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Abstract
Deep reinforcement learning (DRL) has been
widely used for dynamic algorithm configuration,
particularly in evolutionary computation, which
benefits from the adaptive update of parameters
during the algorithmic execution. However, ap-
plying DRL to algorithm configuration for multi-
objective combinatorial optimization (MOCO)
problems remains relatively unexplored. This pa-
per presents a novel graph neural network (GNN)
based DRL to configure multi-objective evolution-
ary algorithms. We model the dynamic algorithm
configuration as a Markov decision process, rep-
resenting the convergence of solutions in the ob-
jective space by a graph, with their embeddings
learned by a GNN to enhance the state representa-
tion. Experiments on diverse MOCO challenges
indicate that our method outperforms traditional
and DRL-based algorithm configuration methods
in terms of efficacy and adaptability. It also ex-
hibits advantageous generalizability across objec-
tive types and problem sizes, and applicability to
different evolutionary computation methods.

1. Introduction
Selecting the right hyperparameters is crucial for the per-
formance of optimization algorithms. Some automated al-
gorithm configuration (AC) methods (López-Ibáñez et al.,
2016; Lindauer et al., 2022) have been developed to iden-
tify well-performing configurations and reduce the need for
labor-intensive trial-and-error tuning. As the optimal pa-
rameter values may change throughout different stages of
algorithmic deployment (Aleti, 2012), various dynamic al-
gorithm configuration (DAC) methods have been proposed
in recent years (Biedenkapp et al., 2020; Adriaensen et al.,
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2022). DAC adjusts the configuration of algorithms in real
time, which is advantageous for algorithms facing changes
in the search space configuration during execution. This
adaptability is especially relevant for iterative algorithms,
such as Evolutionary Algorithms (EAs), a prominent class
of Evolutionary Computation (EC) techniques for solving
complex optimization problems. The performance of EAs
relies on the precise adjustment of their parameters and may
require changes at various phases of the search process to
maintain optimal performance.

Deep Reinforcement Learning (DRL) has been successfully
used to control parameter values for various single-objective
EC algorithms, as reported in the literature (Sharma et al.,
2019; Sun et al., 2021; Tan & Li, 2021). These approaches
address the parameter configuration problem by model-
ing it as a contextual Markov decision process (MDP)
(Biedenkapp et al., 2020). This enables dynamic algorithm
configuration to be approached as a sequential decision-
making problem, enabling Reinforcement Learning (RL) to
control algorithm configurations during search. Xue et al.
(2022) extend the existing DRL-based DAC approaches to
address multi-objective optimization. Although these meth-
ods have demonstrated their effectiveness in configuring pa-
rameters during the search, their applications are primarily
limited to (multi-objective) continuous optimization, such
as tuning hyperparameters of machine learning models, as
in AutoML (Biedenkapp et al., 2020; Eimer et al., 2021),
and benchmarking continuous functions (Xue et al., 2022).

In this paper, we propose a DRL-based, dynamic algo-
rithm configuration method designed specifically for solv-
ing multi-objective combinatorial optimization problems
(MOCOs). Most (multi-objective) combinatorial optimiza-
tion problems, such as machine scheduling, vehicle rout-
ing, and resource allocation problems, are NP-hard, as they
involve finding high-quality solutions in a large space of
discrete decision variables. Hence, practical approaches for
solving these problems typically rely on heuristics, among
which EAs have been widely used in various COPs (Bartz-
Beielstein et al., 2014; Zhou et al., 2011).

We expect (and confirm with the experiments in Section 4.1)
that the existing DAC approach designed for continuous op-
timization (i.e., MADAC (Xue et al., 2022)) may not work
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well on large-sized, complex COPs with many objectives,
due to less smooth solution spaces and a wide range of ob-
jective values of COPs. To address these challenges, our
proposed method, called GS-MODAC, employs a Graph
Neural Network to capture the state of the search algorithm.
Specifically, we take inspiration from various convergence-
and diversity–based metrics for multi-objective optimiza-
tion, such as the number of elite solutions, the spacing
between solutions, the relative size of holes (gaps) in the
solution space, and hypervolume. With this, we expect that
our method leverages the graph-based representation to dy-
namically learn similar (yet advanced) features during the
optimization process to reflect the current state in the mul-
tiple objective planes. By representing the state space as a
graph, our method provides a state configuration indepen-
dent of the number of objectives, eliminating the need for
practitioners to configure arbitrary state features manually.
In addition, GS-MODAC leverages a rewarding scheme de-
signed to be incentivized toward Pareto optimal solutions
in a problem-agnostic manner, fostering generalizability
between differently scaled COPs.

Experimentation demonstrates that GS-MODAC is better
than state-of-art algorithm configuration methods based on
heuristics (irace) (López-Ibáñez et al., 2016), Bayesian Op-
timization (SMAC3) (Lindauer et al., 2022), and a multi-
agent DRL approach (MADAC) (Xue et al., 2022). We fur-
ther demonstrate that the proposed method can be applied
to multiple Multi-Objective Evolutionary Computation al-
gorithms to solve different MOCOs from distinct problem
domains featuring varying numbers of objectives. Also, the
trained models can generalize to effectively solve instances
of larger sizes and more constrained problem variants, which
were not observed in training.

Our study offers the following contributions:

1) We introduce GS-MODAC, a GNN and DRL-based
method for dynamically controlling MOEA parameter con-
figurations for solving MOCOs. This approach overcomes
the limitations of static algorithm configuration methods,
achieving better convergence and more diverse solutions.

2) We propose a graph representation of solutions in the ob-
jective space, which is learned by graph neural network and
involved in the state. Based on the normalized objectives,
we also present an instance-agnostic reward function that
applies to problems of different types and varying sizes.

3) We evaluate the proposed method on routing and schedul-
ing problems and demonstrate its promising generalizability
to perform effectively on more constrained problem variants
and larger problem instances unseen during training.

2. Background and Related Work
Multi-Objective Optimization (MOO) and Combinato-
rial Optimization (MOCO). Combinatorial Optimiza-
tion is concerned with finding the best solution from a finite
set of feasible solutions. These problems are character-
ized by their discrete nature, where the solutions can be
represented as integers, graphs, sets, or sequences. Multi-
Objective Combinatorial Optimization (MOCO) involves
simultaneously optimizing multiple, often conflicting objec-
tives for combinatorial optimization problems. The general
formulation of MOCO can be expressed as minx∈X f(x) =
(f1(x), f2(x), . . . , fN (x)). Here, X denotes the set of fea-
sible solutions, N is the number of objective functions to be
optimized, and each fi(x) represents an objective function
to be minimized.

Definition 1: Pareto Dominance. A solution x1 ∈ X
dominates another solution x2 ∈ X (x1 ≺ x2) if and only
if: fi(x1) ≤ fi(x2) for all i ∈ {1, . . . , N}, and there exists
at least one j ∈ {1, . . . , N} such that fj(x1) < fj(x2).

Definition 2: Pareto Optimality. A solution x∗ ∈ X
is considered Pareto optimal if there is no other solution
x′ ∈ X satisfying x′ ≺ x∗. In other words, x∗ is Pareto
optimal if it is not dominated by any other solution in X .

Definition 3: Pareto Front. The objective of multi-
objective optimization is to find the Pareto front,
which consists of all Pareto-optimal solutions: P =
{x∗ ∈ X | ∄x′ ∈ X such that x∗ ≺ x′}. The correspond-
ing Pareto front is defined as: F = {f(x) | x ∈ P}. The
Pareto front consists of the objective values of the Pareto set,
where each f(x) represents a point in the objective space.

Definition 4: Hypervolume Indicator. The Hypervolume
(HV) indicator is a widely used metric for assessing perfor-
mance in multi-objective optimization problems, providing
a comprehensive evaluation of both convergence and di-
versity, even without knowledge of the exact Pareto front
(Zitzler & Thiele, 1998). For a Pareto front F in the objec-
tive space, the HV with respect to a fixed reference point
r ∈ RN is defined as:

HVr(F) = µ

 ⋃
f(x)∈F

[f(x), r]

 (1)

where µ is the Lebesgue measure, representing the
N -dimensional volume, and [f(x), r] refers to an N -
dimensional cube: [f(x), r] = [f1(x), r1] × [fN (x), rN ],
spanning the region in the objective space between a point
on the Pareto front and a fixed reference point r.
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Algorithm Configuration. Algorithm Configuration (AC)
involves determining optimal parameter configurations for
an algorithm to maximize performance across various inputs.
Dynamic Algorithm Configuration (DAC) extends AC by
adjusting parameters during the optimization process to en-
hance performance (Biedenkapp et al., 2020). Unlike static
configurations, DAC aims to balance exploration and ex-
ploitation, increasing the likelihood of finding high-quality
solutions. According to Karafotias et al. (2014), it can be
classified into three types: 1) Deterministic, which changes
parameter configurations based on a predetermined rule,
often using a time-varying schedule (Sun et al., 2020); 2)
Self-adaptive, integrating parameter adjustments into the
search process, allowing parameters to evolve alongside
solutions (Michalewicz et al., 2000); and 3) Adaptive pa-
rameter control, which adjusts parameters based on search
feedback, using credit assignment and operator selection to
optimize performance (Aleti & Moser, 2016).

Machine Learning methods like Bayesian Optimization and
Neural Networks have been used to tune parameters by pre-
dicting parameter performances based on training instances
(Lessmann et al. (2011); Biswas et al. (2021); Centeno-
Telleria et al. (2021)). Recently, Reinforcement Learning
(RL) has gained attention for dynamic algorithm configu-
ration, especially in evolutionary algorithms (EAs), where
parameter configurations can act as actions, and when a
configuration set leads to improved solutions, a reward is
given to the RL agent. Recent research has demonstrated
the effectiveness of RL in controlling the parameters of
EAs. For example, Q-learning has been applied to adapt the
crossover and mutation rates of each generation to solve a
vehicle routing problem (Quevedo et al., 2021). Similarly,
an EA has been hybridized with SARSA and Q-Learning
to control crossover and mutation rates for the flexible job-
shop scheduling problem (Chen et al., 2020). Building on
RL, Deep Reinforcement Learning (DRL) has demonstrated
considerable potential. Notable examples include the use of
a double deep Q-Network agent (DDQN) to select parame-
ters in Differential Evolution (DE) (Sharma et al., 2019) or
a Policy Gradient method (Sun et al., 2021), and the works
of (Shala et al., 2020; Speck et al., 2021; Biedenkapp et al.,
2022) which have shown to generalize to longer horizons
and fairly well to larger problem dimension. Extensions
of these approaches have further explored multi-objective
optimization (Huang et al., 2020; Tian et al., 2022; Reijnen
et al., 2022; 2023b). Despite these advancements, apply-
ing DRL in multi-objective optimization presents several
challenges. Many existing approaches rely on manually
configured features derived from convergence and fitness
landscapes, such as the number of elite solutions, solution
spacing, the relative size of gaps in the solution space, and
hypervolume, to define the states in the MDP. This process is
labor-intensive and often suboptimal. Additionally, manag-

ing high-dimensional configured state spaces and optimizing
for multi-objectives complicates the learning process (Yang
et al.). Moreover, most studies focus on search operator
selection, typically configured as discretized actions, and
are often trained and demonstrated on simple continuous
optimization problems and standard benchmark functions
(Ma et al., 2024).

The closest work to ours is Xue et al. (2022), where the
authors propose MADAC for tuning parameters in a multi-
objective evolutionary algorithm (MOEA). The work uti-
lizes value-decomposition networks (VDN) (Sunehag et al.,
2017), a typical multi-agent RL method, to identify the opti-
mal settings for different categories of parameters. The work
incorporates information from the specific problem instance,
the ongoing optimization process, and the evolving popu-
lation of solutions. The reward function incentivizes im-
provement, offering rewards for discovering better solutions
and greater rewards for further advancements in later stages.
The limitation of MADAC is that it typically includes infor-
mation on convergences, objectives, and population-based
metrics based on arbitrary hand-defined and tuned state fea-
tures. This reliance on manually selected features can lead
to suboptimal results, as the chosen features may not ad-
equately capture the complexity of the environment. To
address this, we propose a novel DRL-based approach for
the dynamic configuration of parameters in MOEAs aimed
at solving Multi-objective Combinatorial Optimization prob-
lems. Instead of relying on arbitrarily defined features, our
approach involves mapping the objective spaces to graph
structures and utilizing Graph Neural Networks (GNNs) to
aggregate node features as states. This method allows for a
more comprehensive and adaptive representation of the state
space, scalable to multiple objective problems, potentially
enhancing the performance and robustness of the EAs.

3. The Method
This section presents our proposed method, GS-MODAC
(Graph-Supported Multi-Objective Dynamic Algorithm
Configuration). GS-MODAC employs a Graph Neural Net-
work (GNN) to capture the state of the search algorithm
and Deep Reinforcement Learning (DRL) to configure the
next search iteration to solve MOCOs. Graphs provide a
flexible way to represent structured embeddings, and GNNs
effectively model complex structures and extract meaningful
representations (Zhou et al., 2020). In this work, GNNs ex-
tract the graph state, allowing the DRL agent to make more
informed decisions based on the current search state. By
representing the state space as a graph, our method uses a
state configuration independent of the number of objectives,
eliminating the need for practitioners to manually customize
state representations for varying numbers of objectives. We
illustrate the overview of GS-MODAC in Figure 1.
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Figure 1: The GS-MODAC framework. The framework integrates a DRL agent with a graph-based representation of the
search state to dynamically configure each iteration of the search for multi-objective optimization. At each iteration, the
current population is converted into a graph where nodes represent normalized objective values of solutions across multiple
objective planes, and edges connect solutions within the different Pareto fronts. A Graph Neural Network (GNNs) extracts
an embedding, which the agents uses configure the next iteration. The chosen actions are applied to the environment, which
returns a new population of solutions, an updated state, and a reward signal for learning.

3.1. MDP formulation for GS-MODAC

GS-MODAC is built upon the foundation of Dynamic Al-
gorithm Configuration (DAC) principles (Biedenkapp et al.,
2020), dynamically adjusting parameter configuration of
EAs during their optimization processes. This process can
be formulated as a contextual Markov Decision Process
(MDP) MI , with shared action and state spaces, but with
different transition and reward functions for each instance i
in I . Each Mi corresponds to the MDP of a specific problem
instance i, encapsulating the state space S, action space A,
state transition function Ti, and reward function Ri.

In GS-MODAC, given a target algorithm with a configura-
tion space Θ, a policy π maps a state s ∈ S to an action
a ∈ A, corresponding to a hyperparameter configuration
θ ∈ Θ. The goal is to train a policy that enhances algorithm
performance across a diverse set of problem instances by
minimizing the expected cost c(π, i) over instances i ∈ I .
To further facilitate generalizability, we define a shared
reward function R to consistently measure performance im-
provement across different problem instances. This function
R ensures that the policy learns to optimize the performance
of the target algorithm to generalize well across various in-
stances rather than overfitting to specific instances. We intro-
duce the components of the MDP underlying GS-MODAC
as follows:

States. The state space S provides a DRL agent with infor-
mation on the current status of the search algorithm, help-
ing to select the best action for the next iteration. Several
studies have attempted to create a state configuration that
accurately represents the convergence process and general-

izes to unexplored problem instances (Sharma et al., 2019;
Sun et al., 2020; Xue et al., 2022). These configurations
typically include convergence information, objective values,
and population diversity metrics. In contrast to the litera-
ture, we innovatively propose mapping objective spaces to
graphs and leveraging GNNs to dynamically learn state rep-
resentations. The graph transformation of objective space is
illustrated in ‘state configuration’ in Figure 1.

This transformation constructs a graph-based representa-
tion of the current population’s solutions across multiple
objective planes. Each node in the graph corresponds to a
solution, with its features comprising only the normalized
objective values. Normalization is performed using the best
objective values encountered during the search and the worst
values observed in the initial generation. Non-Dominated
Sorting is applied to rank the nodes into distinct Pareto
fronts. Nodes within the same front are then interconnected,
resulting in a structured graph that captures the hierarchy of
solutions. This eliminates the need for manual state space
design, a process known to be cumbersome and suboptimal.
To ensure the state configuration is independent of the mag-
nitude of objective values, we normalize the solution space
relative to a reference point that is defined by the worst
observed objective values in the first population of solutions.
In doing so, we provide a state configuration that effectively
represents the algorithmic convergence and the diversity of
solution performances, potentially generalizing to problem
instances with varying objective magnitudes. An additional
feature vector is correspondingly included, containing the
normalized number of generations that have been passed by,
representing the remaining budget available for the search.
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Actions. The action space A is represented by multiple
continuous values, each associated with an evolutionary
algorithm parameter to be controlled. These values are
normalized between -1 and 1 on a parameter scale, defined
based on the recommended values from rules of thumb for
EA tuning (Coello et al., 2007).

Transitions. The transition function outlines the dynamics
of the search algorithm and is led by interactions between
the agent and the problem environment. In the context of
GS-MODAC, each interaction (step) with the environment
serves as a search iteration. Given state st, an agent takes
a action at, and the probability of moving to state st+1 is
denoted as T (st+1|st, at). Unlike the state, action, and
reward spaces (in the scope of this work), the transition
function is contingent upon the specific instance i ∈ I .

Rewards. The reward function is critical to guide policy
learning. In multi-objective optimization, the rewarding
system should encourage algorithmic convergence towards
the optimal Pareto front. However, the evolving towards
the Pareto front often turns increasingly demanding along
search steps. The early search stages typically allow for
quick gains, while the later stages require substantially more
effort. In light of this, we design rewards for enhancing the
evolvement of the Pareto front in the latter.

In particular, we design the reward function as follows: At
each iteration t, we assess whether the hypervolume of the
population HVcurrent exceeds the best hypervolume previ-
ously observed HVbest. If HVcurrent > HVbest, we compute
the percentage improvements, that is, ∆current and ∆best,
and then calculate the reward as the difference between the
squared improvements. In this way, we magnify the rewards
for larger improvements in the later stages of the conver-
gence, encouraging significant evolvement of the Pareto
front. The reward is defined as follows:

rt =

{
∆2

current −∆2
best if HVcurrent > HVbest

0 otherwise

where ∆current and ∆best are calculated as follows:

∆current =

(
HVcurrent −HVinitial

HVideal −HVinitial

)
× 100,

∆best =

(
HVbest −HVinitial

HVideal −HVinitial

)
× 100.

Hypervolumes are calculated using a nadir point, defined by
the worst-case values of objectives in the initial population
of solutions. The ideal hypervolume HVideal is computed
using this nadir point, along with an ideal point, which
is approximated by running the underlying evolutionary

algorithm one-time with a higher budget (e.g., doubled). It
is worth noting that our reward function is instance-agnostic
and thus applicable to different instances of varying sizes
and complexities. We empirically observe that the reward
function performs consistently well on different problems
and delivers outstanding generalizability of trained models.

3.2. Graph-based policy learning and Training
Algorithm

We use the Proximal Policy Optimization (PPO) algorithm
(Schulman et al., 2017) to train the parameterized policy.
PPO is a widely used and highly effective policy gradient
algorithm that uses a probability ratio between policies to
maximize the improvement of the current policy without the
risk of performance collapse. In our case, the agent utilizes
a neural network that first processes the representation of
the graph-based state through two layers of the graph con-
volutional network (GCN) (Kipf & Welling, 2016). These
layers are designed to extract and aggregate node embed-
dings (i.e., representations) effectively, capturing the essen-
tial structural information within the graph. Then, a global
mean pooling operation is applied to average the node em-
beddings, producing a single embedding across the entire
graph. The embedding is concatenated with an additional
feature vector containing specific search budget information.
The enriched embedding is finally fed into a linear layer to
predict the mean values of action distributions. We have
performed an ablation study in Appendix E, where we eval-
uated and tested the setup and verified the effectiveness of
our approach.

3.3. Multi-Objective Evolutionary Algorithm
Deployment

Exact methods can find the Pareto set in Multi-Objective
Combinatorial Optimization (MOCO). However, the com-
putational demands of these methods tend to increase expo-
nentially with problem complexity, which often makes them
impractical for large-scale applications. As a more feasible
alternative, heuristic methods, particularly multi-objective
evolutionary algorithms (MOEAs), are popular in practice
due to their ability to effectively approximate Pareto fronts
in a computationally efficient manner. In this work, we
demonstrate GS-MODAC by applying it to two widely used
algorithms: 1) NSGA-II (Deb et al., 2002), which imple-
ments a non-dominated sorting mechanism with a crowding
distance metric to preserve solution diversity throughout the
search, ensuring comprehensive exploration of the Pareto
front; and 2) Multi-Objective Particle Swarm Optimization
(MOPSO) (Coello & Lechuga, 2002), a swarm intelligence
algorithm, which adjusts positions of particles by tracking
both individual best locations and the best discoveries in
the swarm. It integrates an archive to store non-dominated
solutions to effectively cover the Pareto front.

5



Graph-Supported Dynamic Algorithm Configuration for Multi-Objective Combinatorial Optimization

4. Experiments
We evaluated GS-MODAC on two multi-objective combina-
torial optimization problems to assess its performance, scal-
ability, and generalization. Comparisons are made against
static and dynamic algorithm configuration methods. All
code and experimental details are made publicly available 1.

Problems. We apply our proposed method to two multi-
objective combinatorial optimization problems: Flexible Job
Shop Scheduling Problem (FJSP) and Capacitated Vehicle
Routing Problem (CVRP). The FJSP involves scheduling
multiple jobs, each composed of various operations, onto a
set of machines. The operations of each job must be com-
pleted in a specific sequence, with each operation featuring
a predefined processing time on specific machines. Based
on the literature (Tamssaouet et al., 2022), we focus on min-
imizing Makespan, Balanced Workload, Average Flowtime,
Total Workload, and Maximum Flowtime. We refer to the
variants of FJSP as the Bi-, Tri- and Penta-FJPS, solving
the first 2, first 3, and all 5 objectives, respectively. CVRP
involves determining optimal routes for a fleet of vehicles
to serve a set of customers. Each customer has a specific
demand and each vehicle has a capacity limit that must
not be exceeded. The objectives are to minimize the total
travel distances and the longest route. We refer to the CVRP
problem composed of these two objectives as the Bi-CVRP
problem. Please refer to Appendix A for a comprehensive
discussion of FJSP and CVRP, including the constraints and
objectives addressed in this work.

Instance generation. For FJSP, we generate train and test
instances for three distinct problem sizes: 1) 5 jobs and 5
machines (5j5m), 2) 10 jobs and 5 machines (10j5m), and
3) 25 jobs and 5 machines (25j5m), following the instance
generation configuration of Song et al. (2022). We generate
200 instances for each size, consisting of 100 instances for
training and 100 for testing. Each instance contains a vary-
ing number of operations per job, ranging from 4 to 8, and
the processing time for each operation varies between 2 and
20 time units. The same instance sets are used for experi-
ments with 2, 3, or 5 objectives. For CVRP, we generate 3
distinct sizes of 100, 200, and 500 customers, according to
the instance generation of da Costa et al. (2021). We create
200 instances per problem size using random 2-dimensional
coordinates for each customer and the depot in the 0 to 1
range. Each customer has a random demand between 1 and
9, and the vehicles have a capacity of 40 units.

Baselines. To show the performance of our proposed dy-
namic algorithm configuration method on solving multi-
objective FJSP and CVPR, we use NSGA-II as a base al-
gorithm, whose values have been configured with rules of

1https://github.com/RobbertReijnen/
GS-MODAC

thumb, configuring the crossover parameter as 0.7 and the
mutation parameter as 0.02 (Coello et al., 2007). Addi-
tionally, as shown in Appendix D, we empirically validate
that our method effectively configures MOPSO, a swarm
intelligence-based approach. We compare the proposed GS-
MODAC against three algorithm configuration methods for
tuning NSGA-II parameters: two widely used static AC
methods, SMAC3 (Lindauer et al., 2022) and irace (López-
Ibáñez et al., 2016), and a recent RL-based DAC approach,
MADAC (Xue et al., 2022).

SMAC3 is a hyperparameter tuning method that combines
Bayesian optimization and random forest regression. For
the tuning, we use the generated test instances for each given
instance size. Bayesian optimization is used to draw param-
eter configurations from the defined parameter configuration
ranges and evaluate them on the provided tuning instances
over 10.000 runs of the NSGA-II configured algorithm, last-
ing between 5 to 14 hours for the Bi-CVRP instances and
between 8 to 40 hours for the FJSP-variants. We also use
the Iterated Race (irace) tuning method, which employs an
iterative racing procedure. In each iteration (or ‘race’), the
worst-performing configurations are replaced with new ones,
optimizing settings based on a set of given instances. irace
was tuned with the same budget as the BO tuning method,
taking between 3 and 12 hours for Bi-CVRP problem con-
figurations and 5 to 20 hours for the FJSP-based variants,
respectively. Since MADAC is designed to select discrete
actions, we discretize the parameter space of NSGA-II with
10 actions between 0.6 and 1.0 as crossover rate and between
0 and 0.1 for the mutation rate (in line with rules-of-thumb
for EA parameter configurations (Coello et al., 2007)).

Training. We trained GS-MODAC for each problem con-
figuration with randomly generated problem-instance sizes.
The action space for NSGA-II is defined as two contin-
uous actions with ranges ⟨0.6, 1.0⟩ and ⟨0.0, 0.1⟩ for the
crossover and mutation rates of NSGA-II. The training pro-
cess involved 1.000,000 steps for the scheduling problems
and 2.500.000 steps for the routing, configured with 50 gen-
erations of search and a population size of 50. It was carried
out on an Intel(R) Core(TM) i7-6920HQ CPU @ 2.90GHz
with 8.0GB of RAM and five parallel environments. The
training duration varied for different-sized instance sets, tak-
ing around 11, 15, and 26 hours for the Bi-CVRP problem
configurations and between 5 hours and 3 days for the differ-
ent configured FJSP-based problems. The training process
spans 2000 epochs with 500 steps per epoch. The model
parameters are set as Schulman et al. (2017), and the net-
work layers are configured with 64 nodes. The MADAC
baseline model is trained according to Xue et al. (2022),
taking between 2 and 8 hours for Bi-CVRP and 12 and 60
hours for the FJSP-based variants.
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Table 1: Performance comparison of different methods in solving 100 instances of various problems of varying sizes 10
times, based on the mean found hypervolume (mean), the best-found hypervolume (max), and the standard deviation (std).

Bi-FJSP - 5j5m Bi-FJSP - 10j5m Bi-FJSP - 25j5m
Method mean max std mean max std mean max std

NSGA-II 1.87×104 2.02×104 1.21×103 3.82×104 4.11×104 2.29×103 9.41×104 9.93×104 4.84×103

irace 1.92×104 2.04×104 1.06×103 3.90×104 4.11×104 1.95×103 9.52×104 9.97×104 4.03×103

SMAC3 1.91×104 2.04×104 1.09×103 3.89×104 4.13×104 2.19×103 9.51×104 9.97×104 4.46×103

MADAC 1.82×104 1.95×104 7.53×102 3.69×104 3.98×104 4.47×103 9.24×104 9.72×104 3.09×103

GS-MODAC 1.92×104 2.04×104 1.07×103 3.92×104 4.15×104 1.97×103 9.54×104 10.0×104 4.40×103

Tri-FJSP - 5j5m Tri-FJSP - 10j5m Tri-FJSP - 25j5m
Method mean max std mean max std mean max std

NSGA-II 2.06×106 2.22×106 1.32×105 5.53×106 5.95×106 3.09×105 2.05×107 2.18×107 1.13×106

irace 2.11×106 2.26×106 1.16×105 5.47×106 5.82×106 2.65×105 2.07×107 2.20×107 1.07×106

SMAC3 2.09×106 2.25×106 1.23×105 5.65×106 6.05×106 2.91×105 2.07×107 2.20×107 1.01×106

MADAC 1.99×106 2.14×106 8.86×104 5.39×106 5.87×106 5.97×105 2.09×107 2.20×107 1.97×106

GS-MODAC 2.10×106 2.25×106 1.16×105 5.70×106 6.09×106 2.99×105 2.14×107 2.27×107 1.09×106

Penta-FJSP - 5j5m Penta-FJSP - 10j5m Penta-FJSP - 25j5m
Method mean max std mean max std mean max std

NSGA-II 6.01×1010 6.48×1010 3.70×109 3.96×1011 4.31×1011 2.42×1010 5.08×1012 5.48×1012 2.75×1011

irace 6.08×1010 6.49×1010 2.98×109 4.03×1011 4.38×1011 2.35×1010 5.18×1012 5.63×1012 2.92×1011

SMAC3 6.08×1010 6.50×1010 3.29×109 3.97×1011 4.29×1011 2.24×1010 4.95×1012 5.33×1012 2.71×1011

MADAC 5.82×1010 6.28×1010 2.72×109 3.91×1011 4.29×1011 4.36×1010 5.1×1012 5.74×1012 5.01×1011

GS-MODAC 6.15×1010 6.58×1010 3.40×109 4.16×1011 4.52×1011 2.40×1010 5.62×1012 6.07×1012 3.20×1011

Bi-CVRP - 100 Bi-CVRP - 200 Bi-CVRP - 500
Method mean max std mean max std mean max std

NSGA-II 1.34×102 1.47×102 7.84 1.56×102 1.72×102 9.05 2.27×102 2.48×102 1.27×101

irace 1.34×102 1.48×102 8.02 1.57×102 1.72×102 9.53 2.27×102 2.48×102 1.26×101

SMAC3 1.34×102 1.46×102 7.89 1.57×102 1.73×102 9.59 2.27×102 2.51×102 1.42×101

MADAC 1.35×102 1.49×102 8.01 1.61×102 1.76×102 9.22 2.33×102 2.54×102 1.29×101

GS-MODAC 1.35×102 1.48×102 7.95 1.60×102 1.76×102 9.50 2.35×102 2.59×102 1.41×101

Testing. After training, the GS-MODAC agent is ready
to be applied to tune the parameters of NSGA-II to solve
unseen problem instances. Each experiment is performed
by running each algorithm 10 times on 100 test instances
for comparison. The evaluation is based on three metrics:
average hypervolume (mean), best hypervolume (max), and
standard deviation (std), which are computed by averaging
all test instances for each problem. Hypervolumes are calcu-
lated using predefined reference points for each instance to
ensure a fair comparison. The paper highlights the highest
mean and max hypervolumes in bold and underlined values
that significantly outperform all other methods using the
Wilcoxon rank-sum test (p < 0.05).

4.1. Experimental results

We have formulated research questions to evaluate the per-
formance of the proposed GS-MODAC method. Specif-
ically, these questions assess the effectiveness of GS-

MODAC in comparison to existing methods, its ability to
generalize to previously unseen instances of varying sizes,
its adaptability to more complex problem variants, and its
scalability across different objectives.

RQ1: How does GS-MODAC perform compared to the
base algorithm NSGA-II and three AC baseline meth-
ods for various problem types and sizes of objectives?
Table 1 presents the performances of various methods, in-
cluding the mean average performance, mean best-found
solution, and the standard deviations for each method on two
different problem types. The results highlight the effective-
ness of GS-MODAC in controlling evolutionary parameters,
achieving the best average and best-found solutions. For the
smallest instance size in two-objective problems (Bi-), the
baseline methods perform competitively, with the MADAC
and irace configured baselines finding comparable mean and
max solutions. However, GS-MODAC consistently excels
in problem configurations with larger objective spaces, such
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(a) (b)

Figure 2: Comparison of GS-MODAC, SMAC3, and NSGA-II solution methods: (a) Average convergence rates and (b)
Pareto front distributions.

Table 2: Generalizability of the trained models to solve unseen instances of different sizes.

Bi-CVRP - 100 Bi-CVRP - 200 Bi-CVRP - 500

Method mean max std mean max std mean max std

NSGA-II 1.34×102 1.47×102 7.84 1.56×102 1.72×102 9.05 2.27×102 2.48×102 1.27×101

GS-MODAC - 100 1.35×102 1.48×102 7.95 1.59×102 1.75×102 9.25 2.32×102 2.55×102 1.31×101

GS-MODAC - 200 1.35×102 1.48×102 8.22 1.60×102 1.76×102 9.50 2.33×102 2.56×102 1.36×101

GS-MODAC - 500 1.33×102 1.47×102 8.52 1.60×102 1.75×102 9.33 2.35×102 2.59×102 1.41×101

GS-MODAC - all sizes 1.34×102 1.48×102 7.97 1.59×102 1.74×102 9.03 2.33×102 2.59×102 1.41×101

as problems with more objectives and larger combinatorial
search spaces (large instances configurations). This is partic-
ularly evident in the FJSP problem configurations with five
objectives (Penta-), where GS-MODAC finds significantly
better solutions than all baselines regarding mean and max
found solutions. Specifically, for the Penta-FJSP problem
configurations with 25 jobs and 5 machines, GS-MODAC’s
mean and maximum solutions are 8.2% and 5.7% better,
respectively, than the best-performing baselines (irace and
MADAC) and 10.6% and 10.8% better than the vanilla con-
figured NSGA-II method.

Figures 2a and 2b illustrate that the GS-MODAC method
converges significantly faster in finding the best hypervol-
ume for a Tri-FJSP with 10 jobs and 5 machines, compared
to baseline approaches. It achieves a better-converged hyper-
volume, reaching lower minimum values for each objective,
and shows a wider spread across the different objective axes.
Similar convergence patterns were observed for other in-
stances, demonstrating the robustness of GS-MODAC. In
Appendix D, we provide further analysis using alternative
performance metrics to demonstrate GS-MODAC’s ability
to converge towards the true Pareto front while maintaining
a diverse and high-quality set of solutions.

RQ2: How well do the trained GS-MODAC models gen-
eralize to previously unseen instances of varying sizes?
We assess the ability of the trained GS-MODAC models to
solve previously unseen instances of different sizes. The re-
sults of this evaluation are presented in Table 2. In the table,
the rows show the instance sizes used for training, while the
columns show the instance sizes on which trained models
are tested. We found that models trained on smaller problem
instances and deployed on larger instances experienced a
slight decline in performance, but still managed to achieve
performance comparable to the best performing baseline
method (MADAC) while outperforming the other baselines.
Moreover, models trained on a more diverse set of instance
sizes can effectively learn a robust, well-performing, all-
around policy. The results suggest that our models could
generalize and solve problem instances beyond the size on
which they were trained.

RQ3: How effectively can trained GS-MODAC mod-
els handle previously unseen, more complex problem
variants? We evaluate the generalization capability of the
trained GS-MODAC models by applying them to previously
unseen instances of a different and more complex prob-

8



Graph-Supported Dynamic Algorithm Configuration for Multi-Objective Combinatorial Optimization

Table 3: Comparing the generalizability of trained models to solve instances of more complex problem variants.

Bi-DAFJS-SDST Tri-DAFJS-SDST Penta-DAFJS-SDST
Method mean max std mean max std mean max std

NSGA-II 1.32×106 1.41×106 7.93×104 3.46×108 3.75×108 2.01×107 8.19×1014 8.92×1014 4.89×1013

irace 1.41×106 1.47×106 5.60×104 3.49×108 3.75×108 1.86×107 8.10×1014 8.76×1014 3.97×1013

SMAC3 1.40×106 1.48×106 7.08×104 3.37×108 3.64×108 1.94×107 8.26×1014 9.01×1014 4.76×1013

GS-MODAC - FJSP-10j5m 1.42×106 1.50×106 6.30×104 3.68×108 3.94×108 2.02×107 9.11×1014 9.93×1014 5.48×1013

GS-MODAC - DAFJS-SDST 1.43×106 1.51×106 6.48×104 3.73×108 4.00×108 2.25×107 9.05×1014 1.00×1015 6.45×1013

Table 4: Comparing the generalizability of the trained models to solve problem configuration to optimize different objectives
that were not optimized in training.

Bi-FJSP* - 5j5m Bi-FJSP* - 10j5m Bi-FJSP* - 25j5m
Method mean max std mean max std mean max std

NSGA-II 3.49×103 3.57×103 4.05×101 9.64×103 9.88×103 1.31×102 3.93×104 3.98×104 2.57×102

irace 3.50×103 3.58×103 4.53×101 9.66×103 9.91×103 1.48×102 3.92×104 3.97×104 2.62×102

SMAC3 3.50×103 3.58×103 4.60×101 9.61×103 9.87×103 1.58×102 3.92×104 3.97×104 3.24×102

GS-MODAC 3.51×103 3.58×103 3.97×101 9.66×103 9.93×103 1.60×102 3.93×104 3.98×104 2.42×102

lem variant. This problem extends the Bi-, Tri- and Penta-
objective FJSP with assembly constraints and sequence-
dependent setup times, including additional precedence con-
straints between different jobs and setup times operations
on machines subject to the scheduling sequence. We tested
the proposed method on a so-called ’DAFJS’ scheduling
problem as provided in Birgin et al. (2014), which has been
extended with sequence-dependent setup times. The re-
sults, shown in Table 3, indicate that GS-MODAC trained
on DAFJS-SDST demonstrates superior performance in
most cases, except for the mean HV in the Penta-objectives
variant. Furthermore, the model configuration trained on
the 10j5m problem variants effectively transfers to more
complex problem scenarios. In particular, GS-MODAC
trained in 10j5m configurations outperforms all other base-
lines specifically tailored to the DAFJS problem variant.

RQ4: How effectively does the GS-MODAC model
trained on a specific set of objectives adapt to different
objectives than those encountered during training? We
evaluate the ability of trained models to generalize across dif-
ferent variants of FJSP problems configured to optimize for
objectives different from those explored in training. Specif-
ically, we assess how well models trained to optimize ob-
jectives A and B perform when applied to a variant of the
problem that is instead configured to optimize for objectives
C and D. This transfer scenario is denoted as Bi-FJSP*.
From Table 4, it is clear that trained models can be trans-
ferred to other problem configurations, finding solutions of
similar or better quality than the configured baselines, with
a similar performance gap as consistently observed for two
objective problem variants displayed in Table 1.

5. Conclusion
This paper introduces Graph-Supported Multi-Objective Dy-
namic Algorithm Configuration (GS-MODAC), a novel ap-
proach that integrates Graph Neural Networks (GNNs) and
Deep Reinforcement Learning (DRL) to dynamically con-
figure Evolutionary Algorithms for solving multi-objective
combinatorial optimization problems. GS-MODAC repre-
sents the evolving state of the search process as a graph,
capturing the structural and convergence dynamics of solu-
tions across multiple objectives. To ensure robustness across
different problem instances and problem configurations, we
propose an instance-agnostic reward function that is suit-
able to diverse problem types and sizes. Empirical results
demonstrate that GS-MODAC outperforms both traditional
Algorithm Configuration approaches and state-of-the-art
DRL-based dynamic algorithm, achieving better effective-
ness and adaptability. Additionally, our method generalizes
effectively to larger, more constrained problem instances
not encountered during training.
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A. Test problem configurations
The Flexible Job Shop Scheduling Problem (FJSP) is a popular scheduling problem where multiple jobs, each composed
of several operations that must be completed in a specific order, must be scheduled to a set of machines. The problem
contains a set of n independent jobs J = {J1, J2, . . . , Jn} and m independent machines M = {M1,M2, . . . ,Mm}, which
together for an n ×m Flexible Job Shop Scheduling Problem (FJSP). Each job Ji consists operations Oi,j , where Oi,j

represents the j-th operation of the i-th job. These operations must be executed in sequence, meaning Oi,j+1 may only start
after Oi,j is completed. The processing time for operation Oi,j on machine Mk is denoted as ti,j,k and is known in advance.
Each machine Mk can process only one operation at a time, and operations cannot be interrupted (no preemption). The start
and completion times for operation Oi,j are denoted as Si,j and Ci,j respectively, while Ok is the set of operations assigned
to on machine Mk.

This work focuses on five key minimization objectives commonly used in scheduling:

• Makespan: The total time required to complete all jobs, represented as Cmax = maxi=1,...,n Ci,j .

• Balance Workload: The disparity in workload distribution across machines, represented as Wbal = Wmax − Wmin,
where Wmin = mink=1,...,m

∑
(i,j)∈Ok

ti,j,k.

• Average flowtime: The average time duration jobs take from start to completion Favg = 1
n

∑n
i=1(Ci,last − Si,first).

• Total Workload: The cumulative sum of processing times for all jobs, defined as Wtotal =
∑m

k=1

∑
(i,j)∈Ok

ti,j,k.

• Maximum flowtime: Denoting the longest time any job spends in the system from start to completion, defined as
Fmax = maxi=1,...,n(Ci,last − Si,first).

The Capacitated Vehicle Routing Problem (CVRP) is concerned with a fleet of vehicles that must deliver goods from
a central depot to a set of customer locations while satisfying capacity constraints. The problem contains a set of n
customer locations C = {C1, C2, . . . , Cn}, a depot location C0, and m identical vehicles. Each location Ci has a demand
qi representing the quantity of goods that need to be delivered to that particular customer. Each vehicle has a capacity
of Q, representing the maximum total demand it can serve in a single route. Each vehicle k can serve a demand of∑n

i=1 qi × yik ≤ Q, where yik is a binary decision variable indicating whether vehicle k serves customer i. The distance
matrix D is defined as dij , containing the distances between all pairs of locations, including customer locations and the
depot, encapsulating the travel costs or distances associated with moving from one location to another.

The objectives considered in this work are to minimize the total distance traveled by all vehicles and the longest route:

• Total Travel Distance: Dtotal =
∑m

k=1

∑n
i=1

∑n
j=1 dij × xijk

• Longest Route: Dmax = maxmk=1

∑n
i=1

∑n
j=1 dij × xijk

B. Multi-Objective Algorithms for MOCO
NSGA-II for FJSP. To assess the efficacy of the proposed approach for FJSP, we devise a multi-objective Genetic Algorithm
(GA) formulation inspired by Zhang et al. (2011) and following the implementation of (Reijnen et al., 2023a). The solutions
entail two integral components: Machine Selection and Operation Sequence. The first allocates operations to machines,
while the second establishes the precedence of operations on the designated machines. Illustrated in Figure 3, a value of ’4’
in the initial position of Machine Selection indicates the scheduling of operation O1,1 on the fourth machine alternative.
Subsequently, the Operation Sequence component arranges this operation as second, after O2,1.

The population is initialized using Global, Local, and Random Methods. Global Method assigns operations to machines
sequentially, minimizing the total processing times of individual machines. Local Method minimizes the max machine
processing times for individual jobs. Random Method allocates operations to machines randomly. The Operation Sequence is
initialized randomly for all methods. Crossover is applied to the Machine Selection component using two-point and uniform
crossover while precedence-preserving order-based crossover (POX) is applied to the Operation Sequence component.
POX preserves relative scheduling positions for a randomly selected set of jobs and reschedules the remaining operations
according to the other crossovered individual solution. We generate 60% of the initial population using Global Method,
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Figure 3: Chromosome Representation FJSP MOGA (Zhang et al., 2011)

30% using Local Method, and 10% using Random Method. Machine Selection crossovers are in 50% two-point and 50%
uniform crossover. To solve the multi-objective FJSP variant using the GA formulation from Zhang et al. (2011), we employ
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) for selection (Deb et al., 2002).

NSGA-II for CVRP. Subsequently, we apply a multi-objective Genetic Algorithm (GA) formulation to assess the efficacy
of the proposed approach for CVRP. The solutions are initialized with random routes, where each solution is represented as
a list of values corresponding to the sequence in which customers are visited in the CVRP.

The selected parents undergo crossover and mutation to produce offspring, using ordered crossover and a shuffle mutation;
crossing over two segments from two selected parent solutions, and randomly swapping elements within solutions with
a given probability. The next generation is formed by selecting individuals from the combined population based on their
rank (front) and crowding distance. The algorithm prioritizes individuals from lower fronts and those with higher crowding
distances to ensure a diverse and high-quality population. Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is
applied for the selection (Deb et al., 2002).

MOPSO for CVRP. We define a Multi-Objective Particle Swarm Optimization (MOPSO) algorithm for the Capacitated
Vehicle Routing Problem (CVRP). In this algorithm, solutions (particles) are initialized with random routes, represented as a
list of random values where each value corresponds to a customer in the CVRP. Each particle also has associated velocities
that represent changes in these routes. The initial fitness values for each particle are calculated by sorting the customers
based on the values in the particle’s position to determine the routes. Each particle’s personal best solution is recorded, and
all the best-found solutions are stored in a separate list.

In each generation of the search, the positions and velocities of the particles are updated based on their personal best and
a global best chosen from the Pareto front (randomly selected when multiple best solutions are available). The velocity
update formula incorporates cognitive coefficients (ϕ1), social coefficients (ϕ2), and an inertia weight. Initially, random
coefficients (u1 and u2) are generated for each particle dimension to balance exploration and exploitation. The velocity
update consists of two components: one influenced by the particle’s personal best and the other by the global best from the
Pareto front. The velocity for each particle dimension is calculated using these components, scaled by the respective random
coefficients and adjusted by the inertia weight. The updated velocity is clamped within predefined minimum (min) and
maximum (max) bounds to remain within valid bounds. The particle’s new position is determined by adding the updated
velocity to the current position. Finally, each position is clamped to remain within valid bounds, typically between 0 and 1,
ensuring the particle stays within the feasible solution space.

After the update, the fitness of the particles is evaluated. The particles’ personal bests and the list of best solutions are updated
using non-dominated sorting to retrieve Pareto-optimal solutions. A selection mechanism based on Pareto dominance (using
NSGA-II) is applied to maintain a diverse and optimal set of solutions in the population. For this work, we configure the
vanilla MOPSO algorithm for CVRP with the following parameters: social and cognitive coefficients are configured as 2.0,
an inertia weight of 0.9, and we use a population size of 50 particles for 50 generations. GS-MODAC is configured to tune
the social and cognitive coefficients between 1 and 3 and the inertia weight factor between 0.6 and 0.9.

C. Alternative Performance Metrics
We further evaluate performances using additional metrics commonly employed in multi-objective optimization research:
Inverted Generational Distance (IGD), Inverted Generational Distance Plus (IGD+), and the number of non-dominated
solutions. These results are gathered using the same setup as used in the paper for the J25m5 scheduling problem with 2,3
and 5 objectives. The results, shown in Table 5, highlight the effectiveness of GS-MODAC, as it finds a significantly higher
number of “best” solutions (max) and achieves lower IGD+ values.
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In terms of IGD, GS-MODAC outperforms the baseline methods in the experiments with more objectives. It is important
to note that while IGD provides valuable insights into the proximity of solutions to the Pareto front, it is sensitive to the
distribution of solutions and is more subject to outliers. In contrast, IGD+ is less sensitive to these factors, making it a
more reliable measure to evaluate the overall quality and diversity of solutions. Therefore, the consistently lower IGD+
values across multiple objectives achieved by GS-MODAC highlight its ability to converge to the true Pareto front while
maintaining a diverse set of high-quality solutions.

Table 5: Additional Performance Metrics: Inverted Generational Distance (IGD), Inverted Generation Distance Plus (IGD+),
and nr. of non-dominated solutions.

Bi-FJSP - 25j5m
IGD IGD+ non-dominated solutions

mean min std mean min std mean max std
NSGA-II 19.07 8.47 11.49 15.79 4.05 12.25 5.06 8.78 2.11
irace 15.66 7.23 8.41 11.23 2.52 9.10 4.92 8.07 1.94
SMAC3 15.13 6.99 7.75 15.13 6.99 7.75 4.99 8.26 1.98
GS-MODAC 15.77 7.41 9.10 9.82 1.25 10.10 6.81 20.69 5.80

Tri-FJSP - 25j5m
IGD IGD+ non-dominated solutions

mean min std mean min std mean max std
NSGA-II 22.20 15.77 6.00 18.09 10.11 6.78 36.29 54.10 10.18
irace 19.23 13.44 6.09 12.29 5.36 6.83 35.30 51.29 10.06
SMAC3 19.19 13.07 6.13 11.24 3.83 7.02 35.25 52.95 9.81
GS-MODAC 20.63 13.86 6.77 8.40 2.46 6.79 36.64 54.83 11.07

Penta-FJSP - 25j5m
IGD IGD+ non-dominated solutions

mean min std mean min std mean max std
NSGA-II 28.58 23.42 4.19 21.18 14.18 4.70 172.20 223.14 32.46
irace 23.97 19.88 4.09 13.67 7.38 4.78 203.94 263.34 40.22
SMAC3 26.10 21.16 4.46 17.17 9.91 5.22 185.93 243.54 35.94
GS-MODAC 23.82 19.08 5.06 8.71 3.25 5.03 231.13 311.21 52.14

D. Alternative MOEA results
We show another instantiation of the proposed GS-MODAC method, where the DRL agent dynamically configures the
parameters of a multi-objective PSO (MOPSO) algorithm. Table 6 shows GS-MODAC can effectively improve the
performance of MOPSO, achieving better results on solving the two-objective CVRP problems with sizes 20, 50, and 100.

Table 6: Performance comparison of the proposed method for dynamic algorithm configuration of Multi-Objective Particle
Swarm Optimization (MOPSO) Algorithm.

Bi-CVRP - 20 Bi-CVRP - 50 Bi-CVRP - 100
Method mean max std mean max std mean max std
MOPSO 3.21×101 3.75×101 3.47 5.82×101 6.90×101 5.65 8.67×101 9.75×101 5.87
GS-MODAC 3.28×101 3.77×101 3.20 6.27×101 8.08×101 9.73 1.06×102 1.46×102 2.42×101

E. Ablation study
An ablation study was conducted to account for the performance of the different components of the proposed method. As a
first ablation, we trained GS-MODAC without the additional feature vector that contains the normalized remaining search
budget. Table 7 shows that, without this vector, the performance of the proposed method decreased on average with 0.8%,
3.2%, and 1.7%, respectively, for 2, 3, and 5 objectives to solve the scheduling problem with 25j5m instances. Another
ablation was conducted with only one GCN layer. This resulted in an average performance decrease of 1.7%, 3.2%, and
3.4% for 2, 3, and 5 objectives.

In addition, we adapt GS-MODAC for the Penta-FJSP - 25j5m problem by replacing the GCN layers with Transformers and
Graph Attention Networks (GAT). The results presented in Table 8 indicate that Transformers are a viable alternative, with
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Table 7: Ablation study, comparing GS-MODAC configured without additional feature vector and with one configured GCN
layer.

Bi-FJSP - 25j5m Tri-FJSP - 25j5m Penta-FJSP - 25j5m
mean max std mean max std mean max std

MADAC 9.24×104 9.72×104 3.09×103 2.09×107 2.20×107 1.97×106 5.1×1012 5.74×1012 5.01×1011
GS-MODAC (No feature) 9.47×104 9.92×104 4.21×103 2.07×107 2.21×107 1.10×106 5.53×1012 6.02×1012 3.42×1011
GS-MODAC (One GCN) 9.38×104 9.88×104 4.87×103 2.07×107 2.19×107 1.02×106 5.49×1012 5.98×1012 3.37×1011
GS-MODAC 9.54×104 10.0×104 4.40×103 2.14×107 2.27×107 1.09×106 5.62×1012 6.07×1012 3.20×1011

an average performance of only 0.3% lower than GCN and its best-found solutions only 0.5% worse. The performance
difference of GS-MODAC configured with GAT layers is more substantial, with an average degradation of 1.4%.

Table 8: Comparison of different network architectures (GCN, Transformer, GAT) for GS-MODAC.

Penta-FJSP - 25j5m
mean max std

GCN 5.62×1012 6.07×1012 3.20×1011

transformer 5.61×1012 6.04×1012 3.60×1011

GAT 5.54×1012 6.04×1012 3.35×1011

F. Complexity Analysis
We profiled GS-MODAC to assess its computational complexity, focusing on graph state configuration and policy network
inference. The results show that the actor’s inference time is 0.13 seconds, and the state extraction takes 0.2 seconds,
together accounting for 2.0% of the total time for the smallest scheduling problem instances. For larger problems, this
proportion decreases significantly as solution evaluations dominate the computation. Despite a slight overhead, its substantial
performance gains justify the minimal additional cost of GS-MODAC.

Table 9: Breakdown of GS-MODAC’s computational components, highlighting total inference time, state configuration, and
policy inference time.

Bi-FJSP - 5j5m Penta-FJSP - 5j5m Bi-FJSP - 25j5m Penta-FJSP - 25j5m
Total Inference Time 15.09s 15.46s 305s 302s

Total State Configuration Time 0.18s 0.21s 0.23s 0.22s
Total Policy Inference Time 0.12s 0.12s 0.14s 0.13s

G. Comparison to End-to-End method P-MOCO
We compare GS-MODAC with P-MOCO (Lin et al., 2022), a commonly used learning-based approach for Pareto set
learning. It is important to note that P-MOCO features a specialized network structure for simple TSP and CVRP and cannot
solve scheduling problems (such as FJSP), nor work for alternative, non-distance-based objectives. Hence, we compare both
methods to solve the CVRP problem with 2 objectives. We train P-MOCO according to the details provided in Lin et al.
(2022) and train both methods on the same set of instances of size 100. We evaluate its performance based on the setup
described in Section 4, utilizing the same instances and reference points recorded in the publication. The results, presented
in Table 10, compare the best obtained HV values, aligned with the experimental setup of Lin et al. (2022).

Table 10: Comparison of Hypervolume (HV) values achieved by NSGA-II, and by P-MOCO and GS-MODAC (trained on
size 100) for Bi-CVRP instances of varying sizes.

Bi-CVRP - 20 Bi-CVRP - 50 Bi-CVRP - 100
NSGA-II 42.86 151.24 363.87
P-MOCO 34.71 152.83 438.06

GS-MODAC 45.18 152.87 366.63
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The results indicate that P-MOCO performs better than GS-MODAC when trained and tested on instances of size 100, which
is expected since P-MOCO learns policies tailored to specific instances. However, in terms of generalizability, P-MOCO is
inferior to GS-MODAC, as seen in the performances on Bi-CVRP20 and Bi-CVRP50. This indicates that GS-MODAC has
significantly better generalization capability than P-MOCO, which is somewhat overfitted to a specific size used in training.
Additionally, we also observe that GS-MODAC outperforms NSGA-II when generalizing to different sizes.

To further assess robustness, we conducted an additional comparison between GS-MODAC and P-MOCO. Both methods
were trained on problem instances of size 100, and tested on problem instances generated according to a normal distribution
with a mean of 0.3 and a standard deviation of 0.1, with 5% outliers (note: training instances are generated with uniform
distributions). The results demonstrate that GS-MODAC consistently outperforms P-MOCO across all sizes, indicating
its superior generalization capability. Unlike P-MOCO, which tends to overfit not only to a specific problem size but also
to the distribution of training instances, GS-MODAC shows robust performance across different instance distributions.
Additionally, GS-MODAC keeps surpassing NSGA-II in the generalization to various instance distributions and sizes.

Table 11: Performances in terms of Hypervolume (HV) on Bi-CVRP instances with different distributions and outliers,
compared to the training instances.

Bi-CVRP - 20 Bi-CVRP - 50 Bi-CVRP - 100
NSGA-II 59.34 192.64 455.80
P-MOCO 51.05 186.35 454.76

GS-MODAC 59.55 194.47 458.46
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