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ABSTRACT

Time series forecasting is a fundamental task in machine learning. Recently, Large
Language Models (LLMs) have gained attention for this task due to their strong
generalization capabilities, particularly in recognizing patterns and performing
complex reasoning across diverse data modalities. Apart from having the archi-
tecture suitable for long-context learning, LLMs are an interesting option also
because of their few-shot and zero-shot transfer learning capability, making it pos-
sible to use pretrained frozen LLMs directly for time series forecasting. However,
challenges remain in adapting LLMs to multimodal tasks: they often lack a cal-
ibrated understanding of probabilistic structure in non-text modalities and strug-
gle with aligning heterogeneous representations. To address these limitations, we
propose Diffusion-LLM, a novel framework that integrates a conditional dif-
fusion model into an LLM-based forecasting pipeline. This joint setup enables
the model to learn the conditional distribution of future time series trajectories
while reinforcing semantic alignment in the shared latent space. We evaluate
Diffusion-LLM on six standard long-term forecasting benchmarks, including
ETT, Weather, and ECL datasets. Our approach consistently outperforms existing
LLM-based baseline, achieving substantial gains in ultra-long-term and few-shot
forecasting tasks, while demonstrating the effectiveness of distribution-aware reg-
ularization for enhancing the robustness and generalization of time series LLMs.

1 INTRODUCTION

Time series forecasting has relevant applications in domains such as energy systems (Uremović
et al., 2023; Chou & Tran, 2018), healthcare monitoring (Morid et al., 2023), climate science (Kare-
van & Suykens, 2020), and supply chain management (Pacella & Papadia, 2021). While most mod-
els are optimized for short-term to long-term horizons, many real-world scenarios like energy sector,
climate science, vehicle industry etc. require accurate predictions far beyond this range (Wang et al.,
2023). For example, prediction needs in energy demand forecasting can range anywhere, starting
from a few hours, days or weeks extending into months and even years. Such ultra-long-term fore-
casting tasks, beyond thousands or more steps ahead, must often rely on limited historical data,
making them especially challenging but important for strategic decision-making and long-term risk
assessment. Battery lifetime prediction from early aging data is another example of this require-
ment (Li et al., 2024).

Leveraging pretrained LLMs has become an increasingly promising approach for time series fore-
casting, thanks to their strong pattern recognition and reasoning abilities, and flexible integration
options for existing pipelines. Notably, LLMs exhibit powerful inductive capabilities even without
task-specific fine-tuning. Gruver et al. (2023) show that LLMs can achieve impressive zero-shot
performance across a variety of tasks.

However, finetuning LLMs is expensive and the large parameter capacity in transformer-based so-
lutions can lead to overfitting for time series data (Zeng et al., 2023). Thus, applying LLMs to time
series data introduces unique challenges. Unlike natural language, which is governed by seman-
tic and syntactic structures, time series data is characterized by temporal dependencies and often
lacks the rich contextual cues present in text. This domain mismatch makes it difficult to align time
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series and language representations within a shared embedding space, leading to degraded perfor-
mance. In multimodal applications, lack of sufficient multimodal alignment is also the main reason
for hallucinations in LLMs (Shukor & Cord, 2024).

Pretrained LLMs excel at modeling probabilistic relationships in the text domain, as their attention
mechanisms are inherently optimized to predict the most likely next token based on grammatical
structure and semantic context. However, their ability to capture the data distribution in time series
is limited without additional fine-tuning or specialized learning frameworks. This limitation be-
comes more pronounced in LLM-based time series forecasting models trained with Mean Squared
Error (MSE) loss, which tend to regress toward the mean. As a result, these models struggle to rep-
resent the full distribution of possible futures, particularly in non-periodic or noisy datasets. While
LLMs can effectively detect periodic patterns, they are less capable of modeling irregular or highly
variable time series (Tang et al., 2025). Furthermore, LLMs have limited capacity to generate co-
herent and accurate time series over extended horizons. During generation, predictions are based on
both the model’s learned context and the partially generated output. As sequences grow longer, at-
tention mechanisms increasingly focus on recent tokens, leading to reduced awareness of the broader
context (Shi et al., 2023). This shift toward localized attention results in overconfidence, where the
model prioritizes nearby outputs and underestimates uncertainty (Huang et al., 2025). In the context
of time series forecasting, this behavior can cause performance to degrade progressively with longer
prediction windows.

To jointly address these limitations, we introduce a Denoising Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020) into the forecasting framework. DDPMs are a class of generative models
that can estimate complex data distributions through a gradual denoising process. They have shown
remarkable success in domains such as image synthesis and inpainting, where modeling conditional
probabilities is key. In our setting, the DDPM estimates the probability distribution of the forecast-
ing window conditioned on the lookback window. Input adaptation has been shown to be feasible
through the tokenization and embedding scheme introduced in TimeLLM (Jin et al., 2024), referred
to as reprogramming, which encodes both the lookback and forecasting windows as sequences of
word-like prototypes in a shared latent space. The DDPM is jointly trained with the LLM framework
to estimate the conditional distribution of the encoded forecasting window given the encoded input.
This provides a distribution-aware training signal that acts as a regularizer, enhancing the LLM’s
ability to model uncertainty. This dual objective training enables both robustness and predictive
performance of our proposed Diffusion-LLM method. Our main contributions in this work can
be summarized as follows:

• We introduce the novel idea of using generative models like DDPMs as an implicit regu-
larizer for multimodal LLMs. This enables joint alignment between textual and temporal
representations while modeling their shared distribution in a unified embedding space.

• We propose and implement Diffusion-LLM, a new framework that estimates the prob-
ability distribution of reprogrammed time series patches within the multimodal embedding
space, enhancing an LLM’s ability to reason over temporal data.

• We demonstrate that our framework improves ultra-long-term and few-shot forecasting per-
formance across multiple standard benchmarks.

2 RELATED WORK

2.1 LLM IN TIME SERIES FORECASTING:

Recent research has explored various strategies to adapt LLMs for time series analysis. Prompting-
based methods treat time series as raw text and directly feed them into LLMs using handcrafted
templates but suffer from loss of semantics due to modality difference (Xue & Salim, 2023; Gruver
et al., 2023). Quantization approaches convert time series into discrete tokens using techniques
like VQ-VAE or K-means clustering and may require two-stage training (Talukder et al., 2024;
Yu et al., 2023). Vision-as-bridge methods transform time series into visual representations (e.g.,
line plots or spectrograms) and use vision-language models to interpret them. While effective in
some domains, this approach depends heavily on the availability of paired visual data and may not
generalize well (Wimmer & Rekabsaz, 2023). Tool-based methods use LLMs to generate auxiliary
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tools such as code or API calls for downstream tasks (Qin et al., 2024). These often require complex
integration and are less suited for end-to-end forecasting.

Alternatively, alignment-based methods like Zhang et al. (2024) aim to learn an encoding of time
series and align the encoded time series to the semantic space of language models, enabling more
robust and semantically meaningful interactions. These can be broadly divided into two subcate-
gories.

• Contrastive alignment: Methods like ETP (Liu et al., 2024), TEST (Sun et al., 2024), and
TENT (Zhou et al., 2023b) use contrastive learning to align time series and text embeddings
by maximizing similarity between paired representations. These approaches are effective
when multimodal data is available, such as for aligning ECG signals with clinical reports
or IoT sensor data with activity descriptions.

• LLM-backbone alignment: Works such as GPT4TS (Zhou et al., 2023a),
LLM4TS (Chang et al., 2025), and TimeLLM (Jin et al., 2024), directly feed reprogrammed
time series embeddings into frozen or partially frozen LLMs. These models often use
patching, decomposition, or domain-specific prompts to enhance alignment and perform
better at activating the pretrained LLM’s knowledge transfer and reasoning capabilities.
GPT4TS freezes the self-attention layers of the LLM while fine-tuning as they contain a
majority of the pretrained LLM’s learned knowledge. LLM4TS (Chang et al., 2025) uses a
two-stage process: first, an autoregressive approach to align pretrained LLM with patched
time series and then Parameter-Efficient Fine-Tuning methods to selectively adjust a lim-
ited portion of the LLM parameters. TimeLLM (Jin et al., 2024) reprograms time series
into token sequences that are aligned with LLM’s text prototypes to resemble natural lan-
guage, allowing LLMs to process them using their native architecture. Time-VLM (Zhong
et al., 2025) goes one step further by adding image modality to a frozen VLM framework.

Our work builds upon this alignment-based paradigm and introduces a diffusion-based regulariza-
tion mechanism to enhance distributional modeling. This is in contrast to more conservative meth-
ods like Benidis et al. (2022); Yang et al. (2025); Hyndman & Athanasopoulos (2018); Wen et al.
(2018), which often focus on enhancing forecasting through multiscale input decomposition and
predominantly linear models. These approaches can be effective for deterministic settings, but they
do not address the probabilistic modeling of uncertainty, nor do they explore multimodal alignment
or LLM-based reasoning.

2.2 DDPM IN TIME SERIES FORECASTING:

Recent works have explored the use of DDPMs for time series forecasting, primarily by combining
them with autoregressive backbones. These models typically generate future sequences in a denois-
ing fashion. For instance, TimeGrad (Rasul et al., 2021) first injects noise to data at each predictive
time point, and then denoises through a backward process conditioned on the encoded lookback
window. The lookback window is encoded using hidden state from a Recurrent Neural Network
(RNN) module like Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997). Score-
Grad (Yan et al., 2021) uses a feature extraction method almost identical to TimeGrad but combines
it with a conditional SDE-based score-matching module for the diffusion process. Contrary to these
existing works, our work does not directly use DDPM as generative forecaster and instead focuses
on using DDPM as an auxiliary learner to improve the robustness of LLM-based frameworks.

3 METHODOLOGY

Our proposed framework, Diffusion-LLM, enhances LLM-based time series forecasting by in-
tegrating a conditional DDPM as a regularization mechanism. The key idea is to estimate the con-
ditional distribution of the forecasting window given the lookback window in a shared embedding
space of text prototypes obtained by reprogramming the time series, thereby improving both the
probabilsitc modeling and multimodal alignment capabilities of the LLM. An overview of the pro-
posed Diffusion-LLM architecture during training is illustrated in Figure 1.

Our approach consists of three main components:
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Figure 1: Training architecture of Diffusion-LLM. (A) The prompt, input, and target time series
are reprogrammed into a shared token embedding space using a frozen LLM encoder and a trainable
patch encoder. (B) The encoded input is used for direct forecasting via a frozen LLM output module.
(C) A conditional DDPM is trained to model the distribution of the encoded target, conditioned on
the input, by predicting the added noise. The final loss combines forecasting and diffusion-based
regularization.

A. Time Series Encoder (Reprogramming and Embedding): Following the reprogramming strat-
egy introduced in TimeLLM by (Jin et al., 2024), we tokenize raw time series data and use an
attention-based method to learn relevant text prototypes for different patches. The encoding and
reprogramming mechanism is described in detail and illustrated in Figure 2b. During training, along
with the lookback window x encoded in TimeLLM, we also encode the forecasting window y using
the shared encoder ϕllmenc, producing latent representations zx and zy respectively. Similar to the
baseline, we use three parts in the prompt design: 1. Dataset details, 2. Task instruction, and 3.
Statsitical information. For example, a sample prompt for Weather dataset is “Weather is recorded
every 10 minutes for the 2020 whole year, which contains 21 meteorological indicators, such as air
temperature, humidity, etc. Predict the next 2048 steps given the previous 512 steps information
attached. The input has a minimum of .., a maximum of .., and a median of ... The overall trend
is ... The top five lags are ...” We also retain the prompt embedding of TimeLLM but with a slight
simplification of notations, we ignore the frozen prompt embedder in the equation and describe the
patch encoder itself as ϕllmenc,

zx = ϕllmenc(x), zy = ϕllmenc(y). (1)

The encoded time series serves as semantically meaningful tokens within the language model’s
embedding space, enabling effective processing by pretrained LLMs using their native architecture.

B. Forecasting via LLM: The encoded input zx is passed to a frozen LLM-based output module
ϕllmout that consists of the frozen LLM and an output projection layer and generates the predicted
forecast ŷ:

ŷ = ϕllmout(zx). (2)
The forecasting loss is computed using Mean Squared Error between the predicted and actual target
values:

Lforecast = ∥y − ŷ∥2 . (3)
This component leverages the pretrained reasoning and pattern recognition capabilities of LLMs
while avoiding full finetuning, thus maintaining efficiency and generalization. As shown by Jin
et al. (2024); Dombrowski et al. (2024), such model reprogramming approaches of frozen LLMs
can be more efficient than parameter-efficient fine-tuning methods like QLoRA (Dettmers et al.,
2023).
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Figure 2: (a) The inference pipeline of Diffusion-LLM. Only the LLM modules are used to gen-
erate forecasts from new input data. (b) The patch Encoding mechanism in Diffusion-LLM. The
inputs are the Time series window and the pre-trained word embeddings of the LLM (vocabulary).
The time series is normalized and patched. For efficiency, only a selected few text prototypes are
constructed through the linear layer in a learnable manner. The attention mechanism between the
time series patches and the text prototypes helps the LLM to learn the relevant tokens or language
cues (words or phrases like ’short up’, ’steady down’, ’periodic’ etc.) for characterizing each patch
in the token embedding space where the language model is pre-trained. The encoding parameters
are trained in end-to-end manner as part of the whole framework.

C. Distribution Regularization via DDPM: To improve the model’s ability to capture token distri-
bution of time series representation, we use a conditional DDPM. The objective for the DDPM is to
learn the conditional distribution p(zy | zx) through a denoising process. During training, noise is
added to zy to produce a noisy version z̃y , and the DDPM is trained to predict the noise ϵ:

z̃y ∼ q(z̃y | zy, t), (4)

ϵ̂ = ϵθ(z̃y, t, zx), (5)

Lddpm = ∥ϵ− ϵ̂∥2 . (6)

As shown in Ho et al. (2020), this is equivalent to learning the conditional probability distribution,

Lddpm = − log pθ(zy | zx). (7)

While the DDPM component can be interpreted as a regularizer, our framework also broadly fits
within the paradigm of multi-task learning that can be cast as multi-objective optimization (Sener &
Koltun, 2018) with the model being jointly optimized for both forecasting and distribution estima-
tion,

Ljoint = Lforecast + λ · Lddpm. (8)

This dual-objective setup allows the DDPM to act as a probabilistic constraint and also as an aux-
iliary learner that enriches the shared embedding space through semantic alignment. Moreover, the
DDPM regularization is agnostic to the exact alignment approach and can be integrated with exist-
ing methods with minimal code changes similar to the enhancement shown here on TimeLLM (Jin
et al., 2024).

Thus, we jointly optimize the LLM parameters ϕllmenc and ϕllmout and the DDPM parameters θddpm.
The complete training procedure is detailed in Algorithm 1.
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Algorithm 1 Diffusion-LLM Training
Require: Time series dataset D = {(x, y)}, LLM encoder module ϕllmenc, LLM output module

ϕllmout, DDPM model θddpm, regularization weight λ.
Initialize parameters of ϕllmenc, ϕllmout, θddpm.
for each training iteration do

Sample a batch B = {(xi, yi)} from D
for each (x, y) in B do

1. Encode input and target windows
(a) zx ← ϕllmenc(x), (b) zy ← ϕllmenc(y)

2. Forecasting prediction and loss
(a) ŷ ← ϕllmout(zx), (b) Lforecast ← ∥y − ŷ∥2

3. DDPM loss
(a) Sample noise ϵ ∼ N (0, I) and timestep t ∼ Uniform(1, T )
(b) Noised sample: z̃y =

√
ᾱtzy +

√
1− ᾱt · ϵ

(c) Predict noise: ϵ̂← θddpm(z̃y, t, zx)
(d) Lddpm ← ∥ϵ− ϵ̂∥2

4. Combine losses
(a) Ljoint ← Lforecast + λ · Lddpm

end for
Update ϕllmenc, ϕllmout, θddpm using gradients of Ljoint

end for

During inference, only the LLM modules are used to generated forecasts from new input data (Fig-
ure 2a). The inference steps are formally defined in Algorithm 2.

Algorithm 2 Diffusion-LLM Inference
Require: Input time series x, trained encoder ϕllmenc, trained output module ϕllmout

1. Encode the input window
zx ← ϕllmenc(x)

2. Generate forecast
ŷ ← ϕllmout(zx)

return ŷ as the predicted forecasting window

4 EXPERIMENTS AND RESULTS

A. Model Architecture

We use the 7B variant of LLaMA (Touvron et al., 2023) as the backbone LLM in all our exper-
iments. For the diffusion component, we adopt a lightweight Denoising Diffusion Probabilistic
Model (DDPM) implemented as a stack of fully connected layers with skip connections. All exper-
iments are conducted on NVIDIA A100 and H100 GPUs.

B. Long-Term Forecasting

We evaluate Diffusion-LLM on six widely used long-term forecasting benchmarks: ETTh1,
ETTh2, ETTm1, ETTm2 (ETT dataset from Zhou et al. (2021)), Weather, and Electricity (ECL)
(both from Wu et al. (2023)). Lookback window of length 512 and forecasting horizons of
{96, 192, 336, 720} are used. ILI dataset (Wu et al., 2023) was considered but its shorter stan-
dard forecasting window of H ∈ {24, 36, 48, 60} and unavailability of enough data for ultra-long
forecasting make it unsuitable for our evaluation. As we present our method as a simple add-on im-
provement over existing LLM-based methods, we show competitive results with the existing bench-
marks (Table 3) but more importantly, make exhaustive comparison against the baseline method of
TimeLLM and report the results along with standard deviation for Mean Squared Error (MSE) and
Mean Absolute Error (MAE) evaluation metrics (Table 1 and Table 2). Diffusion-LLM yields
similar results as TimeLLM for this task.

C. Ultra-Long-Term Forecasting
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Dataset Long-term Ultra-long-term
TimeLLM Diffusion-LLM (Ours) TimeLLM Diffusion-LLM (Ours)

MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.449±0.025 0.457±0.015 0.427±0.004 0.446±0.010 0.758±0.018 0.600±0.011 0.612±0.011 0.558±0.004

ETTh2 0.373±0.009 0.409±0.006 0.387±0.003 0.425±0.002 0.589±0.013 0.543±0.007 0.522±0.009 0.512±0.004

ETTm1 0.381±0.008 0.406±0.006 0.376±0.004 0.399±0.002 0.484±0.009 0.472±0.012 0.465±0.001 0.452±0.001

ETTm2 0.271±0.003 0.330±0.003 0.334±0.003 0.369±0.001 0.410±0.020 0.425±0.014 0.422±0.008 0.436±0.004

Weather 0.259±0.019 0.288±0.017 0.304±0.001 0.329±0.001 0.424±0.008 0.401±0.004 0.407±0.001 0.394±0.001

ECL 0.171±0.002 0.277±0.003 0.200±0.004 0.303±0.002 0.272±0.001 0.356±0.000 0.297±0.005 0.376±0.004

Table 1: Comparison of TimeLLM (Jin et al., 2024) and Diffusion-LLM across long-term and
ultra-long-term forecasting tasks on standard time series benchmarks. Long-term forecasting re-
sults are averaged over four prediction horizons: H ∈ {96, 192, 336, 720}, using an input se-
quence length of 512. Ultra-long-term refers to the average performance over extended horizons
H ∈ {1024, 2048}, which pose greater challenges due to increased uncertainty and weaker temporal
correlations. Each cell reports the MSE and MAE and their standard deviations across multiple runs.
Lower values indicate better performance and best results are indicated in bold. ’-’ means that data
quantity is not sufficient to constitute a meaningful training set. Diffusion-LLM outperforms
TimeLLM on 4/6 datasets for ultra-long-term forecasting. The magnitude of improvement in per-
formance is remarkable for smaller datasets like ETTh1 and ETTh2, underlining the generalization
ability of our method.

Dataset Few-shot (10%) long-term Few-shot (10%) ultra-long-term Few-shot (5%) long-term Few-shot (5%) ultra-long-term
TimeLLM Diffusion-LLM (Ours) TimeLLM Diffusion-LLM (Ours) TimeLLM Diffusion-LLM (Ours) TimeLLM Diffusion-LLM (Ours)

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.834±0.073 0.614±0.022 0.662±0.004 0.564±0.001 - - - - 0.988±0.066 0.662±0.021 0.728±0.029 0.582±0.013 - - - -
ETTh2 0.422±0.009 0.443±0.005 0.398±0.003 0.432±0.002 - - - - 0.415±0.014 0.435±0.008 0.392±0.003 0.428±0.003 - - - -
ETTm1 0.504±0.001 0.462±0.003 0.502±0.029 0.464±0.014 1.056±0.101 0.691±0.036 0.660±0.062 0.550±0.026 0.600±0.011 0.515±0.006 0.528±0.014 0.480±0.005 0.924±0.032 0.666±0.011 0.628±0.003 0.536±0.001

ETTm2 0.327±0.017 0.361±0.008 0.336±0.003 0.370±0.003 0.582±0.022 0.506±0.003 0.442±0.000 0.447±0.000 0.330±0.005 0.367±0.003 0.346±0.001 0.381±0.003 0.522±0.018 0.480±0.003 0.450±0.004 0.444±0.006

Weather 0.256±0.000 0.291±0.002 0.319±0.008 0.340±0.004 0.480±0.005 0.430±0.002 0.428±0.003 0.406±0.000 0.304±0.006 0.326±0.003 0.329±0.005 0.347±0.003 0.477±0.007 0.434±0.004 0.424±0.006 0.406±0.004

ECL 0.190±0.000 0.288±0.001 0.197±0.000 0.294±0.000 0.292±0.000 0.367±0.003 0.281±0.001 0.358±0.004 0.192±0.000 0.289±0.001 0.201±0.003 0.298±0.000 - - - -

Table 2: Comparison of TimeLLM (Jin et al., 2024) and Diffusion-LLM across few-shot long
and ultra-long-term forecasting on standard time series benchmarks. Few-shot (10%) and Few-shot
(5%) indicate training with only 10% and 5% of the available training data, respectively, to evaluate
generalization under data scarcity. Other details are according to the protocol in Table 1. ’-’ means
that data quantity is not sufficient to constitute a meaningful training set. Our method consistently
outperforms TimeLLM on few-shot ultra-long forecasting tasks.

.

Ultra-long-term forecasting is particularly challenging due to increased uncertainty and weaker cor-
relations with recent history. We evaluated this setting using the same datasets but focus on longer
prediction horizons ({1024, 2048}). Diffusion-LLM outperforms TimeLLM in this regime in
multiple datasets, demonstrating the benefit of modeling the full conditional distribution of the
target window (Table 1). For relatively smaller datasets like ETTh1 and ETTh2, the benefits are
particularly remarkable, with MSE reduction of 19.26%, and 11.38%, respectively.

D. Few-Shot Forecasting (10% and 5%)

To evaluate few-shot generalization, we train both models using only 10% of the available train-
ing data. We follow the same setup as TimeLLM and report results on all eight datasets.
Diffusion-LLM performs noteably better than TimeLLM (Table 2), showing improvements
across all ultra-long-forecasting scenarios. On ETTh1, our method outperforms TimeLLM by
20.62% even for long-term forecasting. This indicates that the diffusion-based regularization can
enhance generalization greatly in low-data regimes, without requiring any fine-tuning of the LLM
backbone.

E. Few-Shot Forecasting (5%)

In the more extreme 5% few-shot setting, Diffusion-LLM shows clearer advantages over
TimeLLM (Table 2). On ETTh1, this corresponds to a 25.79% improvement for long-term forecast-
ing. This highlights the benefit of distribution-aware learning when data is scarce and uncertainty is
high.
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Figure 3: (a) Visualization of ultra-long-term forecasting on ETTh1 dataset sample for 512
lookback and 2048 forecast window. TimeLLM shows considerable deviation from the ground
truth in the later parts of forecast window while Diffusion-LLM shows consistent per-
formance over the whole window. (b) Comparison of long-term forecasting performance of
TimeLLM and Diffusion-LLM shows slower performance degradation and more robustness for
Diffusion-LLM in data-scarcity scenarios. Protocol is same as Table 1.

Our results show that even though an LLM alone can often capture short-term patterns well, for
very long-term forecasting with more uncertainty and variability and weaker direct correlation with
recent past, modelling the complete distribution is more effective. Integrating the DDPM helps the
encoder to learn richer representations in the embedding space. Because of Diffusion model’s ability
to model probability distributions, DDPM-based distribution regularization is most beneficial when
uncertainty is high. This design introduces an optimization trade-off: while it improves robustness in
high-uncertainty regimes, it can slightly reduce point prediction accuracy for shorter horizons. The
benefits of distribution regularization in handling uncertainty is supported by the empirical evidence
in tables 1 and 2 that Diffusion-LLM shows larger improvements on the most challenging datasets
which exhibit higher baseline MSE (e.g. ETTh1, ETTm1). Even for easier datasets with lower MSE
(e.g. Weather), as forecasting horizons lengthen and training data becomes scarce gradually, the
advantages of Diffusion-LLM show, outperforming the baseline under these high-uncertainty con-
ditions. The strong robustness of Diffusion-LLM under limited training data is further illustrated
in Figure 3 as its performance degrades considerably less with increasing data scarcity compared to
TimeLLM.

5 MODEL ANALYSIS

Here, we present the analysis from the experiments that serve as ablation studies and highlight the
design decisions that contributed to the model’s performance. The empirical results are presented in
Table 5) in the appendix section A.3.

Architectural Variants: We experimented with two primary architectures for the DDPM: a 1D
version with standard U-Net (Ronneberger et al., 2015) and a fully connected network with skip
connections. Despite the expressive capacity of U-Net, we observed that the simpler fully con-
nected architecture with fewer parameters yielded comparable or better performance, suggesting
that overparameterization is not necessary.

Conditioning Strategies: In the default setup, the DDPM receives the concatenated embeddings
of both the prompt and the reprogrammed time series. We tested conditioning via two methods:
concatenation with input and timestep embeddings and attention mechanisms within the denoising
process. Our findings indicate that simpler conditioning like direct concatenation performs robustly,
while more complex attention-based conditioning did not yield further improvements. The MSE for
the U-Net architecture with attention-based conditioning can be compared with DiffusionLLM in
A.1. and A.3. in the table 5.
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Method ETTh1 ETTh2 ETTm1 ETTm2 Weather ECL
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Diffusion-LLM (Ours) 0.427 0.446 0.387 0.425 0.376 0.399 0.334 0.369 0.304 0.329 0.200 0.303
LDM4TS (Ruan et al., 2025) 0.443 0.454 0.387 0.427 0.352 0.387 0.333 0.380 0.245 0.283 0.199 0.299
Time-VLM (Zhong et al., 2025) 0.405 0.420 0.341 0.391 0.347 0.377 0.248 0.311 0.224 0.263 0.172 0.273
GPT4TS (Zhou et al., 2023a) 0.465 0.455 0.381 0.412 0.388 0.403 0.284 0.339 0.237 0.270 0.167 0.263
DLinear (Zeng et al., 2023) 0.422 0.437 0.431 0.446 0.357 0.378 0.267 0.333 0.248 0.300 0.166 0.263
PatchTST (Nie et al., 2023) 0.413 0.430 0.330 0.379 0.351 0.380 0.255 0.315 0.225 0.264 0.161 0.252
TimesNet (Wu et al., 2023) 0.458 0.450 0.414 0.427 0.400 0.406 0.291 0.333 0.259 0.287 0.192 0.295
FEDformer (Zhou et al., 2022) 0.440 0.460 0.437 0.449 0.448 0.452 0.305 0.349 0.309 0.360 0.214 0.327
Autoformer (Wu et al., 2021) 0.496 0.487 0.450 0.459 0.588 0.517 0.327 0.371 0.338 0.382 0.227 0.338
Stationary (Liu et al., 2022) 0.570 0.537 0.526 0.516 0.481 0.456 0.306 0.347 0.288 0.314 0.193 0.296
ETSformer (Woo et al., 2023) 0.542 0.510 0.439 0.452 0.429 0.425 0.293 0.342 0.271 0.334 0.208 0.323
LightTS (Zhang et al., 2022) 0.491 0.479 0.602 0.543 0.435 0.437 0.409 0.436 0.261 0.312 0.229 0.329
Informer (Zhou et al., 2021) 1.040 0.795 4.431 1.729 0.961 0.734 1.410 0.810 0.634 0.548 0.311 0.397
Reformer (Kitaev et al., 2020) 1.029 0.805 6.736 2.191 0.799 0.671 1.479 0.915 0.803 0.656 0.338 0.422

Table 3: Long-term forecasting results. Each cell shows (MSE, MAE) for a given dataset and
method. Results are averaged over four forecasting horizons: H ∈ {96, 192, 336, 720}. Lower
values (also indicated by darker shade) is better. Even though the main focus and performance
gain of our method is as a regularization method for ultra-long-term time series forecasting and
data-scarcity scenarios over correponding LLM-only method, it remains competitive with general
long-term forecasting baselines.

Channel Independence and Feature Conditioning: To investigate whether the channel indepen-
dence assumption introduced for transformer-based forecasting models (Nie et al., 2023) still holds
for our framework with DDPM, we used class conditioning by concatenating a feature ID embed-
ding with the input condition. This modification led to a slight degradation in performance (A.1.
and A.2. in the table 5.), suggesting that DDPMs may be sensitive to such conditioning and benefit
more from shared latent representations than from explicit feature-wise separation.

Encoder Sharing and DDPM Contribution: We conducted ablations to isolate the contribution of
the DDPM component and the additional impact of encoder sharing. Adding the DDPM with sep-
arate encoders for lookback and forecast windows resulted in a performance gain of approximately
10.81% over the baseline for ultra-long-term forecasting of 2048 timesteps on ETTh1. With a shared
encoder for both windows, the DDPM shows additional improvement, with a further reduction in
MSE of 12.48% (A.1., B.1. and B.2. in the table 5.) This improvement can be attributed to better
semantic alignment in the LLM’s embedding space when using a shared encoder, which facilitates
more effective distribution learning by the DDPM and enhances overall performance. To analyze
the DDPM contribution further, We also added a plot (Figure 4 in Appendix) to show the effect of
the regularization weight λ on the model performance. The model performs best when λ is 1, i.e.
when the LLM and DDPM contributes equally to the learning process.

Efficiency Analysis: While the model reprogramming approach used by us is more efficient than
LLM training or finetuning as shown by Jin et al. (2024), we also analyze the computation over-
head introduced to the baseline framework due to the diffusion module. We report training time,
GPU memory usage, trainable parameters, and training iteration speed for Diffusion-LLM ver-
sus TimeLLM in the worst-case ultra-long-term setting with the largest forecast window (2048)
in Table 8 in Appendix section A.3. Diffusion-LLM introduces minimal additional cost (only
1.82% more GPU memory, 11.54% additional trainable params and 0.39% slower training) com-
pared to TimeLLM, confirming that the added DDPM regularization does not compromise on effi-
ciency. During inference, the diffusion module is not used, ensuring that the inference speed does
not get additional overhead over the baseline.

6 CONCLUSION

In this work, we introduced Diffusion-LLM, a low-overhead but powerful extension to LLM-
based time series forecasting frameworks that integrates a conditional diffusion model for distri-
butional regularization. Our method improves performance in ultra-long-term forecasting and few-
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shot learning scenarios, where uncertainty and data scarcity pose major challenges. By modeling the
conditional distribution of future representations in the shared embedding space, Diffusion-LLM
enhances the LLM’s ability to reason over long horizons and generalize from limited data.

Importantly, our approach introduces only a minimal number of additional trainable parameters rela-
tive to the frozen LLM backbone, preserving the efficiency and scalability of the original framework.
During inference, the diffusion module is not used, ensuring that the prediction speed remains as fast
as the baseline LLM-based framework.

Looking forward, we see several promising directions for future research. First, exploring more
expressive or adaptive reprogramming strategies could further improve the alignment between time
series and language embedding spaces. Second, there is scope to investigate the role of Diffusion
regularizer as an enhancement to the embedding space of other LLM-based and non-LLM models to
improve generalizability for any time series model for ultra-long-term forecasting and to analyze the
interpretable embedding space changes in LLM-based forecasting baselines for time series reason-
ing in natural language. Third, incorporating the diffusion model directly into the generation process
rather than using it solely for regularization may lead to further gains. Future work could explore
using LLMs for temporal encoding combined with DDPM for sequence-by-sequence conditional
generation and uncertainty estimation, for example by leveraging DDPM to generate multiple plau-
sible trajectories or estimate predictive variance. Fourth, the current framework can also be extended
for uncertainty estimation with a probabilistic head extension instead of point prediction or multiple
predictions via dropout. Finally, extending this framework to handle more modalities could broaden
its applicability to a wider range of real-world forecasting tasks.

Our Diffusion-LLM offers a principled and effective enhancement to time series LLMs, combin-
ing the strengths of probabilistic modeling and pretrained language models in a unified framework
without loss of efficiency of the original methods.

7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. All implementation de-
tails, including model architecture, training procedures, and evaluation protocols are elaborated in
the main paper and the Appendix. Hyperparameter configurations for both the LLM and DDPM
components are provided in structured tables (table 6 and table 7) within the supplementary materi-
als. Additionally, we include dataset descriptions (4) and preprocessing steps to facilitate replication.
An anonymous link to the full source code repository is provided in the subsection A.3, enabling
researchers to reproduce our experiments and results with minimal setup.
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A APPENDIX

A.1 DATASET DETAILS

We evaluate Diffusion-LLM on six widely-used benchmark datasets for long-term time series fore-
casting. These datasets span multiple domains, including energy, weather, and offer a diverse testbed
for assessing the performance and generalization of our method.

• ETTm1 and ETTm2: These datasets are derived from the Electricity Transformer Temper-
ature (ETT) dataset. ETTm1 and ETTm2 contain measurements sampled every 15 minutes,
with seven features including oil temperature and load.

• ETTh1 and ETTh2: These datasets also comes from the ETT collection but are sampled
at an hourly resolution. Like ETTm1 and ETTm2, it includes seven variables, capturing
environmental and operational characteristics of electric transformers.

• Weather: The Weather dataset is sourced from the UCI Machine Learning Repository
and contains meteorological data collected from a local weather station. It includes 21
continuous variables (e.g., temperature, humidity, pressure) recorded every 10 minutes.

• ECL (Electricity Consumption Load): This dataset consists of hourly electricity con-
sumption data from 321 clients in Europe.

Dataset Dim. Dataset Size (Train, Val, Test) Frequency Domain Task

ETTm1 7 (34465, 11521, 11521) 15 min Temperature Long-term Forecasting
ETTm2 7 (34465, 11521, 11521) 15 min Temperature Long-term Forecasting
ETTh1 7 (8545, 2881, 2881) 1 hour Temperature Long-term Forecasting
ETTh2 7 (8545, 2881, 2881) 1 hour Temperature Long-term Forecasting
Weather 21 (36792, 5271, 10540) 10 min Weather Long-term Forecasting
Electricity 321 (18317, 2633, 5261) 1 hour Electricity Long-term Forecasting

Table 4: Overview of datasets used in Diffusion-LLM. Each dataset varies in dimensionality, sam-
pling frequency, and domain. Forecasting horizons are standardized across all datasets.

For all datasets, we follow the standard data preprocessing and splitting protocols used in prior
work such as PatchTST and Time-LLM (Available from the library in https://github.com/
thuml/Time-Series-Library/tree/main). Specifics of the dataset are added in table 4.

A.2 EVALUATION METRICS

To evaluate model performance on time series forecasting, we adopt two standard regression metrics:

• Mean Squared Error (MSE): This metric computes the average of the squared differences
between the predicted values and the ground truth:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

A lower MSE indicates better performance and penalizes larger errors more heavily due to
the squared term.

• Mean Absolute Error (MAE): MAE measures the average absolute difference between
predictions and actual values:

MAE =
1

N

N∑
i=1

|yi − ŷi|

MAE is more robust to outliers compared to MSE and provides an intuitive measure of
forecast accuracy.
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A.3 EXPERIMENT DETAILS

The anonymized implementation of Diffusion-LLM is available at: https://anonymous.
4open.science/r/blabla-FDEE.

Model Architecture:

Our model adopts a denoising diffusion probabilistic modeling (DDPM) framework for time series
forecasting. The underlying structure is a lightweight residual multilayer perceptron (MLP). The
model consists entirely of fully connected layersand skip connections.

Let x ∈ RB×L×D denote a batch of input time series, where B is the batch size, L is the sequence
length, and D is the input dimensionality. The model maps a noisy input xt to a denoised prediction
x̂0 through the following components:

Input and Context Projection:

The input sequence is projected from D to a hidden dimension H via a linear layer. A conditioning
signal (e.g., a context window or past data), also of dimension D, is mean-pooled over the temporal
axis, broadcast to match the sequence length, and projected into the same hidden space. The two are
summed along with a time embedding to produce the initial hidden state:

h = Linearin(x) + Linearcond(repeat(mean(c))) + TimeEmbedding(t)

Time Embedding:

To encode the diffusion timestep t, we use a sinusoidal embedding of dimension H , similar to
positional embeddings in transformers. This embedding is passed through a linear layer and ReLU
activation:

temb = ReLU(Lineartime(Sinusoidal(t)))

This time embedding is broadcast across the temporal dimension and added to the hidden state.

Class Conditioning (Optional):

The different features in the dataset are used as different classes for the conditional DDPM. Each
class is added to the hidden representation at every timestep.

Residual Blocks: The hidden representation is passed through two residual blocks, each consisting
of a linear layer followed by a GELU activation and residual skip connection:

h← h+ GELU(Linear(h))

Output Projection:

Finally, a linear output layer maps the hidden representation back to the original input dimension:

x̂0 = Linearout(h)

Noise Schedule:

We experiment with two types of noise schedules for the diffusion process:

• Linear Schedule. A simple linear beta schedule is defined as:

βt = linspace
(
1000

T
· 10−4,

1000

T
· 0.02, T

)
where T is the total number of diffusion steps.

• Cosine Schedule. We define the cosine schedule over T steps as:

ᾱt = cos2
(
(t/T + s)

1 + s
· π
2

)
, βt = 1− ᾱt+1

ᾱt

where s is a small constant (e.g., 0.008), and βt is clipped to the range [0, 0.999] for nu-
merical stability.
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Variant ETTh1-2048 MSE

A.1. DiffusionLLM 0.729
A.2. DiffusionLLM with Class Conditioning (A2) 0.746
A.3. DiffusionLLM with Complex U-Net & Attention Conditioning 0.732
B.1. DDPM with Separate Lookback and Forecast Encoders 0.833
B.2. Without DDPM (TimeLLM-style baseline) 0.934

Table 5: Ablations on ETTh1 in predicting 2048 steps ahead (MSE reported). Best result highlighted
in bold.

Task-Dataset Text Prototype Backbone Layers Input Length T Patch Dim. dm Heads K FF Dim. dff LR∗ Loss Batch Size Epochs

LTF - ETTh1 1000 32 512 16 8 128 10−3 MSE 16 50
LTF - ETTh2 1000 32 512 16 8 128 10−3 MSE 16 50
LTF - ETTm1 1000 32 512 16 8 128 10−3 MSE 16 100
LTF - ETTm2 1000 32 512 16 8 128 10−3 MSE 16 100
LTF - Weather 1000 32 512 16 8 128 10−2 MSE 64 100
LTF - ECL 1000 32 512 16 8 32 10−2 MSE 128 100

Table 6: LLM hyperparameters used for each dataset in Diffusion-LLM. All models use the same
LLaMA-7B backbone with frozen weights.

Hyperparameter Value / Description

input dim 4096 (Dimensionality of input time series patches)
hidden dim 512 (Hidden layer size used throughout the DDPM model)
time emb dim 512 (Dimensionality of sinusoidal time embedding)
num classes 0 (No class conditioning used in final version)
residual blocks 2 (Number of residual blocks in the DDPM architecture)
activation GELU (Activation function used in residual blocks)
output proj Linear (Final layer to project hidden state back to input dimension)
timesteps 1000 (Total number of diffusion steps)
beta schedule cosine (Noise schedule used for diffusion process)
sampling timesteps 1000 (Number of steps used during sampling)
objective pred noise (Training objective: predict added noise)
loss function MSE (Loss computed between predicted and target noise)
self conditioning False (Optional technique to improve sample quality; not used)
parameter count ∼7M (Approximate number of parameters added by DDPM)

Table 7: DDPM hyperparameters used in Diffusion-LLM. These settings are shared across all
datasets.

To avoid underestimating our baseline, for the LLM part, we use the same hyperparameters as Jin
et al. (2024) apart from Weather and Electricity dataset where we use larger batch size of 64 and 128
to accommodate computing time. The hyperparameters are listed in the table 6.

For our DDPM architecture, we use same hyperparameters for all datasets. It is a residual MLP-
based backbone with a hidden dimension of 512 throughout. The input and conditioning sequences,
each with dimensionality 4096, are projected to the hidden space using separate linear layers. The
model includes two residual blocks, each with a single linear layer followed by GELU activation and
skip connection. A sinusoidal time embedding of size 512 is used, followed by a linear projection
to match the hidden dimension. The output is projected back to the original input dimension via a
final linear layer. Overall, the model contains six main linear layers, all operating at the hidden size
of 512. The DDPM model adds only approximately 7 M parameters. Further, adding the condition
into the DDPM model in different scenarios for different datasets always yielded similar results with
1-2 percent deviation only in either direction, hence in the final version, we have not used the class
conditioning. The DDPM hyperparameters are listed in the table 7.
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Figure 4: Impact of regularization weight (λ) on forecasting performance (MSE) for ETTh1 dataset
with a 2048-step horizon. The plot shows that λ = 1 achieves the best performance (MSE = 0.729),
indicating that an equal contribution from the forecasting loss and the diffusion-based regularization
provides optimal balance. Smaller λ values (e.g., 0 for TImeLLM or 0.6) under-regularize the em-
bedding space, limiting the benefit of distribution-aware alignment, while larger λ values (e.g., 1.5)
overemphasize the diffusion objective, causing over-regularization and slight performance degrada-
tion. This demonstrates the importance of tuning λ to balance deterministic forecasting and proba-
bilistic embedding refinement.

Model Training Time (GPU-h) Max GPU Mem Usage (MiB) Trainable Params (M) Speed (s/iter)

Diffusion-LLM 6.437 33188 6.461 0.397
TimeLLM 6.461 32592 6.437 0.395

Table 8: Efficiency analysis for ETTh1 forecasting 2048 steps ahead. Training time and resource
usage are reported for Diffusion-LLM and TimeLLM.
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