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Abstract001

Large Language Models (LLMs) like GPT-4002
are widely used for question answering but are003
prone to hallucinations. Fact-conflicting hallu-004
cinations, which contradict established knowl-005
edge, are especially concerning in domains like006
scientific research. While detection has been007
studied, the causes, particularly the role of fac-008
tual prevalence, remain underexplored. In this009
work, we hypothesize that hallucinations are010
more likely for less prevalent topics. Using cita-011
tion count as a proxy for prevalence, we curated012
a Q&A dataset of 4,000 papers across four dis-013
ciplines and prompted GPT-4-turbo to predict014
authorship. Responses were evaluated using015
self-assessment under two definitions of hallu-016
cination. Our analysis shows a general inverse017
correlation between hallucination rate and ci-018
tation count, with the strongest trend under a019
narrow definition of hallucination, for most of020
the disciplines.021

1 Introduction022

Large language models (LLMs) like GPT-4 show023

strong performance in many NLP tasks, such as024

question answering. As a result, they are increas-025

ingly used in everyday life, business, and research026

to quickly provide tailored answers and solutions.027

Despite their strengths, large language models028

(LLMs) can generate confident but incorrect or mis-029

leading responses, a phenomenon known as halluci-030

nation. These generative errors include nonfactual031

content, fabricated references, or inaccurate yet co-032

herent outputs. A notable subtype, fact-conflicting033

hallucination (Zhang et al., 2023), involves plau-034

sible but unverifiable claims that contradict estab-035

lished knowledge – posing serious risks in domains036

like scientific research. Understanding and address-037

ing the root causes of hallucinations is essential038

for deploying LLMs safely and reliably in such039

high-stakes contexts.040

Our study focuses on investigating one potential041

cause of hallucination: factual prevalence, or lack042

thereof. Factual prevalence refers to how frequently 043

a specific fact or piece of knowledge appears in 044

the training data — for example, how frequently a 045

name, event, or concept is mentioned across web 046

pages, articles, or books. A lack of appropriate ex- 047

pertise and understanding of a domain by an LLM 048

could be a reflection of a lack of factual prevalence 049

in that domain (Liu et al., 2024). 050

In this work, we hypothesize a predictable re- 051

lationship between factual prevalence and halluci- 052

nations in LLMs: the likelihood of hallucination 053

increases when LLMs respond to questions about 054

less prevalent or lesser-known topics. This hy- 055

pothesis is rooted in how LLMs are trained — by 056

learning next-token probabilities from large-scale 057

web data. Frequently occurring facts in the training 058

corpus are more likely to reinforce correct token 059

predictions, making the model more likely to recall 060

those facts accurately. 061

Studying factual prevalence is challenging due 062

to its broad, abstract nature. Prior work has ap- 063

proached it via metamorphic testing on Wikipedia 064

domains (Li et al., 2024) and query reconstruc- 065

tion from media datasets (Yehuda et al., 2024). To 066

our knowledge, no study has examined academic 067

author information as a signal for detecting halluci- 068

nations in LLMs. 069

Academic papers are extensively indexed and 070

easily accessible through online databases, and 071

LLMs often have access to both web and academic 072

sources. Since citation counts indicate a paper’s 073

visibility, we propose using them as a proxy for 074

the factual prevalence of related information, such 075

as authorship. Building on this idea, we narrow 076

our study to a concrete and measurable question: 077

Does the hallucination rate of LLMs in predicting 078

a paper’s authors decrease as the paper’s citation 079

count increases? 080

To investigate this, we built a Q&A dataset 081

of 4,000 papers across four academic fields and 082

prompted an LLM with author-related questions. 083
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Responses were evaluated using self-assessment084

prompts, with mismatches marked as hallucina-085

tions. Our analysis reveals a negative correlation086

between hallucination rates and citation counts,087

consistent across disciplines, though the strength088

of the correlation varies. Our main contributions089

are as follows:090

• We curated a dataset of 4,000 papers across091

four disciplines, along with associated meta-092

data.093

• We measured hallucination rates using care-094

fully designed main and self-evaluation095

prompts and observed a general inverse cor-096

relation between hallucination rate and cita-097

tion count. This trend held across disciplines,098

though the strength of the correlation varied.099

2 Related work100

Hallucinations in LLMs have been linked to factors101

like poor calibration and overconfidence in low-102

frequency or out-of-distribution cases. Prior work103

largely focuses on detection. For instance, Kada-104

vath et al. (2022) proposed P(I Know) to measure105

self-awareness, and SelfCheckGPT (Manakul et al.,106

2023) detects hallucinations via cross-checking107

multiple outputs. In contrast, our study investigates108

the cause, specifically the role of factual correct-109

ness in authorship questions.110

Farquhar et al. (2024) used semantic entropy to111

capture uncertainty via entailment-based clustering,112

which is suited for free-form generation, though113

its effectiveness depends on clustering quality. In114

contrast, our setup matches author lists uses direct115

alignment through LLM self-evaluation, offering a116

more robust method for structured outputs.117

Finally, Wei et al. (2024) introduced SimpleQA118

to assess factual accuracy in short-form QA, fo-119

cusing on atomic facts. We extend this by exam-120

ining hallucination in structured, multi-entity re-121

sponses, specifically authorship questions, using122

citation count as a proxy for topic prevalence in123

STEM fields.124

3 Approaches125

Our overall experimental pipeline is shown in Fig-126

ure 1. We discuss each component as follows.127

3.1 Data Collection128

We collected papers and metadata from Google129

Scholar. Our goal is to use these data as the ground130

truth and test the ability of the LLM to identify the131

authors. To explore hallucination rates across fields,132

we focused on four disciplines: Computer Science, 133

Physics, Chemistry, and Biology. Average citation 134

counts rank from high to low in that order, so if 135

our hypothesis holds, hallucination rates should 136

decrease accordingly – lowest in Computer Science 137

and highest in Biology. 138

We began by extracting profile URLs of the top 139

10 scholars in each discipline, ranked by citation 140

count, and crawled their top 100 cited publications. 141

For each paper, we collected metadata including 142

title, authors, citation count, and year. This tar- 143

geted approach avoids the long-tail issue of random 144

sampling, where most papers have few citations. 145

Using this strategy, we collected 1,000 publications 146

per discipline – 4,000 in total – to build the Q&A 147

datasets for our experiments. 148

3.2 Datasets Construction 149

To create Q&A datasets for hallucination detection, 150

we first cleaned the data by removing duplicates 151

and entries without valid author names – such as 152

those listing collaboration groups or institutions 153

– identified using specific keywords like "collabo- 154

ration" or "research." We then constructed Q&A 155

datasets for each discipline as a Q&A-style query 156

based on a fixed template within a k-shot setting 157

(Figure 1, top right): Who are the authors of the 158

paper titled ’{paper title}’ which was published in 159

{year}? 160

After preprocessing, we created four discipline- 161

specific Q&A datasets with a total of 3,355 entries, 162

each following a consistent structure of 9 fields 163

(id, scholar, title, year, authors, citations, 164

subject, question, answers, where question 165

and answers contain the templated question, and 166

the ground truth list of authors). Entry counts per 167

discipline are shown in Table 1. The dataset will 168

be released upon publication. 169

Discipline Number of Entries
CS 917

Physics 611
Chemistry 859
Biology 968

Table 1: The number of data entries per discipline.

3.3 Answers Generation Using GPT-4 170

Google Scholar author lists include up to eleven 171

names per paper, with additional authors replaced 172

by ". . . ". Each name follows a standardized for- 173

mat, We used GPT-4-turbo to answer questions in 174

our Q&A datasets. To help it generate the correct 175

answers in the expected format, we developed a 176

k-shot prompt template (k = 5) (Figure 1, top 177
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Figure 1: An overview of the pipeline.

right). Once the prompt template was established,178

we applied it to all questions and collected GPT-4’s179

responses for analysis.180

3.4 Self-Evaluation Using GPT-4181

We used a self-evaluation method where GPT-4 as-182

sessed whether its answer matched the ground truth,183

using a unified prompt (Figure 1, bottom right). To184

enable detailed analysis, the prompt classified re-185

sponses into five cases: no valid author names (0),186

exact match (1), subset (2), partial overlap (3), and187

else (4). GPT-4 returns a category label for each188

case, allowing flexible definition of hallucinations189

and distinction between response types.190

We defined hallucinations under two settings:191

(1) cases 0, 3, and 4 (including partial overlaps192

with extra names); and (2) cases 0 and 4 (no names193

matching the ground truth). In each setting, an-194

swers were labeled as either hallucinations or non-195

hallucinations. The hallucination rate is calculated196

as the proportion of hallucinated entries in the197

dataset, denoted as HR1 and HR2 respectively for198

the two definitions.199

3.5 Cross-disciplinary Analysis200

We calculated the hallucination rates for each of201

the four disciplines and examined their relation-202

ship with the corresponding citation count rankings.203

Through this cross-disciplinary analysis, we aimed204

to observe whether disciplines with higher total ci-205

tation counts tended to exhibit lower hallucination206

rates.207

3.6 Bucket Analysis208

To investigate within-discipline trends, we sorted209

the data in each discipline by citation count and di-210

vided it into equally sized buckets. We then calcu-211

lated the average hallucination rate for each bucket,212

allowing us to examine the relationship between 213

citation ranges and hallucination rates. Within each 214

discipline, we expected buckets with higher citation 215

counts to exhibit lower hallucination rates. 216

4 Experimental Results 217

We leveraged the OpenAI API and used GPT-4- 218

turbo as our GPT-4 variant to implement the exper- 219

imental pipeline introduced in Figure 1. 220

4.1 Cross-disciplinary Analysis Results 221

Table 2 shows cross-disciplinary results. Using 222

HR1, hallucination rates were high but followed 223

our expected trend: Computer Science (65.65%) 224

had the lowest rate, followed by Physics (81.83%), 225

Chemistry (84.17%), and Biology (92.67%). This 226

supports a negative correlation between citation 227

count and hallucination rate. However, classifying 228

Case 3 (partial overlap) as a hallucination may be 229

too broad, since unmatched authors could still be 230

correct due to Google Scholar’s eleven author limit. 231

Discipline Citation Rank HR1 HR2

CS 1 65.65% 33.48%
Physics 2 81.83% 16.04%

Chemistry 3 84.17% 56.58%
Biology 4 92.67% 61.47%

Table 2: Overall hallucination rates across disciplines
with two different definitions of hallucination.

To address this, we adopted a narrower hal- 232

lucination definition (HR2), excluding Case 3, 233

rates dropped across disciplines but still gener- 234

ally decreased with citation count. An exception 235

is Physics (16.04%), lower than Computer Sci- 236

ence (33.48%), likely due to Physics papers having 237

more authors (avg. 6.97 vs. 4.62/4.64/4.64 for 238

CS/CH/BI), increasing chances of partial matches 239

and lowering the hallucination rate. 240
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Citation Deciles HR1 HR2

CS PH CH BI CS PH CH BI

Decile 1 84.78% 80.65% 80.23% 95.96% 68.48% 3.23% 67.44% 89.90%
Decile 2 85.87% 80.33% 81.61% 91.58% 67.39% 19.67% 64.37% 75.79%
Decile 3 80.22% 77.78% 80.00% 97.96% 35.16% 19.05% 60.00% 81.63%
Decile 4 76.60% 88.33% 90.70% 97.89% 32.98% 20.00% 60.47% 64.21%
Decile 5 67.78% 90.00% 91.86% 92.78% 30.00% 20.00% 65.12% 53.61%
Decile 6 64.84% 74.19% 87.21% 95.88% 31.87% 12.90% 54.65% 54.64%
Decile 7 59.78% 83.33% 81.18% 98.96% 21.74% 13.33% 51.76% 50.00%
Decile 8 54.95% 81.97% 87.21% 94.85% 23.08% 24.59% 46.51% 57.73%
Decile 9 45.65% 35.87% 87.21% 89.69% 13.04% 8.20% 53.49% 45.36%
Decile 10 35.87% 80.33% 74.42% 71.13% 10.87% 19.67% 41.86% 41.24%

Table 3: Hallucination rates vs citation deciles (low to high). HR1 includes Cases 0, 3, 4 while HR2 Cases 0, 4 only.

4.2 Bucket Analysis Results241

We analyzed hallucination rates versus citation242

counts within each discipline, dividing papers into243

10 citation-based deciles. Results are shown in244

Table 3.245

Under HR1, hallucination rates remain high246

across citation levels in most disciplines. A clear247

downward trend is observed only in Computer Sci-248

ence. In contrast, Chemistry, Biology, and Physics249

exhibit relatively flat or noisy patterns, with rates250

largely exceeding 80%. This is primarily due to251

partial overlaps (Case 3), where the model includes252

correct authors not present in the ground truth. As253

these cases are still penalized under HR1, the hal-254

lucination rates remain elevated despite potentially255

valid predictions.256

Under the narrower HR2 setting (Cases 0 and257

4 only), the negative correlation between citation258

count and hallucination rate becomes clearer across259

disciplines. CS shows the strongest trend, with hal-260

lucination rates dropping from 68.48% to 10.87%.261

Similar declines appear in BI (89.90% to 41.24%)262

and CH (67.44% to 41.86%), supporting the idea263

that highly cited (more well-known) papers are less264

prone to hallucination. Physics remains the ex-265

ception. Firstly, its hallucination rate is very low,266

ranging from about 3.23% to 24.59%, likely due to267

the reason explained in Section 4.1. Furthermore,268

the hallucination rate is relatively flat or even noisy269

in both HR1/HR2. We hypothesized that the hal-270

lucination rate does not decrease for highly cited271

Physics papers for two reasons: 1) the average272

number of authors for each bucket is 7.49, 6.97,273

6.87, 6.92, 6.33, 6.92, 7.17, 7.31, 7.21, 6.66, re-274

spectively, with lowest/highest Decile having the275

highest/second-lowest average number of authors,276

thus reducing/increasing the hallucination rates of277

these buckets artificially; 2) in our raw data, many278

highly cited Physics papers list institutions as au- 279

thors without specifying individual names. Since 280

GPT-4 is trained on such data, it tends to generate 281

institution names for highly cited papers, while our 282

ground truth includes only individual authors. To 283

verify this, we prompted GPT-4 to assess whether 284

hallucinated entries likely represented institution- 285

authored papers and found Physics had the highest 286

proportion of such cases. 287

In summary, applying a narrower definition of 288

hallucination reveals clearer trends, particularly in 289

Computer Science, Biology, and Chemistry, where 290

higher citation counts generally correspond to a 291

lower hallucination risk. This supports our hypoth- 292

esis that factual prevalence mitigates hallucinations. 293

Physics remains an outlier, likely due to its unique 294

publication norms, as discussed previously. 295

5 Conclusion 296

This study explores the link between factual preva- 297

lence and hallucinations in LLMs by examining 298

author predictions for academic papers. We created 299

Q&A datasets from four disciplines and prompted 300

GPT-4 to identify paper authors. 301

Using two definitions of hallucination, we find 302

that the narrower criteria reveal a clear nega- 303

tive correlation between hallucination rates and 304

factual prevalence, both across and within disci- 305

plines—except in Physics, where distinctive publi- 306

cation norms likely account for the anomaly. Our 307

findings also underscore the challenges of defining 308

hallucinations given incomplete ground truth and 309

demonstrate how evaluation criteria impact results, 310

emphasizing the importance of rigorous metric de- 311

sign in future research. 312
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Limitations316

Our study provides concrete evidence of an inverse317

correlation between factual prevalence and hallu-318

cinations in large language models (LLMs). How-319

ever, the quality of the data source plays a critical320

role in determining the reliability of our experimen-321

tal results. Google Scholar’s author information is322

automatically scraped from original journal web-323

sites, with author names reformatted to include only324

initials and full last names. Additionally, Google325

Scholar typically lists only up to eleven authors per326

publication. This limitation presents a significant327

challenge for evaluating Case 3 (partial overlap),328

as it becomes difficult to determine whether the329

model-generated authors are actually correct but330

excluded from the truncated ground truth list. In331

future work, we plan to use higher-quality metadata332

sources like Semantic Scholar or CrossRef.333

In some cases, the author list from Google334

Scholar contains only the name of an institution335

or collaboration, forcing us to drop such entries336

entirely. This happens especially frequently in337

Physics. Since the LLM is trained with such data,338

we believe for disciplines such as Physics, it is339

prone to predict institutions as the authors even340

when the ground truth contains only individual au-341

thor names. This biases the hallucination rates for342

such disciplines.343

Furthermore, our current setup focuses on eval-344

uating hallucinations in the LLM-predicted paper345

authors. In future work, we plan to expand the346

evaluation by prompting the model to generate or347

summarize the paper’s abstract or content. This348

extension would introduce additional indicators of349

hallucination and contribute to a more comprehen-350

sive framework for hallucination detection.351

Finally, our study only uses paper citation counts352

as a proxy for factual prevalence. However, many353

papers may not be directly accessible to LLMs354

during training. Future studies will consider in-355

corporating richer factual proxies such as textbook356

mentions, Wikipedia references, download counts,357

and Google search hits to better understand the358

correlation between factual prevalence and halluci-359

nations. We also aim to evaluate hallucinations in360

LLMs beyond GPT-4, including multilingual and361

domain-specific models, for broader generalization362

and validation. 363
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