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Abstract

In order to improve the storage capacity of the Hopfield model, we develop a version
of the dreaming algorithm, called daydreaming, that is not destructive and that
converges asymptotically to a stationary coupling matrix. When trained on random
uncorrelated examples, the model shows optimal performance in terms of the size
of the basins of attraction of stored examples and the quality of reconstruction. We
also train the daydreaming algorithm on correlated data obtained via the random-
features model and argue that it exploits the correlations to increase even further
the storage capacity and the size of the basins of attraction.

Hopfield Networks [1] are one of the most studied architectures for storing and retrieving patterns in
a neural network. The original Hopfield model is based on the Hebb rule [2] which is analytically
tractable [3, 4] and whose corresponding dynamics is biologically plausible [5]. Although the number
of patterns P that can be stored in the Hopfield model is extensive, i.e. linear in the number of neurons
N , its storage capacity α = P/N ≃ 0.138 is pretty low [4]. Given this limitation of the Hebb rule, it
is crucial to find other learning rules that can improve the storage capacity.

This work elaborates on a storing strategy of the Hopfield model called dreaming (or unlearning)
[6]: the Hebb rule is interpreted as a “day" phase where the desired memories are encoded in the
synapses, and the dreaming procedure is interpreted as a “night" phase where spurious memories are
erased. This approach was inspired by the hypothesis that, during the REM sleep phase, the human
brain erases useless memories while strengthening useful ones [7].

Most versions of this iterative procedure encounter problems repeating the unlearning steps too many
times: after a number of iterations that depends on the load α, also desired memories start to get
deteriorated and the network faces a catastrophic forgetting, after which no memory can be retrieved
anymore [8, 9]. Additionally, the usual dreaming procedure is not very effective in dealing with
correlated examples [10].

Inspired by the concept of reinforcing the memories studied in [11], in this work we design a
procedure that can be iterated indefinitely, for which no assumption is necessary on the structure and
correlation of patterns. The procedure avoids the need for a fine-tuning and only depends on a single

∗Corresponding author, matteo.negri@uniroma1.it

Associative Memory & Hopfield Networks in 2023. NeurIPS 2023 workshop.



parameter, while keeping the conceptual simplicity of the original dreaming procedure. We call it
daydreaming, as it drops any distinction between night and day cycles.

We test daydreaming on uncorrelated data and on the so-called random-features (or hidden-manifold)
correlated data [12]: being the superposition of features, they have been proposed as more realistic
model of datasets typically used in machine learning [13]. Moreover, it has been shown in [14] that
this data structure enriches the phase diagram of the Hopfield model. For these reasons, this data
offers a good preliminar playground to test the retrieval performances of our algorithm, before testing
it on real data where less clear baselines are available.

Model, Algorithm and Data

Hopfield networks A Hopfield network is a recurrent neural network made of N neurons {si}Ni=1
that can be in the states ±1 depending on the signal that they receive from all the other neurons. A
each time step k, every neuron is updated with the rule

s
(k+1)
i = sign

 N∑
j=1

Jijs
(k)
j

 , (1)

where Jij is the matrix of synaptic weights. We consider a symmetric matrix (Jij = Jji) with zeros
on the diagonal (Jii = 0). We perform asynchronous updates, meaning that, at each time step, we
update the neurons one at at time in random order. The dynamics stops as soon as all the spins
reached a fixed point.

This model works as an associative memory if, when initialized to a noisy version of one of P
examples {ξµ}Pµ=1, the model converges to the clean version of such example. We are interested in
finding the synaptic weights that maximize the number of retrievable examples.

Daydreaming algorithm Our algorithm to increase the storage capacity of an Hopfield network
consist in “dreaming away” spurious memories and reinforcing good ones at the same time. The
removal part operates as in the original dreaming procedure [6]: at each step u, we initialize the
network to a random configuration, then we run the update rule in eq. 1 until we reach a fixed point
σ(u), then we increase its energy. Simultaneously, we reinforce one of the memories, i.e. we choose
at random one of the indices µ and we decrease the energy of ξµ. In other words, the daydreaming
update rule reads

J
(u+1)
ij = J

(u)
ij +

1

τN
(ξ

µ(u)
i ξ

µ(u)
j − σ

(u)
i σ

(u)
j ), (2)

where τ is a timescale parameter that acts as an inverse learning rate and we divided by N so that the
rule scales well with different number of neurons. Moreover, we normalize Jij every N steps.

An uninformed choice for the initialization of Jij would be to sample its elements with a Gaussian
distribution, but we found that initializing Jij with the Hebb rule makes the training converge faster
without changing the retrieval properties.

The complete pseudo-code is reported in alg. 1.

Random-features data We study examples ξµ generated as a superpositions of D random features
fk ∈ {−1,+1}N , namely ξµi = sign(

∑D
k=1 c

µ
kf

k
i ) where cµk ∼ N (0, 1) and fki ∼ Unif({+1,−1}).

In this model, in addition to the usual load parameter α, the behaviour is also controlled by the
parameter αD = D/N , which describes how strongly correlated the examples are: if αD ≫ 1 the
distribution of the examples converges to Unif({+1,−1}) and we get back a dataset of uncorrelated
examples; while if αD ≲ 1 the examples are correlated, and the task of storing them is expected to
be more difficult. For instance, the storage capacity of the Hebb rule is decreased [14].

Results

To describe the performances of the daydreaming algorithm, we observe the magnetization mµ

(or overlap) of a configuration s with a given example ξµ, defined as mµ = 1
N

∑N
i=1 ξ

µ
i si. We
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Algorithm 1 Daydreaming learning algorithm

Require: examples {ξµ}Pµ=1

Jij ← 1
N

∑
µ ξ

µ
i ξ

µ
j ▷ Initialization to the Hebb rule

Jii ← 0
for t = 1, . . . , E do ▷ Do E epochs

for u = 1, . . . , N do ▷ Do N steps in each epoch
µ← Unif({1, . . . , P}) ▷ Pick an example at random
σi ← Unif({+1,−1}) ▷ Initialize σi at random
while not converged do

σi ← sign(
∑

j Jijσj) ▷ Run the dynamics
end while
Jij ← Jij +

1
τN (ξµi ξ

µ
j − σiσj) ▷ Update the coupling matrix

Jii ← 0
end for
Jij ← Jij/||J ||2 ▷ Normalize after each epoch

end for

initialize the network on a configuration that has initial magnetization mI with an example, we run
the dynamics in eq. 1 until convergence, then we measure the final magnetization mF with the chosen
example. The resulting curves are shown in fig. 1 and are called retrieval maps. In particular pure
examples are stable if mI = 1 corresponds to a mF ≃ 1. Moreover, we ask how much noise we can
inject (i.e. changing the sign of neurons at random) in an example (mI ∈ [0, 1]) before the network
stops being able to retrieve it. We therefore define the basin of attraction of a given example as the set
of configurations that are mapped to such example by the dynamics. The size of such basins can be
deduced by the minimum mI at which is still possible to retrieve an example, i.e. having mF ≃ 1.

Convergence We show in the appendix (fig. A.1) that daydreaming does not need to be fine-
tuned, as once τ is big enough the dynamics of the synaptic matrix does not depend on τ anymore.
Additionally, we see that we can iterate indefinitely the update rule in eq. 1 without losing the retrieval
capabilities of the network ( fig. A.1 and fig. A.2 in the appendix).

Retrieval of uncorrelated data We find that Daydreaming matches state-of-the-art results in
retrieving uncorrelated examples. We show with red curves in panels (a), (b) and (c) of fig. 1 the
retrieval maps of uncorrelated data for different values of α. In panel (a) we see that, at α < 0.138,
daydreaming increases the basins of attraction. In panel (b) we see that daydreaming creates large
basins of attraction for α > 0.138; we match the retrieval map showed in [15]. In panel (c) we show
that daydreaming also matches the results described in [11] creating (vanishing) basins of attraction
even when the capacity approaches the bound α = 1, above which is impossible to store uncorrelated
examples [16]. We show retrieval maps for more values of α in fig. A.2 in the appendix.

Retrieval of correlated data We show with blue curves in panels (a), (b) and (c) of fig. 1 the
retrieval maps of correlated data for different values of α (see fig. A.3 in the appendix for more values
of α). Surprisingly, we find that daydreaming produces basins of attraction of correlated examples
that are larger than the ones of uncorrelated examples, at any α we tested. In general, daydreaming
extends the storage phase of correlated examples described in [14]. In particular, note from panel (c)
and fig. A.3b in the appendix that the retrieval of feature is possible at α ≥ 1, meaning that the model
is somehow exploiting the correlation between examples to overcome the bound at α = 1.

Retrieval of features Given that in [14] the authors showed that the Hebb rule is capable of retriev-
ing hidden features for certain values of α and αD, we ask if the same happens with daydreaming.
To do this, we define a feature magnetization µk = 1

N

∑N
i=1 fkisi and we study the retrieval maps of

the features. We show in panel (d) of fig. 1 that daydreaming produces large basins of attraction for
the features, even outside the region in the α, αD plane described in [14].
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Figure 1: For the Daydreaming algorithm, correlated examples are easier to store and re-
trieve than random ones. We show the retrieval maps for correlated (blue curves) and uncorre-
lated (red curves) memories during the daydreaming procedure. Different shades of the colors
represent different timestamps: the lightest color is t = 1 and the darkest is t = 32768 (logarithmic
spacing). Panel (a) shows results for α < 0.138, where daydreaming enlarges the basin of attrac-
tion of uncorrelated examples. Panel (b) shows results for α > 0.138, where uncorrelated data
become stable faster but correlated data end up with a larger basin of attraction. Panel (c) shows
results for α = 1, where uncorrelated data become stable attractors at the end of the training but
their basin of attraction is very small. Panel (d) shows the retrieval map for features hidden in the
data. We used N = 1000 for these figures.

Conclusions, discussion and perspectives

In order to overcame a series of problems that afflicted the dreaming algorithms used to increase the
storage capacity of Hopfield networks, we designed a new learning procedure called daydreaming.

Daydreaming is closely related to the maximum likelihood principle, as its update rule resembles a
way to satisfy a moment-matching condition (see for example [17], where the “day” and “night” terms
are explicitly identified). In this spirit, some learning rules related to ours (but less effective) have been
discussed in [18, 19] for a fully-connected symmetric model and generalized to sparse and asymmetric
models in [20, 21]. Moreover, in [22] they discuss an update rule that looks similar to ours, but the
way authors sample spurious states is different and leads to smaller basins of attraction. Daydreaming
is also related to algorithms of the contrastive divergence family [23], that are commonly used to
train Restricted Boltzmann Machines (for some reviews, see for example [24] or [25]).

Daydreaming proved to be a compact, straightforward, and streamlined algorithm, with the con-
vergence rate notably contingent only on the parameter τ . It does not suffer from the problem of
dreaming too much, nor requires any fine tuning. Moreover, it seemingly does not require any
assumption on the structure of the data, as it finds large basins of attraction even for highly-correlated
random-features examples.

This last point is somewhat surprising, as the classical picture in the literature is that correlation
hinders retrieval [26, 27, 28, 29, 10]. Another surprising result is that correlated examples have larger
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basins of attraction than uncorrelated examples, and can be retrieved above α = 1, which is the hard
limit for uncorrelated examples [16].

For these reasons, we hypothesize that daydreaming is using some non-trivial mechanism to store
correlated examples efficiently, possibly exploiting the features hidden in the data. This is supported
by the fact that daydreaming improves the retrieval of features too. Note that this fact is again
non-trivial, since the update rule in eq. 1 is ignorant about the internal structure of the examples and
only tries to reinforce the examples that is given explicitly.

Given the surprising results of daydreaming on correlated data and its closeness to well-established
method to train Boltzmann Machines, it would be interesting to test it on more realistic datasets (such
as MNIST or even CIFAR10). In particular, it would be crucial to understand the mechanism in
which the network builds basins of attraction and if it indeed exploits hidden features.
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Figure A.1: In panel (a) we show the rescaled norm of the increment of the synaptic matrix
τ ||∆J ||2 as a function of the training time. We see that when τ ≥ 128 the dynamics does not
depend on τ anymore and the dynamics enters a stationary regime if the training is long enough. In
panel (b) we show the distance of the coupling matrix from the Hebbian initial condition J0, as a
function of the training time. Different colors correspond to different values of the characteristic
time τ . Note that for τ = 64 the algorithm finds solutions at the same distance as runs with τ > 64,
suggesting that, once τ is small enough, decreasing it further only slows down the training.
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Figure A.2: We show the retrieval maps for uncorrelated examples. Panel (a): we show the evolu-
tion of the retrieval map during the training (from lighter to darker shades). The training converges
around t = 128 and finds basin of attractions that are consistent with the state of the art results in
[15]. Panel (b): we show retrieval maps at the end of the training procedure for various values of
the load α. Since the convergence time increases with α, each line has a different training time. We
used N = 1000 for these figures.
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Figure A.3: We show the retrieval maps for correlated (blue curves) and uncorrelated (red curves)
memories during the daydreaming procedure. Different shades of the colors represent different
timestamps: the lightest color is t = 1 and the darkest is t = 32768. We used N = 1000 for these
figures. Panel a) α = 0.7; panel b) α = 2.0.
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