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Abstract

Large Language Models (LLMs) like GPT-4
are widely used for question answering but are
prone to hallucinations. Fact-conflicting hallu-
cinations, which contradict established knowl-
edge, are especially concerning in domains like
scientific research. While detection has been
studied, the causes, particularly the role of fac-
tual prevalence, remain underexplored. In this
work, we hypothesize that hallucinations are
more likely for less prevalent topics. Using cita-
tion count as a proxy for prevalence, we curated
a Q&A dataset of 4,000 papers across four dis-
ciplines and prompted GPT-4-turbo to predict
authorship. Responses were evaluated using
self-assessment under two definitions of hallu-
cination. Our analysis shows a general inverse
correlation between hallucination rate and ci-
tation count, with the strongest trend under a
narrow definition of hallucination, for most of
the disciplines.

1 Introduction

Large language models (LLMs) like GPT-4 show
strong performance in many NLP tasks, such as
question answering. As a result, they are increas-
ingly used in everyday life, business, and research
to quickly provide tailored answers and solutions.

Despite their strengths, large language models
(LLMs) can generate confident but incorrect or mis-
leading responses, a phenomenon known as halluci-
nation. These generative errors include nonfactual
content, fabricated references, or inaccurate yet co-
herent outputs. A notable subtype, fact-conflicting
hallucination (Zhang et al., 2023), involves plau-
sible but unverifiable claims that contradict estab-
lished knowledge — posing serious risks in domains
like scientific research. Understanding and address-
ing the root causes of hallucinations is essential
for deploying LLMs safely and reliably in such
high-stakes contexts.

Our study focuses on investigating one potential
cause of hallucination: factual prevalence, or lack

thereof. Factual prevalence refers to how frequently
a specific fact or piece of knowledge appears in
the training data — for example, how frequently a
name, event, or concept is mentioned across web
pages, articles, or books. A lack of appropriate ex-
pertise and understanding of a domain by an LLM
could be a reflection of a lack of factual prevalence
in that domain (Liu et al., 2024).

In this work, we hypothesize a predictable re-
lationship between factual prevalence and halluci-
nations in LLMs: the likelihood of hallucination
increases when LLMs respond to questions about
less prevalent or lesser-known topics. This hy-
pothesis is rooted in how LLMs are trained — by
learning next-token probabilities from large-scale
web data. Frequently occurring facts in the training
corpus are more likely to reinforce correct token
predictions, making the model more likely to recall
those facts accurately.

Studying factual prevalence is challenging due
to its broad, abstract nature. Prior work has ap-
proached it via metamorphic testing on Wikipedia
domains (Li et al., 2024) and query reconstruc-
tion from media datasets (Yehuda et al., 2024). To
our knowledge, no study has examined academic
author information as a signal for detecting halluci-
nations in LLMs.

Academic papers are extensively indexed and
easily accessible through online databases, and
LLMs often have access to both web and academic
sources. Since citation counts indicate a paper’s
visibility, we propose using them as a proxy for
the factual prevalence of related information, such
as authorship. Building on this idea, we narrow
our study to a concrete and measurable question:
Does the hallucination rate of LLMs in predicting
a paper’s authors decrease as the paper’s citation
count increases?

To investigate this, we built a Q&A dataset
of 4,000 papers across four academic fields and
prompted an LLM with author-related questions.



Responses were evaluated using self-assessment
prompts, with mismatches marked as hallucina-
tions. Our analysis reveals a negative correlation
between hallucination rates and citation counts,
consistent across disciplines, though the strength
of the correlation varies. Our main contributions
are as follows:

* We curated a dataset of 4,000 papers across
four disciplines, along with associated meta-
data.

* We measured hallucination rates using care-
fully designed main and self-evaluation
prompts and observed a general inverse cor-
relation between hallucination rate and cita-
tion count. This trend held across disciplines,
though the strength of the correlation varied.

2 Related work

Hallucinations in LLMs have been linked to factors
like poor calibration and overconfidence in low-
frequency or out-of-distribution cases. Prior work
largely focuses on detection. For instance, Kada-
vath et al. (2022) proposed P(I Know) to measure
self-awareness, and SelfCheckGPT (Manakul et al.,
2023) detects hallucinations via cross-checking
multiple outputs. In contrast, our study investigates
the cause, specifically the role of factual correct-
ness in authorship questions.

Farquhar et al. (2024) used semantic entropy to
capture uncertainty via entailment-based clustering,
which is suited for free-form generation, though
its effectiveness depends on clustering quality. In
contrast, our setup matches author lists uses direct
alignment through LLM self-evaluation, offering a
more robust method for structured outputs.

Finally, Wei et al. (2024) introduced SimpleQA
to assess factual accuracy in short-form QA, fo-
cusing on atomic facts. We extend this by exam-
ining hallucination in structured, multi-entity re-
sponses, specifically authorship questions, using
citation count as a proxy for topic prevalence in
STEM fields.

3 Approaches

Our overall experimental pipeline is shown in Fig-
ure 1. We discuss each component as follows.

3.1 Data Collection

We collected papers and metadata from Google
Scholar. Our goal is to use these data as the ground
truth and test the ability of the LLM to identify the
authors. To explore hallucination rates across fields,

we focused on four disciplines: Computer Science,
Physics, Chemistry, and Biology. Average citation
counts rank from high to low in that order, so if
our hypothesis holds, hallucination rates should
decrease accordingly — lowest in Computer Science
and highest in Biology.

We began by extracting profile URLSs of the top
10 scholars in each discipline, ranked by citation
count, and crawled their top 100 cited publications.
For each paper, we collected metadata including
title, authors, citation count, and year. This tar-
geted approach avoids the long-tail issue of random
sampling, where most papers have few citations.
Using this strategy, we collected 1,000 publications
per discipline — 4,000 in total — to build the Q&A
datasets for our experiments.

3.2 Datasets Construction

To create Q&A datasets for hallucination detection,
we first cleaned the data by removing duplicates
and entries without valid author names — such as
those listing collaboration groups or institutions
— identified using specific keywords like "collabo-
ration" or "research." We then constructed Q&A
datasets for each discipline as a Q&A-style query
based on a fixed template within a k-shot setting
(Figure 1, top right): Who are the authors of the
paper titled "{paper title}” which was published in
{year}?

After preprocessing, we created four discipline-
specific Q&A datasets with a total of 3,355 entries,
each following a consistent structure of 9 fields
(id, scholar, title, year, authors, citations,
subject, question, answers, where question
and answers contain the templated question, and
the ground truth list of authors). Entry counts per
discipline are shown in Table 1. The dataset will
be released upon publication.

Discipline Number of Entries
CS 917
Physics 611
Chemistry 859
Biology 968

Table 1: The number of data entries per discipline.

3.3 Answers Generation Using GPT-4

Google Scholar author lists include up to eleven
names per paper, with additional authors replaced
by "...". Each name follows a standardized for-
mat, We used GPT-4-turbo to answer questions in
our Q&A datasets. To help it generate the correct
answers in the expected format, we developed a
k-shot prompt template (k = 5) (Figure 1, top
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You are an academic assistant. Your task s to answer questions about the
authors of academic papers.

ONLY return a comma-separated list of authors' names in the following
format:

\ - First and middle names should be abbreviated as capital letters (no space),

1 followed by a space, then the full last name.
Answers) '\\ - For example, 'Lucy Winter Smith' should be written as 'LW Smith'.
- Only return the first 6 author names. If there are more, add '.. at the end.
Use GPT-4 to Do not add any explanation, notes, or extra content. Only generate the
_____________________________________________________ (Ao T T
Generate Answers e
.. (few examples were given)
Hallucination Hallucination (Author List) Now, answer the following question:
° : Question: Who are the authors of the paper titled '(paper title}' which was
Defined as: Case Defined as: Case published in {year}?
0,34 0,4 Answer:
e ’ Construct GPT-4
i You are an assistant evaluating your own previous answer to a question
Self-Evaluation \  about academic paper authors.
Prompt \ Question: Who are the authors of the paper titled '{paper title}' which was
| published in {year}?
Calculation of Hallucination 1 Reference answer: {reference_answer}
i Your generated answer: {generated_answer}
Rate Use GPT-4 to ! Classify the generated answer into one of the following categories:
I 1 0.The generated answer does not contain any valid author names.
4
l l | Classify Generated § 1. The generated answer contains the same author names as the reference
Answers into Five "« answer (order does not matter).
Cases (0-4) 2. The generated answer contains fewer authors, but all names are present

-_

Cross-Discipline

in the reference answer (order does not matter).

3. The generated answer has partial overlap with the reference answer —
some names match, some do not.

4. All other cases.

Bucket Analysis Analysis

Case 2: Subset

Case 0: No valid author names
Case 1: Exact match

Case 3: Partial overlap
Case 4: All other cases

Additional notes:

- Differences due to name formatting (e.g., 'L V. Serban' vs 'I Serban')
should be considered matching.

- Order of names does not matter.

Respond ONLY with the number: 0, 1,2, 3, or 4.

Figure 1: An overview of the pipeline.

right). Once the prompt template was established,
we applied it to all questions and collected GPT-4’s
responses for analysis.

3.4 Self-Evaluation Using GPT-4

We used a self-evaluation method where GPT-4 as-
sessed whether its answer matched the ground truth,
using a unified prompt (Figure 1, bottom right). To
enable detailed analysis, the prompt classified re-
sponses into five cases: no valid author names (0),
exact match (1), subset (2), partial overlap (3), and
else (4). GPT-4 returns a category label for each
case, allowing flexible definition of hallucinations
and distinction between response types.

We defined hallucinations under two settings:
(1) cases 0, 3, and 4 (including partial overlaps
with extra names); and (2) cases 0 and 4 (no names
matching the ground truth). In each setting, an-
swers were labeled as either hallucinations or non-
hallucinations. The hallucination rate is calculated
as the proportion of hallucinated entries in the
dataset, denoted as HR; and HRg respectively for
the two definitions.

3.5 Cross-disciplinary Analysis

We calculated the hallucination rates for each of
the four disciplines and examined their relation-
ship with the corresponding citation count rankings.
Through this cross-disciplinary analysis, we aimed
to observe whether disciplines with higher total ci-
tation counts tended to exhibit lower hallucination
rates.

3.6 Bucket Analysis

To investigate within-discipline trends, we sorted
the data in each discipline by citation count and di-
vided it into equally sized buckets. We then calcu-
lated the average hallucination rate for each bucket,

allowing us to examine the relationship between
citation ranges and hallucination rates. Within each
discipline, we expected buckets with higher citation
counts to exhibit lower hallucination rates.

4 Experimental Results

We leveraged the OpenAl API and used GPT-4-
turbo as our GPT-4 variant to implement the exper-
imental pipeline introduced in Figure 1.

4.1 Cross-disciplinary Analysis Results

Table 2 shows cross-disciplinary results. Using
HR;, hallucination rates were high but followed
our expected trend: Computer Science (65.65%)
had the lowest rate, followed by Physics (81.83%),
Chemistry (84.17%), and Biology (92.67%). This
supports a negative correlation between citation
count and hallucination rate. However, classifying
Case 3 (partial overlap) as a hallucination may be
too broad, since unmatched authors could still be
correct due to Google Scholar’s eleven author limit.

Discipline Citation Rank HR; HR,
CS 1 65.65% 33.48%
Physics 2 81.83% 16.04%
Chemistry 3 84.17% 56.58%
Biology 4 92.67% 61.47%

Table 2: Overall hallucination rates across disciplines
with two different definitions of hallucination.

To address this, we adopted a narrower hal-
lucination definition (HR3), excluding Case 3,
rates dropped across disciplines but still gener-
ally decreased with citation count. An exception
is Physics (16.04%), lower than Computer Sci-
ence (33.48%), likely due to Physics papers having
more authors (avg. 6.97 vs. 4.62/4.64/4.64 for
CS/CH/BI), increasing chances of partial matches
and lowering the hallucination rate.



Citation Deciles HR; HR,
CS PH CH BI CS PH CH BI

Decile 1 84.78% 80.65% 80.23% 95.96% | 68.48% 3.23% 67.44% 89.90%
Decile 2 85.87% 80.33% 81.61% 91.58% | 67.39% 19.67% 64.37% 75.79%
Decile 3 80.22% T17.78% 80.00% 97.96% | 35.16% 19.05% 60.00% 81.63%
Decile 4 76.60% 88.33% 90.70% 97.89% | 32.98% 20.00% 60.47% 64.21%
Decile 5 67.78% 90.00% 91.86% 92.78% | 30.00% 20.00% 65.12% 53.61%
Decile 6 64.84% T4.19% 87.21% 95.88% | 31.87% 12.90% 54.65% 54.64%
Decile 7 59.78% 83.33% 81.18% 98.96% | 21.74% 13.33% 51.76% 50.00%
Decile 8 5495% 81.97% 87.21% 94.85% | 23.08% 24.59% 46.51% 57.73%
Decile 9 45.65% 35.87% 8721% 89.69% | 13.04% 8.20% 53.49% 45.36%
Decile 10 35.87% 80.33% 74.42% T1.13% | 10.87% 19.67% 41.86% 41.24%

Table 3: Hallucination rates vs citation deciles (low to high). HR; includes Cases 0, 3, 4 while HR» Cases 0, 4 only.

4.2 Bucket Analysis Results

We analyzed hallucination rates versus citation
counts within each discipline, dividing papers into
10 citation-based deciles. Results are shown in
Table 3.

Under HR;, hallucination rates remain high
across citation levels in most disciplines. A clear
downward trend is observed only in Computer Sci-
ence. In contrast, Chemistry, Biology, and Physics
exhibit relatively flat or noisy patterns, with rates
largely exceeding 80%. This is primarily due to
partial overlaps (Case 3), where the model includes
correct authors not present in the ground truth. As
these cases are still penalized under HRy, the hal-
lucination rates remain elevated despite potentially
valid predictions.

Under the narrower HRo setting (Cases 0 and
4 only), the negative correlation between citation
count and hallucination rate becomes clearer across
disciplines. CS shows the strongest trend, with hal-
lucination rates dropping from 68.48% to 10.87%.
Similar declines appear in BI (89.90% to 41.24%)
and CH (67.44% to 41.86%), supporting the idea
that highly cited (more well-known) papers are less
prone to hallucination. Physics remains the ex-
ception. Firstly, its hallucination rate is very low,
ranging from about 3.23% to 24.59%, likely due to
the reason explained in Section 4.1. Furthermore,
the hallucination rate is relatively flat or even noisy
in both HR;/HR». We hypothesized that the hal-
lucination rate does not decrease for highly cited
Physics papers for two reasons: 1) the average
number of authors for each bucket is 7.49, 6.97,
6.87, 6.92, 6.33, 6.92, 7.17, 7.31, 7.21, 6.66, re-
spectively, with lowest/highest Decile having the
highest/second-lowest average number of authors,
thus reducing/increasing the hallucination rates of
these buckets artificially; 2) in our raw data, many

highly cited Physics papers list institutions as au-
thors without specifying individual names. Since
GPT-4 is trained on such data, it tends to generate
institution names for highly cited papers, while our
ground truth includes only individual authors. To
verify this, we prompted GPT-4 to assess whether
hallucinated entries likely represented institution-
authored papers and found Physics had the highest
proportion of such cases.

In summary, applying a narrower definition of
hallucination reveals clearer trends, particularly in
Computer Science, Biology, and Chemistry, where
higher citation counts generally correspond to a
lower hallucination risk. This supports our hypoth-
esis that factual prevalence mitigates hallucinations.
Physics remains an outlier, likely due to its unique
publication norms, as discussed previously.

5 Conclusion

This study explores the link between factual preva-
lence and hallucinations in LLMs by examining
author predictions for academic papers. We created
Q&A datasets from four disciplines and prompted
GPT-4 to identify paper authors.

Using two definitions of hallucination, we find
that the narrower criteria reveal a clear nega-
tive correlation between hallucination rates and
factual prevalence, both across and within disci-
plines—except in Physics, where distinctive publi-
cation norms likely account for the anomaly. Our
findings also underscore the challenges of defining
hallucinations given incomplete ground truth and
demonstrate how evaluation criteria impact results,
emphasizing the importance of rigorous metric de-
sign in future research.
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Limitations

Our study provides concrete evidence of an inverse
correlation between factual prevalence and hallu-
cinations in large language models (LLMs). How-
ever, the quality of the data source plays a critical
role in determining the reliability of our experimen-
tal results. Google Scholar’s author information is
automatically scraped from original journal web-
sites, with author names reformatted to include only
initials and full last names. Additionally, Google
Scholar typically lists only up to eleven authors per
publication. This limitation presents a significant
challenge for evaluating Case 3 (partial overlap),
as it becomes difficult to determine whether the
model-generated authors are actually correct but
excluded from the truncated ground truth list. In
future work, we plan to use higher-quality metadata
sources like Semantic Scholar or CrossRef.

In some cases, the author list from Google
Scholar contains only the name of an institution
or collaboration, forcing us to drop such entries
entirely. This happens especially frequently in
Physics. Since the LLM is trained with such data,
we believe for disciplines such as Physics, it is
prone to predict institutions as the authors even
when the ground truth contains only individual au-
thor names. This biases the hallucination rates for
such disciplines.

Furthermore, our current setup focuses on eval-
uating hallucinations in the LLM-predicted paper
authors. In future work, we plan to expand the
evaluation by prompting the model to generate or
summarize the paper’s abstract or content. This
extension would introduce additional indicators of
hallucination and contribute to a more comprehen-
sive framework for hallucination detection.

Finally, our study only uses paper citation counts
as a proxy for factual prevalence. However, many
papers may not be directly accessible to LLMs
during training. Future studies will consider in-
corporating richer factual proxies such as textbook
mentions, Wikipedia references, download counts,
and Google search hits to better understand the
correlation between factual prevalence and halluci-
nations. We also aim to evaluate hallucinations in
LLMs beyond GPT-4, including multilingual and
domain-specific models, for broader generalization

and validation.
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