and, more in general, are capable of modeling the data dependence.
Discriminative approaches (Raina et al., 2003; Tonello & Letizia, 2022) compare samples
from both the joint and marginal distributions to directly compute the density ratio (or the
log-density ratio)

R(x,y) =
pXY (x,y)

pX(x)pY (y)
. (2)

We focus on discriminative MI estimation since it can in principle enjoy some of the properties
of implicit generative models, which are able of directly generating data that belongs to the
same distribution of the input data without any explicit density estimate. In this direction,
the most successful technique is represented by generative adversarial networks (GANs)
(Goodfellow et al., 2014). The adversarial training pushes the discriminator D(x) towards
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the optimum value

D̂(x) =
pdata(x)

pdata(x) + pgen(x)
=

1

1 +
pgen(x)
pdata(x)

. (3)

Therefore, the output of the optimum discriminator is itself a function of the density ratio
pgen/pdata, where pgen and pdata are the distributions of the generated and the collected
data, respectively.

We generalize the observation of (3) and we propose a family of MI estimators based on the
variational lower bound of the f -divergence (Poole et al., 2019; Sason & Verdú, 2016). In
particular, we argue that the maximization of any f -divergence variational lower bound can
lead to a MI estimator with excellent bias/variance trade-off.

Since we typically have access only to joint data points (x,y) ∼ pXY (x,y), another relevant
practical aspect is the sampling strategy to obtain data from the product of marginals
pX(x)pY (y), for instance via a shuffling mechanism along N realizations of Y . We analyze
the impact that the permutation has on the learning and training process and we propose a
derangement training strategy that achieves high performance requiring Ω(N) operations.
Simulation results demonstrate that the proposed approach exhibits improved estimations in
a multitude of scenarios.

In brief, we can summarize our contributions over the state-of-the-art as follows:

• For any f -divergence, we derive a training value function whose maximization leads
to a given MI estimator.

• We compare different f -divergences and comment on the resulting estimator proper-
ties and performance.

• We study the impact of data derangement for the learning model and propose a
novel derangement training strategy that overcomes the upper bound on the MI
estimation (McAllester & Stratos, 2020), contrarily to what happens when using a
random permutation strategy.

• We unify the main discriminative estimators into a publicly available code which
can be used to reproduce all the results of this paper.

2 Related Work

Traditional approaches for the MI estimation rely on binning, density and kernel estimation
(Moon et al., 1995) and k-nearest neighbors (Kraskov et al., 2004). Nevertheless, they do
not scale to problems involving high-dimensional data as it is the case in modern machine
learning applications. Hence, deep neural networks have recently been leveraged to maximize
variational lower bounds on the MI (Poole et al., 2019; Nguyen et al., 2010; Belghazi et al.,
2018). The expressive power of neural networks has shown promising results in this direction
although less is known about the effectiveness of such estimators (Song & Ermon, 2020),
especially since they suffer from either high bias or high variance.

Discriminative approaches usually exploit an energy-based variational family of functions
to provide a lower bound on the Kullback-Leibler (KL) divergence. As an example, the
Donsker-Varadhan dual representation of the KL divergence (Poole et al., 2019; Donsker &
Varadhan, 1983) produces an estimate of the MI using the bound optimized by the mutual
neural information estimator (MINE) (Belghazi et al., 2018). Another variational lower
bound is based on the KL divergence dual representation introduced in (Nguyen et al.,
2010) (also referred to as f -MINE in (Belghazi et al., 2018)). Both MINE and NWJ suffer
from high-variance estimates and to combat such a limitation, the SMILE estimator was
introduced in (Song & Ermon, 2020). SMILE is equivalent to MINE in the limit τ → +∞.
The MI estimator based on contrastive predictive coding (CPC) (van den Oord et al., 2018)
provides low variance estimates but it is upper bounded by logN , resulting in a biased
estimator. Such upper bound, typical of contrastive learning objectives, has been recently
analyzed in the context of skew-divergence estimators (Lee & Shin, 2022).
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Another estimator based on a classification task is the neural joint entropy estimator (NJEE)
proposed in (Shalev et al., 2022), which estimates the MI as entropies subtraction.

Inspired by the f -GAN training objective (Nowozin et al., 2016), in the following, we present
a class of discriminative MI estimators based on the f -divergence measure. Conversely to
what has been proposed so far in the literature, where f is always constrained to be the
generator of the KL divergence, we allow for any choice of f . Different f functions will have
different impact on the training and optimization sides, while on the estimation side, the
partition function does not need to be computed, leading to low variance estimators.

3 f-Divergence Mutual Information Estimation

The calculation of the MI via a discriminative approach requires the density ratio (2). From

(3), we observe that I(X;Y ) can be estimated using the optimum GAN discriminator D̂
when pdata ≡ pXpY and pgen ≡ pXY . More in general, the authors in (Nowozin et al., 2016)
extended the variational divergence estimation framework presented in (Nguyen et al., 2010)
and showed that any f -divergence can be used to train GANs. Inspired by such idea, we
now argue that also discriminative MI estimators enjoy similar properties if the variational
representation of f -divergence functionals Df (P ||Q) is adopted.

In detail, let P and Q be absolutely continuous measures w.r.t. dx and assume they possess
densities p and q, then the f -divergence is defined as follows

Df (P ||Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx, (4)

where X is a compact domain and the function f : R+ → R is convex, lower semicontinuous
and satisfies f(1) = 0.

The following theorem introduces f -DIME, a class of discriminative mutual information
estimators (DIME) based on the variational representation of the f -divergence.

Theorem 1. Let (X,Y ) ∼ pXY (x,y) be a pair of multivariate random variables. Let σ(·) be
a permutation function such that pσ(Y )(σ(y)|x) = pY (y). Let f∗ be the Fenchel conjugate of
f : R+ → R, a convex lower semicontinuous function that satisfies f(1) = 0 with derivative
f ′. If Jf (T ) is a value function defined as

Jf (T ) = E(x,y)∼pXY (x,y)

[
T
(
x,y

)
− f∗

(
T
(
x, σ(y)

))]
, (5)

then

T̂ (x,y) = argmax
T

Jf (T ) = f ′
(

pXY (x,y)

pX(x)pY (y)

)
, (6)

and

I(X;Y ) = IfDIME(X;Y ) = E(x,y)∼pXY (x,y)

[
log

((
f∗)′(T̂ (x,y)))]. (7)

Theorem 1 shows that any value function Jf of the form in (5), seen as the dual representation
of a given f -divergence Df , can be maximized to estimate the MI via (7). It is interesting to
notice that the proposed class of estimators does not need any evaluation of the partition
term.

We propose to parametrize T (x,y) with a deep neural network Tθ of parameters θ and solve
with gradient ascent and back-propagation to obtain

θ̂ = argmax
θ

Jf (Tθ). (8)

By doing so, it is possible to guarantee that, at every training iteration n, the convergence
of the f -DIME estimator În,fDIME(X;Y ) is controlled by the convergence of T towards the

tight bound T̂ while maximizing Jf (T ), as stated in the following lemma.

3



Under review as a conference paper at ICLR 2024

Lemma 1. Let the discriminator T (·) be with enough capacity, i.e., in the non parametric
limit. Consider the problem

T̂ = argmax
T

Jf (T ) (9)

where Jf (T ) is defined as in (5), and the update rule based on the gradient descent method

T (n+1) = T (n) + µ∇Jf (T
(n)). (10)

If the gradient descent method converges to the global optimum T̂ , the mutual information
estimator defined in (7) converges to the real value of the mutual information I(X;Y ).

The proof of Lemma 1, which is described in the Appendix, provides some theoretical
grounding for the behaviour of MI estimators when the training does not converge to the
optimal density ratio. Moreover, it also offers insights about the impact of different functions
f on the numerical bias.

It is important to remark the difference between the classical variational lower bounds
estimators that follow a discriminative approach and the DIME-like estimators. They both
achieve the goal through a discriminator network that outputs a function of the density
ratio. However, the former models exploit the variational representation of the MI (or
the KL) and, at the equilibrium, use the discriminator output directly in one of the value
functions reported in Appendix B. The latter, instead, use the variational representation
of any f -divergence to extract the density ratio estimate directly from the discriminator
output.

In the upcoming sections, we analyze the variance of f -DIME and we propose a training
strategy for the implementation of Theorem 1. In our experiments, we consider the cases
when f is the generator of: a) the KL divergence; b) the GAN divergence; c) the Hellinger
distance squared. Due to space constraints, we report in Sec. A of the Appendix the
value functions used for training and the mathematical expressions of the resulting DIME
estimators.

4 Variance Analysis

In this section, we assume that the ground truth density ratio R̂(x,y) exists and corresponds

to the density ratio in (2). We also assume that the optimum discriminator T̂ (x,y) is known
and already obtained (e.g. via a neural network parametrization).

We define pMXY (x,y) and pNX(x)pNY (y) as the empirical distributions corresponding to M i.i.d.
samples from the true joint distribution pXY and to N i.i.d. samples from the product of
marginals pXpY , respectively. The randomness of the sampling procedure and the batch sizes
M,N influence the variance of variational MI estimators. In the following, we prove that
under the previous assumptions, f -DIME exhibits better performance in terms of variance
w.r.t. some variational estimators with a discriminative approach, e.g., MINE and NWJ.

The partition function estimation EpN
XpN

Y
[R̂] represents the major issue when dealing with

variational MI estimators. Indeed, they comprise the evaluation of two terms (using the
given density ratio), and the partition function is the one responsible for the variance
growth. The authors in (Song & Ermon, 2020) characterized the variance of both MINE and
NWJ estimators, in particular, they proved that the variance scales exponentially with the
ground-truth MI ∀M ∈ N

VarpXY ,pXpY

[
IM,N
NWJ

]
≥eI(X;Y ) − 1

N

lim
N→∞

NVarpXY ,pXpY

[
IM,N
MINE

]
≥eI(X;Y ) − 1, (11)

where

IM,N
NWJ := EpM

XY
[log R̂+ 1]− EpN

XpN
Y
[R̂]

IM,N
MINE := EpM

XY
[log R̂]− logEpN

XpN
Y
[R̂]. (12)
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To reduce the impact of the partition function on the variance, the authors of (Song & Ermon,
2020) also proposed to clip the density ratio between e−τ and eτ leading to an estimator
(SMILE) with bounded partition variance. However, also the variance of the log-density

ratio EpM
XY

[log R̂] influences the variance of the variational estimators, since it is clear that

VarpXY ,pXpY

[
IM,N
V LB

]
≥ VarpXY

[
EpM

XY
[log R̂]

]
, (13)

a result that holds for any type of MI estimator based on a variational lower bound (VLB).

The great advantage of f -DIME is to avoid the partition function estimation step, significantly
reducing the variance of the estimator. Under the same initial assumptions, from (13) we
can immediately conclude that

VarpXY

[
IMfDIME

]
≤ VarpXY ,pXpY

[
IM,N
V LB

]
, (14)

where
IMfDIME := EpM

XY
[log R̂] (15)

is the Monte Carlo implementation of f -DIME. Hence, the f -DIME class of models has
lower variance than any VLB based estimator (MINE, NWJ, SMILE, etc.). The following
Lemma provides an upper bound on the variance of the f -DIME estimator. Notice that such
result holds for any type of value function Jf , so it is not restrictive to the KL divergence.

Lemma 2. Let R̂ = pXY (x,y)/(pX(x)pY (y)) be the density ratio and assume VarpXY
[log R̂]

exists. Let pMXY be the empirical distribution of M i.i.d. samples from pXY and let EpM
XY

denote the sample average over pMXY . Then, under the randomness of the sampling procedure
it follows that

VarpXY

[
EpM

XY
[log R̂]

]
≤

4H2(pXY , pXpY )

∣∣∣∣∣∣∣∣ pXY

pXpY

∣∣∣∣∣∣∣∣
∞

− I2(X;Y )

M
(16)

where H2 is the Hellinger distance squared.

Lemma 4, also in the Appendix, characterizes the variance of the estimator in (15) when X
and Y are correlated Gaussian random variables. We found out that the variance is finite
and we use this result to verify in the experiments that the variance of f -DIME does not
diverge for high values of MI.

5 Derangement Strategy

The discriminative approach essentially compares expectations over both joint (x,y) ∼ pXY

and marginal (x,y) ∼ pXpY data points. Practically, we have access only to N realizations of
the joint distribution pXY and to obtain N marginal samples of pXpY from pXY a shuffling
mechanism for the realizations of Y is typically deployed. A general result in (McAllester &
Stratos, 2020) shows that failing to sample from the correct marginal distribution would
lead to an upper bounded MI estimator.

We study the structure that the permutation law σ(·) in Theorem 1 needs to have when
numerically implemented. In particular, we now prove that a naive permutation over the
realizations of Y results in an incorrect VLB of the f -divergence, causing the MI estimator
to be bounded by log(N), where N is the batch size. To solve this issue, we propose a
derangement strategy.

Let the data points (x,y) ∼ pXY be N pairs (xi,yi), ∀i ∈ {1, . . . , N}. The naive permutation
of y, denoted as π(y), leads to N new random pairs (xi,yj), ∀i and j ∈ {1, · · · , N}. The
idea is that a random naive permutation may lead to at least one pair (xk,yk), with
k ∈ {1, . . . , N}, which is actually a sample from the joint distribution. Viceversa, the
derangement of y, denoted as σ(y), leads to N new random pairs (xi,yj) such that i ̸= j,∀i
and j ∈ {1, · · · , N}. Such pairs (xi,yj), i ̸= j can effectively be considered samples from
pX(x)pY (y). An example using these definitions is provided in Appendix D.1.3.
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The following lemma analyzes the relationship between the Monte Carlo approximations of
the VLBs of the f -divergence Jf in Theorem 1 using π(·) and σ(·) as permutation laws.

Lemma 3. Let (xi,yi), ∀i ∈ {1, . . . , N}, be N data points. Let Jf (T ) be the value function
in (5). Let J π

f (T ) and J σ
f (T ) be numerical implementations of Jf (T ) using a random

permutation and a random derangement of y, respectively. Denote with K the number of
points yk, with k ∈ {1, . . . , N}, in the same position after the permutation (i.e., the fixed
points). Then

J π
f (T ) ≤ N −K

N
J σ
f (T ). (17)

Lemma 3 practically asserts that the value function J π
f (T ) evaluated via a naive permutation

of the data is not a valid VLB of the f -divergence, and thus, there is no guarantee on the
optimality of the discriminator’s output. An interesting mathematical connection can be
obtained when studying J π

f (T ) as a sort of variational skew-divergence estimator (Lee &

Shin, 2022), but this goes beyond the scope of this paper.

The following theorem states that in the case of the KL divergence, the maximum of J π
f (D)

is attained for a value of the discriminator that is not exactly the density ratio (as it should
be from (23), see Appendix A).

Theorem 2. Let the discriminator D(·) be with enough capacity. Let N be the batch size
and f be the generator of the KL divergence. Let J π

KL(D) be defined as

J π
KL(D) = E(x,y)∼pXY (x,y)

[
log

(
D
(
x,y

))
− f∗

(
log

(
D
(
x, π(y)

)))]
. (18)

Denote with K the number of indices in the same position after the permutation (i.e., the
fixed points), and with R(x,y) the density ratio in (2). Then,

D̂(x,y) = argmax
D

J π
KL(D) =

NR(x,y)

KR(x,y) +N −K
. (19)

Although Theorem 2 is stated for the KL divergence, it can be easily extended to any
f -divergence using Theorem 1. Notice that if the number of indices in the same position K
is equal to 0, we fall back into the derangement strategy and we retrieve the density ratio as
output.

When we parametrize D with a neural network, we perform multiple training iterations and
so we have multiple batches of dimension N . This turns into an average analysis on K. We
report in the Appendix (see Lemma 5) the proof that, on average, K is equal to 1.

From the previous results, it follows immediately that the estimator obtained using a naive
permutation strategy is biased and upper bounded by a function of the batch size N .

Corollary 2.1 (Permutation bound). Let KL-DIME be the estimator obtained via iterative
optimization of J π

KL(D), using a batch of size N every training step. Then,

IπKL−DIME := E(x,y)∼pXY (x,y)

[
log

(
D̂(x,y)

)]
< log(N). (20)

We report in Fig. 1 an example of the difference between the derangement and permutation
strategies. The estimate attained by using the permutation mechanism, showed in Fig. 1b,
demonstrates Theorem 2 and Corollary 2.1, as the upper bound corresponding to log(N)
(with N = 128) is clearly visible.

6 Experimental Results

In this section, we first describe the architectures of the proposed estimators. Then, we
outline the data used to estimate the MI, comment on the performance of the discussed
estimators in different scenarios, also analyzing their computational complexity. Finally, we
report in Appendix D.2 the self-consistency tests (Song & Ermon, 2020) over image datasets.
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(a) Derangement strategy. (b) Permutation strategy.

Figure 1: MI estimate obtained with derangement and permutation training procedures, for
data dimension d = 20 and batch size N = 128.

6.1 Architectures

To demonstrate the behavior of the state-of-the-art MI estimators, we consider multiple
neural network architectures. The word architecture needs to be intended in a wide-sense,
meaning that it represents the neural network architecture and its training strategy. In
particular, additionally to the architectures joint (Belghazi et al., 2018) and separable
(Oord et al., 2018), we propose the architecture deranged.
The joint architecture concatenates the samples x and y as input of a single neural network.
Each training step requires N realizations (xi,yi) drawn from pXY (x,y), for i ∈ {1, . . . , N}
and N(N − 1) samples (xi,yj),∀i, j ∈ {1, . . . , N}, with i ̸= j.
The separable architecture comprises two neural networks, the former fed in with N
realizations of X, the latter with N realizations of Y . The inner product between the outputs
of the two networks is exploited to obtain the MI estimate.
The proposed deranged architecture feeds a neural network with the concatenation of the
samples x and y, similarly to the joint architecture. However, the deranged one obtains
the samples of pX(x)pY (y) by performing a derangement of the realizations y in the batch
sampled from pXY (x,y). Such diverse training strategy solves the main problem of the
joint architecture: the difficult scalability to large batch sizes. For large values of N , the
complexity of the joint architecture is Ω(N2), while the complexity of the deranged one
is Ω(N). NJEE utilizes a specific architecture, in the following referred to as ad hoc,
comprising 2d−1 neural networks, where d is the dimension of X. INJEE training procedure
is supervised: the input of each neural network does not include the y samples. All the
implementation details are reported in Appendix D.

6.2 Multivariate Linear and Nonlinear Gaussians

We benchmark the proposed class of MI estimators on two settings utilized in previous
papers (Poole et al., 2019; Song & Ermon, 2020). In the first setting (called Gaussian), a
20-dimensional Gaussian distribution is sampled to obtain x and n samples, independently.

Then, y is obtained as linear combination of x and n: y = ρx +
√
1− ρ2 n, where ρ

is the correlation coefficient. In the second setting (referred to as cubic), the nonlinear
transformation y 7→ y3 is applied to the Gaussian samples. The true MI follows a staircase
shape, where each step is a multiple of 2 nats. Each neural network is trained for 4k iterations
for each stair step, with a batch size of 64 samples (N = 64). The values d = 20 and N = 64
are used in the literature to compare MI neural estimators. The tested estimators are:
INJEE , ISMILE (τ = 1), IGAN−DIME , IHD−DIME , IKL−DIME , and ICPC , as illustrated
in Fig. 2. The performance of IMINE , INWJ , and ISMILE(τ = ∞) is reported in Sec.
D of the Appendix, since these algorithms exhibit lower performance compared to both
SMILE and f -DIME. In fact, all the f -DIME estimators have lower variance compared to
IMINE , INWJ , and ISMILE(τ = ∞), which are characterized by an exponentially increasing
variance (see (11)). In particular, all the estimators analyzed belonging to the f -DIME class
achieve significantly low bias and variance when the true MI is small. Interestingly, for high
target MI, different f -divergences lead to dissimilar estimation properties. For large MI,

7



Under review as a conference paper at ICLR 2024

Figure 2: Staircase MI estimation comparison for d = 20 and N = 64. The Gaussian case is
reported in the top row, while the cubic case is shown in the bottom row.

Figure 3: Staircase MI estimation comparison for d = 5 and N = 64. The Gaussian case is
reported in the top row, while the cubic case is shown in the bottom row.

IKL−DIME is characterized by a low variance, at the expense of a high bias and a slow rise
time. Contrarily, IHD−DIME attains a lower bias at the cost of slightly higher variance w.r.t.
IKL−DIME . Diversely, IGAN−DIME achieves the lowest bias, and a variance comparable to
IHD−DIME .

The MI estimates obtained with ISMILE and IGAN−DIME appear to possess similar behavior,
although the value functions of SMILE and GAN-DIME are structurally different. The
reason why ISMILE is almost equivalent to IGAN−DIME resides in their training strategy,
since they both minimize the same f -divergence. Looking at the implementation code of
SMILE 1, in fact, the network’s training is guided by the gradient computed using the
Jensen-Shannon (JS) divergence (a linear transformation of the GAN divergence). Given
the trained network, the clipped objective function proposed in (Song & Ermon, 2020) is
only used to compute the MI estimate, since when (31) is used to train the network, the MI
estimate diverges (see Fig. 7 in Appendix D). However, with the proposed class of f -DIME
estimators we show that during the estimation phase the partition function (clipped in (Song
& Ermon, 2020)) is not necessary to obtain the MI estimate.

INJEE obtains an estimate for d = 20 and N = 64 that has slightly higher bias than
IGAN−DIME for large MI values and slightly higher variance than IKL−DIME . ICPC is
characterized by high bias and low variance. A schematic comparison between all the MI
estimators is reported in Tab. 4 in Sec. D of the Appendix.
When N and d vary, the class of f -DIME estimators proves its robustness (i.e., maintains
low bias and variance), as represented in Fig. 3 and 4. Differently, the behavior of ICPC

strongly depends on N . At the same time, INJEE achieves higher bias when N increases
and, even more severely, when d decreases (see Fig. 3). Additional results describing all
estimators’ behavior when d and N vary are reported and described in Appendix D.
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Figure 4: Staircase MI estimation comparison for d = 20 and N = 1024. The Gaussian case
is reported in the top row, while the cubic case is shown in the bottom row.

(a) Multivariate Gaussian distribution size fixed
to 20. Batch size varying from 64 to 1024.

(b) Multivariate Gaussian distribution size varying
from 5 to 25. Batch size fixed to 64.

Figure 5: Time requirements comparison to complete the 5-step staircase MI.

Computational Time Analysis

A fundamental characteristic of each algorithm is the computational time. The time
requirements to complete the 5-step staircase MI when varying the multivariate Gaussian
distribution dimension d and the batch size N are reported in Fig. 5. The difference among
the estimators computational time is not significant, when comparing the same architectures.
However, as discussed in Sec. 6.1, the deranged strategy is significantly faster than the
joint one as N increases. The fact that the separable architecture uses two neural networks
implies that when N is significantly large, the deranged implementation is much faster than
the separable one, as well as more stable to the training and distribution parameters, as
shown in Appendix D. INJEE is evaluated with its own architecture, which is the most
computationally demanding, because it trains a number of neural networks equal to 2d− 1.
Thus, INJEE can be utilized only in cases where the time availability is orders of magnitudes
higher than the other approaches considered. When d is large, the training of INJEE fails due
to memory requirement problems. For example, our hardware platform (described Appendix
D) does not allow the usage of d > 30.

7 Conclusions

In this paper, we presented f -DIME, a class of discriminative mutual information estimators
based on the variational representation of the f -divergence. We proved that any valid choice
of the function f leads to a low-variance MI estimator which can be parametrized by a neural
network. We also proposed a derangement training strategy that efficiently samples from
the product of marginal distributions. The performance of f -DIME is evaluated using three
functions f , and it is compared with state-of-the-art estimators. Results demonstrate excellent
bias/variance trade-off for different data dimensions and different training parameters.

1https://github.com/ermongroup/smile-mi-estimator
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
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