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Abstract

Efficient sampling from high-dimensional and multimodal unnormalized proba-1

bility distributions is a central challenge in many areas of science and machine2

learning. We focus on Boltzmann generators (BGs) that aim to sample the Boltz-3

mann distribution of physical systems, such as molecules, at a given temperature.4

Classical variational approaches that minimize the reverse Kullback–Leibler di-5

vergence are prone to mode collapse, while annealing-based methods, commonly6

using geometric schedules, can suffer from mass teleportation and rely heavily on7

schedule tuning. We introduce Constrained Mass Transport (CMT), a variational8

framework that generates intermediate distributions under constraints on both the9

KL divergence and the entropy decay between successive steps. These constraints10

enhance distributional overlap, mitigate mass teleportation, and counteract prema-11

ture convergence. Across standard BG benchmarks and the here introduced ELIL12

tetrapeptide, the largest system studied without access to samples from molecular13

dynamics, CMT consistently surpasses state-of-the-art variational methods, achiev-14

ing more than 2.5× higher effective sample size while avoiding mode collapse.15

1 Introduction16

We consider the problem of sampling from a target probability measure p ∈ P(Rd) given by17

p(x) = p̃(x)/Z where p̃ ∈ C(Rd,R≥0) can be evaluated pointwise but the normalization constant18

Z =
∫
Rd p̃(x) dx is intractable. Sampling from unnormalized densities arises in many areas, including19

Bayesian statistics [34], reinforcement learning [20], and the natural sciences [70]. A prominent20

example is learning Boltzmann generators (BGs) [55], for which p̃(x) = exp(−E(x)/kBT) , with21

E being an energy function, T the temperature, and kB the Boltzmann constant. BGs enable22

efficient sampling of thermodynamic ensembles, thereby bypassing costly molecular dynamics (MD)23

simulations and accelerating the exploration of rare but physically important states. However, learning24

BGs is challenging as the state space is typically high-dimensional, the target distribution is often25

highly multimodal, and evaluating E(x) can be very costly, especially when using accurate energies26

such as those from density-functional theory [12].27

A promising alternative to classical MD or Monte Carlo methods [38] is offered by variational28

approaches [71], which aim to minimize a statistical divergence between a variational probability29

measure q ∈ P(Rd) and the target p, commonly the reverse Kullback–Leibler (KL) divergence30

q∗ = argmin
q∈P(Rd)

DKL(q ∥ p), (1)

whose unique minimizer is q∗ = p. Directly minimizing the reverse KL divergence tends to suffer31

from mode collapse, ignoring low-probability modes of the target [15]. To counteract this, a number32

of recent approaches have proposed to construct a sequence of intermediate distributions that transport33

probability mass from a tractable base distribution q0 to the target. This idea, which dates back34

several decades to annealed importance sampling [53], is most often realized through a geometric35

annealing path, which is defined as a sequence of (qi)Ii=1 which follows qi ∝ q1−βi

0 p̃βi where the36
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Figure 1: Illustration of the annealing paths (AP) obtained by solving the variational problems (2), (7), or (9).
Trust-region–based optimization (2) mitigates the irregularities of naive schedules (e.g., the linear schedule), but
the resulting geometric AP suffers from mass teleportation as the right mode of the target distribution p emerges
without overlap with earlier intermediate densities. Constraining the entropy decay between successive densities
(7) prevents mass teleportation, yet fails to guarantee sufficient overlap between the initial distribution q0 and
subsequent intermediate densities. In contrast, combining both constraints (9) yields APs that both maintain
overlap between successive densities and avoid mass teleportation.

corresponding annealing schedule (βi)
I
i=1 ensures that qI = p. Despite its simplicity, geometric37

annealing can suffer from mass teleportation, where large portions of the probability mass shift to38

disjoint regions between successive steps, complicating mass transport [6]. Moreover, its performance39

critically depends on the choice of annealing schedule [73].40

A recent study proposed selecting the annealing schedule using trust-region constraints that bound the41

KL divergence between successive distributions, thereby avoiding abrupt changes in the stochastic42

optimal control setting [14]. Adapting this idea to measures that admit densities, we further introduce43

a constraint that explicitly controls the rate at which the entropy of the variational distribution44

decreases along the transport path. This added degree of freedom enables deviations from the45

standard geometric annealing schedule, mitigating issues such as mass teleportation and premature46

convergence, while fostering greater overlap between consecutive distributions.47

We demonstrate that our method, Constrained Mass Transport (CMT), consistently outperforms48

state-of-the-art approaches, often by a substantial margin, when learning Boltzmann generators solely49

from energy evaluations, without relying on additional MD samples. Furthermore, we introduce a50

new benchmark system, ELIL tetrapeptide, which, to the best of our knowledge, is the largest system51

studied to date in the setting of learning exclusively from energy evaluations. On this challenging52

system, CMT achieves a 2.5× larger effective sample size compared to baselines, while avoiding53

mode collapse.54

2 Constrained mass transport55

Here, we denote by P(Rd) the space of probability measures on Rd that are absolutely continuous56

with respect to Lebesgue measure and admit smooth densities. We approach the sampling problem57

by dividing (1) into a sequence of constrained optimization problems that result in an annealing path58

of intermediate densities (qi)Ii=0 that bridge between a tractable prior q0 and the target p.59

Trust region constraint. Trust-regions aim at dividing the problem (1) into subproblems by con-60

straining the updated density to be close to the old density in terms of KL divergence. Formally, this61

is given by the iterative optimization scheme 162

qi+1 = argmin
q∈P(Rd)

DKL(q|p) s.t. DKL(q|qi) ≤ εtr, (2)

for i ∈ N, trust region bound εtr > 0 and some q0 ∈ P(Rd). Due to the convexity of the KL63

divergence, we can show that in all but the last step we actually have an equality constraint in (2); see64

App. A. Thus, there exists an I ∈ N such that qI = q∗ (= p). Under suitable regularity assumptions,65

we can approach the above constrained optimization problem using a relaxed Lagrangian formalism,66

i.e.,67

L(i+1)
tr (q, λ) = DKL(q|p) + λ (DKL(q|qi)− εtr) (3)

where λ ≥ 0 is a Lagrange multiplier, and solve the saddle point problems68

max
λ≥0

min
q∈P(Rd)

L(i)
tr (q, λ). (4)

1To ensure that q ∈ P(Rd) we need an additional constraint
∫
q(x)dx = 1 which we omitted in the main

part of the paper for readability.
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We note that L(i)
tr is convex in q by convexity of the KL divergence and (4) concave in λ since it69

can be expressed as the pointwise minimum minq L(i)
tr (q, λ) among a family of linear functions of λ.70

Thus, (4) has unique optima which we denote by qi+1 and λi, respectively. Indeed, (2) admits an71

analytical solution which is characterized by Prop. 2.1. We refer to App. A for a proof and further72

details on problem (2).73

Proposition 2.1 (Optimal intermediate trust-region densities). The intermediate optimal densities74

that solve (2) satisfy75

qi+1(x, λ) =
qi(x)

λ
1+λ p̃(x)

1
1+λ

Zi+1(λ)
, with Zi+1(λ) =

∫
qi(x)

λ
1+λ p̃(x)

1
1+λ dx, (5)

where qi+1 are the unique optima of the Lagrangian corresponding to (2).76

The optimal multiplier λi that solves (2) is obtained by plugging qi+1(λ) in the Lagrangian (3) to77

obtain the dual function gtr ∈ C(R,R) given by78

g
(i+1)
tr (λ) := L(i+1)

tr (qi+1(λ), λ) = −(1 + λ) logZi+1(λ)− λεtr. (6)

Assuming access to Zi+1(λ) one can solve λi = argmaxλ≥0 g
(i+1)
tr (λ) to obtain the optimal79

q ∈ P(Rd) that solves (2) as qi+1 := qi+1(λi).80

Entropy constraint. In a similar fashion to (2), we can avoid premature convergence by regulating81

the entropy decay of the model by constructing a sequence of intermediate densities whose change in82

entropy is constrained. Formally, we aim to solve the following problem83

qi+1 = argmin
q∈P(Rd)

DKL(q|p) s.t. H(qi)−H(q) ≤ εent, (7)

where H(q) = −
∫
q(x) log q(x)dx is the Shannon entropy and εent > 0 the entropy bound. We can84

again approach (7) using a Lagrangian formalism by introducing a Lagrangian multiplier η ≥ 0. The85

analytical solution to (7) is characterized by Prop. 2.2 whose proof can be found in App. A.86

Proposition 2.2 (Optimal intermediate densities for entropy constraint). The intermediate optimal87

densities, that solve (7) satisfy88

qi+1(x, η) =
p̃(x)

1
1+η

Zi+1(η)
, with Zi+1(η) =

∫
p̃(x)

1
1+η dx, (8)

where qi+1 are the unique optima of the Lagrangian corresponding to (7).89

Despite the potential of (7) for counteracting premature convergence, we identify two challenges90

depending on the entropy of the initial density H(q0): First, if H(q0) < H(p) then the constraint91

is inactive resulting in η0 = 0, reducing (7) to the optimization problem as stated in (1). Second, if92

H(q0) ≫ H(p) then the KL divergence between q0 and q1 ∝ p1/1+η0 can be arbitrarily large and93

therefore could cause instabilities due to a lack of overlap between the successive densities. While94

the former challenge can typically be addressed by initializing q0 with large entropy, the second can95

be more intricate. In the following, we explain how this challenge can be addressed by combining the96

trust-region and entropy constraint.97

Combining both constraints. One can straightforwardly combine the constraints in (2) and (7) into98

a single iterative optimization scheme defined as99

qi+1 = argmin
q∈P(Rd)

DKL(q|p) s.t.
{
DKL(q|qi) ≤ εtr,

H(qi)−H(q) ≤ εent.
(9)

In analogy to the previous section, we introduce Lagrangian multiplier λ and η for the trust region100

and entropy constraint, respectively. Indeed, one can again obtain an analytical expression for the101

evolution of the optimal densities, see Prop. 2.3 and App. A for a proof.102

Proposition 2.3 (Optimal intermediate densities for entropy and trust region constraint). The inter-103

mediate optimal densities that solve (7) satisfy104

qi+1(x, λ, η) =
qi(x)

λ
1+λ+η p̃(x)

1
1+λ+η

Zi+1(λ, η)
with Zi+1(λ, η) =

∫
qi(x)

λ
1+λ+η p̃(x)

1
1+λ+η (x)dx, (10)

where qi+1 are the unique optima of the Lagrangian corresponding to (9).105

Clearly, if H(q0) ≫ H(p), the trust-region constraint ensures that the KL divergence between q0 and106

q1 is at most εtr and, therefore, for a suitable choice of εtr ensures that two consecutive densities107

have sufficient overlap. Lastly, the Lagrangian dual function gtr-ent ∈ C(R2,R) corresponding to (9),108
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that is,109

g
(i+1)
tr-ent (λ, η) := −(1 + λ+ η) logZi+1(λ, η)− λεtr − η(H(qi)− εent), (11)

requires solving a two-dimensional convex optimization problem to obtain λi, ηi which can be done110

efficiently in practice; see Sec. 3 for additional details.111

Connection to annealing paths. Iteratively solving (2), (7) or (9) induces an annealing path, that is,112

a sequence of densities (qi)i∈N that interpolates between q0 and p. We characterize these paths in113

Thm. 2.4; See App. A for a proof.114

Theorem 2.4 (Annealing paths). Let p ∈ P(Rd) be the target density and q0 ∈ P(Rd) some initial115

density. The intermediate optimal densities, that solve (2), (7) and (9) satisfy116

qi ∝ q1−βi
0 p̃βi , qi ∝ p̃αi (i ≥ 1), and qi ∝ q1−βi

0 (p̃αi)βi , (12)

respectively, with β and α being functions of the corresponding Lagrangian multiplier. Moreover,117

the sequences (αi)i∈N0
and (βi)i∈N0

take values in [0, 1], satisfy α0 = β0 = 0 and αI = βI = 1 for118

some I ∈ N+ and (βi)i∈N0
is monotonically increasing.119

In what follows, we refer to the annealing paths in (12) as geometric (G), tempered (T), and geometric-120

tempered (GT) annealing paths, respectively; see Fig. 1 for an illustration.121

3 Learning the intermediate densities122

A general recipe. So far, we discussed how one can construct a sequence of intermediate measures123

(qi)i∈N using our constrained mass transport formulation. However, despite having access to the124

analytical form of qi, it is typically not possible to sample from it directly. As such, we approximate125

each qi by a distribution from a tractable class Q ⊂ P(Rd) that permits efficient sampling and density126

evaluation. Given an approximation family Q, we select q̂i ∈ Q to approximate qi by solving127

q̂i = argmin
q∈Q

D(qi, q), (13)

where D is an arbitrary statistical divergence between probability measures. This formulation is128

general: the choice of Q and D determines the trade-off between expressivity, computational cost,129

and statistical properties such as mode coverage or robustness.130

Practical algorithm. In this work, we choose Q to be a normalizing flow family constructed via131

push-forwards of a simple base measure. Let qz ∈ P(Rd) be an easy-to-sample base measure (e.g., a132

standard Gaussian), and let F be a class of smooth invertible maps f : Rd → Rd. We define133

QNF := { f#qz | f ∈ F }, with (f#qz)(z) = qz
(
f−1(z)

) ∣∣∣∣ det ∂f−1(z)

∂z

∣∣∣∣. (14)

with push-forward f#qz . To fit q̂i within this family, we take D to be the importance-weighted134

forward KL divergence135

q̂i+1 = argmin
q∈QNF

DKL(qi+1|q) with DKL(qi+1|q) = Ex∼qi

[
qi+1(x)

qi(x)
log

(
qi+1(x)

q(x)

)]
(15)

This choice offers several advantages. First, forward KL strongly penalizes underestimating the136

support of qi+1, encouraging mode coverage and reducing the risk of mode collapse. Second, because137

qi+1 is available in closed form from the constrained transport updates (see Prop. 2.1, 2.2 and 2.3),138

the importance weights qi+1(x)/qi(x) can be computed solely from qi and p. Third, the importance-139

weighted formulation allows us to reuse samples drawn from qi, enabling a seamless integration of140

replay buffers, resulting in increased sample efficiency. Lastly, the trust-region constraint controls the141

variance of the importance weights, keeping it approximately constant, independent of the problem142

dimension d (see App. A), resulting in a highly scalable algorithm.143

Lagrangian dual optimization. Maximizing the concave dual function (11) requires evaluating144

intermediate normalization constants Zi+1. This can be done efficiently by expressing Zi+1 as an145

expectation under qi and using Monte Carlo estimation. For instance, the expression for Zi+1 in (10)146

can be estimated as147

Zi+1(λ, η) = Ex∼qi

[(
p̃(x)

qi(x)1+η

) 1
1+λ+η

]
≈ 1

N

∑
xn∼qi

(
p̃(xi)

qi(xi)1+η

) 1
1+λ+η

. (16)

We note that samples xn ∼ qi and the corresponding evaluations qi(xn) and p̃(xn) are typically148

already computed when solving (13), so the additional cost of determining the Lagrange multipliers149

is minimal. Details of the dual optimization procedure are provided in App. C.3, including a code150
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Algorithm 1 Constrained mass transport

Require: Initial measure q0, target measure p̃, divergence D, approximation familyQ, buffer size N
for i← 0, . . . , I − 1 do

Draw N samples xn ∼ qi, evaluate qi(xn), p̃(xn) and initialize buffer B(i) = (xn, qi(xn), p̃(xn))
N
n=1

Compute multiplier λi, ηi = argmaxλ,η∈R+ g
(i+1)
tr-ent (λ, η) using B(i)

Compute qi+1 ≈ q̂i+1 = argminq∈Q D(qi+1, q) using B(i)

return q̂I ≈ p

example. Lastly, we refer to Algorithm 1 for an algorithmic overview of the constrained measure151

transport method.152

4 Related work153

Boltzmann generators. Learning molecular Boltzmann generators [55] purely from energy evalua-154

tions has been explored using internal coordinate representations of the system, with both flow-based155

methods [28, 45, 46, 51, 64] and diffusion-based methods [22, 41, 48]. While flow-based approaches156

have demonstrated strong performance, their diffusion-based counterparts remain less competitive,157

often struggling with mode collapse, even on relatively small systems. Alternative approaches operate158

in Cartesian coordinates [6, 43, 50, 74] allowing for transferability between different systems [44, 75].159

Trust regions and entropy constraints. Trust region methods have a long history as robust opti-160

mization algorithms that iteratively minimize an objective within an adaptively sized “trust region”;161

see [25] for an overview. Beyond classical optimization, these methods have been extended to162

operate over spaces of probability distributions, with applications in reinforcement learning [2–163

4, 9, 49, 58, 59, 61, 65, 66, 80–82], black-box optimization [1, 72, 78], variational inference [10, 11],164

and path integral control [35, 76]. The first explicit link between trust-region optimization and165

geometric annealing paths was established in [14] for path space measures in the setting of stochastic166

optimal control. Entropy constraints, often introduced as entropy regularization, have also been stud-167

ied in policy optimization and reinforcement learning, either in the form of soft constraints [5, 52, 57]168

or hard constraints [1, 7–9, 59]. However, prior work typically constrains the absolute entropy value,169

which is problematic for inference tasks, since it requires prior knowledge of the target density’s170

entropy. To the best of our knowledge, such methods have not yet been extended to sampling171

problems. Furthermore, the connection between entropy-constrained optimization and annealing172

paths has not previously been established.173

Improved annealing paths. Research on improving annealing paths (APs) has largely focused174

on geometric APs in the context of annealed importance sampling (AIS) [53] and their extensions175

to sequential Monte Carlo (SMC) [27]; see [23, 36, 40, 73]. Beyond the standard geometric AP,176

alternative constructions have been proposed, such as the moment-averaging path for exponential177

family distributions [37] and the arithmetic mean path [21]. The geometric path itself can be178

interpreted as a quasi-arithmetic mean [47] under the natural logarithm, which motivated [17] to179

propose APs based on the deformed logarithm transformation. A variational characterization of these180

paths was later analysed in [18]. Related work also explores improved schedules for the diffusion181

coefficient in ergodic Ornstein–Uhlenbeck processes used to train denoising diffusion models [39, 67];182

see, e.g., [13, 54, 79, 83].183

5 Numerical evaluation184

In this section, we compare our approach against state-of-the-art methods on four challenging185

molecular systems. We provide a brief overview of the experimental setup here, with full details in186

App. C. Additional experimental results are provided in App. B, including extended performance187

metrics, an ablation study on the effect of both constraints, and an analysis of the trust-region188

constraint across systems of different dimensionality.189

5.1 Experimental setup190

Benchmark problems. Our evaluation covers a range of molecular systems, beginning with the well-191

studied alanine dipeptide (d = 60) [29, 51, 69, 74], and extending to the larger alanine tetrapeptide192

(d = 120) and alanine hexapeptide (d = 180), which have only recently been addressed using193

variational methods [64]. In addition, we introduce a new benchmark, the ELIL tetrapeptide (d =194

219), which is higher-dimensional and which contains more complex side chain interactions compared195

to the alanine hexapeptide. To the best of our knowledge, this represents the largest and most complex196
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Table 1: Results for all systems of varying dimensionality d. Evaluation criteria include the number of target
evaluations (target evals), the negative log-likelihood (NLL), and the effective sample size (ESS). Each value is
shown as the mean ± standard error over four independent runs. The best results are highlighted in bold, except
for the reverse KL, which is prone to mode collapse, making ESS values not directly comparable.

SYSTEM METHOD TARGET EVALS ↓ NLL ↓ ESS [%] ↑

ALANINE
DIPEPTIDE

(d = 60)

FORWARD KL 5× 109 −213.581± 0.000 (82.16± 0.09) %
REVERSE KL 2.56× 108 −213.609± 0.006 (94.11± 0.21) %

FAB 2.13× 108 −213.653± 0.000 (94.81± 0.04) %
TA-BG 1× 108 −213.666± 0.001 (95.77± 0.12) %
CMT (OURS) 1× 108 −213.677 ± 0.000 (97.69 ± 0.03) %

ALANINE
TETRA-
PEPTIDE

(d = 120)

FORWARD KL 4.2× 109 −330.069± 0.001 (45.29± 0.08) %
REVERSE KL 2.56× 108 −329.191± 0.122 (74.88± 3.65) %

FAB 2.13× 108 −330.100± 0.002 (63.59± 0.23) %
TA-BG 1× 108 −330.143± 0.002 (64.87± 0.21) %
CMT (OURS) 1× 108 −330.167 ± 0.002 (68.49 ± 0.14) %

ALANINE
HEXA-

PEPTIDE

(d = 180)

FORWARD KL 4.2× 109 −501.598± 0.005 (10.97± 0.11) %
REVERSE KL 2.56× 108 −497.378± 0.277 (22.22± 1.44) %

FAB 4.2× 108 −501.268± 0.008 (14.64± 0.08) %
TA-BG 4× 108 −501.582± 0.010 (15.89± 0.13) %
CMT (OURS) 4× 108 −501.761 ± 0.008 (29.20 ± 0.24) %

ELIL
TETRA-
PEPTIDE

(d = 219)

FORWARD KL 4.2× 109 −597.571± 0.004 (5.80± 0.04) %
REVERSE KL 2.56× 108 −583.381± 3.033 (1.25± 0.45) %

FAB 8.43× 108 −597.370± 0.006 (7.30± 0.08) %
TA-BG 8× 108 −597.830± 0.022 (10.12± 0.38) %
CMT (OURS) 8× 108 −598.440 ± 0.003 (25.91 ± 0.19) %

molecular system investigated using variational approaches to date. A detailed description of all197

benchmark systems is provided in App. C.2.198

Baseline methods. Our main baselines are Flow Annealed Importance Sampling Bootstrap (FAB)199

[51] and Temperature-Annealed Boltzmann Generators (TA-BG) [64], which currently define the200

state of the art for learning molecular systems on internal coordinate representations. For reference,201

we also include reverse and forward KL training; the latter leverages ground truth samples obtained202

from molecular dynamics (MD) simulations (see App. C.2). To ensure a fair comparison, all methods203

use neural spline flows [31] and identical architectures.204

Performance criteria. We evaluate methods primarily using two criteria. First, the negative log-205

likelihood (NLL), computed with ground truth MD samples. Up to an additive constant, the NLL corre-206

sponds to the forward KL divergence and is therefore well suited for detecting mode collapse [15]. Sec-207

ond, we consider the effective sample size (ESS), defined as ESS(q, p) :=
(
Ex∼q

[
(p(x)/q(x))2

])−1
.208

ESS is a common measure of sample quality, but it is known to be less reliable for assessing mode209

collapse [15]. For details on all metrics, we refer to App. C.4. Since evaluating the target density of210

molecular systems is typically expensive, we also report the number of target evaluations required by211

each method.212

Finally, we also consider Ramachandran plots as a qualitative criterion for assessing mode collapse.213

These plots visualize low-dimensional projections of important molecular configurations, making it214

possible to assess whether the generated samples capture all relevant modes of the distribution or fail215

to represent certain regions of the state space. For more details on Ramachandran plots, we refer to216

[64].217

5.2 Results218

Main results. The main findings are summarized in Tab. 1. While the performance gap between our219

method and the baselines is less pronounced for smaller systems, it widens substantially for the larger220

ones. In particular, on alanine hexapeptide and ELIL tetrapeptide, our method attains approximately221

twice the ESS of competing approaches, while also avoiding mode collapse, as reflected in improved222

NLL values.223

Ablation study for constraints. Additionally, we investigate the effect of different constraint choices224

on the performance of the alanine hexapeptide system. Specifically, we compare four settings: using225

both constraints, each constraint individually, and no constraint (which corresponds to importance-226

weighted forward KL minimization). The results are summarized in Fig. 2 and Fig. 3. Fig. 2a227
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Figure 2: Impact of the trust-region and entropy constraint visualized on alanine hexapeptide. Fig. 2a visualizes
the model entropy over the course of the training. Analogously, Fig. 2b shows the importance-weight effective
sample size (ESS) between successive intermediate densities. Figs. 2c and 2d depict the final log-likelihood and
ESS to the target density, respectively. The variants in Fig. 2d marked with "⋆" exhibit visible mode-collapse
on the Ramachandran plots; see Fig. 3. The ESS is therefore not directly comparable to the other methods. We
denote by q̂i the variational approximation of the intermediate density qi.
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Figure 3: Ramachandran plots for alanine hexapeptide with trust-region and entropy constraints selectively
enabled or disabled. Using a single or no constraint leads to mode collapse, whereas combining both constraints
avoids it. See App. C.4 for details.

shows that omitting the trust region constraint causes entropy to decrease rapidly, which lead to228

mode collapse during training. Moreover, using only the entropy constraint yields unstable training,229

as evidenced by violations of the prescribed linear entropy decay. In contrast, incorporating a230

trust region constraint stabilizes training, as reflected in Fig. 2b, where it produces a substantially231

higher ESS between successive intermediate densities. Fig. 3 shows Ramachandran plots of alanine232

hexapeptide with the constraints selectively enabled or disabled. Visible signs of mode collapse233

appear in all cases except for the tempered (7) and geometric-tempered (9) variants, with the most234

accurate Ramachandran plot observed in the latter. Overall, our findings indicate that both constraints235

are necessary to achieve high ESS values while simultaneously avoiding mode collapse.236

6 Conclusion237

We have introduced Constrained Mass Transport (CMT), a variational framework for constructing238

intermediate distributions that transport probability mass from a tractable base measure to a complex,239

unnormalized target. By enforcing constraints on both the KL divergence and the entropy decay240

between successive steps, CMT balances exploration and convergence, thereby mitigating mass241

teleportation, reducing mode collapse, and promoting smooth distributional overlap. Our empir-242

ical evaluation across established Boltzmann generator benchmarks and the here proposed ELIL243

tetrapeptide, learned purely from energy evaluations without access to molecular dynamics samples,244

demonstrates that CMT consistently outperforms existing annealing-based and variational baselines,245

achieving over 2.5× higher effective sample size while preserving mode diversity.246

Promising directions for future work include exploring alternative approximation families Q and di-247

vergences D for learning intermediate densities,which may yield further performance gains. Another248

interesting avenue is to apply our method in Cartesian coordinate representations, which enables249

transferability across different molecular systems [44, 75].250
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A Proofs464

Proof of Props. 2.1 to 2.3. We divide the proof into two parts and start with the most general formu-465

lation using both constraints, referring to Prop. 2.3. Part 2 will then derive the solution with just466

the trust-region (Prop. 2.1) and just the entropy constraint (Prop. 2.2), as they can be interpreted as467

special cases of the general formulation.468

Part 1: Consider the constrained optimization problem469

qi+1 = argmin
q∈P(Rd)

DKL(q|p) s.t. DKL(q|qi) ≤ εtr, H(qi)−H(q) ≤ εent,

∫
dq = 1. (17)

and its corresponding Lagrangian470

L(i+1)
tr (q, λ, η, ω) = DKL(q|p) + λ(DKL(q|qi)− εtr) + η(H(qi)−H(q)− εent) + ω

(∫
dq − 1

)
. (18)

Using the convexity of the Kullback-Leibler (KL) divergence in its arguments, the convexity of the471

negative Shannon entropy, and that the integral is a linear functional, the objective from Eq. (17)472

and its Lagrangian, given by Eq. (18) are convex in q. Using that P(Rd) is continuous, there always473

exists a measure q̃ ̸= qi with DKL(q̃|qi) < εtr and H(qi)−H(q̃) < εent that satisfies the inequality474

constraints strictly. Following [16, 5.2.3], Slater’s condition holds, implying strong duality. We can475

therefore instead solve the dual problem.476

We start by setting up the Euler-Lagrange equation, given by477

∂

∂q
L(i+1)

tr (q, λ, η, ω) = 0,

using478

L(i+1)
tr (q, λ, η, ω) =

∫
q(x)

(
(1 + λ+ η) log q(x)− log p(x)− λ log qi(x) + ω

)
dx

− λεtr + η(H(qi)− εent)− ω

and solve for q. Hence, we get479

∂

∂q
L(i+1)

tr (q, λ, η, ω) = (1 + λ+ η)(log q + 1)− log p− λ log qi + ω = 0

⇔ log q = log

(
q

λ
1+λ+η

i p
1

1+λ+η

)
−
(

ω

1 + λ+ η
+ 1

)
. (19)

Using this, we can further determine ω using480 ∫
dq =

∫
qi(x)

λ
1+λ+η p(x)

1
1+λ+η dx/ exp

(
ω

1 + λ+ η
+ 1

)
= 1

⇔ ω = (1 + λ+ η)(log Z̄i+1(λ, η)− 1), with Z̄i+1(λ, η) =

∫
qi(x)

λ
1+λ+η p(x)

1
1+λ+η (x)dx.

Substituting ω back into (19) and simplifying the fraction using p̃ = Zp yields481

qi+1(x, λ, η) =
qi(x)

λ
1+λ+η p̃(x)

1
1+λ+η

Zi+1(λ, η)
with Zi+1(λ, η) =

∫
qi(x)

λ
1+λ+η p̃(x)

1
1+λ+η (x)dx,

which uses the unnormalized target p̃, proving Prop. 2.3.482

Part 2: Setting εent = ∞ or εtr = ∞ effectively deactivates the respective constraint, yielding the483

trust-region objective (2) or the entropy objective (7) respectively. This is equivalent to setting the484

Lagrangian multipliers η = 0 or λ = 0, proving Prop. 2.1 and Prop. 2.2 respectively.485

Proof of Thm. 2.4. We divide the proof into three parts and start with the most general formulation486

using both constraints. The first two parts will show form and monotonicity while part three will487

derive the special cases with just the trust-region and just the entropy constraint.488

Part 1: Given are the sequences of Lagrangian multipliers (λi)i∈N0 ≥ 0 and (ηi)i∈N0 ≥ 0. We now489

aim to proof that the sequence (qi)i∈N0
, given by490

q̃i =

q0 , i = 0

q̃

λi−1
1+λi−1+ηi−1

i−1 p̃
1

1+λi−1+ηi−1 , i ≥ 1
, (20)
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takes the form491

q̃i = q1−βi
0 (p̃αi)βi with βi = 1−

i−1∏
j=0

λj

1 + λj + ηj

and αi =

{
0 , i = 0

1− 1
βi

∑i−1
k=0

ηk
1+λk+ηk

∏i−1
j=k+1

λj

1+λj+ηj
, i ≥ 1.

We use the common convention that empty products evaluate to one.492

Base case (i = 0): The simplest case493

q̃0 = q1−β0
0 (p̃α0)β0

holds due to β0 = 0 (using empty product convention).494

Inductive step: We start from Eq. (20) and transform it using the assumption that q̃i = q1−βi

0 (p̃αi)βi495

holds for some arbitrary but fixed i ∈ N0, yielding496

q̃i+1 = q̃
λi

1+λi+ηi
i p̃

1
1+λi+ηi

=
(
q1−βi
0 (p̃αi)βi

) λi
1+λi+ηi p̃

1
1+λi+ηi

= q
1−βi+1
0 p̃

αiβi
λi

1+λi+ηi
+ 1

1+λi+ηi .

Using497

βi
λi

1 + λi + ηi
=

λi

1 + λi + ηi
−

i∏
j=0

λj

1 + λj + ηj

= 1− 1 + ηi
1 + λi + ηi

−
i∏

j=0

λj

1 + λj + ηj

= βi+1 − 1 + ηi
1 + λi + ηi

,

we now can rewrite the exponent of p yielding498

αiβi
λi

1 + λi + ηi
+

1

1 + λi + ηi

=

βi −
i−1∑
k=0

ηk
1 + λk + ηk

i−1∏
j=k+1

λj

1 + λj + ηj

 λi

1 + λi + ηi
+

1

1 + λi + ηi

= βi+1 − 1 + ηi
1 + λi + ηi

−
i−1∑
k=0

ηk
1 + λk + ηk

i∏
j=k+1

λj

1 + λj + ηj
+

1

1 + λi + ηi

= βi+1 −
i∑

k=0

ηk
1 + λk + ηk

i∏
j=k+1

λj

1 + λj + ηj
,

= αi+1βi+1.

again using the convention that an empty product evaluates to one. It directly follows499

qi+1 ∝ q̃i+1 = q0
1−βi+1(p̃αi+1)βi+1 ,

which completes the induction.500

Part 2: It remains to show that (αi)i∈N0
and (βi)i∈N0

take values in [0, 1] and are monotonically501

increasing with α0 = β0 = 0 and αI = βI = 1 for some I ∈ N+.502

The first case (α0 = β0 = 0) holds by definition. Assuming that there exists an I ∈ N+, such that503

λI−1 = ηI−1 = 0,504

βi = 1−
i−1∏
j=0

λj

1 + λj + ηj

i≥I
= 1

and505

αi = 1− 1

βi

i−1∑
k=0

ηk
1 + λk + ηk

i−1∏
j=k+1

λj

1 + λj + ηj

i≥I
= 1
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follow directly for all i ≥ I . Both the trust-region and entropy constraints become inactive at506

the optimum and do not prevent (qi)i∈N0 from reaching the unique optimum p (εtr, εent > 0).507

Consequently, both Lagrange multipliers will eventually vanish, motivating the existence of some508

I ∈ N+, such that λI−1 = ηI−1 = 0.509

We now show monotonicity of (βi)i∈N0
using (λi)i∈N0

≥ 0 and (ηi)i∈N0
≥ 0. Let i ∈ N0 be510

arbitrary. As a direct consequence of511

βi+1 − βi =

i−1∏
j=0

λj

1 + λj + ηj
−

i∏
j=0

λj

1 + λj + ηj

=

(
i−1∏
j=0

λj

1 + λj + ηj

)(
1− λi

1 + λi + ηi

)

=

(
i−1∏
j=0

λj

1 + λj + ηj

)(
1 + ηi

1 + λi + ηi

) λj ,ηj≥0
∀j∈N0≥ 0,

the sequence (βi)i∈N0
must be monotonically increasing.512

Part 3: We now consider the special cases in which only the trust-region constraint or the entropy513

constraint is active by setting the Lagrange multiplier sequence of the other constraint to zero.514

We first consider only the trust-region constraint (2), which corresponds to setting the Lagrangian515

multiplier of the entropy constraint to zero, i.e., ηi = 0 for all i ∈ N0. In this scenario, αi simplifies516

to α0 = 0 and αi = 1 for all i ≥ 1. Consequently, and using β0 = 0, the iterates take the form517

qi ∝ q̃i = q1−βi
0 p̃βi , i ∈ N0,

as claimed.518

Analogously, the trust-region constraint can be rendered inactive by setting λi = 0 for all i ∈ N0,519

leaving only the entropy constraint active, corresponding to Eq. (7). In this case, β0 = 0 and βi = 1520

for all i ≥ 1, yielding521

qi ∝ q̃i =

{
q0 , i = 0,

p̃αi , i ≥ 1,

which concludes the proof.522

Proof of bounded importance-weight variance its effect on the effective sample size. In this section,523

we show that using the trust-region constraint yields an approximate lower bound for the effective524

sample between any two consecutive distributions qi and qi+1. This approximate lower bound only525

depends on εtr.526

The variance of the importance weights527

qi+1(x)

qi(x)
=


1

Zi+1(λi)

(
p̃(x)
qi(x)

) 1
1+λi with trust-region constraint (2)

1
Zi+1(λi,ηi)

(
p̃(x)

qi(x)
1+ηi

) 1
1+λi+ηi with trust-region + entropy constraint (9)

between two normalized consecutive distributions is closely connected to the effective sample size528

via529

ESS(qi, qi+1) =
1

1 + Varqi

(
qi+1(x)

qi(x)

) ,
also explained in App. C.4. The relation Varqi(qi+1(x)/qi(x)) = χ2(qi+1|qi) [24] and the well-530

known Taylor approximation χ2(qi+1|qi) ≈ 2DKL(qi+1|qi) [26] lets use rewrite the effective sample531

size in terms of the KL divergence between qi+1 and qi yielding532

ESS(qi, qi+1) ≈ 1

1 + 2DKL(qi+1|qi)
as approximation for the effective sample size. This approximation is justified under the assumption533

that qi+1 is close to qi, a condition that is satisfied by the design of the problem for a small trust-534

region bound εtr > 0. Due to qi+1 being the optimal solution to an objective with the constraint535

DKL(q|qi) ≤ εtr, the constraint must also hold for q = qi+1 resulting in the approximate lower536

bound537

ESS(qi, qi+1) ⪆
1

1 + 2εtr
(21)

for the effective sample size of the importance weights with equality in all but the last step.538
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This approximate lower bound justifies the use of Monte Carlo approximations in Sec. 3, helping to539

stabilize training independent of the problem’s dimensionality.540

Proof of uniqueness and tightness of the trust-region solution. Closely following [14], we now es-541

tablish the uniqueness of the trust-region solution and show that the trust-region constraint is tight for542

all but the the final step. Specifically, we show543

DKL(qi|p) < εtr =⇒ qi = p

qi = argminDKL(q|p) s.t. DKL(q|qi−1) ≤ εtr is unique

If DKL(qi ∥ p) < εtr, the KKT conditions imply that the Lagrangian multiplier satisfies λi = 0, so544

the constraint is inactive. Consequently, qi must solve the strictly convex unconstrained problem545

min
q∈P(Rd)

DKL(q|p),

which has the unique minimizer p. Since p is feasible (DKL(p|p) = 0 ≤ εtr), it follows that qi = p.546

Uniqueness of qi further follows from the convexity of the feasible set {q ∈ P|DKL(q|qi) ≤ εtr}547

together with the strict convexity of the objective in q when p is fixed.548

B Extended numerical evaluation549

SYSTEM METHOD TARGET EVALS ↓ NLL ↓ ESS [%] ↑ RAM KL ↓ RAM KL W. RW ↓

ALANINE
DIPEPTIDE
(d = 60)

FORWARD KL 5× 109 −213.581± 0.000 (82.16± 0.09) % (2.21± 0.05)× 10−3 (1.99± 0.07)× 10−3

REVERSE KL 2.56× 108 −213.609± 0.006 (94.11± 0.21) % (1.75± 0.28)× 10−2 (1.65± 0.29)× 10−2

FAB 2.13× 108 −213.653± 0.000 (94.81± 0.04) % (1.50± 0.03)× 10−3 (1.25 ± 0.01) × 10−3

TA-BG 1× 108 −213.666± 0.001 (95.77± 0.12) % (1.94± 0.07)× 10−3 (1.36± 0.02)× 10−3

CMT (OURS) 1× 108 −213.677 ± 0.000 (97.69 ± 0.03) % (1.49 ± 0.02) × 10−3 (1.41± 0.02)× 10−3

ALANINE
TETRA-
PEPTIDE
(d = 120)

FORWARD KL 4.2× 109 −330.069± 0.001 (45.29± 0.08) % (2.26± 0.06)× 10−3 (2.50± 0.03)× 10−3

REVERSE KL 2.56× 108 −329.191± 0.122 (74.88± 3.65) % (3.00± 0.35)× 10−1 (2.87± 0.40)× 10−1

FAB 2.13× 108 −330.100± 0.002 (63.59± 0.23) % (6.89± 0.25)× 10−3 (1.25 ± 0.01) × 10−3

TA-BG 1× 108 −330.143± 0.002 (64.87± 0.21) % (2.47± 0.23)× 10−3 (1.71± 0.07)× 10−3

CMT (OURS) 1× 108 −330.167 ± 0.002 (68.49 ± 0.14) % (1.99 ± 0.05) × 10−3 (1.65± 0.07)× 10−3

ALANINE
HEXA-

PEPTIDE
(d = 180)

FORWARD KL 4.2× 109 −501.598± 0.005 (10.97± 0.11) % (4.16± 0.26)× 10−3 (7.69± 0.03)× 10−3

REVERSE KL 2.56× 108 −497.378± 0.277 (22.22± 1.44) % (5.41± 0.38)× 10−1 (5.32± 0.38)× 10−1

FAB 4.2× 108 −501.268± 0.008 (14.64± 0.08) % (2.09± 0.02)× 10−2 (1.12± 0.02)× 10−2

TA-BG 4× 108 −501.582± 0.010 (15.89± 0.13) % (8.33 ± 0.59) × 10−3 (8.15 ± 0.44) × 10−3

CMT (OURS) 4× 108 −501.761 ± 0.008 (29.20 ± 0.24) % (1.25± 0.04)× 10−2 (1.21± 0.01)× 10−2

ELIL
TETRA-
PEPTIDE
(d = 219)

FORWARD KL 4.2× 109 −597.571± 0.004 (5.80± 0.04) % (4.12± 0.03)× 10−3 (9.38± 0.06)× 10−3

REVERSE KL 2.56× 108 −583.381± 3.033 (1.25± 0.45) % (1.22± 0.28)× 100 (1.14± 0.31)× 100

FAB 8.43× 108 −597.370± 0.006 (7.30± 0.08) % (2.56± 0.10)× 10−2 (9.01± 0.57)× 10−3

TA-BG 8× 108 −597.830± 0.022 (10.12± 0.38) % (7.35± 0.89)× 10−3 (7.65± 0.59)× 10−3

CMT 8× 108 −598.440 ± 0.003 (25.91 ± 0.19) % (5.74 ± 0.05) × 10−3 (5.22 ± 0.10) × 10−3

Table 2: Comparison of metrics obtained for all four peptide systems. The table reports the number of target
evaluations (Target Evals), the negative log-likelihood (NLL), the effective sample size (ESS), the average
forward KL divergence to the ground-truth Ramachandran plots (Ram KL) and its importance-weighted version
(Ram KL w. RW.), along with the corresponding system and method. All values are presented as the mean and
standard error across four independent experiments. The best-performing variational method for each metric is
highlighted in bold. Reverse KL was excluded, as it tends to suffer from mode collapse, making ESS values not
directly comparable.

Complementing the results of Sec. 5, this section reports additional metrics for the main method550

comparison in Tab. 2 (see also the corresponding Ramachandran plots in Fig. 4), an ablation study551

on the effect of both constraints (see Tab. 3 and Fig. 5), and an ablation study on the trust-region552

constraint and its effect on bounding importance-weight variance across different system sizes and553

trust-region bounds εtr (see Fig. 6).554

Main results. We begin with Tab. 2, which introduces two additional metrics (RAM KL and RAM KL555

w. RW) to quantify the discrepancy between the ground truth and method-generated Ramachandran556

plots. Substantially elevated RAM KL values serve as robust indicators of mode collapse, as557

exemplified by the results for reverse KL training, where the RAM KL values are consistently at least558

an order of magnitude higher than those observed for other methods. Corresponding Ramachandran559

plots for the different methods are shown in Fig. 4.560

Ablation study for constraints. Tab. 3 presents the performance of our method under different561

configurations, with the trust-region and entropy constraints selectively enabled or disabled. In562
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Figure 4: Comparison of Ramachandran plots of backbone dihedral angle pairs obtained with different methods.
See App. C.4 for details.

SYSTEM
CONSTRAINT TARGET EVALS ↓ NLL ↓ ESS [%] ↑⋆ RAM KL ↓ RAM KL W. RW ↓

TRUST-REGION ENTROPY

ALANINE
DIPEPTIDE
(d = 60)

✗ ✗ 1× 108 −213.667 ± 0.000 (97.71± 0.01) % (1.50± 0.02)× 10−3 (1.50± 0.01)× 10−3

✓ ✗ 1× 108 −213.673± 0.000 (97.46± 0.02) % (1.52± 0.03)× 10−3 (1.47± 0.01)× 10−3

✗ ✓ 1× 108 −213.677 ± 0.000 (97.76± 0.04) % (1.50± 0.02)× 10−3 (1.38 ± 0.02) × 10−3

✓ ✓ 1× 108 −213.677 ± 0.000 (97.69± 0.03) % (1.49 ± 0.02) × 10−3 (1.41± 0.02)× 10−3

ALANINE
TETRA-
PEPTIDE
(d = 120)

✗ ✗ 1× 108 −329.787± 0.193 (69.60± 2.20) % (6.92± 3.44)× 10−2 (6.64± 3.25)× 10−2

✓ ✗ 1× 108 −330.154± 0.001 (66.11± 0.02) % (2.08± 0.04)× 10−3 (2.05± 0.04)× 10−3

✗ ✓ 1× 108 −330.130± 0.003 (63.34± 0.24) % (2.27± 0.04)× 10−3 (1.77± 0.02)× 10−3

✓ ✓ 1× 108 −330.167 ± 0.002 (68.49± 0.14) % (1.99 ± 0.05) × 10−3 (1.65 ± 0.07) × 10−3

ALANINE
HEXA-

PEPTIDE
(d = 180)

✗ ✗ 4× 108 −499.746± 0.183 (25.63± 1.05) % (2.52± 0.33)× 10−1 (2.55± 0.36)× 10−1

✓ ✗ 4× 108 −501.322± 0.232 (33.45± 2.45) % (4.21± 1.34)× 10−2 (4.14± 1.40)× 10−2

✗ ✓ 4× 108 −501.333± 0.017 (15.03± 1.00) % (1.27± 0.08)× 10−2 (1.39± 0.11)× 10−2

✓ ✓ 4× 108 −501.761 ± 0.008 (29.20± 0.24) % (1.25 ± 0.04) × 10−2 (1.21 ± 0.01) × 10−2

Table 3: Performance of CMT with the trust-region and entropy constraints selectively enabled or disabled. For
all metrics except ESS, the best-performing variant is highlighted in bold. ⋆ The reverse ESS is only partially
comparable, as training without the entropy constraint led to partial mode collapse on alanine tetrapeptide and
alanine hexapeptide, rendering direct comparisons unreliable. To avoid confusion, no best-performing method is
highlighted in bold for ESS.

addition to the alanine hexapeptide results shown in the main paper, we also report results for563

alanine dipeptide and alanine tetrapeptide. The absence of both constraints effectively corresponds to564

importance-weighted forward KL training. Considering the NLL, which serves as a forward metric,565

it becomes clear that both constraints are necessary to achieve optimal performance. Variants of the566

method without the entropy constraint exhibited at least partial mode collapse, rendering the ESS567

largely incomparable. Partial mode collapse is further reflected in the RAM KL and RAM KL w. RW.568

metrics, which take substantially higher values when the entropy constraint is omitted.569

Fig. 5 depicts the evolution of model entropy and the gradient norm (prior to clipping) during570

training across different systems. Training with only the entropy constraint yields an approximately571
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Figure 5: Effect of trust-region and entropy constraint on the model entropy (top row) and the gradient norm
(bottom row) across different molecular systems.

linear decay of entropy for both alanine dipeptide and alanine hexapeptide. In the case of alanine572

hexapeptide, however, the entropy constraint is noticeably violated, likely due to the system’s higher573

dimensionality and the pronounced discrepancy between the initial model distribution q0 and the574

first intermediate distribution q1. Larger system sizes also tend to increase the gradient norm, most575

prominently in alanine hexapeptide. The combination of the trust-region and entropy constraints576

produces the most stable gradient norms, while the approximately linear entropy decay indicates577

that the entropy constraint is effectively enforced, thereby enabling its practical application even in578

the case of alanine hexapeptide. By contrast, the trust-region constraint alone leads to a more rapid579

entropy collapse, which reduces exploration and ultimately limits the algorithm’s final performance580

in practice.581
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Figure 6: Importance-weight variance between successive intermediate distributions, shown in terms of effective
sample size (ESS), for different trust-region bounds and system sizes. Each trust-region bound εtr defines an
approximate lower bound on the ESS, indicated by dashed lines.

Ablation study on the trust-region bound. Fig. 6 illustrates the importance-weight variance of582

CMT across different trust-region bounds and system sizes, highlighting the approximate direct583

relationship between the trust-region bound and the variance of importance weights between con-584

secutive intermediate distributions. Importance-weight variance is expressed in terms of effective585
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sample size (ESS). In the absence of a trust-region constraint (εtr = ∞), the ESS decreases with586

increasing system size. By contrast, finite trust-region bounds yield a substantially larger and more587

stable ESS, with the approximate lower bound on the ESS becoming increasingly well realized as588

the trust-region bound εtr decreases. Notably, this approximate lower bound is independent of the589

problem’s dimensionality, a property that is empirically supported.590

C Experimental setup591

C.1 Architecture592

Our normalizing flow architecture closely follows the one used in previous works [51, 63, 64]. We593

represent the conformations of the studied molecular systems using internal coordinates based on594

bond lengths, angles, and dihedral angles.595

We use 8 pairs of neural spline coupling layers based on monotonic rational-quadratic splines [31].596

The splines map from [0, 1] to [0, 1] using 8 bins. We use a random mask to select transformed and597

conditioned dimensions in the first coupling of each pair, and the corresponding inverted mask for the598

second coupling. The dihedral angle dimensions are modeled with circular splines [62] to respect599

their topology, with a random (fixed) periodic shift applied after each coupling layer. The parameter600

networks that calculate the spline parameters in each coupling are fully connected neural networks601

with hidden dimensions [256, 256, 256, 256, 256] and ReLU activation functions. To capture their602

periodicity, dihedral angles ψi are encoded as (cosψi, sinψi) when passing them to the parameter603

network.604

As the base distribution of the normalizing flow, we use a uniform distribution in [0, 1] for the dihedral605

angles and a Gaussian truncated to [0, 1] with mean µ = 0.5 and standard deviation σ = 0.1 for the606

bond lengths and angles.607

We follow [64] to map the internal coordinates to the range [0, 1] of the spline transformations:608

Dihedral angles are divided by 2π. Bond lengths and angles are shifted and scaled as η′i = (ηi −609

ηi;min)/σ+0.5, where ηi;min is obtained from a minimum energy structure after energy minimization.610

σ was set to 0.07 nm for bond lengths and 0.5730 for angle dimensions.611

The studied molecular systems have two chiral forms (mirror images), L- and R-chirality, while in612

nature, one almost only finds the L-chirality. To constrain the generated molecular configurations613

to the L-chirality, we constrain the spline output ranges of the relevant dihedral angles (see [64]614

for details). Similarly, some atoms and groups (such as the hydrogen atoms in CH3 groups) are615

permutation invariant in the force field energy parametrization, but have a preference in the ground616

truth molecular dynamics data due to very large barriers. Similarly to the chirality constraints, we617

constrain the splines such that only the permutation found in the ground truth data can be generated618

[64].619

C.2 Target densities620

The goal of all our experiments is to sample molecular systems at 300K. An overview of the studied621

molecular systems, including their force field parametrization, is given in Table 4. We explicitly note622

that the largest studied system, ELIL, does not contain capping groups, in contrast to the other three623

systems.624

The energy evaluations during training were performed with the OpenMM 8.0.0 [33] CPU platform,625

using 18 workers in parallel.626

Following previous work [51, 64], we use a regularized energy function to avoid large van der Waals627

energies due to atom clashes:628

Ereg.(E) =


E, if E ≤ Ehigh,

log(E − Ehigh + 1) + Ehigh, if Ehigh < E ≤ Emax,

log(Emax − Ehigh + 1) + Ehigh, if E > Emax.

(22)

We set Ehigh = 1× 108 and Emax = 1× 1020 [51].629

Ground truth datasets630

We use ground truth test datasets obtained from extensive molecular dynamics simulations to calculate631

the metrics reported in Table 1.632
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NAME SEQUENCE NO. ATOMS FORCE FIELD CONSTRAINTS

ALANINE
DIPEPTIDE ACE-ALA-NME 22

AMBER FF96
WITH OBC1

IMPLICIT SOLVATION
NONE

ALANINE
TETRAPEPTIDE ACE-3·ALA-NME 42

AMBER99SB-ILDN
WITH AMBER99 OBC

IMPLICIT SOLVATION

HYDROGEN
BOND LENGTHS

ALANINE
HEXAPEPTIDE ACE-5·ALA-NME 62

AMBER99SB-ILDN
WITH AMBER99 OBC

IMPLICIT SOLVATION

HYDROGEN
BOND LENGTHS

ELIL GLU-LEU-ILE-LEU 75
AMBER99SB-ILDN

WITH AMBER99 OBC
IMPLICIT SOLVATION

HYDROGEN
BOND LENGTHS

Table 4: Overview of the molecular systems and corresponding force field parametrization.

1. For alanine dipeptide, we use the ground truth test dataset previously published by [51] [68].633

Furthermore, we use the datasets published by [64] as additional validation and training datasets634

(for the forward KL experiments).635

2. For alanine tetrapeptide and alanine hexapeptide, we use the test, validation, and training datasets636

published by [64].637

3. To generate ground truth data for the tetrapeptide ELIL, we followed the simulation protocol by638

[64]. We performed two replica-exchange molecular dynamics simulations with replicas at 300K,639

332K, 368K, 408K, 451K, and 500K, each using a time step of 2 fs. Each simulation used640

200 ns equilibration without exchanges, 200 ns equilibration with exchanges, and 1 µs production641

simulation time. One of the simulations was used for the ground truth test dataset, the other642

simulation for the training and validation datasets.643

For each system, the test dataset contains 1× 107 samples, and the training and validation datasets644

contain 1× 106 samples.645

C.3 Dual optimization in practice646

The concavity of the dual functions permits the use of any suitable nonlinear optimization algorithm.647

For one-dimensional dual optimization, we employ the bounded Brent method [19], implemented648

via scipy.optimize.minimize_scalar [77], which is the library’s default 1D algorithm due649

to its robustness and efficiency. A minimal working example on how a Lagrangian multiplier is650

estimated is given in Code Example 1. For 2D duals, we use scipy.optimize.minimize with the651

L-BFGS-B algorithm [84], one of SciPy’s default quasi-Newton algorithms. There, we additionally652

passed the dual gradient function, which we obtained through automatic differentiation. Due to the653

constraints λ, η ≥ 0, and to avoid numerical overflow, we bound both optimizers to stay within the654

interval [0, 1010]. The method scipy.optimize.minimize requires an initial guess, which we set655

to 1× 10−20, a value chosen to be close to the lower bound.656

C.4 Metrics657

In this section, we present several commonly used metrics for both theoretical analysis and experi-658

mental evaluation. For more details, we refer to [15].659

NEGATIVE LOG-LIKELIHOOD (NLL)660

The negative-log-likelihood (NLL) is a forward metric computed between ground truth samples and661

the learned model distribution q̂. It is directly related to the forward KL divergence and the evidence662

upper bound (EUBO) via663

DKL(p|q) = Ep(x)

[
log

p̃(x)

q(x)

]
︸ ︷︷ ︸

EUBO

− logZ︸ ︷︷ ︸
const. w.r.t. q

= −Ep(x) [log q(x)]︸ ︷︷ ︸
NLL

− H(p)︸ ︷︷ ︸
const. w.r.t. q

.
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Code Example 1: Minimal working example of the dual optimization for objective (2).

1 import numpy as np
2 import torch
3 from scipy.optimize import minimize_scalar
4

5 def estimate_log_Z(
6 model_log_prob: torch.Tensor,
7 target_log_prob: torch.Tensor,
8 tr_mul: float,
9 ) -> torch.Tensor:

10 """Estimate log-partition function of next intermediate density"""
11 log_N = torch.tensor(target_log_prob.shape[0]).log()
12 log_iw = (target_log_prob - model_log_prob) / (1 + tr_mul)
13 log_Z = torch.logsumexp(log_iw, dim=0) - log_N
14 return log_Z
15

16

17 def find_best_kl_multiplier(
18 model_log_prob: torch.Tensor,
19 target_log_prob: torch.Tensor,
20 eps_tr: float,
21 max_multiplier: float = 1e10,
22 ) -> float:
23 """Finds the best Lagrangian multiplier by maximizing the dual"""
24 # define dual function (dependent on Lagrangian multiplier)
25 def dual(tr_mul: float):
26 log_Z = estimate_log_Z(
27 model_log_prob=model_log_prob,
28 target_log_prob=target_log_prob,
29 tr_mul=tr_mul,
30 )
31 dual_value = -(1 + tr_mul) * log_Z - tr_mul * eps_tr
32 return dual_value.item()
33

34 neg_dual = lambda mul: -dual(mul) # concave -> convex
35

36 res = minimize_scalar(
37 neg_dual,
38 bounds=(0.0, max_multiplier),
39 method="Bounded"
40 )
41 best_tr_mul = float(res.x)
42 return best_tr_mul

The metrics NLL, EUBO and forward KL therefore only deviate from each other by an additive664

constant.665

EFFECTIVE SAMPLE SIZE (ESS)666

The effective sample size (ESS) is defined as667

ESS(a, b) =
1

1 + Vara(x)

[
b(x)
a(x)

] , a, b ∈ P(Rd).

Closely following the notation of [15], the reverse ESS668

ESS(q, p) =
Zr

Eq(x)

[(
p̃(x)
q(x)

)2] , with Zr = Eq(x)

[
p̃(x)

q(x)

]

can be directly estimated via Monte Carlo using samples from the model q and the unnormalized669

target p̃.670
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Following [51, 64], for reverse ESS, we clipped the top 0.01% importance-weights, setting them671

to the smallest value among them for numerical reasons. Furthermore, ESS is computed using the672

regularized energy function, defined in Eq. (22).673

Although forward ESS could be computed using samples from the target distribution, [64] found it to674

be extremely sensitive to the chosen clipping threshold and prone to instability. Consequently, only675

the reverse ESS was used, even though it may not fully capture phenomena such as mode collapse.676

RAMACHANDRAN PLOTS677

A Ramachandran plot visualizes the 2D log-density of the joint distribution of a pair of dihedral678

angles in a peptide’s backbone. For more details, we refer to [64]. These plots are used to visualize a679

peptide’s main degrees of freedom and are likely to show mode collapse if it occurs. A Ramachandran680

plot is effectively a histogram of the occurrence of dihedral angles and is computed solely from model681

or ground-truth samples.682

For alanine tetrapeptide, alanine hexapeptide, and ELIL tetrapeptide, which contain multiple backbone683

dihedral angle pairs, we always show the pair exhibiting the most pronounced deviation from the684

ground truth, which is the same across methods. Among the four runs made per method in Fig. 4,685

we selected the one with the lowest Ram KL value. For Fig. 3, we always selected the run with the686

highest Ram KL value to illustrate that variations with fewer constraints are more likely to exhibit687

mode collapse.688

RAMACHANDRAN KL DIVERGENCE (RAM KL AND RAM KL W.RW.)689

To obtain quantitative estimates of the quality of such Ramachandran plots, we used two metrics,690

following the approach of [51, 64]. We computed the forward KL divergence between the Ramachan-691

dran plots from ground truth and model samples (RAM KL). For this, we used 100× 100 bins and692

1 × 107 samples. Additionally, we also calculated a reweighted version of the metric (Ram KL693

w.Rw.) where the model samples were first reweighted to the target distribution before generation of694

Ramachandran plots.695

For the larger systems, where more than one Ramachandran plot exists, we reported the average696

Ramachandran KL.697

C.5 Hyperparameters698

Hyperparameters play a crucial role in the performance of all models. Common hyperparameters699

include the choice of optimizer, learning rate, batch size, gradient steps, and weight decay. Below,700

we provide a description of the hyperparameters for each method, emphasizing any method-specific701

choices.702

All experiments employed the Adam optimizer [42]. Our implementation builds on the Python703

packages bgflow [56], nflows [32], and PyTorch [60]. The number of parameters in the normalizing704

flow architecture for each system is summarized in Tab. 5.705

Table 5: Number of flow parameters for each system. The number of parameters is completely determined by a
molecular system’s size, as the architecture is the same across all systems.

ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE ELIL

NUMBER OF PARAMETERS 7 421 512 9 452 376 12 124 616 13 727 952

CMT706

We refer to Tab. 6 for the general and method-specific hyperparameters of CMT.707

TA-BG708

Tab. 7 summarizes the hyperparameters for the pre-training of TA-BG [64] using the reverse KL709

divergence.710

After pre-training, the temperature is annealed with a geometrically decaying temperature sequence711

and the hyperparameters summarized in Tab. 8. The TA-BG experiments on alanine dipeptide and712
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HYPERPARAMETERS ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE ELIL

GENERAL

BATCH SIZE 1000 1000 2000 2000
LEARNING RATE 4× 10−5 5× 10−5 5× 10−5 5× 10−5

LR SCHEDULER COSINE COSINE COSINE COSINE
GRADIENT DESCENT STEPS 400 000 400 000 800 000 1 600 000

WEIGHT-DECAY 1× 10−5 1× 10−5 1× 10−5 1× 10−5

LR LINEAR WARMUP STEPS 1000 1000 1000 1000
MAX GRAD NORM 100.0 100.0 100.0 100.0

METHOD-
SPECIFIC

TRUST-REGION BOUND 0.3 0.3 0.3 0.3
ENTROPY BOUND 0.8 1.8 1.4 0.7

BUFFER SIZE 500 000 500 000 1 000 000 1 000 000
GRADIENT DESCENT STEPS

PER ANNEALING STEP
2000 2000 2000 2000

Table 6: Hyperparameter settings for CMT (general and method-specific) for all systems.

HYPERPARAMETERS ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE ELIL

GENERAL

TARGET TEMPERATURE 1200K 1200K 1200K 3000K
BATCH SIZE 256 256 512 512

LEARNING RATE 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR SCHEDULER COSINE COSINE COSINE COSINE
GRADIENT DESCENT STEPS 100 000 100 000 250 000 250 000

WEIGHT-DECAY 1× 10−5 1× 10−5 1× 10−5 1× 10−5

LR LINEAR WARMUP STEPS 1000 1000 1000 1000
MAX GRAD NORM 100.0 100.0 100.0 100.0

NO. HIGHEST ENERGY
VALUES REMOVED

10 10 20 20

Table 7: Hyperparameter settings for TA-BG pre-training for all systems.

alanine tetrapeptide used the geometric temperature annealing sequence713

1200K→ 1028.69K→ 881.84K→ 755.95K→ 648.04K→ 555.52K

→ 476.22K→ 408.24K→ 349.96K→ 300.00K→ 300.00K.

Including an additional finetuning step per temperature, TA-BG employs the temperature sequence714

1200K→ 1028.69K→ 1028.69K→ 881.84K→ 881.84K→ 755.95K

→ 755.95K→ 648.04K→ 648.04K→ 555.52K→ 555.52K→ 476.22K

→ 476.22K→ 408.24K→ 408.24K→ 349.96K→ 349.96K→ 300.00K→ 300.00K

on alanine hexapeptide. On ELIL, reverse KL pre-training suffers from mode-collapse at 1200K.715

Therefore, the temperature annealing starts at 3000K, resulting in the temperature sequence716

3000.00K→ 2573.09K→ 2573.09K→ 2573.09K→ 2206.93K→ 2206.93K

→ 2206.93K→ 1892.88K→ 1892.88K→ 1892.88K→ 1623.52K→ 1623.52K

→ 1623.52K→ 1392.49K→ 1392.49K→ 1392.49K→ 1194.33K→ 1194.33K

→ 1194.33K→ 1024.37K→ 1024.37K→ 1024.37K→ 878.60K→ 878.60K

→ 878.60K→ 753.57K→ 753.57K→ 753.57K→ 646.34K→ 646.34K

→ 646.34K→ 554.36K→ 554.36K→ 554.36K→ 475.48K→ 475.48K

→ 475.48K→ 407.81K→ 407.81K→ 407.81K→ 349.78K→ 349.78K

→ 349.78K→ 300.00K→ 300.00K.

HYPERPARAMETERS ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE ELIL

GENERAL

BATCH SIZE 2048 4096 2048 2048
LEARNING RATE 5× 10−6 1× 10−5 5× 10−6 5× 10−6

LR SCHEDULER COSINE
(PER TEMPERATURE STEP) - - -

GRADIENT DESCENT STEPS 300 000 200 000 360 000 600 000

METHOD-
SPECIFIC

BUFFER SIZE 7 440 000 7 440 000 15 111 111 22 400 000
BUFFER RESAMPLED TO 2 000 000 2 000 000 2 000 000 10 000 000

GRADIENT DESCENT STEPS
PER ANNEALING STEP

30 000 20 000 20 000 20 000

Table 8: Hyperparameter settings for TA-BG (general and method-specific) for all systems.
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FAB717

The used hyperparameters for FAB [51] can be found in Tab. 9. Furthermore, we used a step718

size of 0.05 for the Hamiltonian Monte Carlo [30] transitions. For details on the method and its719

hyperparameters, we refer to [51].720

HYPERPARAMETERS ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE ELIL

GENERAL

BATCH SIZE 1024 1024 1024 2048
LEARNING RATE 1× 10−4 1× 10−4 1× 10−4 2× 10−4

LR SCHEDULER COSINE COSINE COSINE COSINE
GRADIENT DESCENT STEPS 50 000 50 000 50 000 25 000

WEIGHT-DECAY 1× 10−5 1× 10−5 1× 10−5 1× 10−5

LR LINEAR WARMUP STEPS 1000 1000 1000 1000
MAX GRAD NORM 1000.0 1000.0 1000.0 1000.0

METHOD-
SPECIFIC

NO. INTERMED. DIST. 8 8 8 16
NO. INNER HMC STEPS 4 4 8 8

Table 9: Hyperparameter settings of FAB (general and method-specific) for all systems.

Forward and Reverse KL721

This section reports the used hyperparameters for training with the forward KL divergence on MD722

data (Tab. 10) and the hyperparameters for training with the reverse KL divergence (Tab. 11). A723

description on how the MD data was obtained can be found in App. C.2.724

HYPERPARAMETERS ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE ELIL

GENERAL

BATCH SIZE 1024 1024 1024 1024
LEARNING RATE 5× 10−5 5× 10−5 5× 10−5 5× 10−5

LR SCHEDULER COSINE COSINE COSINE COSINE
GRADIENT DESCENT STEPS 100 000 100 000 120 000 140 000

Table 10: Hyperparameter settings of forward KL training using MD data for all systems.

HYPERPARAMETERS ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE ELIL

GENERAL

BATCH SIZE 1024 1024 1024 1024
LEARNING RATE 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR SCHEDULER COSINE COSINE COSINE COSINE
GRADIENT DESCENT STEPS 250 000 250 000 250 000 250 000

WEIGHT-DECAY 1× 10−5 1× 10−5 1× 10−5 1× 10−5

LR LINEAR WARMUP STEPS 1000 1000 1000 1000
MAX GRAD NORM 100.0 100.0 100.0 100.0

NO. HIGHEST ENERGY
VALUES REMOVED

40 40 40 40

Table 11: Hyperparameter settings of reverse KL training for all systems.

25


	Introduction
	Constrained mass transport
	Learning the intermediate densities
	Related work
	Numerical evaluation
	Experimental setup
	Results

	Conclusion
	Proofs
	Extended numerical evaluation
	Experimental setup
	Architecture
	Target densities
	Dual optimization in practice
	Metrics
	Hyperparameters


