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Abstract

Efficient sampling from high-dimensional and multimodal unnormalized proba-
bility distributions is a central challenge in many areas of science and machine
learning. We focus on Boltzmann generators (BGs) that aim to sample the Boltz-
mann distribution of physical systems, such as molecules, at a given temperature.
Classical variational approaches that minimize the reverse Kullback-Leibler di-
vergence are prone to mode collapse, while annealing-based methods, commonly
using geometric schedules, can suffer from mass teleportation and rely heavily on
schedule tuning. We introduce Constrained Mass Transport (CMT), a variational
framework that generates intermediate distributions under constraints on both the
KL divergence and the entropy decay between successive steps. These constraints
enhance distributional overlap, mitigate mass teleportation, and counteract prema-
ture convergence. Across standard BG benchmarks and the here introduced ELIL
tetrapeptide, the largest system studied without access to samples from molecular
dynamics, CMT consistently surpasses state-of-the-art variational methods, achiev-
ing more than 2.5x higher effective sample size while avoiding mode collapse.

1 Introduction

We consider the problem of sampling from a target probability measure p € P(R?) given by
p(z) = #(#)/z where p € C(R% Rx() can be evaluated pointwise but the normalization constant
Z = fRd p(x) dx is intractable. Sampling from unnormalized densities arises in many areas, including
Bayesian statistics [34], reinforcement learning [20], and the natural sciences [70]. A prominent
example is learning Boltzmann generators (BGs) [55], for which p(z) = exp(—E@)/kpT), with
E being an energy function, 7" the temperature, and kp the Boltzmann constant. BGs enable
efficient sampling of thermodynamic ensembles, thereby bypassing costly molecular dynamics (MD)
simulations and accelerating the exploration of rare but physically important states. However, learning
BGs is challenging as the state space is typically high-dimensional, the target distribution is often
highly multimodal, and evaluating E'(x) can be very costly, especially when using accurate energies
such as those from density-functional theory [12].
A promising alternative to classical MD or Monte Carlo methods [38] is offered by variational
approaches [71], which aim to minimize a statistical divergence between a variational probability
measure ¢ € P(R?) and the target p, commonly the reverse Kullback—Leibler (KL) divergence

q" = argmin Dxw(q|| p), (1

geP(R?)

whose unique minimizer is ¢* = p. Directly minimizing the reverse KL divergence tends to suffer
from mode collapse, ignoring low-probability modes of the target [15]. To counteract this, a number
of recent approaches have proposed to construct a sequence of intermediate distributions that transport
probability mass from a tractable base distribution gg to the target. This idea, which dates back
several decades to annealed importance sampling [53], is most often realized through a geometric

annealing path, which is defined as a sequence of (qi){zl which follows g; o qé_ﬁ * pP where the
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Figure 1: Illustration of the annealing paths (AP) obtained by solving the variational problems (2), (7), or (9).
Trust-region—based optimization (2) mitigates the irregularities of naive schedules (e.g., the linear schedule), but
the resulting geometric AP suffers from mass teleportation as the right mode of the target distribution p emerges
without overlap with earlier intermediate densities. Constraining the entropy decay between successive densities
(7) prevents mass teleportation, yet fails to guarantee sufficient overlap between the initial distribution go and
subsequent intermediate densities. In contrast, combining both constraints (9) yields APs that both maintain
overlap between successive densities and avoid mass teleportation.

corresponding annealing schedule (3;)]_, ensures that ¢; = p. Despite its simplicity, geometric
annealing can suffer from mass teleportation, where large portions of the probability mass shift to
disjoint regions between successive steps, complicating mass transport [6]. Moreover, its performance
critically depends on the choice of annealing schedule [73].

A recent study proposed selecting the annealing schedule using trust-region constraints that bound the
KL divergence between successive distributions, thereby avoiding abrupt changes in the stochastic
optimal control setting [14]. Adapting this idea to measures that admit densities, we further introduce
a constraint that explicitly controls the rate at which the entropy of the variational distribution
decreases along the transport path. This added degree of freedom enables deviations from the
standard geometric annealing schedule, mitigating issues such as mass teleportation and premature
convergence, while fostering greater overlap between consecutive distributions.

We demonstrate that our method, Constrained Mass Transport (CMT), consistently outperforms
state-of-the-art approaches, often by a substantial margin, when learning Boltzmann generators solely
from energy evaluations, without relying on additional MD samples. Furthermore, we introduce a
new benchmark system, ELIL tetrapeptide, which, to the best of our knowledge, is the largest system
studied to date in the setting of learning exclusively from energy evaluations. On this challenging
system, CMT achieves a 2.5x larger effective sample size compared to baselines, while avoiding
mode collapse.

2 Constrained mass transport

Here, we denote by P(R?) the space of probability measures on R? that are absolutely continuous
with respect to Lebesgue measure and admit smooth densities. We approach the sampling problem
by dividing (1) into a sequence of constrained optimization problems that result in an annealing path
of intermediate densities (g;)!_, that bridge between a tractable prior o and the target p.

Trust region constraint. Trust-regions aim at dividing the problem (1) into subproblems by con-
straining the updated density to be close to the old density in terms of KL divergence. Formally, this
is given by the iterative optimization scheme '

@i+1 = argmin Dxr(qlp) st Dxu(qlg) < ew, 2

qeP(RY)

for ¢+ € N, trust region bound £, > 0 and some gy € P(Rd). Due to the convexity of the KL
divergence, we can show that in all but the last step we actually have an equality constraint in (2); see
App. A. Thus, there exists an I € N such that ¢; = ¢* (= p). Under suitable regularity assumptions,
we can approach the above constrained optimization problem using a relaxed Lagrangian formalism,
ie.,

£i(g, %) = Dxw(alp) + A (D (4a:) — =) 3
where \ > 0 is a Lagrange multiplier, and solve the saddle point problems
. ()
max min L (g, ). )

"To ensure that ¢ € P(R?) we need an additional constraint [ g(x)dz = 1 which we omitted in the main
part of the paper for readability.
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‘We note that £E? is convex in ¢ by convexity of the KL divergence and (4) concave in \ since it

can be expressed as the pointwise minimum min, EE? (g, A) among a family of linear functions of \.
Thus, (4) has unique optima which we denote by ¢; 1 and \;, respectively. Indeed, (2) admits an
analytical solution which is characterized by Prop. 2.1. We refer to App. A for a proof and further
details on problem (2).

Proposition 2.1 (Optimal intermediate trust-region densities). The intermediate optimal densities
that solve (2) satisfy

A L
2O 2RI i Zia () = [ o)) TR, ®
Ziv1(N)

where q;1 are the unique optima of the Lagrangian corresponding to (2).

Giv1(z, A) =

The optimal multiplier \; that solves (2) is obtained by plugging ¢;1+1(\) in the Lagrangian (3) to
obtain the dual function g, € C(R,R) given by

gV = L8 (g (N, A) = —(1+ A log Zig1(N) — Aewr. 6)

Assuming access to Z;,1(A) one can solve \; = argmax,g gt(r“l)()\) to obtain the optimal

q € P(R?) that solves (2) as g;11 = qi+1(\:).
Entropy constraint. In a similar fashion to (2), we can avoid premature convergence by regulating

the entropy decay of the model by constructing a sequence of intermediate densities whose change in
entropy is constrained. Formally, we aim to solve the following problem

qi+1 =argmin Dxr(qlp) st H(q:)— H(q) < €ent, )
q€P(RY)

where H(q) = — [ q(x)log g(x)dx is the Shannon entropy and e, > 0 the entropy bound. We can
again approach (7) using a Lagrangian formalism by introducing a Lagrangian multiplier n > 0. The
analytical solution to (7) is characterized by Prop. 2.2 whose proof can be found in App. A.

Proposition 2.2 (Optimal intermediate densities for entropy constraint). The intermediate optimal
densities, that solve (7) satisfy

Pl I .
EANER with ZH_l(n)f/p(x) +ndux, )

where q;11 are the unique optima of the Lagrangian corresponding to (7).

qi+1(z,m) =

Despite the potential of (7) for counteracting premature convergence, we identify two challenges
depending on the entropy of the initial density H (qo): First, if H(qo) < H(p) then the constraint
is inactive resulting in 19 = 0, reducing (7) to the optimization problem as stated in (1). Second, if
H(qo) > H(p) then the KL divergence between g and ¢; o p'/**" can be arbitrarily large and
therefore could cause instabilities due to a lack of overlap between the successive densities. While
the former challenge can typically be addressed by initializing ¢y with large entropy, the second can
be more intricate. In the following, we explain how this challenge can be addressed by combining the
trust-region and entropy constraint.

Combining both constraints. One can straightforwardly combine the constraints in (2) and (7) into
a single iterative optimization scheme defined as

DKL(Q'QL) S Etr,
H(g:) — H(q) < €ent.
In analogy to the previous section, we introduce Lagrangian multiplier A and 7 for the trust region

and entropy constraint, respectively. Indeed, one can again obtain an analytical expression for the
evolution of the optimal densities, see Prop. 2.3 and App. A for a proof.

Gi+1 = argmin Dkr(q|p) s.t. { 9

q€P(R?)

Proposition 2.3 (Optimal intermediate densities for entropy and trust region constraint). The inter-
mediate optimal densities that solve (7) satisfy
A 1
() TFF7 () TFaFn
(o n ) = HLZIEOET i 20 = [ @) P T @)ds, (0)
Ziv1(Am)

where q;41 are the unique optima of the Lagrangian corresponding to (9).

Clearly, if H(qo) > H(p), the trust-region constraint ensures that the KL divergence between ¢o and
q1 1s at most £, and, therefore, for a suitable choice of ¢, ensures that two consecutive densities
have sufficient overlap. Lastly, the Lagrangian dual function gy.ene € C'(R?,R) corresponding to (9),
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that is,

Ghean () = —(1+ A + ) log Zir1 (A, 1) — Aew — n(H(4:) — Eent), an
requires solving a two-dimensional convex optimization problem to obtain \;, 77; which can be done
efficiently in practice; see Sec. 3 for additional details.

Connection to annealing paths. Iteratively solving (2), (7) or (9) induces an annealing path, that is,
a sequence of densities (g;);cn that interpolates between gg and p. We characterize these paths in
Thm. 2.4; See App. A for a proof.

Theorem 2.4 (Annealing paths). Let p € P(R?) be the target density and qy € P(R?) some initial
density. The intermediate optimal densities, that solve (2), (7) and (9) satisfy

—Bi=Bi ~ou (s 1-B8; (=a;\Bi
gio<qy PP, o p® (i>1), and g o< gy (™), 12)

respectively, with 8 and o being functions of the corresponding Lagrangian multiplier. Moreover,
the sequences (o;)ien, and (B;)ien, take values in [0, 1], satisfy ag = o = 0 and oy = 1 = 1 for
some I € Ny and (;);en, is monotonically increasing.

In what follows, we refer to the annealing paths in (12) as geometric (G), tempered (T), and geometric-
tempered (GT) annealing paths, respectively; see Fig. 1 for an illustration.

3 Learning the intermediate densities

A general recipe. So far, we discussed how one can construct a sequence of intermediate measures
(¢:)ien using our constrained mass transport formulation. However, despite having access to the
analytical form of ¢;, it is typically not possible to sample from it directly. As such, we approximate
each ¢; by a distribution from a tractable class @ C P(R9) that permits efficient sampling and density
evaluation. Given an approximation family O, we select ¢; € Q to approximate g; by solving

¢ = argmin D(g;, q), 13)
qeQ

where D is an arbitrary statistical divergence between probability measures. This formulation is
general: the choice of Q and D determines the trade-off between expressivity, computational cost,
and statistical properties such as mode coverage or robustness.

Practical algorithm. In this work, we choose Q to be a normalizing flow family constructed via
push-forwards of a simple base measure. Let ¢. € P(R?) be an easy-to-sample base measure (e.g., a
standard Gaussian), and let F be a class of smooth invertible maps f : R? — R<. We define

Onr = {fyq: | F€F}, with (f40.)(2) = - (F () ‘detm. (14)

0z

with push-forward fxq.. To fit ¢; within this family, we take D to be the importance-weighted
forward KL divergence

dror = argmin Drageala) with Dralanla) = Bomy, | 2220 10g (2] 15

qEQNF ql(w) q(m)
This choice offers several advantages. First, forward KL strongly penalizes underestimating the
support of ¢; 1, encouraging mode coverage and reducing the risk of mode collapse. Second, because
@i+1 1s available in closed form from the constrained transport updates (see Prop. 2.1, 2.2 and 2.3),
the importance weights ¢:+1(%)/q, (z) can be computed solely from g; and p. Third, the importance-
weighted formulation allows us to reuse samples drawn from g;, enabling a seamless integration of
replay buffers, resulting in increased sample efficiency. Lastly, the trust-region constraint controls the
variance of the importance weights, keeping it approximately constant, independent of the problem
dimension d (see App. A), resulting in a highly scalable algorithm.

Lagrangian dual optimization. Maximizing the concave dual function (11) requires evaluating
intermediate normalization constants Z; ;. This can be done efficiently by expressing Z;,; as an
expectation under g; and using Monte Carlo estimation. For instance, the expression for Z;; in (10)

can be estimated as
1 1
pla) \TE] 1 pa) \ T
(=) ]”N S (abt | (o

Tn~qq

Zit1(An) = Eang,

We note that samples x,, ~ ¢; and the corresponding evaluations ¢;(z,,) and p(x,,) are typically
already computed when solving (13), so the additional cost of determining the Lagrange multipliers
is minimal. Details of the dual optimization procedure are provided in App. C.3, including a code
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Algorithm 1 Constrained mass transport

Require: Initial measure g, target measure p, divergence D, approximation family O, buffer size N
fori < 0,...,1 —1do
Draw N samples z,, ~ ¢;, evaluate g;(z, ), p(z,) and initialize buffer BV = (2., gi(x), p(zn)) -1

Compute multiplier Ai, 7; = arg max, , cg+ gt(:;tl) (A, n) using B®

Compute gi1+1 = §i+1 = argmin,c o D(gi+1,q) using B®
return §; ~ p

example. Lastly, we refer to Algorithm 1 for an algorithmic overview of the constrained measure
transport method.

4 Related work

Boltzmann generators. Learning molecular Boltzmann generators [55] purely from energy evalua-
tions has been explored using internal coordinate representations of the system, with both flow-based
methods [28, 45, 46, 51, 64] and diffusion-based methods [22, 41, 48]. While flow-based approaches
have demonstrated strong performance, their diffusion-based counterparts remain less competitive,
often struggling with mode collapse, even on relatively small systems. Alternative approaches operate
in Cartesian coordinates [6, 43, 50, 74] allowing for transferability between different systems [44, 75].

Trust regions and entropy constraints. Trust region methods have a long history as robust opti-
mization algorithms that iteratively minimize an objective within an adaptively sized “trust region”;
see [25] for an overview. Beyond classical optimization, these methods have been extended to
operate over spaces of probability distributions, with applications in reinforcement learning [2—
4,9, 49, 58, 59, 61, 65, 66, 80-82], black-box optimization [1, 72, 78], variational inference [10, 11],
and path integral control [35, 76]. The first explicit link between trust-region optimization and
geometric annealing paths was established in [14] for path space measures in the setting of stochastic
optimal control. Entropy constraints, often introduced as entropy regularization, have also been stud-
ied in policy optimization and reinforcement learning, either in the form of soft constraints [5, 52, 57]
or hard constraints [1, 7-9, 59]. However, prior work typically constrains the absolute entropy value,
which is problematic for inference tasks, since it requires prior knowledge of the target density’s
entropy. To the best of our knowledge, such methods have not yet been extended to sampling
problems. Furthermore, the connection between entropy-constrained optimization and annealing
paths has not previously been established.

Improved annealing paths. Research on improving annealing paths (APs) has largely focused
on geometric APs in the context of annealed importance sampling (AIS) [53] and their extensions
to sequential Monte Carlo (SMC) [27]; see [23, 36, 40, 73]. Beyond the standard geometric AP,
alternative constructions have been proposed, such as the moment-averaging path for exponential
family distributions [37] and the arithmetic mean path [21]. The geometric path itself can be
interpreted as a quasi-arithmetic mean [47] under the natural logarithm, which motivated [17] to
propose APs based on the deformed logarithm transformation. A variational characterization of these
paths was later analysed in [18]. Related work also explores improved schedules for the diffusion
coefficient in ergodic Ornstein—Uhlenbeck processes used to train denoising diffusion models [39, 67];
see, e.g., [13, 54, 79, 83].

5 Numerical evaluation

In this section, we compare our approach against state-of-the-art methods on four challenging
molecular systems. We provide a brief overview of the experimental setup here, with full details in
App. C. Additional experimental results are provided in App. B, including extended performance
metrics, an ablation study on the effect of both constraints, and an analysis of the trust-region
constraint across systems of different dimensionality.

5.1 Experimental setup

Benchmark problems. Our evaluation covers a range of molecular systems, beginning with the well-
studied alanine dipeptide (d = 60) [29, 51, 69, 74], and extending to the larger alanine tetrapeptide
(d = 120) and alanine hexapeptide (d = 180), which have only recently been addressed using
variational methods [64]. In addition, we introduce a new benchmark, the ELIL tetrapeptide (d =
219), which is higher-dimensional and which contains more complex side chain interactions compared
to the alanine hexapeptide. To the best of our knowledge, this represents the largest and most complex
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Table 1: Results for all systems of varying dimensionality d. Evaluation criteria include the number of target
evaluations (farget evals), the negative log-likelihood (NLL), and the effective sample size (ESS). Each value is
shown as the mean + standard error over four independent runs. The best results are highlighted in bold, except
for the reverse KL, which is prone to mode collapse, making ESS values not directly comparable.

SYSTEM METHOD TARGET EVALS | NLL | ESS[%]1
FORWARD KL 5 x 10° —213.581+£0.000  (82.16 4 0.09) %
SLANINE REVERSE KL 2.56 x 108 —213.609 £0.006  (94.114£0.21) %
IPEPTIDE
/¢ FAB 2.13 x 108 —213.653 £0.000  (94.81 £0.04) %
(d=60) 1A BG 1% 108 —213.666 £0.001  (95.77 +0.12) %
CMT (OURS) 1x 108 —213.677 £ 0.000 (97.69 £ 0.03) %
ALANINE FORWARD KL 4.2 x 10° —330.069 £0.001  (45.29 & 0.08) %
TETRA- REVERSE KL 2.56 x 108 —329.191+£0.122  (74.88+3.65) %
PEPTIDE  pAR 2.13 x 108 —330.100 £0.002  (63.59 +0.23) %
(d=120) TA-BG 1x 108 —330.143 +£0.002  (64.8740.21) %
CMT (OURS) 1x 108 —330.167 + 0.002 (68.49 +0.14) %
ALANINE FORWARD KL 4.2 x 10° —501.598 £0.005  (10.97 4+ 0.11) %
Hexa-  REVERSE KL 2.56 x 108 —497.378 £0.277  (22.22+1.44) %
PEPTIDE  pAB 4.2 x 108 —501.268 +£0.008  (14.64 4 0.08) %
(d=180) TA-BG 4x 108 —501.582 £ 0.010  (15.89£0.13) %
CMT (OURS) 4 x 108 —501.761 #+ 0.008 (29.20 + 0.24) %
ELIL  FORWARD KL 4.2 x 10° —597.571 + 0.004 (5.80 & 0.04) %
TETRA- REVERSE KL 2.56 x 108 —583.381 + 3.033 (1.25 £ 0.45) %
PEPTIDE  pAB 8.43 x 108 —597.370 + 0.006 (7.30 £ 0.08) %
(d=219) TA-BG 8 x 10° —597.830 £0.022  (10.1240.38) %
CMT (OURS) 8 x 108 —598.440 + 0.003 (25.91 +0.19) %

molecular system investigated using variational approaches to date. A detailed description of all
benchmark systems is provided in App. C.2.

Baseline methods. Our main baselines are Flow Annealed Importance Sampling Bootstrap (FAB)
[51] and Temperature-Annealed Boltzmann Generators (TA-BG) [64], which currently define the
state of the art for learning molecular systems on internal coordinate representations. For reference,
we also include reverse and forward KL training; the latter leverages ground truth samples obtained
from molecular dynamics (MD) simulations (see App. C.2). To ensure a fair comparison, all methods
use neural spline flows [31] and identical architectures.

Performance criteria. We evaluate methods primarily using two criteria. First, the negative log-
likelihood (NLL), computed with ground truth MD samples. Up to an additive constant, the NLL corre-
sponds to the forward KL divergence and is therefore well suited for detecting mode collapse [15]. Sec-

ond, we consider the effective sample size (ESS), defined as ESS(q, p) := (Eqnq [(P(®)/a(x))?]) -
ESS is a common measure of sample quality, but it is known to be less reliable for assessing mode
collapse [15]. For details on all metrics, we refer to App. C.4. Since evaluating the target density of
molecular systems is typically expensive, we also report the number of target evaluations required by
each method.

Finally, we also consider Ramachandran plots as a qualitative criterion for assessing mode collapse.
These plots visualize low-dimensional projections of important molecular configurations, making it
possible to assess whether the generated samples capture all relevant modes of the distribution or fail
to represent certain regions of the state space. For more details on Ramachandran plots, we refer to
[64].

5.2 Results

Main results. The main findings are summarized in Tab. 1. While the performance gap between our
method and the baselines is less pronounced for smaller systems, it widens substantially for the larger
ones. In particular, on alanine hexapeptide and ELIL tetrapeptide, our method attains approximately
twice the ESS of competing approaches, while also avoiding mode collapse, as reflected in improved
NLL values.

Ablation study for constraints. Additionally, we investigate the effect of different constraint choices
on the performance of the alanine hexapeptide system. Specifically, we compare four settings: using
both constraints, each constraint individually, and no constraint (which corresponds to importance-
weighted forward KL minimization). The results are summarized in Fig. 2 and Fig. 3. Fig. 2a
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Figure 2: Impact of the trust-region and entropy constraint visualized on alanine hexapeptide. Fig. 2a visualizes
the model entropy over the course of the training. Analogously, Fig. 2b shows the importance-weight effective
sample size (ESS) between successive intermediate densities. Figs. 2¢ and 2d depict the final log-likelihood and
ESS to the target density, respectively. The variants in Fig. 2d marked with "5 " exhibit visible mode-collapse
on the Ramachandran plots; see Fig. 3. The ESS is therefore not directly comparable to the other methods. We
denote by §; the variational approximation of the intermediate density g;.

(c) —NLL

(d) ESS(q1, p) [%]

Alanine Hexapeptide

Ground truth

No constraint

Geometric-tempered
— -
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Figure 3: Ramachandran plots for alanine hexapeptide with trust-region and entropy constraints selectively
enabled or disabled. Using a single or no constraint leads to mode collapse, whereas combining both constraints
avoids it. See App. C.4 for details.

shows that omitting the trust region constraint causes entropy to decrease rapidly, which lead to
mode collapse during training. Moreover, using only the entropy constraint yields unstable training,
as evidenced by violations of the prescribed linear entropy decay. In contrast, incorporating a
trust region constraint stabilizes training, as reflected in Fig. 2b, where it produces a substantially
higher ESS between successive intermediate densities. Fig. 3 shows Ramachandran plots of alanine
hexapeptide with the constraints selectively enabled or disabled. Visible signs of mode collapse
appear in all cases except for the tempered (7) and geometric-tempered (9) variants, with the most
accurate Ramachandran plot observed in the latter. Overall, our findings indicate that both constraints
are necessary to achieve high ESS values while simultaneously avoiding mode collapse.

6 Conclusion

We have introduced Constrained Mass Transport (CMT), a variational framework for constructing
intermediate distributions that transport probability mass from a tractable base measure to a complex,
unnormalized target. By enforcing constraints on both the KL divergence and the entropy decay
between successive steps, CMT balances exploration and convergence, thereby mitigating mass
teleportation, reducing mode collapse, and promoting smooth distributional overlap. Our empir-
ical evaluation across established Boltzmann generator benchmarks and the here proposed ELIL
tetrapeptide, learned purely from energy evaluations without access to molecular dynamics samples,
demonstrates that CMT consistently outperforms existing annealing-based and variational baselines,
achieving over 2.5x higher effective sample size while preserving mode diversity.

Promising directions for future work include exploring alternative approximation families Q and di-
vergences D for learning intermediate densities,which may yield further performance gains. Another
interesting avenue is to apply our method in Cartesian coordinate representations, which enables
transferability across different molecular systems [44, 75].
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A Proofs

Proof of Props. 2.1 to 2.3. We divide the proof into two parts and start with the most general formu-
lation using both constraints, referring to Prop. 2.3. Part 2 will then derive the solution with just
the trust-region (Prop. 2.1) and just the entropy constraint (Prop. 2.2), as they can be interpreted as
special cases of the general formulation.

Part 1: Consider the constrained optimization problem
gi+1 = argmin Dkr(qlp) st Dxu(qlg:) < ew, H(q)— H(q) < ent, /dq =1 an
q€P(RY)
and its corresponding Lagrangian

L8 (g, M\, m,w) = Dxr(glp) + M(Dxw(glg:) — ex) +n(H(g:) — H(q) — €ent) +w (/ dg — 1) . (18)

Using the convexity of the Kullback-Leibler (KL) divergence in its arguments, the convexity of the
negative Shannon entropy, and that the integral is a linear functional, the objective from Eq. (17)
and its Lagrangian, given by Eq. (18) are convex in ¢. Using that P(R?) is continuous, there always
exists a measure ¢ # ¢; with Dkr,(¢]q;) < ety and H(q;) — H(q) < €ont that satisfies the inequality
constraints strictly. Following [16, 5.2.3], Slater’s condition holds, implying strong duality. We can
therefore instead solve the dual problem.
We start by setting up the Euler-Lagrange equation, given by

9 pli+) _
8q£’tr (Q7A7777w) - Oa

using
L8 (g, \n,w) = / q(x) (1 + A +n)log g(z) — log p(x) — Alog gi(x) + w)dx

— Aeer +N(H(gi) — €ent) — w
and solve for q. Hence, we get
0

Fqﬁff“)(qd%w) =(1+X+n)(logg+1) —logp— Aloggi +w =0

2 1 w
o1 =1 A )T Fr ) - [ ———— 1) 19
ogq og(qz D 15t (19)

Using this, we can further determine w using

/dq = /qi(x)‘u—‘iw p(z) T dz/ exp (ﬁm + 1) =1

Sw=(1+A+n)(logZis1(Nn) — 1), with Zi1(\n) = /qi(w) T () TR () da
Substituting w back into (19) and simplifying the fraction using p = Zp yields
_ 4:(2) T () T

N T
git1(z,\,n) = Zi o) with Z;11 (A, n) = /qz(x) 3 F () T (z)da,

which uses the unnormalized target p, proving Prop. 2.3.

Part 2: Setting €.,y = 00 or £, = oo effectively deactivates the respective constraint, yielding the
trust-region objective (2) or the entropy objective (7) respectively. This is equivalent to setting the
Lagrangian multipliers 7 = 0 or A = 0, proving Prop. 2.1 and Prop. 2.2 respectively. O

Proof of Thm. 2.4. We divide the proof into three parts and start with the most general formulation
using both constraints. The first two parts will show form and monotonicity while part three will
derive the special cases with just the trust-region and just the entropy constraint.

Part 1: Given are the sequences of Lagrangian multipliers (\;);en, > 0 and (7;):en, > 0. We now
aim to proof that the sequence (¢;)ien,, given by

qo0 , 1=0
qi = i1 , (20)

1
SNt TN F ;
qi 1 D i—1 i—1 , 1>1
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takes the form
i—1

- 1-B; xai\Bi Aj
i = ¢ “)Pi with ;=1 — _
Gi=q ") B gl+/\j+m
d , =0
and o = 1 i—1 s i—1 Aj .
U= 5, 20 gy Wimkns Ty > 121

We use the common convention that empty products evaluate to one.

Base case (i = 0): The simplest case

do=ay )"

holds due to By = 0 (using empty product convention).
Inductive step: We start from Eq. (20) and transform it using the assumption that ¢; = qé_ﬂ L(poe)Pi
holds for some arbitrary but fixed © € Ny, yielding

X .
G IFXiFi s TN T;

Gi+1 =4, D
A .

Aq 1
1—08; o B — i —— ———
=q, ﬁl-%—lp"‘tﬁz S PERTL B2 T .

Using
P H by
THXNi+m L+ X+ j:01+)\j+77j
IS RS » SNV
1+ X+ j:01+/\j+77j'
_a 1+mn
=Bin 1+ XN +n’
we now can rewrite the exponent of p yielding
Ai 1
Qi 5; +
51+)\¢+m T+ X +m
i—1 i—1

Nk Aj i 1
=(B-> — +
p §1+Ak+nkj£11+Aj+nj 1+Xi+7n  1+X+n

i—1 i

1+mni U A 1
= Pi+1 — - +
Pita T+ Xi+m Zl+)\k+17k H I+X+m  1+X+m

k=0 j=k+1
D el | s et

k=0 R S TE A
= 06i+1ﬂz‘+1~

again using the convention that an empty product evaluates to one. It directly follows

~ 1-5; ~oug i
qi+1 X gi+1 = qo Pt (pa H)ﬁ ",

which completes the induction.

Part 2: It remains to show that («;);en, and (5;)ien, take values in [0, 1] and are monotonically
increasing with g = Sy = 0 and oy = By = 1 for some I € N,..

The first case (ag = 5y = 0) holds by definition. Assuming that there exists an I € N, such that
Ar—1=n1-1 =0,

i—1

A i>T

Bi=1-— 0 =1
]1;[01+A]'+77j

and
1§ Nk ﬁ Aj i>1
o =1—-— —_ — =1
Bi = 1+ Ak 4 j:k+11+)\j +n;
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follow directly for all ¢ > I. Both the trust-region and entropy constraints become inactive at
the optimum and do not prevent (¢;);cno from reaching the unique optimum p (£, €ent > 0).
Consequently, both Lagrange multipliers will eventually vanish, motivating the existence of some
I € N+, suchthat \;_; =n;_1 =0.
We now show monotonicity of (5;)ien, using (A;)ien, > 0 and (7;)ien, > 0. Let i € Ny be
arbitrary. As a direct consequence of

1—1 %

_ Aj
61+17/817H1+)\j+77j ;

Aj
o LA+

=0

ﬁ# (1_#)
j:01+/\j+17g' 1+ X+

Ajy1m5 20

i—1 .
M ( . > TS0,
14+ X +ny 14+ X+

Jj=0

the sequence (3;)icn, must be monotonically increasing.

Part 3: We now consider the special cases in which only the trust-region constraint or the entropy
constraint is active by setting the Lagrange multiplier sequence of the other constraint to zero.

We first consider only the trust-region constraint (2), which corresponds to setting the Lagrangian
multiplier of the entropy constraint to zero, i.e., n; = 0 for all ¢ € Ny. In this scenario, «; simplifies
to ag = 0 and o;; = 1 for all 4 > 1. Consequently, and using By = 0, the iterates take the form

qi; X 61 = qéiﬁlﬁﬁz (XS N07
as claimed.

Analogously, the trust-region constraint can be rendered inactive by setting A; = 0 for all ¢ € Np,
leaving only the entropy constraint active, corresponding to Eq. (7). In this case, 5y = 0 and 3; = 1

for all + > 1, yielding
~ {QO ’ 1= 07
Qi X qi = ~a;
p

, 121
which concludes the proof. O

Proof of bounded importance-weight variance its effect on the effective sample size. In this section,
we show that using the trust-region constraint yields an approximate lower bound for the effective
sample between any two consecutive distributions ¢; and ¢; 1. This approximate lower bound only
depends on &,

The variance of the importance weights

Gi+1(x) m (f .(@) T with trust-region constraint (2)
Git1\ ) i1 (M) \ @i .
4(@) Zvﬂ(l,\, ) (q_(zgﬂni ) T with trust-region + entropy constraint (9)

between two normalized consecutive distributions is closely connected to the effective sample size
via
1

git1(@))’

1+ Varg, ( (@) )

also explained in App. C.4. The relation Var,, (gi+1(z)/qi(z)) = x*(qi+1|q;) [24] and the well-
known Taylor approximation x2(q;+1/¢;) ~ 2Dkr(qi+1/q:) [26] lets use rewrite the effective sample
size in terms of the KL divergence between ¢;+1 and ¢; yielding

1
ESS iy Qi ~

(43, i+1) 1+ 2Dk (qit+1]q:)

as approximation for the effective sample size. This approximation is justified under the assumption
that g;41 is close to ¢;, a condition that is satisfied by the design of the problem for a small trust-
region bound e, > 0. Due to ¢;4; being the optimal solution to an objective with the constraint

Dxk1.(qlq:) < ety, the constraint must also hold for ¢ = ¢;41 resulting in the approximate lower
bound

ESS(gi, qiv1) =

1
ESS(qi, g 2z —
(qzqu+1) XY 2%

for the effective sample size of the importance weights with equality in all but the last step.

@n
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This approximate lower bound justifies the use of Monte Carlo approximations in Sec. 3, helping to
stabilize training independent of the problem’s dimensionality.

Proof of uniqueness and tightness of the trust-region solution. Closely following [14], we now es-
tablish the uniqueness of the trust-region solution and show that the trust-region constraint is tight for

all but the the final step. Specifically, we show
Dxv(qilp) <ew = ¢i=p
¢; = argmin Dxr,(q|p) s.t.

Dx1.(qlgi-1) < &wr  is unique

If Dk1.(gi || p) < etr, the KKT conditions imply that the Lagrangian multiplier satisfies A; = 0, so
the constraint is inactive. Consequently, g; must solve the strictly convex unconstrained problem

min  Dxkw(q|p),
qeP(RY)

which has the unique minimizer p. Since p is feasible (Dkr,(p|p) = 0 < &4,), it follows that ¢; = p.

Uniqueness of ¢; further follows from the convexity of the feasible set {q € P|Dkr(q|q;) < eu}
together with the strict convexity of the objective in ¢ when p is fixed. O

B Extended numerical evaluation

SYSTEM METHOD TARGET EVALS | NLL | ESS [%] 1t RAM KL | RAM KL w. RW |

FORWARD KL 5 x 10° —213.581+£0.000  (82.16+£0.09) %  (221£0.05) x 1073 (1.99£0.07) x 1073

ALANINE REVERSE KL 2.56 x 108 —213.609 £ 0.006  (94.114£0.21) %  (1.75+£0.28) x 1072 (1.65 4 0.29) x 1072

D ;

(IdPE:PEOD)E FAB 213 x 10° —213.6534+0.000  (94.814+0.04)%  (1.5040.03) x 0%  (1.25 £ 0.01) x 103

TA-BG 1x 108 —213.666 £0.001  (95.77+£0.12) %  (1.94£0.07) x 1073 (1.36 £0.02) x 1073

CMT (OURS) 1x 108 —213.677 £ 0.000 (97.69 +0.03) % (1.49 & 0.02) x 103  (1.41+0.02) x 1073

ALaning  FORWARD KL 4.2 x 10° —330.069 £0.001  (45.290+£0.08) % (226 £0.06) x 1073 (2.50 £0.03) x 1073

TeTra.  REVERSE KL 2.56 x 108 —320.191+0.122  (74.88+3.65)%  (3.00+0.35) x 10! (2.87 £0.40) x 107!
PEPTIDE  FAB 2.13 x 108 —330.100 £0.002  (63.59+£0.23) %  (6.89 +£0.25) x 10~%  (1.25 £ 0.01) x 103

(d=120) TA-BG 1x 10% —330.143 £0.002  (64.874+0.21) %  (2.47+£0.23) x 1073 (1.71£0.07) x 1073

CMT (OURS) 1x 108 —330.167 4 0.002 (68.49 £0.14) % (1.99 £ 0.05) x 10~3  (1.65+0.07) x 1073

ALANINE  FORWARD KL 4.2 x 10° —501.598 £ 0.005  (10.97+0.11)% (416 +£0.26) x 1073 (7.6940.03) x 1073

Hexa.  REVERSE KL 2.56 x 108 —497.378 £0.277  (22.224+1.44)%  (5.41£0.38) x 107* (5.32£0.38) x 107!

PEPTIDE  FAB 4.2 x 108 —501.268 £ 0.008  (14.64+0.08) %  (2.09£0.02) x 1072 (1.1240.02) x 1072
(d=180) TA-BG 4 x 108 —501.582+ 0.010  (15.89+0.13) %  (8.33 £ 0.59) x 10~3 (8.15 4 0.44) x 103

CMT (OURS) 4 x 10% —501.761 £ 0.008 (29.20 +0.24) %  (1.2540.04) x 1072 (1.21£0.01) x 102

gL  FORWARD KL 4.2 x 10° —597.571 £ 0.004  (5.80 £ 0.04) % (41240.03) x 1073 (9.38 +0.06) x 10~3

TeTra. REVERSE KL 2.56 x 108 —583.381+£3.033  (1.25+0.45) % (1.22 4 0.28) x 10° (1.14 +0.31) x 10°

PEPTIDE  FAB 8.43 x 108 —597.370 £ 0.006  (7.30 £ 0.08) % (2.56 £0.10) x 1072 (9.01 £ 0.57) x 1073

(d=219) TA-BG 8 x 108 —597.830 £0.022  (10.124+0.38) %  (7.35+£0.89) x 1073 (7.65 £ 0.59) x 1073
CMT 8 x 108 —598.440 & 0.003 (25.91 +0.19) % (5.74 £ 0.05) x 10~% (5.22 £0.10) x 103

Table 2: Comparison of metrics obtained for all four peptide systems. The table reports the number of target
evaluations (Target Evals), the negative log-likelihood (NLL), the effective sample size (ESS), the average
forward KL divergence to the ground-truth Ramachandran plots (Ram KL) and its importance-weighted version
(Ram KL w. RW.), along with the corresponding system and method. All values are presented as the mean and
standard error across four independent experiments. The best-performing variational method for each metric is
highlighted in bold. Reverse KL was excluded, as it tends to suffer from mode collapse, making ESS values not
directly comparable.

Complementing the results of Sec. 5, this section reports additional metrics for the main method
comparison in Tab. 2 (see also the corresponding Ramachandran plots in Fig. 4), an ablation study
on the effect of both constraints (see Tab. 3 and Fig. 5), and an ablation study on the trust-region
constraint and its effect on bounding importance-weight variance across different system sizes and
trust-region bounds ey, (see Fig. 6).

Main results. We begin with Tab. 2, which introduces two additional metrics (RAM KL and RAM KL
w. RW) to quantify the discrepancy between the ground truth and method-generated Ramachandran
plots. Substantially elevated RAM KL values serve as robust indicators of mode collapse, as
exemplified by the results for reverse KL training, where the RAM KL values are consistently at least
an order of magnitude higher than those observed for other methods. Corresponding Ramachandran
plots for the different methods are shown in Fig. 4.

Ablation study for constraints. Tab. 3 presents the performance of our method under different
configurations, with the trust-region and entropy constraints selectively enabled or disabled. In
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Figure 4: Comparison of Ramachandran plots of backbone dihedral angle pairs obtained with different methods.
See App. C.4 for details.

SYSTEM w TARGET EVALS | NLL | ESS[%]11 % RAM KL | RAM KL w. RW |
TRUST-REGION ENTROPY
ALANINE X X 1x 108 —213.667 £ 0.000 (97.71+0.01) %  (1.50 £0.02) x 107%  (1.50 £0.01) x 1073
DIPEPTIDE v X 1x 108 ~213.673£0.000 (97.46 £0.02) %  (1.52+0.03) x 107 (1.47+0.01) x 1073
(d = 60) X v 1x 10 —213.677 £ 0.000 (97.76+£0.04) %  (1.50 £0.02) x 1073  (1.38 & 0.02) x 103
v v 1x 108 —213.677 £ 0.000 (97.69+0.03) % (1.49 £ 0.02) x 10~3  (1.4140.02) x 107
ALANINE x X 1x 108 —329.787 £0.193  (69.60 £2.20) %  (6.92+3.44) x 1072 (6.64 £ 3.25) x 1072
TETRA- v X 1% 108 —330.154 £0.001  (66.11+0.02) %  (2.08£0.04) x 1072 (2.05£0.04) x 1072
PEPTIDE X v 1x 10 —330.130 £0.003  (63.34 £0.24) %  (2.27+0.04) x 107 (L.77£0.02) x 1073
(d =120) v v 1x 108 —330.167 £ 0.002 (68.49+0.14) % (1.99 £ 0.05) x 10~3 (1.65 £ 0.07) x 10~3
ALANINE X X 4% 108 —499.746 +£0.183  (25.63£1.05) %  (2.52+0.33) x 10~1  (2.55+0.36) x 107"
HEXA- v X 4% 108 —501.322 +£0.232  (33.45+£245) %  (4.21+1.34) x 1072 (4.14 £ 1.40) x 102
PEPTIDE X v 4% 108 —501.333 £0.017  (15.03+£1.00) %  (1.27+0.08) x 1072 (1.39+0.11) x 102
(d = 180) v v 4 x 108 —501.761 £ 0.008 (29.20 +£0.24) % (1.25 4 0.04) x 10~2 (1.21 4 0.01) x 102

Table 3: Performance of CMT with the trust-region and entropy constraints selectively enabled or disabled. For
all metrics except ESS, the best-performing variant is highlighted in bold. % The reverse ESS is only partially
comparable, as training without the entropy constraint led to partial mode collapse on alanine tetrapeptide and
alanine hexapeptide, rendering direct comparisons unreliable. To avoid confusion, no best-performing method is
highlighted in bold for ESS.

addition to the alanine hexapeptide results shown in the main paper, we also report results for
alanine dipeptide and alanine tetrapeptide. The absence of both constraints effectively corresponds to
importance-weighted forward KL training. Considering the NLL, which serves as a forward metric,
it becomes clear that both constraints are necessary to achieve optimal performance. Variants of the
method without the entropy constraint exhibited at least partial mode collapse, rendering the ESS
largely incomparable. Partial mode collapse is further reflected in the RAM KL and RAM KL w. RW.
metrics, which take substantially higher values when the entropy constraint is omitted.

Fig. 5 depicts the evolution of model entropy and the gradient norm (prior to clipping) during
training across different systems. Training with only the entropy constraint yields an approximately

18



572
573
574
575
576
577
578
579
580
581

582
583
584
585

= No constraint == Geometric via (2) === Tempered via (7) === Geometric-tempered via (9)

—140 |- 1 a0l 1 =300 3
2 —160 a
=]
E —250 - =
g 1801 s —400 - 1
i=}
* 0| 4 300 :
—500 - . .
—220 : : : : — | | | | | | | | | | |
200 [ T T T T T T ] T T T T T T 300 [T T T T ]
200 |- =
g 200 - i}
s
Z 100 .
5 100 |- .
E 100 |- |
5
0 L Il Il Il Il Il Il ] 0 L Il Il Il Il Il Il ] 0 L Il Il Il Il Il ]
0 02 04 06 08 1 0 02 04 06 08 1 0 1 2 3 4
Target Evaluations 108 Target Evaluations 108 Target Evaluations 108
(a) Alanine Dipeptide (b) Alanine Tetrapeptide (c) Alanine Hexapeptide

Figure 5: Effect of trust-region and entropy constraint on the model entropy (top row) and the gradient norm
(bottom row) across different molecular systems.

linear decay of entropy for both alanine dipeptide and alanine hexapeptide. In the case of alanine
hexapeptide, however, the entropy constraint is noticeably violated, likely due to the system’s higher
dimensionality and the pronounced discrepancy between the initial model distribution ¢y and the
first intermediate distribution ¢;. Larger system sizes also tend to increase the gradient norm, most
prominently in alanine hexapeptide. The combination of the trust-region and entropy constraints
produces the most stable gradient norms, while the approximately linear entropy decay indicates
that the entropy constraint is effectively enforced, thereby enabling its practical application even in
the case of alanine hexapeptide. By contrast, the trust-region constraint alone leads to a more rapid
entropy collapse, which reduces exploration and ultimately limits the algorithm’s final performance
1n practice.
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T
100 |- - 100 |- - 100 |- B
A
i
5
g 50 - - 50 B
8
g
=
2
E
0 1 of s
| | | | | | | | | | | | | | | | |
0 02 04 06 038 1 0 02 04 06 08 1 0 1 2 3 4
Target Evaluations 108 Target Evaluations 108 Target Evaluations 108
(a) Alanine Dipeptide (b) Alanine Tetrapeptide (c) Alanine Hexapeptide

Figure 6: Importance-weight variance between successive intermediate distributions, shown in terms of effective
sample size (ESS), for different trust-region bounds and system sizes. Each trust-region bound &, defines an
approximate lower bound on the ESS, indicated by dashed lines.

Ablation study on the trust-region bound. Fig. 6 illustrates the importance-weight variance of
CMT across different trust-region bounds and system sizes, highlighting the approximate direct
relationship between the trust-region bound and the variance of importance weights between con-
secutive intermediate distributions. Importance-weight variance is expressed in terms of effective
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sample size (ESS). In the absence of a trust-region constraint (e, = c0), the ESS decreases with
increasing system size. By contrast, finite trust-region bounds yield a substantially larger and more
stable ESS, with the approximate lower bound on the ESS becoming increasingly well realized as
the trust-region bound ¢, decreases. Notably, this approximate lower bound is independent of the
problem’s dimensionality, a property that is empirically supported.

C Experimental setup
C.1 Architecture

Our normalizing flow architecture closely follows the one used in previous works [51, 63, 64]. We
represent the conformations of the studied molecular systems using internal coordinates based on
bond lengths, angles, and dihedral angles.

We use 8 pairs of neural spline coupling layers based on monotonic rational-quadratic splines [31].
The splines map from [0, 1] to [0, 1] using 8 bins. We use a random mask to select transformed and
conditioned dimensions in the first coupling of each pair, and the corresponding inverted mask for the
second coupling. The dihedral angle dimensions are modeled with circular splines [62] to respect
their topology, with a random (fixed) periodic shift applied after each coupling layer. The parameter
networks that calculate the spline parameters in each coupling are fully connected neural networks
with hidden dimensions [256, 256, 256, 256, 256] and ReLU activation functions. To capture their
periodicity, dihedral angles 1); are encoded as (cos 1);, sin 1);) when passing them to the parameter
network.

As the base distribution of the normalizing flow, we use a uniform distribution in [0, 1] for the dihedral
angles and a Gaussian truncated to [0, 1] with mean ;1 = 0.5 and standard deviation o = 0.1 for the
bond lengths and angles.

We follow [64] to map the internal coordinates to the range [0, 1] of the spline transformations:
Dihedral angles are divided by 2. Bond lengths and angles are shifted and scaled as 0} = (1; —
Nizmin)/0 + 0.5, where 7);.min is obtained from a minimum energy structure after energy minimization.
o was set to 0.07 nm for bond lengths and 0.5730 for angle dimensions.

The studied molecular systems have two chiral forms (mirror images), L- and R-chirality, while in
nature, one almost only finds the L-chirality. To constrain the generated molecular configurations
to the L-chirality, we constrain the spline output ranges of the relevant dihedral angles (see [64]
for details). Similarly, some atoms and groups (such as the hydrogen atoms in CH3 groups) are
permutation invariant in the force field energy parametrization, but have a preference in the ground
truth molecular dynamics data due to very large barriers. Similarly to the chirality constraints, we
constrain the splines such that only the permutation found in the ground truth data can be generated
[64].

C.2 Target densities

The goal of all our experiments is to sample molecular systems at 300 K. An overview of the studied
molecular systems, including their force field parametrization, is given in Table 4. We explicitly note
that the largest studied system, ELIL, does not contain capping groups, in contrast to the other three
systems.

The energy evaluations during training were performed with the OpenMM 8.0.0 [33] CPU platform,
using 18 workers in parallel.

Following previous work [51, 64], we use a regularized energy function to avoid large van der Waals
energies due to atom clashes:

E, if £ < Ehigh,
Ereg,(E) = log(E - Ehigh + 1) + Ehigh, if Ehigh <EL Emax, (22)
log(Emax - Ehigh + 1) + Ehiglu if B> Fnax.

We set Eyigh = 1 X 108 and Epu = 1 x 1020 [51].

Ground truth datasets

We use ground truth test datasets obtained from extensive molecular dynamics simulations to calculate
the metrics reported in Table 1.
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NAME SEQUENCE NO. ATOMS FORCE FIELD CONSTRAINTS

AMBER FF96
KNS ACE-ALA-NME 22 WITH OBC]1 NONE
IMPLICIT SOLVATION
AMBER99SB-ILDN
ALANINE HYDROGEN
ACE-3-ALA-NME 42 WITH AMBER99 OBC
TETRAPEPTIDE IMPLICIT SOLVATION BOND LENGTHS
AMBER99SB-ILDN
ALANINE HYDROGEN
HEXAPEPTDE  ACE-5.ALA-NME 62 WITH AMBER99 OBC ;i ROGER

IMPLICIT SOLVATION

AMBER99SB-ILDN
ELIL GLU-LEU-ILE-LEU 75 WITH AMBER99 OBC
IMPLICIT SOLVATION

HYDROGEN
BOND LENGTHS

Table 4: Overview of the molecular systems and corresponding force field parametrization.

1. For alanine dipeptide, we use the ground truth test dataset previously published by [51] [68].
Furthermore, we use the datasets published by [64] as additional validation and training datasets
(for the forward KL experiments).

2. For alanine tetrapeptide and alanine hexapeptide, we use the test, validation, and training datasets
published by [64].

3. To generate ground truth data for the tetrapeptide ELIL, we followed the simulation protocol by
[64]. We performed two replica-exchange molecular dynamics simulations with replicas at 300 K,
332K, 368K, 408 K, 451 K, and 500 K, each using a time step of 2 fs. Each simulation used
200 ns equilibration without exchanges, 200 ns equilibration with exchanges, and 1 ps production
simulation time. One of the simulations was used for the ground truth test dataset, the other
simulation for the training and validation datasets.

For each system, the test dataset contains 1 x 107 samples, and the training and validation datasets
contain 1 x 10% samples.

C.3 Dual optimization in practice

The concavity of the dual functions permits the use of any suitable nonlinear optimization algorithm.
For one-dimensional dual optimization, we employ the bounded Brent method [19], implemented
via scipy.optimize.minimize_scalar [77], which is the library’s default 1D algorithm due
to its robustness and efficiency. A minimal working example on how a Lagrangian multiplier is
estimated is given in Code Example 1. For 2D duals, we use scipy.optimize.minimize with the
L-BFGS-B algorithm [84], one of SciPy’s default quasi-Newton algorithms. There, we additionally
passed the dual gradient function, which we obtained through automatic differentiation. Due to the
constraints A\, n > 0, and to avoid numerical overflow, we bound both optimizers to stay within the
interval [0, 10'°]. The method scipy.optimize.minimize requires an initial guess, which we set
to 1 x 10729, a value chosen to be close to the lower bound.

C4 Metrics

In this section, we present several commonly used metrics for both theoretical analysis and experi-
mental evaluation. For more details, we refer to [15].

NEGATIVE LOG-LIKELIHOOD (NLL)

The negative-log-likelihood (NLL) is a forward metric computed between ground truth samples and
the learned model distribution 4. It is directly related to the forward KL divergence and the evidence
upper bound (EUBO) via

p(z)
Dxw(plg :]Ez[lo ]f log Z
(pla) = Ep(z) & 1(2) ‘Lgl
EUBO B

= _EP(I) [log q(x)] - H(p)
—— had

NLL const. w.r.t.
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Code Example 1: Minimal working example of the dual optimization for objective (2).

import numpy as np
import torch
from scipy.optimize import minimize_scalar

def estimate_log_Z(
model_log_prob: torch.Tensor,
target_log_prob: torch.Tensor,
tr_mul: float,
) -> torch.Tensor:
"""Estimate log-partition function of next intermediate density"""
log_N = torch.tensor(target_log_prob.shape[0]).log()
log_iw = (target_log_prob - model_log_prob) / (1 + tr_mul)
log_Z = torch.logsumexp(log_iw, dim=0) - log_N
return log_Z

def find_best_kl_multiplier(
model_log_prob: torch.Tensor,
target_log_prob: torch.Tensor,
eps_tr: float,
max_multiplier: float = 1el0,
) -> float:
"""Finds the best Lagrangian multiplier by mazimizing the dual”"""
# define dual function (dependent on Lagrangian multiplier)
def dual (tr_mul: float):
log_Z = estimate_log_Z(
model_log_prob=model_log_prob,
target_log_prob=target_log_prob,
tr_mul=tr_mul,
)
dual_value = -(1 + tr_mul) * log_Z - tr_mul * eps_tr
return dual_value.item()

neg_dual = lambda mul: -dual(mul) # concave -> convez

res = minimize_scalar(
neg_dual,
bounds=(0.0, max_multiplier),
method="Bounded"
)
best_tr_mul = float(res.x)
return best_tr_mul

The metrics NLL, EUBO and forward KL therefore only deviate from each other by an additive
constant.

EFFECTIVE SAMPLE SIZE (ESS)
The effective sample size (ESS) is defined as

ESS(a, b) = 1

o a,bE‘P(Rd)
1+ Var,(q) [%}

Closely following the notation of [15], the reverse ESS
Zr
ESS(q,p) = TN
Eq(x) [(s(i)) }
can be directly estimated via Monte Carlo using samples from the model ¢ and the unnormalized
target p.

. with 2, = By {%}
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Following [51, 64], for reverse ESS, we clipped the top 0.01% importance-weights, setting them
to the smallest value among them for numerical reasons. Furthermore, ESS is computed using the
regularized energy function, defined in Eq. (22).

Although forward ESS could be computed using samples from the target distribution, [64] found it to
be extremely sensitive to the chosen clipping threshold and prone to instability. Consequently, only
the reverse ESS was used, even though it may not fully capture phenomena such as mode collapse.

RAMACHANDRAN PLOTS

A Ramachandran plot visualizes the 2D log-density of the joint distribution of a pair of dihedral
angles in a peptide’s backbone. For more details, we refer to [64]. These plots are used to visualize a
peptide’s main degrees of freedom and are likely to show mode collapse if it occurs. A Ramachandran
plot is effectively a histogram of the occurrence of dihedral angles and is computed solely from model
or ground-truth samples.

For alanine tetrapeptide, alanine hexapeptide, and ELIL tetrapeptide, which contain multiple backbone
dihedral angle pairs, we always show the pair exhibiting the most pronounced deviation from the
ground truth, which is the same across methods. Among the four runs made per method in Fig. 4,
we selected the one with the lowest Ram KL value. For Fig. 3, we always selected the run with the
highest Ram KL value to illustrate that variations with fewer constraints are more likely to exhibit
mode collapse.

RAMACHANDRAN KL DIVERGENCE (RAM KL AND RAM KL W.Rw.)

To obtain quantitative estimates of the quality of such Ramachandran plots, we used two metrics,
following the approach of [51, 64]. We computed the forward KL divergence between the Ramachan-
dran plots from ground truth and model samples (RAM KL). For this, we used 100 x 100 bins and
1 x 107 samples. Additionally, we also calculated a reweighted version of the metric (Ram KL
w.Rw.) where the model samples were first reweighted to the target distribution before generation of
Ramachandran plots.

For the larger systems, where more than one Ramachandran plot exists, we reported the average
Ramachandran KL.

C.5 Hyperparameters

Hyperparameters play a crucial role in the performance of all models. Common hyperparameters
include the choice of optimizer, learning rate, batch size, gradient steps, and weight decay. Below,
we provide a description of the hyperparameters for each method, emphasizing any method-specific
choices.

All experiments employed the Adam optimizer [42]. Our implementation builds on the Python
packages bgflow [56], nflows [32], and PyTorch [60]. The number of parameters in the normalizing
flow architecture for each system is summarized in Tab. 5.

Table 5: Number of flow parameters for each system. The number of parameters is completely determined by a
molecular system’s size, as the architecture is the same across all systems.

ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE ELIL
NUMBER OF PARAMETERS 7421512 9452376 12124616 13727952

CMT
We refer to Tab. 6 for the general and method-specific hyperparameters of CMT.
TA-BG

Tab. 7 summarizes the hyperparameters for the pre-training of TA-BG [64] using the reverse KL
divergence.

After pre-training, the temperature is annealed with a geometrically decaying temperature sequence
and the hyperparameters summarized in Tab. 8. The TA-BG experiments on alanine dipeptide and
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HYPERPARAMETERS ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE  ELIL
BATCH SIZE 1000 1000 2000 2000

LEARNING RATE 4x107° 5x107° 5x 107° 5x107°
LR SCHEDULER COSINE COSINE COSINE COSINE
GENERAL GRADIENT DESCENT STEPS 400000 400000 800 000 1600000
WEIGHT-DECAY 1x107° 1x107° 1x107° 1x107°
LR LINEAR WARMUP STEPS 1000 1000 1000 1000
MAX GRAD NORM 100.0 100.0 100.0 100.0
TRUST-REGION BOUND 0.3 0.3 0.3 0.3
ENTROPY BOUND 0.8 1.8 1.4 0.7
I‘S’Ifggg% BUFFER SIZE 500000 500000 1000000 1000000
GRADIENT DESCENT STEPS
PER ANNEALING STEP 2000 2000 2000 2000

Table 6: Hyperparameter settings for CMT (general and method-specific) for all systems.

HYPERPARAMETERS ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE  ELIL
TARGET TEMPERATURE 1200 K 1200 K 1200 K 3000 K
BATCH SIZE 256 256 512 512
LEARNING RATE 1x1074 1x1074 1x1074 1x 1074
GENERAL LR SCHEDULER COSINE COSINE COSINE COSINE
GRADIENT DESCENT STEPS 100 000 100 000 250000 250000
WEIGHT-DECAY 1x107° 1x107° 1x107° 1x107°
LR LINEAR WARMUP STEPS 1000 1000 1000 1000
MAX GRAD NORM 100.0 100.0 100.0 100.0

NO. HIGHEST ENERGY

VALUES REMOVED 10 10 20 20

Table 7: Hyperparameter settings for TA-BG pre-training for all systems.

alanine tetrapeptide used the geometric temperature annealing sequence
1200 K — 1028.69 K — 881.84 K — 755.95 K — 648.04 K — 555.52 K
— 476.22 K — 408.24 K — 349.96 K — 300.00 K — 300.00 K.
Including an additional finetuning step per temperature, TA-BG employs the temperature sequence
1200K — 1028.69 K — 1028.69 K — 881.84 K — 881.84 K — 755.95 K
— 755.95 K — 648.04 K — 648.04 K — 555.52K — 555.52 K — 476.22K
— 476.22 K — 408.24 K — 408.24 K — 349.96 K — 349.96 K — 300.00 K — 300.00 K

on alanine hexapeptide. On ELIL, reverse KL pre-training suffers from mode-collapse at 1200 K.
Therefore, the temperature annealing starts at 3000 K, resulting in the temperature sequence

3000.00K — 2573.09K — 2573.09K — 2573.09K — 2206.93 K — 2206.93 K
— 2206.93 K — 1892.88 K — 1892.88 K — 1892.88 K — 1623.52 K — 1623.52K
— 1623.52K — 139249 K — 139249 K — 1392.49K — 1194.33 K — 1194.33K

— 1194.33 K — 1024.37K — 1024.37K — 1024.37K — 878.60 K — 878.60 K

— 878.60K — 753.57K — 753.57TK — 753.57TK — 646.34 K — 646.34 K

— 646.34 K — 554.36 K — 554.36 K — 554.36 K — 475.48 K — 475.48 K

— 47548 K — 407.81 K — 407.81 K — 407.81 K — 349.78 K — 349.78 K
— 349.78 K — 300.00 K — 300.00 K.

HYPERPARAMETERS ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE ELIL
BATCH SIZE 2048 4096 2048 2048

-6 -5 -6 -6
GENERAL LEARNING RATE 5c>(<)511(1)\1E 1x10 5x 10 5x 10

LR SCHEDULER (PER TEMPERATURE STEP) B B N
GRADIENT DESCENT STEPS 300000 200000 360000 600 000
BUFFER SIZE 7440000 7440000 15111111 22400000
METHOD-  BUFFER RESAMPLED TO 2000000 2000000 2000000 10000 000

SPECIFIC  GRADIENT DESCENT STEPS

PER ANNEALING STEP 30000 20000 20000 20000

Table 8: Hyperparameter settings for TA-BG (general and method-specific) for all systems.
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717 FAB

718 The used hyperparameters for FAB [51] can be found in Tab. 9. Furthermore, we used a step
719 size of 0.05 for the Hamiltonian Monte Carlo [30] transitions. For details on the method and its
720 hyperparameters, we refer to [51].

HYPERPARAMETERS ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE  ELIL
BATCH SIZE 1024 1024 1024 2048
LEARNING RATE 1x1074 1x 1074 1x1074 2x 1074
LR SCHEDULER COSINE COSINE COSINE COSINE
GENERAL GRADIENT DESCENT STEPS 50000 50000 50000 25000
WEIGHT-DECAY 1x107° 1x107° 1x107° 1x10°°
LR LINEAR WARMUP STEPS 1000 1000 1000 1000
MAX GRAD NORM 1000.0 1000.0 1000.0 1000.0
METHOD- NoO. INTERMED. DIST. 8 8 8 16
SPECIFIC No. INNER HMC STEPS 4 4 8 8

Table 9: Hyperparameter settings of FAB (general and method-specific) for all systems.

721 Forward and Reverse KL

722 This section reports the used hyperparameters for training with the forward KL divergence on MD
723 data (Tab. 10) and the hyperparameters for training with the reverse KL divergence (Tab. 11). A
724  description on how the MD data was obtained can be found in App. C.2.

HYPERPARAMETERS ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE  ELIL
BATCH SIZE 1024 1024 1024 1024
-5 -5 —5 -5
GENERAL LEARNING RATE 5x 10 5% 10 5x 10 5% 10
LR SCHEDULER COSINE COSINE COSINE COSINE
GRADIENT DESCENT STEPS 100 000 100000 120000 140000

Table 10: Hyperparameter settings of forward KL training using MD data for all systems.

HYPERPARAMETERS ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE  ELIL
BATCH SIZE 1024 1024 1024 1024
LEARNING RATE 1x107* 1x107* 1x107* 1x1074
LR SCHEDULER COSINE COSINE COSINE COSINE
GENERAL GRADIENT DESCENT STEPS 250000 250000 250000 250 000
WEIGHT-DECAY 1x107° 1x107° 1x107° 1x 1075
LR LINEAR WARMUP STEPS 1000 1000 1000 1000
MAX GRAD NORM 100.0 100.0 100.0 100.0

NO. HIGHEST ENERGY

VALUES REMOVED 40 40 40 40

Table 11: Hyperparameter settings of reverse KL training for all systems.
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