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The notion of multivariate total positivity has proved to be useful in fi-
nance and psychology but may be too restrictive in other applications. In
this paper we propose a concept of local association, where highly connected
components in a graphical model are positively associated and study its prop-
erties. Our main motivation comes from gene expression data, where graphi-
cal models have become a popular exploratory tool. The models are instances
of what we term mixed convex exponential families and we show that a mixed
dual likelihood estimator has simple exact properties for such families as
well as asymptotic properties similar to the maximum likelihood estimator.
We further relax the positivity assumption by penalizing negative partial cor-
relations in what we term the positive graphical lasso. Finally, we develop
a GOLAZO algorithm based on block-coordinate descent that applies to a
number of optimization procedures that arise in the context of graphical mod-
els, including the estimation problems described above. We derive results on
existence of the optimum for such problems.

1. Introduction and summary. It has been illustrated recently in a number of publi-
cations that explicitly incorporating positive dependence constraints can be useful for mod-
elling in various contexts where components are naturally positively associated (e.g. finance
or psychology) [33, 1, 17, 34, 46]. The main distinctive feature of this line of work as op-
posed to more classical literature on positive dependence is that they link to techniques used
in high-dimensional statistics and graphical models using the positivity constraint as an im-
plicit regularizer.

In the Gaussian case, a natural positivity constraint is that all partial correlations are non-
negative or, equivalently, the inverse covariance matrix is an M-matrix, (Efl)ij < 0 for all
1 # 7. Optimizing a loss function under this restriction typically results in a sparse estimate,
which was the driving idea in [46]. For standard stock market datasets this may lead to an
estimate that gives both a sparser graph and a higher value of the likelihood function than
estimates from the graphical lasso approach [45].

Although useful, this global positivity constraint is often too restrictive. In this paper we
propose and study natural relaxations of the condition. With an underlying graph represent-
ing the dependence structure between the variables, we will require that highly connected
components are positively dependent, in the precise sense that variables in the same clique
are associated [16], which in the Gaussian case is equivalent to having a covariance matrix
with positive entries [42]. Unfortunately, maximum likelihood estimation (MLE) in this type
of model is problematic as the likelihood function may get complicated. The model is an in-
stance of what we term a mixed convex exponential family. We develop an associated mixed
dual estimator (MDE) which overcomes the problems faced by the MLE. The MDE can be
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found by solving two convex optimization problems, and has asymptotic properties similar
to the MLE. We note that Maliutov et al. [38] suggest a different relaxation of the MTP;
condition, unrelated to ours.

In this situation, when the underlying graph is not known, we also consider a further relax-
ation of local association through what we name the positive graphical lasso which penalizes
large negative partial correlations. As for the now classical graphical lasso, this will typically
identify a sparse structure.

1.1. A motivating example. A motivating problem is the exploratory analysis of gene
expression data. The graphical lasso has become a standard technique for estimating gene
expression networks. While constructing and interpreting the network, researchers often fo-
cus on positive co-expression (e.g. [40]), where pairs of genes show a proportional expres-
sion pattern across samples. Also, in various scenarios it has been observed that positively
co-expressed genes within the same pathway tend to cluster close together in the pathway
structure, while negatively correlated genes typically occupy more distant positions; see e.g.
[29, 52]. We shall later, in Section 9.2 analyse publicly available microarray expression data
profiling umbilical cord tissue in a study of fetal inflammatory response (FIR); cf. [11, 12].
From an initial set of 12,093 genes with reliable expression, Costa and Castelo [12] iden-
tified 1,097 as differentially expressed between FIR-affected and unaffected infants, from
which 592 were upregulated in FIR. This subset of 592 upregulated genes was significantly
enriched by 136 genes involved in the innate immune response ([7]) and we shall focus our
analysis on this subset of 136 genes.

A typical approach to explicitly model positive co-expression is by building weighted gene
co-expression networks where correlations are mapped monotonely from [—1,1] to [0, 1] and
then thresholded. This approach is subject to standard problems with building co-expression
networks based on correlations alone not taking the effect of other genes into account. Our
approach is based on partial correlations and so may provide more meaningful estimates of
the underlying network.

1.2. An optimization algorithm. An important first step in modelling large systems that
satisfy some positive dependence constraint is to reduce to a sparser representation without
loosing the positive dependence information. In this respect, ¢;-regularized approaches do
not work well, since they treat positive and negative partial correlations in an equal manner.
In this paper we propose a version where only negative partial correlations are penalized.

This approach is developed further in a general GOLAZO! algorithm (Graphical Oriented
LAZy Optimization) where a penalty of the form

> max{L;; K, Uy Ki;}

i#]
is employed to obtain sparse estimation of K = X ~!. Here the penalty parameters L, U sat-
isfy —o0 < L;; < 0 < U;j < +00; including zero and infinite values solves several optimiza-
tion problems proposed in this paper and a number of related problems in graphical models.

The advantage of our general approach is that it provides a detailed analysis of convergence
and existence of the optimum.

1.3. Main contributions and structure of paper. The main contributions in this paper are

(i) A class of Gaussian graphical models with relaxation of positivity restrictions, either via
a graph or via a positive lasso-type penalty, or both;

!Pronounced goh-lah-soh, like the Spanish word golazo but without the Castilian lisp.
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(i) A general framework for mixed convex exponential families with an associated method
of estimation that has asymptotic properties similar to maximum likelihood but more
favourable computational properties;

(iii) The GOLAZO algorithm for solving a range of estimation problems associated with
graphical models, including positivity restrictions. The associated R package golazo is
available on GitHub.

The structure of the paper is as follows. In Section 2 we study the basic properties of locally
associated distributions and discuss their relation to other models involving positivity. Sec-
tion 3 introduces and studies mixed convex exponential families. The mixed dual estimator
is introduced in Section 4 and applied to locally associated Gaussian graphical models (laG-
GMs) in Section 5. The asymptotic properties of the estimator are established in Section 6.
In Section 7 we focus on learning the structure of a laGGM and introduce the positive graph-
ical lasso for this purpose. We derive the GOLAZO algorithm in Section 8 and argue that a
number of optimization problems in graphical models can be seen as special instances and
hence solved by this algorithm. Section 9 concludes the paper by applying the methodology
to two datasets.

2. Locally associated distributions. In this section we define local association and lo-
cally associated Gaussian graphical models linking to other relevant statistical models.

2.1. Definition and basic properties. We say that a function f : R — R is increasing
if x < 2’ (coordinatewise) implies that f(x) < f(z'). A d-dimensional random vector X
is (positively) associated if for any two increasing functions f, g : R* — R, the covariance
V(f(X),g(X)) is non-negative; for basic properties of this notion see [16].

In general, association is hard to check and [26] introduced the strictly stronger notion
of multivariate total positivity which in the Gaussian case is equivalent to the covariance X
being an inverse M-matrix [27, 33]. We recall that K = ¥~ is an M-matrix if it is positive
definite and K;; < 0 for all ¢ # j; so this condition corresponds to assuming that all partial
correlations are non-negative.

In the Gaussian case there is a simple condition for association, as stated in the theorem
below:

THEOREM 2.1 (Pitt [42]). Suppose X is a Gaussian vector with covariance matrix 2. It
then holds that X is associated if and only if ¥;; = 0 for all i, j.

Positive semi-definite matrices with non-negative entries are also called doubly non-
negative matrices. If 3 is an inverse M-matrix, then it is doubly non-negative, but the reverse
implication does not hold.

The requirement that a distribution is associated is strong and we wish to relax this in rela-
tion to a local structure given by a graph. We build on the standard terminology for undirected
and directed graphs as given, for example, in [35]. If G = (V, F) is an undirected graph with
vertex set V = {1,...,d} and edge set F, a complete subset of G is any subset C of V' such
that any two vertices ¢, j € C' are connected by an edge, that is, ¢j € E. A clique is a complete
subset that is maximal with respect to inclusion. Let X = (X7,..., X;) be a random vector
and fix a graph G = (V| E). For any C < V, by X denote the subvector of X with entries
Xi, ieC.

DEFINITION 2.2. The random vector X is said to be locally associated w.r.t. G if it holds
for any clique C' of G that the subvector X¢ is associated.



Denote by A(G) the set of covariance matrices of Gaussian vectors that are locally asso-
ciated with respect to G. By Theorem 2.1 these are the positive definite matrices 3 such that
>;; = 0 for all edges ij € E.

2.2. Locally associated Gaussian graphical models. Our main interest lies in locally
associated distributions for Gaussian graphical models. We say that a distribution of a random
vector X is Markov with respect to G, or M (G), if X satisfies global Markov properties over
the graph G; for more on graphical models see [35]. A Gaussian vector X with covariance
matrix ¥ is Markov with respect to G if (X71);; = 0 for all ij ¢ E(G). The distributions
that are Markov and locally associated with respect to G are denoted by M, (G). We refer
to M (G) as a locally associated Gaussian graphical model (locally associated GGM). By
definition we have

M, (G) = A(G) n M(G).

The set of locally associated Gaussian distributions that are Markov with respect to a graph
is given as the intersection of a set that is convex in K with a set that is convex in .. The
intersection is typically neither convex in K nor in X but a locally associated GGM is an
instance of what we shall term a mixed convex exponential family; see Section 3 below.

2.3. Positive linear systems and factor models. 1In this section we link locally associ-
ated Gaussian graphical models to a broad class of models that includes, for example, factor
analysis models with non-negative loadings.

Recall that a Gaussian model over a directed acyclic graph (DAG) D has the linear struc-
tural representation

Y, = Z)\inj—kei forallieV,

where (e1,...,€q) is a mean-zero vector of Gaussian independent noise terms and \;; € R.
Write M (D) for the class of all such distributions parameterized by A = [\;;] and the vari-
ances of ¢;. Moreover, M (D) denotes the subset of M (D) where A > 0, i.e. where all
regression coefficients are non-negative.

PROPOSITION 2.3. Suppose that the distribution of a zero-mean Gaussian Y lies in
M (D). Then'Y is associated and so is each margin of Y.

PROOF. Since (I —A)Y =ethen V(Y) = (I — A)~'Q(I — A)~T, where Q is a diagonal
matrix with the variances of € on the diagonal and (I — A) being invertible by acyclicity of D.
Since (I —A)™' =T+ A+A%+...and A > 0 we conclude that V(Y") has only non-negative
entries. This concludes the proof. 0

Proposition 2.3 shows that associated distributions contain the interesting family of posi-
tive DAG models M, (D), potentially with some nodes unobserved. Factor analysis models
with non-negative loadings form a particular instance of margins of DAG models of the form
M, (D). Recall that the factor analysis model IFq  is the family of multivariate Gaussian dis-
tributions with an arbitrary mean and whose covariance matrix ¥ is of the form ¥ = A+ AA”
with a positive diagonal matrix A and A € R%**. We write IE‘:{S if the loading matrix A is re-
stricted to have non-negative entries. 7

One of the standard arguments for why MTPs distributions may be useful in statistical
modelling is that they contain the one factor model with non-negative loadings, F:{,r This
observation and the corresponding link to the Capital Asset Pricing Model was used in [1]



LOCALLY ASSOCIATED GRAPHICAL MODELS 5

to argue why MTP, distributions are particularly suitable for modelling financial data. How-
ever, it is easy to show by explicit examples that distributions in [} + . for s > 1 need not be
MTP;. In this context, the fact that all of them are (globally) ass001ated may provide use-
ful regularization procedures in applications where factor analysis models with non-negative
loadings are expected to perform well; see Section 9 for some evidence.

2.4. Gaussian distributions and Gaussian copulas. Since association is preserved af-
ter applying a strictly increasing function ¢; : R — R to each X, our definition of local
association naturally extends to Gaussian copula models, as in Proposition 2.4 below. A d-
dimensional random vector Y has a non-paranormal distribution if there exist strictly increas-
ing functions ¢; : R — R for ¢ = 1,...,d such that the vector ¢(Y) := (¢1(Y1),...,04(Ys))
has a Gaussian distribution.

PROPOSITION 2.4. If G = (V, E) is an undirected graph and Y has a non-paranormal
distribution then Y is locally associated with respect to G if and only if ¢(Y') is in A(G).
Moreover, Y is Markov with respect to G if and only if ¢(Y') is

3. Mixed convex exponential families. It is useful to see locally associated Gaussian
graphical models as a special case of a more general type of models. Consider a random
variable X with values in a general state-space X'. Suppose that the distribution of X is in
a minimally represented regular exponential family £ = {Pp | @ € ©} with canonical statistic
t: X — R* and canonical parameter 6. This means that the density function p(x; @) of the
distribution Py with respect to some underlying measure v on X takes the form

(1) p(x;0) = exp{(0,t(x)) — A(0)} for@e O,
where v{z : (A, t(x)) = ¢} = 0if A # 0. The space of canonical parameters

O = {oeR’“;Lepret »}r(de) <oo}

is an open set in R¥ and the cumulant function A : © — R is strictly convex and smooth. The
map 4 between canonical parameter 8 € © and the mean parameter p € M satisfies

u(0) = VA(O)

and establishes a bijection between © and M. Moreover, M is the interior of the convex hull
of t(X); see any of the references [5, 8, 49] for more details. The inverse map is denoted by
0, that is, @ = 0(p).

Suppose we split the sufficient statistics into two subvectors ¢(x) = (u,v) of dimension
r,s where r + s = k. Let 0 = (0,,60,), p = (w,, 1,,) be the corresponding splits in the
canonical and in the mean parameter. In analogy with g = 1(0), we also use the notation
1 (0) = oy, 110(0) = oy, 0 (1) = 0y, and 6, () = 6,,. For example, 11,,(0) is the composi-
tion of 1 : © — M with the projection (f,,, ft,) — fb,,-

By [5, Theorem 8.4], the pair (u,,,6,) forms an alternative parametrization for the expo-
nential family & called the mixed parametrization. The parameters p,, and 6, are variation
independent, that is, the parameter space for (,,, 8,,) is the Cartesian product space M,, x O,
where O, is the projection of © on 8, and M, is the projection of the space of mean param-
eters M onto p,,. So we may without ambiguity write

£={Po|0€O) = {Pulpe M} = (P o, 1, € My, 6,0,

We may thus consider the model £ obtained from £ by a convex restriction on p,, and a
convex restriction on 6,,. More precisely, we define:



DEFINITION 3.1. Fix a mixed parametrization (u,,,0,) € M, x O, of the exponential
family £. The model £’ is called a mixed convex submodel of £ and a mixed convex exponen-
tial family if it consists of all mixed parameters (u,,,0,) € M|, x ©!, where M/ and ©/ are
convex and relatively closed subsets of M, and ©, respectively. We say that £’ is a mixed
linear exponential family, if both of M, and ©/ are given by affine restrictions.

It is useful to introduce the following notation:
(2) C, ={peM: p,eM,}, C, =1{0€0: 0,0}

The mixed convex exponential family is then given as an intersection &' =&, n &, € &,
where &, = {P,|p e C,} and &, = {Py|0 € C,} (one model is convex in the mean
parametrization and the other is convex in the canonical parametrization). Note that these
restrictions are also variation independent so that

&= {P(u.u,@u) ’ll/ €Cy,0¢€ Cv} = {P(p,u,@v) ‘ (ngv) € Mz/L x @;}

We now discuss a few examples of this. Recall that the family of multivariate Gaussian dis-
tributions with zero mean and unknown covariance matrix X is indeed a regular exponential
family with inner product (A, B) = tr(AB) and

1
t(x)=—zx'/2, 6=K, p=-%/2, A(K):—ilogdet]{-

The space of canonical parameters is the cone of positive definite matrices and the space of
mean parameters is the cone of negative definite matrices.

EXAMPLE 3.2. Fix a graph G = (V, E) on d vertices V = {1,...,d} and consider the
family of d-variate mean zero Gaussian distributions. We split the sufficient statistics into
u = (—2;%;/2)ijer and v = (—z;2;/2);j¢r. The diagonal entries —z7/2 are included in
w. Then p,, = (—%;;/2)ijer and 0, = (K;;)ij¢r. We may consider a mixed convex family
given by p,, < 0 and 8, = 0. These are precisely the locally associated Gaussian graphical
models discussed in Section 2.2.

Mixed convex exponential families enable easy formulation of other relevant models en-
coding positive dependence in Gaussian distributions:

EXAMPLE 3.3. With the set-up as in Example 3.2, we alternatively split the sufficient
statistics into w = (—x;2,;/2)j¢r and v = (—x;2;/2);jep. The diagonal entries are now in-
cluded in v. Then p,, = (—%;;/2)ij¢r and 0, = (K;;)ijer. We may consider a mixed convex
family given by p,, < 0 and 0, < 0. Here cliques in the graph correspond to subsystems char-
acterized by a strong notion of positive dependence (all partial correlations nonnegative) or,
in other words, the conditional distribution of variables in a clique given the remaining vari-
ables is MTP,. Otherwise the system is weakly positively dependent (positive correlations).

An example of a mixed linear model can be easily motivated by causal analysis [41],
where zero restrictions on some entries of 3 correspond to marginal independence and zero
restrictions on K correspond to conditional independence. Models of this form fit our general
set-up:

EXAMPLE 3.4. Given a graph Goy, called the covariance graph, over V' = {1,...,d},
we define the corresponding covariance graph model B(G oy ) given by all covariance matri-
ces that satisfy >J;; = 0ifij ¢ & (Gcov). Given the covariance graph G,y and the concentra-
tion graph Gon We want to understand the intersection B(Gcoy) N M (Geox ). In the special
case when ij ¢ F(Gcon) implies ij € E(Gcov), the corresponding model is a mixed linear
model. Models of this type were studied in detail in [28], see also [6, 14, 41].
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EXAMPLE 3.5. Recently [13] discussed the problem of testing equality of mean zero
d-variate Gaussian distributions under the assumption that they lie in a fixed graphical
model over the graph GG. So suppose that X,Y are independent Gaussian with covariance

,gjl.)72§j2-))ijeE for the mean part and
(K i(jl), K z‘(jQ))ije-f g for the canonical part. The mixed linear model which assures that both dis-

tributions are equal is given by ES) = 25]2-) forall ij € ' and Ki(jl) = KZ(JQ) =0forallij¢ F.

matrices X(1), ¥(2). Here the mixed parameters are (X

Although the Gaussian case is our focus here, there are interesting examples beyond this
case.

EXAMPLE 3.6. Consider discrete random variables X and Y taking values in § =
{0,1,...,k} and let p,y, = P(X = ,Y =y) with p,y, > 0 for all 2,y € S. This specifies
a regular exponential family with canonical parameters

Ay, x,y€Sand (z,y) # (0,0)
where
Azy = log pey —log poo
and so A\gg = 0. The corresponding sufficient statistics are t = (¢,,) where
tay (@ y) = Ly (@ 3)

and the corresponding mean parameters are p,,, for (z,y) # (0,0). We will consider a linear
transformation of the canonical parameters and sufficient statistics into

ny = >\a:y - >\x0 - )\0y7 T,Y€E S\{O}, ‘91‘0 = )\x()a QOy = >\0yu T,Y€e S\{O}

with corresponding sufficient statistics

o 2y €SO} tor = 3ty 7€ SO}ty = 3,y S\{O).

yeS zesS

This exponential family may thus be mixed parametrized with the marginals

Ha+ = Pa+ = E{thr(XaY)} = meya T e S\{O},

oty =Pty = E{t1y(X,Y)} = Zpa:ya ye S\{0}

and the interactions
Oy, z,y € S\{0}.
We may then consider the hypothesis of marginal homogeneity ([31]), i.e.
3) Dt =pyg forallzeS
in combination with the distribution being MTPs; the latter is equivalent to the condition
4) Oy + Opry — Opyy — Oy >0 forallz > 2" andy > /.

The restriction (3) is convex (in fact linear) in the mean parameters and (4) is convex in 0,
so these restrictions jointly specify a mixed convex exponential family.



Another alternative would exploit that categories are ordered and for example specify that
pi+ 1s stochastically smaller than p; i.e.

J J

Z Dot < Zpﬂ, forall je &,
=0 y=0

yielding a convex restriction also on the mean parameters; see [2] and [3] for further details

of this model.

The mixed parametrization can be naturally used in discrete exponential families when the
mean vector is regressed via a link function on some covariates and the remaining canonical
parameters are used to handle higher order interactions. Similar ideas emerge for models with
restrictions on marginal and conditional distributions; see e.g. [19] and [22].

4. Estimation in mixed convex exponential families. Since mixed convex models are
not necessarily convex exponential families (given by convex constraints on 8 only), maxi-
mum likelihood estimation leads in general to non-convex optimization problems that may
have many local optima. In this section we propose a simple alternative approach leading to
two convex optimization problems. In Section 6 we will show that, asymptotically, the re-
sulting estimator has the same asymptotic distribution as the MLE up to the first order in the
sense that the difference between the estimators converges in probability to zero, even after
multiplying with y/n.

4.1. Likelihood and its dual. Before we present our optimization procedure, we quickly
recall the definition of the dual likelihood function; cf. Chapter 6 in [8]. Given a random

sample X ('1), ..., X of size n from the exponential family £ in (1), denote t = ¢, =
i t(X () /n. The log-likelihood function is a strictly concave function of @ given as
&) g(ea t) = <07 t> - A(a)a

where we here and in the following have suppressed the index n as we are not yet considering
the asymptotic behaviour. Since

VUO:t) =t — VAO) =t — (),

the unconstrained optimum based on data ¢ is the parameter 6 for which the mean parameter
1(0) is equal to t; in other words, this is §(t) and is well-defined if ¢ € M. In what follows we
ignore that ¢ comes from data and write £(0; ), where p is a general point in the topological
closure M of the space of mean parameters.

The Fenchel conjugate of the cumulant function A is the function

A*(p) = sup{l(Q; p) : O e R},

The function A* is convex as a supremum of linear functions and indeed strictly convex. The
unique optimizer of the log-likelihood is (), so

(6) A*(p) = €(0(pn); ) = O(p), 1y — A(O(p))

implying in particular that A* is smooth, i.e. infinitely often differentiable, since ¢ and A are
both smooth. For any fixed 0, the function

) 0(1;0) := (0, p) — A*(p)
is a strictly concave function of p € M called the dual log-likelihood function. Analogously
to the log-likelihood function, ¢ satisfies

Vil(p;8) = 0 -V, A* () = 6 —0(p),
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which follows by composite differentiation in (6) since p(6(p)) = p and thus
VuA* () = 0(p) + Vuo(p) - o — Vu0(p) - 1(0(p)) = 0(p).

Consider two distributions in &£, one with the mean parameter £¢; and the other with canon-
ical parameter 05. The Kullback—Leibler divergence ([32]) between these two distributions
is
(8) K(py,02) = —(py,02) + A% (1) + A(62),

which follows directly from Proposition 6.3 in [8] and the definition of A*(u;). The
Kullback—Leibler divergence is well defined and nonnegative over M x ©. Moreover,
K (p,,602) =0 if and only if p; = p(62). We will extend the definition of K(-, ) to all
R* by semicontinuity; cf. [8, p. 175]. Then K (u,8) may be well-defined even if p does not
lie in the space of mean parameters but in its closure.

The reason to express the Kullback—Leibler distance in terms of p; and 65 rather than
01, 0> (as usually done in the literature) is that we wish to exploit the following basic result.

PROPOSITION 4.1.  The Kullback—Leibler divergence K(p,,02) is strictly convex both
in py and in 9.

PROOF. This follows dicrectly from (8) and the fact that both A(#) and A* () are strictly
convex functions O

REMARK 4.2.  Minimizing K(t, 8) with respect to & with ¢ fixed is equivalent to maxi-
mizing £(0;t) in (5). Similarly, minimizing K(u, 0) with respect to p with 0 fixed is equiv-

alent to maximizing the dual log-likelihood ¢ ( w;0) in (7).

4.2. The mi)ged dual estimator. Recall the definition of the sets C,,,C,, in (2) and that
t=>" t(X®)/n. We propose the following two-step procedure to estimate the mixed
parameter (u,,, 0,) in the mixed convex family £’ from data ¢:

(S1) First minimize K(t,0) over 8 € C,, < ©. Denote the unique optimum, assuming it
exists, by 6.
(S2) Then minimize K(u, ) subject to p € C,, M. Denote the unique optimum by fi.

We shall term our estimator fi the mixed dual estimator (MDE) and show below in Theo-
rem 4.5 that indeed P, € E'. By Proposition 4.1, both steps (S1) and (S2) rely on solving a
convex optimization problem. Note that the optimum in (S1) is the MLE under the convex
exponential family given by 8 € C, (cf. Remark 4.2). This MLE may not exist (if ¢ lies on
the boundary of the space of mean parameters) but we have the following:

PROPOSITION 4.3.  If the optimum 0 in (S1) exists then it is unique and the optimum [i
in (S2) exists and is unique too.

PROOF. Suppose that the optimum in (S1) exists. Uniqueness follows by strict convexity.
Note that (S2) is equivalent to the maximization of the dual likelihood 0 (e, 0) over all pe Cy,.
Let M = {p: A*(pn) < oo}, which contains M but is typlcally bigger, M < M < M where
M is the topological closure of M. Let S be the closure (in M ) of C,,. Since C, is relatively
closed in M, the only extra pomts are those in M \M Now, by Theorem 6.13 in [8], the

fact that 6 € © implies that ¢ (p,, 0) attains an optimum over S and the optimum is uniquely
attained in .S n M = C,,. In particular, the optimum in (S2) exists. (Note that the extra points
we added to the model played only an auxiliary role in this proof.) O
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REMARK 4.4. Let t = (u,v). Theorem 4.5 below implies that u € M, is a necessary
condition for 6 to exist.

Our main result of this section shows that after the steps (S1) and (S2), we indeed obtain
a point in the mixed convex family &’.

THEOREM 4.5. Let t = (u,v) and suppose that 6 in step (S1) exists. Then, uu(a) =
u € M, and in step (S2) we get that 0,,(f1) = 0.,. In particular, after steps (S1) and (S2), the
optimum [1 represents an element in the mixed convex family &’.

PROOF. If the optimum 6 € C,, in  step (S1) exists then, by convexity of K(t,0) and of
C,, it must satisfy (Vg K(t, 0) 0 — 0> > 0 for all @ € C,,. Since © is an open set, a small

perturbation @ + 7 also lies in ©. If, in addition, 7, = O then this perturbation lies in C,,.
Thus, for any sufficiently small vector 7 € R¥ such that 7, = 0, we must have

(VoK(t,0), )= puy(0) — u,7,) = 0.

Since T, is small but otherwise arbitrary, this is only possible if uu(a) = u, which proves
the first part of the theorem.

The second part is proved in the same way: In step (S2), the optimum gz exists and is unique
by Proposition 4.3. By convexity of K(u, 0) the optimum satisfies (V, K(u, 9) p—py=0
for all p € C,,. Since [ is an interior point of M, a small perturbation /i + 7 also lies in M
and, if T, = 0, it also lies in C',. For any such perturbation, we necessarily have

(V0 K(,8),7) = (0,(J) — B, 70) > 0.

Since T, is small but otherwise arbitrary, this is only possible if 8, (f1) = 0,. O

REMARK 4.6. In principle, we may interchange the order of optimization with respect
to 6 and p by starting from 0(t) and running Step (S2) first. However, if ¢ does not lie in the
space of mean parameters (but in its closure) 6(t) is not well-defined. Here we exploit that 0
might exist even if ¢ is on the boundary of M due to the additional convex restriction € € C,,.

REMARK 4.7. Note that when C), is given by affine constraints, the first step just corre-
sponds to reducing data by sufficiency; then the MDE is simply the dual likelihood estimate
(DLE), studied by [8, 10, 15] and used extensively by [30]. This provides, for example, a
straight-forward way to test equality of distributions in Example 3.5 because the likelihood
ratio statistics based on the dual likelihood has asymptotically the same distribution as the
standard likelihood ratio statistics, cf. [10, Theorem 3.3].

5. Estimating Gaussian locally associated distributions. As mentioned in Section 2.2,
a locally associated Gaussian graphical model M (G) is determined as

M, (G) = A(G) A M(G)

and thus it forms an instance of a mixed convex exponential family since A(G) is convex
in ¥ and M(G) is convex in K and the restrictions refer to distinct parts of the canonical
statistic and parameters; see Example 3.2 for details.
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5.1. The Gaussian log-likelihood. ~Given the data X € R™*¢ with independent rows dis-
tributed as N (0, £*) our goal is to estimate ¥*. Let S = X7 X /n be the sample covariance
matrix. The Gaussian log-likelihood (ignoring a multiplicative constant n) is

©) oK) — %logdet(K)—%tr(SK).

Note that here and elsewhere we ignore the multiplicative constant n in the log-likelihood
function. Recall that for the Gaussian family

tix)=—xx'/2, =K, p=-%/2, AK)-= —%logdet K.
The unique optimizer of £(K) is S~! and so
A*(—3/2) — —%logdet(E) fg
and thus the Kullback—Leibler divergence as above becomes

1 1
K(_El/2,K2) = §t1‘(21K2 — I) — §10gdet(21K2).

5.2. The mixed dual estimator. We consider now the mixed dual estimator MDE as de-
veloped above - in this case equivalent to the dual likelihood estimator, since the first step is
just estimation in the standard graphical model given by edge restrictions on K (see e.g. [35,
Section 5.2.1]).

The second step corresponds to the following convex optimization problem:

(10) mi%inéize —logdet() + tr(TK)
>
subject to Y =0forall ij e E(G),

where, as before, K is the MLE of K in the linear exponential family M (G). Note that
we ignore the Markov constraint on X that would destroy convexity of this problem. As
shown in Theorem 4.5 above, the Markov constraint becomes automatically fulfilled in the
optimization. The Lagrangian for this problem is

L(Z,A) = —logdet $ + tr(SK) — tr(SA) = —logdet & + tr(S(K — A))

where A is a symmetric matrix with diagonal equal to 0, A;; = 0 unless ij € E(G), and
A;j = 0. The Lagrangian is mimimized in X for fixed A by the matrix X* given as

(11) S* = (K —A)!

and complementary slackness implies for the optimal A = A* that

SHAN =0, ijeE

or, equivalently,
S5(Ky — K5) =0, ijek.

Note that it follows directly from (11) that ¥* € M (G) if SeM (G), conforming with The-

orem 4.5 and hence ©* = Y is in fact the MDE we are looking for. In summary, we have the
following:

THEOREM 5.1.  Ifthe MDE » of ¥ under M (G) exists, it is given as the unique positive

definite solution to the following system of equations and inequalities, where K = Y1 and
K=x"1



Vll) i’t](K’LJ — [\{vlj) = 0, Z] € E(G)

Note that the equations (ii), (iii), and the last part of (iv) are equatlons determining the
MLE K under M (G). The condition (vii) naturally induces sparsity in 5.

Further, denoting by G the graph whose edges correspond to non-zero entries of Y, we
note that the zero entries in 3 obtained in this way are complementary to the zero entries in
K; cf. also Example 3.4. We also have the following.

COROLLARY 5.2.  The mixed dual estimate % in the model B(G) n M (G) is identical to
the mixed dual estimate in the model M1 (G) = A(G) n M(G) as determined in Theorem 5.1
above.

PROOF. By construction, if ij ¢ E(G) then ij € E(G). Denoting by Ey the set of pairs
that do not lie in E(G) we get that Ey  E(G). The optimality conditions for K over M (G)
are standard and given by

(a) 222 =Sy, 1eV(G)
(b) %ij = Sij, ije E(G)
() Kij =0, 1ij¢E(G).

By an analogous argument, the dual likelihood estimate in B(é) based on K is the unique
positive definite matrix S=K! satisfying

d) Ky=Ki, ieV(G)
(C) Ki]‘ = Kij; 7,] € E(G)
(f) Eij = 0 ’L] € Eo.

Our aim is to show that 51 = .. First note that, (d) together with condition (v1) in Theorem 5.1,

implies that Km = KZZ for all ¢ € V. Similarly, (iv) and (e) imply that Kw Kw KZ] for
ij ¢ E(G). This equality extends to all ij € E(G)\Ey by (vii) and (e). Moreover Zzg = f)ij =
0 for all 15 € Ejy. It is a standard result that there is a unique completion of a partially specified
positive definite matrix K to a matrix such that ¥ = K ~! has zero entries on the unspecified
entries of K. It follows that K = K. O

Note that the statement in Corollary 5.2 is not trivial since B(é’) N M (G) is not a subset
of M+ (G)
The conditions for existence of 3 do not seem to simplify beyond the conditions for exis-

tence of K ; see also Theorem 4.5. Conditions for existence of & may be rather involved, see
for example [50, 23].

6. Asymptotic behaviour of the mixed dual estimator. We now return to the the gen-
eral mixed dual estimator. In this section we work entirely in the corresponding mixed
parametrization v = (u,,,0,). The MLE and the MDE for £’ in this parametrization are
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denoted simply by 7,71 and 7,71 The maximizer of the log-likelihood function obtained in step
(S1) is denoted fp Suppose that the true data generating distribution with the mixed param-
eter ¢ lies in &', that is, ¥, € M, x ©!. We study the asymptotic distribution of the MDE
z,vbn, where 7 is the sample size and show that the MDE is /n-consistent and has exactly the
same asymptotic distribution as the maximum likelihood estimator 1,~bn

THEOREM 6.1. The MDE and MLE are asymptotically equivalent, i.e. it holds that
v/n(v,, —p,,) — 0in probability, implying that \/n(1,, — 1) converges in distribution and
the limiting distribution of \/n(v,, — ) equals the limiting distribution of \/n(1,, — ).

PROOF. The proof is provided in Appendix A. O

Let v,, = (un,0,(t,)) be the MLE in the unrestricted exponential family £ expressed in
the mixed parametrization. The limiting distribution in Theorem 6.1 is obtained by projecting
the Gaussian limiting distribution of y/n(1,, — 1)) onto the tangent cone of the mixed expo-
nential family at the true parameter 1) ; cf. [21]. If the constraints defining ©/, are affine, it is
useful to equivalently describe this distribution as the limiting distribution of \/ﬁ(fpn — 1)
(which is also Gaussian), onto the tangent cone Th: xo: (7). In the case of locally associ-
ated Gaussian graphical models, this results with the Gaussian distribution (the asymptotic
distribution of the MLE in a Gaussian graphical model; cf. [35, Proposition 5.8]) projected
onto the cone given by the edge covariances being nonnegative. The problem is that even if
we can describe this distribution exactly, it depends in a very complicated way on the true
covariance matrix. It will be given as a mixture of normal distributions that are ‘truncated’
to regions projecting onto the various facets with weights that are generally impossible to
compute exactly. As an alternative to using asymptotic results, the distribution of the MDE
may be simulated using bootstrap methods, as the estimation algorithm is fast and guaranteed
to converge, whereas simulating the distribution of the MLE is difficult as the MLE may not
even be well-defined for all bootstrap samples.

7. Learning the local structure. In this section we consider the situation where the
graph (G defining the local structure in locally associated Gaussian graphical models is un-
known. We aim at obtaining a sparse structure in K through a lasso type penalty.

7.1. The positive graphical lasso. To avoid losing any positive dependence information
we only penalize positive values in the inverse covariance matrix, corresponding to large
negative partial correlations. More precisely, we want to solve the following optimization
problem

(12) minimize — 20(K) + p|K || subject to K > 0,
where /,,(K) is the Gaussian log-likelihood in (9) and
|5 * 1 = ) max{0, Ky}
i
We shall refer to this procedure as the positive graphical lasso. Note that for p = oo, the
penalty forces the solution K” to be an M-matrix and hence the positive graphical lasso can

be seen as a direct relaxation of the estimation under the assumption that the distribution is
MTP;, ([33, 46]); cf. Section 8.4.
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By computing subgradients, we easily check that K? is the unique optimal point of (12) if
and only if

) {0} ifK/<0
(13) S — Si; € 4 [0,p) ifl:(fj:O foralli #j eV,
{p} IfK Z’»Oj >0
As a corollary we get an alternative characterization of the optimal solution that links it to
the MLE in the Gaussian graphical model.

COROLLARY 7.1. Let GP = (V, EP) be the graph with edges determined by K? and
define the modified sample covariance as

SP,: A
Sij +p lfKZ>0

1f foralli#jeV.
Then K? is the MLE under the Gaussian graphical model determined by GP, based on the
modified sample covariance S°.

PROOF. The MLE is uniquely determined by fitting covariances along edges in E? and
satisfying K;; = 0 for non-edges. O

See also Proposition 8.2 and Corollary 8.10 below for generalizations of this result.

The positive graphical lasso estimate, as described and calculated above, will avoid large
negative partial correlations and as such it may often directly result in a locally associated
covariance matrix, in particular for large penalty parameters, as shown in Theorem 8.9. If this
is not the case, we may wish to take the additional restriction of edge positivity into account

using the estimate G given as
3P = Argming ;G K(-%/2,KP) = argming o) K(—%/2,K").

This is exactly the dual likelihood estimate in (10) calculated with K as starting point, rather
than K. We may then again think of the two-step procedure as first obtaining a compact
representation K* of the data matrix S , adapting and taking into account the penalty for
negative partial correlations, and subsequently approximating this compact representation
with a locally associated, and hence locally associated Gaussian distribution 3. We refer to
this procedure as the dual penalized likelihood estimate (DPLE).

7.2. A comment on high-dimensional analysis. A careful analysis of the high-dimensional
properties of the positive graphical lasso estimator is beyond the scope of this paper. Here
we share some cautionary remarks. In [47] the authors analysed the convergence rates for the
operator norm || K—K* | for the problem of M-matrix estimation. As we argue in Section 8.4
below, M-matrix estimation is a special case of our positive graphical LASSO set-up. In par-
ticular, Section 3 in [47] suggests that we cannot expect good rates for the operator norm
HIA( P — K*| if K* is sparse. So in the high-dimensional regime, the spectral properties S
should be interpreted with caution. Similarly, K will not have good support recovery. For
example, if K* = I, K will typically not even be sparse. A natural way to obtain an esti-
mator with better statistical properties is by replacing the sample covariance matrix S in (12)
with a better estimator of ¥* (e.g. shrinkage estimator). Our motivating example is high-
dimensional with d = 136 and n = 43. In this case the positive graphical lasso estimator
outperforms the graphical lasso estimator by a large margin also producing a much sparser
graph; cf. Section 9.2.
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8. The GOLAZO algorithm. In this section we formulate a general optimization prob-
lem and algorithm that unifies the positive graphical lasso, estimation under MTP; con-
straints, under local association, and a number of other forms of likelihood-based estimation
for graphical models. It allows us to flexibly introduce sign constraints, zero restrictions, and
to penalize different signs of K;; at different rates.

Let L,U be two symmetric matrices with entries in R u {—00, +c0} with the restriction
that L;; <0 < U;j forall ¢ # j, and L;; = U;; = 0 for all 4. Denote

|K| v == max{Li;Kij, Uy Kij}.
i#]

The function || K |17 is convex, positively homogeneous, continuous, and non-negative. Al-
though it is sublinear, that is |K + K'|.y < |K|Lv + | K| v, it does not define a norm
unless |L;;| = |U;;| for all i # j.

The penalty function | K|y enables us to obtain sparse estimates of K in a way that takes
into account the signs of K or, equivalently, the signs of the partial correlations. We aim at
solving the following problem

(14) minimize —20(K)+ |K|Lv,

and refer to this as Graphical Oriented LAZy Optimization (GOLAZO). To get a procedure
that is invariant under diagonal rescaling we also typically replace the sample covariance
matrix S in ¢, (K') with the sample correlation matrix R.

REMARK 8.1. For non-paranormal distributions we replace the sample correlation ma-
trix R with another estimate of the correlation matrix. Following the SKEPTIC approach
of [37], we first compute Kendall’s tau 7;;, which can be estimated without knowledge of
the underlying monotone transformations f;. Then we compute p;; = sin(57;;), which is a
natural plug-in estimator of the correlation based on the main result of [36].

To illustrate usefulness of this general approach we list a number of situation that are
included in this set-up.

Graphical lasso and SCAD penalties: If |L;;| = |U;;| = p > 0 for all ¢ # j, (14) corre-
sponds to the standard graphical lasso. More generally, if |L;;| = |U;;j| = p;;, that is when
| K| v is a norm, we obtain a version of the graphical lasso that takes into account different
scalings of the variables. This general version is used in the adaptive GLASSO procedure and
the local linear approximation algorithm used for general concave penalties rely on solving
one or more problems of this form; see [18] for details.

Asymmetric graphical lasso: If L;; = —p_ and U;; = p; for all 7 # j where 0 <
p—, p+ < +00, we obtain a version of the graphical lasso, where positive entries of K are
penalized at a different rate than the negative entries.

Positive graphical lasso: If L = 0 and U;; = p for all 7 # j then (14) corresponds to
the positive graphical lasso problem in (12). This looks like the asymmetric graphical lasso
problem with p_ = 0 but as we will see, a zero penalty introduces additional complications
concerning existence of the optimum.

MTP; distributions: If L = 0 and U;; = +00 for all i # j then (14) gives the maximum
likelihood estimator for constrained M-matrix estimation. In Remark 8.3 we show that, rather
than infinite, U;; must be sufficiently large.

Gaussian graphical models: In certain situations we may in advance wish to specify
that some entries of /& should be zero. If K;; = 0, this can be imposed by setting L;; = —o0,
U;j = +o0 (by the standard convention +c0 -0 = 0). Thus the optimization algorithm detailed
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in Section 8.1 also yields an interesting alternative to the IPS algorithm and other edge based
algorithms in [48] which may occasionally be slow.

Dual likelihood estimate: The optimization problem in (10) is equivalent to (14) just
replacing K with ¥, S with IA(, setting L;; = —o0 and U;; = 0.

__ PROPOSITION 8.2, If the optimum in (14) exists, it is the unique positive definite matrix
K (with ¥ = K1) satisfying

~ {Lij} if Kij <0,
Eij — Sij € [Lij7 UU] lfKZJ = 0, fOl" all i,j eV.
{Uij} lwa > 0.

PROOF. The subgradient of the function max{L;; K;;,U;; K;;} at K;; = 0 is the interval
[Lij,U;;]. This subgradient is {L;;}, {U;;} if K;; <0, K;; > 0 respectively. Now the con-
clusion follows from the standard theory for non-differentiable convex functions; see, for
example, [43]. ]

The problem (14) is a convex optimization problem. Its dual problem is particularly simple
and admits a straight-forward block-coordinate descent procedure. To obtain the dual, note
that

max{Linij,Uinij} = . sup Fini‘

ij <Ly <Usj

and so
|K||zry = sup tr(I'K)
LLI'sU
whereby (14) becomes
inf sup {—logdetK +tr((S+T1)K)}.

K>0p<r<vu

Swapping inf with sup and using the fact that the unique optimizer with respect to K of
—logdet K + tr((S + I')K) (if exists) is (S + I') "1, we obtain the dual problem by letting
YX=5+TI:

(15) maximize logdet® +d subjectto S+ L <Y <S5+ U.

In particular, every feasible point of the dual problem (15) has the same diagonal as S°. In
particular, if the correlation matrix R is used as the data input, the optimum is a correlation
matrix too.

REMARK 8.3.  Since X is positive definite we have in particular that —4/5;;5;; < 3;; <
S;iS;; for all 7 # j. It follows that every dually feasible ¥ satisfies

max{S’ij + Lij, —«/SiiSjj} < Ei]’ < HliIl{Sij + Uij,\/SiiSjj}.
This allows us to replace U;; with U;; A (4/S5:5;; — Sij) and L;; with Li; v (=S5 —
\/SiiS;;), which is particularly useful if L;; = —o0 or U;; = +c0.

20ur setting can be easily extended to the case when the diagonal entries of K are also penalized. In this case
the optimal point of the dual problem has the same diagonal as .S + U.
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COROLLARY 8.4. Let K be the optimal solution to (14). If L;; < —S;; — 1/ S5, then
I/(\'ij > 0. If Usj = —S;j + +/S:iS;; then I/(\'ij < 0. In particular, I?ij = 0 if both conditions
hold.

Since (14) is always feasible, feasibility of the dual problem (15) assures that the optimum
of (14) exists and is unique. We show below that it always holds if L and U have no zeros
outside of the diagonal. Under minor conditions this also holds for the positive graphical
lasso in which case L is a zero matrix. We provide a more detailed treatment of this problem
in Section 8.2. But first we introduce our optimization algorithm.

8.1. Optimization. To solve (15) we use a straightforward block-coordinate descent ap-
proach that is a direct modification of the algorithm used for the dual graphical lasso problem
in [4]. An important difference is that, by default, we do not penalize the diagonal, which
leads to additional issues that may arise. We optimize the determinant of 3 updating row by
row, but keep the diagonal entries fixed to be equal to the diagonal of S.

For the j-th row we consider log det ¥ as the function of X; ; keeping the other entries of
. fixed. By standard matrix algebra

logdet X = logdet ¥\ ; + logdet(Z;; — ;.;(2;) ' 5y)-

Thus maximizing log det > with respect to y := ¥, \ ; is equivalent to minimizing yT (E\j)_ly,
where we need to impose linear conditions that S;; + L;; < y; < S;; + U;; for every
i € V\{7}. This is an instance of a quadratic program. The following result is a straight-
forward generalization of [4, Theorem 4]. It allows to quickly identify disconnected nodes in
the underlying graph.

LEMMA 8.5. IijM + Lj7\j <0< Sj,\j + Uj\j for some j €V then §j7\j = IA(jM =0.

The starting point X0 of the algorithm needs to be chosen carefully so that X0 is dually
feasible. In this case, each iterate of the algorithm is guaranteed to be dually feasible. In Sec-
tion 8.2 we show how to find such a starting point. Given the starting point, our procedure is
straightforward and described in Algorithm 1. Corollary 8.4 and Lemma 8.5 give an obvious
way to speed up the computations but reducing the number of nodes that have to be visited at
each step. To solve the quadratic problem in each iteration we use the quadprog package
inR.

Data: A positive semidefinite matrix .S, penalty matrices L <0 < U.
Result: A maximizer of (12).
Initialize: ¥ = 220 (a dually feasible point);
while there is no convergence do
forj=1,...,ddo
Update Ej,\j < 7, where
y =ar min{ T(Z »)_1 S+ L <y<Si\:+U,; }
TR LSV e AV e AV A R AV AV &
end
end

Algorithm 1: The Graphical Oriented LAZy Optimization (GOLAZO) Algorithm.
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To establish convergence in Algorithm 1 we track the duality gap
tr(SK) —d+ HKHLU,

which is guaranteed to be non-negative for each step of the algorithm, decrease at each iter-
ation, and to be zero at the optimum. We stop the algorithm once this positive gap becomes
sufficiently close to zero.

In the actual implementation it is important to compute the dual gap carefully in case L, U
contain infinite entries. We simply make use of Remark 8.3 and replace +oo with appropriate
finite bounds. The only remaining issue to complete the description of the algorithm is a
procedure to obtain a dually feasible starting point. We address this issue in the next section.

8.2. Dually feasible starting point. Recall that X is dually feasible if 3. is positive defi-
nite and L < ¥ — S < U. If S is positive definite, it is dually feasible, and we take X9 = S.
We then focus on the case when S is rank deficient. Since S is a sample covariance matrix it
is always positive semidefinite and it has rank at least one. This implies that (with probability
one) the diagonal entries are strictly positive. Clearly, if some .S;; = 0 then no feasible point
exists. We then always assume that S;; > 0 forall ;e V.

We first show how to construct a starting point in the case when for each ¢ # j both the
negative and the positive values of K;; are penalized. Denote by diag(S) the diagonal matrix
whose diagonal is equal to the diagonal of .S.

LEMMA 8.6. If Lij <0 < U,j for all i # j then there exists t € (0,1) such that ¥° =
(1 —1t)S + tdiag(S) is dually feasible. The condition for dual feasibility becomes that L;;
—tS;; < Ujj forall i # j.

PROOF. Since diag(S) is positive definite, X0 = (1 — ¢)S + t diag(S) is positive definite
for every t € (0,1]. We have X0 — S = ¢ (diag(S) — ) and so (X% — 9);; = —tS;; for all
i # j.Since L;; < 0and U;; > 0, it holds that if ¢ is sufficiently small then L;; <t (diag(S) —
S)ij < Ujj forall i # j. d

The conditions of Lemma 8.6 are satisfied for the graphical lasso and this result can be
turned into an explicit procedure for computing a starting point. Note that using glasso or
EBICglasso in R outputs either a warning or an error when .S is not positive definite. As a
consequence of Lemma 8.6, we have:

THEOREM 8.7. The optimum in the graphical lasso problem always exists and is unique.
More generally, this also holds for the GOLAZO if L;j <0 < U for all i # j.

The conditions of Lemma 8.6 are not satisfied for the positive graphical lasso and, in
general, for any case where S lies on the boundary of the rectangle {¥: L <X — S <U}. If
L has potentially zero entries but U;; > 0 for all 7 # j then we still can prove that a dually
feasible point exists under very mild additional assumptions on S. This relies on an explicit
construction of a dually feasible point based on the definition of a single-linkage matrix of .S
given in [33]. We provide the details of this construction in Appendix B, which also contains
the proof of the following result.

THEOREM 8.8. The optimum in the positive graphical lasso problem exists and is unique
as long as S;; < +/S5;iSj; for all i # j, which happens with probability one if the sample size
is at least two. The same holds in general whenever U;; > 0 for all © # j.
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8.3. Choice of the penalty parameter. 1In this section we propose a simple method to
choose the penalty parameters in L and U. Our method is based on the Extended Bayesian
Information Criterion (EBIC) proposed in [9] and adapted to problems of graphical lasso
type in [20]. Given a sample of n independent and identically dlstrlbuted observations, let K
denote an estimate and E the set of edges of the underlying graph of K. The EBIC criterion
takes the form

BIC,Y(E) = —nl,(K )+|E](log( )+ 4vlog(d)).

The criterion is indexed by a parameter «y € [0, 1]. If y = 0 then the classical BIC is recovered,
which is known to be asymptotically consistent for model selection in case d is fixed and n
goes to infinity. Positive values of v lead to better graph estimates in the case when d and n
are comparable. This observation can be formalized in certain scenarios but otherwise relies
on numerical experiments; cf. [20].

The model selection procedure based on EBIC relies on choosing a sequence of potential
penalty parameters p1,...,p;. Then for fixed L,U we then compute [ optima for the GO-
LAZO problem with parameters p; L, p;U . For each of these we compute EBIC and choose p;
that minimizes this criterion. For positive glasso the canonical choice is L;; = 0 and U;; = 1
for all ¢ # j. Finally note that this procedure is trivially parallelizable, which we exploit in
our code.

8.4. Sign-constrained likelihood optimization. The positive graphical lasso problem
links to the problem of maximum likelihood estimation under M-matrix constraints [46, 33],
that is to the problem

minimize — ((K) subject to K;; <0 for all ¢ # j.

More generally, if L;; € {—00,0} and U;; € {0, +00} then (14) is equivalent to optimizing the
Gaussian likelihood under sign-constraints. If Ey, is the set of all ¢ # j such that L;; = —o0
and Ey is the set of all ¢ # j such that U;; = +00 then (14) amounts to maximizing the
Gaussian likelihood over the set of all inverse covariance matrices K such that K;; > 0 for
all ij € By, and K;; <O forallije Ey. If ij € Ef, n Ey then K;; = 0.

One of the important reasons why we choose not to penalize the diagonal of K is the
following result.

THEOREM 8.9. Let L,U be such that L;j € {—0,0} and U;; € {0,+0} for all i # j.
The GOLAZO estimator is equal to the maximum likelihood estimator under the constraints
Kij =0 forallije Er, and K;; <0 for all ij € Ey.

Recall from Remark 8.3 that infinity can be replaced by a sufficiently large number.

8.5. A link to graphical models. Let G denote the graph determined by the support of
K. Proposition 8.2 implies the following result.

COROLLARY 8.10. The optimum K of (14) is equal to the maximum likelihood estimator
in the Gaussian graphical model M (G) with the sufficient statistics (SZJ) where SZJ =

Sij + Lij if Kij <0 and S;; = Syj + Uy if Kij > 0.

zjeG’

PROOF. We have that 3 € M (CAJ) and it coincides with S on the edges of G. It is then the
unique optimum of the MLE problem. O
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This result implies that as soon as we have access to the matrix of signs of K with
sgn(k;;) € {—1,0,1} we could alternatively find K by augmenting the sufficient statistics

and fitting the corresponding Gaussian graphical model. If Gis decomposable, the optimum
is then given in a closed form.

9. Applications and simulations. In this section we illustrate our methods with two
applications and a small simulation study. The computations are based on the GOLAZO
algorithm described in Section 8 as implemented in the R package golazo available on
GitHub. The corresponding R Markdown files can be downloaded from http://econ.
upf.edu/~piotr/supps/2020-LZ-golazo.zip.

9.1. Body fat data. As a simple illustration for our method we analyse the body fat data
first studied in [25] and available in the R package gRim.

c c
g 22 _ .E 2E F =2 ¢ o £
I I T I i
AT z0<ITE<e<Ials R LSTZ20XTFELZd
BodyFat @ © @ 000 e () e '
Age [ @ o 0.8
weight @ @0 0000000000 o0 o 06
Height L ) o
Neck 00000000000 O 04
Chest @ @ 0000000000 [ ) 0.2
Abdomen @ - @ 0000000000 o O o
Hp @ @ 000000000 e @)
Thigh @ @ 00000000 e e O -0.2
Knee 000000000000 O 04
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FI1G 1. The sample correlation matrix for the body fat data (left) and its normalized inverse (right).

In the data, percentage of body fat, age, weight, height, and ten body circumference mea-
surements are recorded for 252 men. We remove 11 individuals from the study for various
problems reported for their respective observations. As shown in Figure 1 the variables in
this dataset are strongly positively correlated. The only exception is Age. Its negative corre-
lation with height reflects the fact that the growth in wealth, especially after the second world
war, has made the new generations taller. Also, the negative correlation with thigh and an-
kle could reflect that muscle mass tends to be reduced with age. In other words, the relation
between Age and the other variables is complex and certainly not approximately linear. For
these reasons and for simplicity, we remove Age from our analysis.

As the inverse of the sample covariance matrix has a significant number of positive entries,
MTP; seems to be too strong hypothesis for this dataset. After normalizing the data we run
the positive graphical lasso procedure with p = 0.11. This choice was based on the EBIC cri-
terion with parameter v = 0.5 as described in Section 8.3. Figure 2 shows the graph (together
with signs of the partial correlations) of the optimum K (left) compared with the graphical
lasso estimate. The penalty in the graphical lasso estimate is chosen close to zero both by
cross-validation and by the EBIC criterion. Although the positive glasso estimate gives lower
likelihood than the glasso estimate, it is much sparser and beats glasso in the EBIC criterion
with v = 0.5: —364.9 for the positive glasso and —237.65 for the graphical lasso.


http://econ.upf.edu/~piotr/supps/2020-LZ-golazo.zip
http://econ.upf.edu/~piotr/supps/2020-LZ-golazo.zip
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FIG 2. Partial correlations in the estimated positive glasso graph (left) and glasso graph (right).

In the second step of our procedure we take the resulting estimate K of the positive glasso
procedure and compute the dual MLE Y under edge positivity to further regularize the pos-
itive glasso estimate. However, although K is not an M-matrix, it corresponds to a locally
associated distribution and so the second step of the algorithm becomes redundant.

9.2. Positive co-expression gene network. As we argued in the introduction, our main
motivation was to develop statistically sound methods for building gene expression networks
that focus on positive co-expression. For illustrative purposes we focus on a relatively small
subsample of genes. We analyse a publicly available microarray expression data profiling
umbilical cord tissue; cf. [11, 12]. From https://functionalgenomics.upf.edu/
supplements/FIRinELGANs we downloaded the normalized and filtered gene expres-
sion data, as well as its corresponding phenotype data, including a batch indicator variable
that specifies the groups in which samples were processed, birth weight, gestational age, sex
and fetal inflammatory response (FIR) status.

As described in the introduction, we focus our analysis on 136 genes which were co-
ordinately upregulated in FIR-affected infants to trigger an innate immune response, and
therefore, we can assume their positive co-expression.

We first run the GOLAZO procedure penalizing negative partial correlations with an EBIC
optimal penalty parameter. This computation takes less than a minute on a standard laptop.
The penalty p = 0.5 was chosen as optimal with respect to the EBIC criterion with v = 0.5.
The resulting estimate K? is very sparse with the edge density 0.067 (an entry of K? is
always treated nonzero if its absolute value exceeded 10~5). Still the diameter of this graph,
displayed in Fig. 3, is very small, just 5.

Like in the Body Fat example in the previous section, also here the EBIC criterion chooses
much smaller penalty parameter for the standard graphical lasso, p = 0.1. The EBIC crite-
rion for the optimal positive graphical lasso model penalty is —8784 on the other hand, the
graphical lasso gives a much denser graph with edge density 0.21 and the EBIC is also much
higher, 13478. The optimum K? is not an M-matrix and there are several significant negative
partial correlations, displayed in red in Fig. 3. However, the distribution is already locally
associated so the second step of our procedure is again redundant. This also confirms that
local association is a reasonable assumption for this dataset.


https://functionalgenomics.upf.edu/supplements/FIRinELGANs
https://functionalgenomics.upf.edu/supplements/FIRinELGANs
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FIG 3. The concentration graph for the co-expression gene network. Positive partial correlations are indicated
with green color and negative partial correlations with red color. The thickness of edges is proportional to their
absolute size.

APPENDIX A: PROOF OF THEOREM 6.1

A.1. Chernoff regularity and convexity. The asymptotic analysis of statistical proce-
dures under constraints typically involves technical assumptions on the local geometry of the
constrained space around the true parameter 1. Conditions of this form are called Chernoff
regularity conditions; cf. [21] and references therein. In our case, convexity ensures these
conditions to hold, but we provide the relevant definitions for completeness.

DEFINITION A.1. The tangent cone Tc: (1)) of the set C < R* at the point 4, is the set
of vectors in R¥ that are limits of sequences o, (1),, — 1), Where a, are positive reals and
1,, € C converge to L.

DEFINITION A.2. The set C € R¥ is Chernoff regular at 1, if for every vector T in the
tangent cone T¢(1)) there exists € > 0 and a map « : [0,¢) — C with «(0) = 1) such that
T =limy_, o+ [a(t) — a(0)]/t. In this case we say that T (1)) is derivable; cf. Definition 6.1
in [44].

The standard asymptotic results typically assume Chernoff regularity. We will use the
following result.

THEOREM A.3 (Theorem 6.9, [44]). A convex set C < RF is Chernoff regular at any
PoeC.

It is clear from the definition that Chernoff regularity is preserved under a smooth and
regular change of variables G : R¥ — R¥. Indeed, the tangent cone T, c()(G (1)) is equal to
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VG(g) To(hy); cf. Section 6.C in [44]. If T € Ty ) (G (1)) and T (G(why)) is derivable
then

for some «: [0,¢) — C. Then ag = (VG()) - «: [0,€) — G(C') can be used to show that
T is derivable.

A.2. Asymptotics of the maximum likelihood and mixed dual estimator. Recall our
notation t,, = >, t(X@)/n. It is a standard result that \/n(t, — p,) is asymptotically
normally distributed; see Proposition 4.3 in [49]. In this section we show that the maximum
likelihood estimator under a convex restriction has a similar rate of convergence, with the lim-
iting distribution not necessarily being normal. Using equivariance of the MLE and the delta
method, we can show this also holds for the MLE and MDE in a mixed convex exponential
family.

Let ¢ = ¢)(0) be an alternative smooth, regular, and bijective parametrization of the ex-
ponential family &, so that, @ = )~ 1(1)). The log-likelihood function expressed in this new
parametrization is denoted by £(); t,,) = (™1 (), t,) — A(Y 1 (W)).

PROPOSITION A.4. Consider an alternative smooth and regular parametrization v =
¥(0) of the exponential family E. Let C' be a closed and convex subset of the parameter

space (0). Let 1, = argmaxqyec L(1;t,,) be the maximum likelihood estimator over C.

If the data are generated from the distribution with parameter 1y € C then \/n(,, — )
converges in distribution.

PROOF. Since the maximum likelihood estimator is equivariant, we have that 17:” =
¥(6y), where 8,, = arg maxgey,-1 () £(0; t,). By the delta method (see Theorem 3.1 in [51]),

it is enough to show that 1/n(6,, — 8¢) converges in distribution. Since the MLE is an M-
estimator, this follows from Theorem 4.4 in [21]. This theorem uses a number of assumptions
that we verify one by one: Assumption A holds because the function F'(0) = A(0) — {0, o)
admits a quadratic approximation around @, with a positive definite Hessian V2A(6) and
VF(6y) = 0. Assumption B is satisfied simply because the second derivative of the likeli-
hood does not depend on the data at all and so condition (4.3) in [21] trivially holds. As-
sumption C requires that the standard central limit theorem for the gradient of the likelihood
function holds, which again is automatic for exponential families. Assumption D holds sim-
ply because 8,, is the exact minimizer of F,(8) = —((8;t,,) over 1)~*(C). Finally, Chernoff
regularity of 1/ ~1(C') at 8 follows by convexity of C' and the fact that the property is invari-
ant under smooth transformations; cf. Theorem A.3 and the discussion below it. O

As in Section 6, we now reserve the notation v for the underlying mixed parametrization,
1 = (p,,, 0y). The maximum likelihood estimator in our problem is obtained by maximizing
£(1p;t,) over all parameters ?) in the mixed convex exponential family &', 1 € M/ x ©).
This MLE is denoted Q,NZJn (én, [, resp.) to distinguish from the estimator én obtained in
step (S1) of the procedure for finding the MDE. Recall that 1), = (uy,, 0, (t,)) and denote

P, = (up,0,),ie. v, is 0, = (éu, 5v) expressed in the mixed parametrization, where the

~

fact that the first component of 1),, is equal to u,, follows from Theorem 4.5.

COROLLARY A.5. The sequences \/n(,, — ), \/ﬁ({ﬁn —py), and (i, — ) all

converge in distribution.
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PROOF. The estimators ),,, 1,,, and 1,7Jn are all maximum likelihood estimators in fami-
lies that satisfy the conditions in Proposition A.4. O

The proof of our main result relies on the fact that the log-likelihood and dual log-
likelihood have locally a similar shape around their global maximum. Moreover, the Hessian
at this point is block diagonal.

LEMMA A6. Lett = (u,v)e M, ¥ = (u,0,(t)), and 6 = 0(t). Then V,l(p;t) =

~

Vyl(yp;t) = 0 and

Vi) = Vw0 = - [ e

where var(t)"? stands for the vv-block of var(t) ~! and the variance is computed with respect
to the distribution Py.

PROOF. Slightly abusing notation, we write x(t)) (6(1))) for the map that maps the mixed
parameter 1) to the corresponding mean (canonical) parameter. We have

T
V(1) = ((‘;‘Z) (b ()

T
Vol 1) = (;’;) (@ 0(4)

from which the statement about the gradients easily follows by plugging 1) = Pasp(p) =t
and 6(vp) = 6. The particular block-diagonal form of the Hessian prf('z/:;t) follows by
Proposition 3.20 in [49]. It remains to show that V3 ((t;t) = prZ(E, t). Using the Leib-
niz rule, we observe that differentiating V,¢(1),t) with respect to 1), we get one term that
vanishes at 9 = 1) and so

aa)Tau

Val(;t) = — <a¢ oo

~

Using the same argument for V,/(1),t) we get

o ou\T 00
Vi - () &

Since both matrices are symmetric, the equality follows. O

Using Lemma A.6 with t = t,,, we see that the observed information satisfies

Jn = =V, t) = V3, t).

In particular, J,, is always positive definite. Taking ¢ = f1,, we get

Both of J,, and jn converge in probability to the Fisher information matrix since the mapping
t— —pré (¢;t) is continuous and both of ¢,, and 1, converge in probability to p,. We thus
conclude

~

(16) F\ = Ju+op().
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Denote by || - ) the norm induced by the matrix .J,, (jn respectively), that is,

7 -5,

lls, == NVaTduz, |7 =1/l Jpz.

Note that for every x € R?

)\min(Jn)HxHQ < |z

?Jn < )‘mar(Jn)HwHQv

where Amin(J) and Apqaz(Jy,) are the minimal and the maximal eigenvalue of J,,. Since
the eigenvalues are continuous functions of the matrix (use [24, Theorem 2.6.4]) and the
fact that for a positive definite matrix singular values are equal to the eigenvalues), the se-
quences Amin (J5,) and Apax(Jy,) converge in probability to the corresponding eigenvalues of
the Fisher information matrix, which we denote by A*.  A* . The same argument applies

min’ “‘max-*

to /\min(jn) and /\max(jn). We conclude that for every = € R?

(17) (Mhin +or(D) 2] < [2]7, < Mhax +op(1)) [
(18) Nin +or(1))[z]* < 2% < (Nax + 0p(1) 2.
Now let

Fo(¢) = —l(¥it,)  and  F,(¢) = —L(Y;y,).
The MLE 1,~bn is the minimizer of F,, over M, x ©! and 'z,vbn is the minimizer of F}, over
M), x ©, (equivalently over M/ x ©!, as argued in Theorem 4.5, because 1p,, € M,, x O.).
Recall that U,, = Op(1) denotes that U,, is bounded in probability, that is, for every € > 0
there exists M € R such that P(|U, | > M) <e.

LEMMA A7. It holds that /n(¥, — o) = Op(1), V/n(sh, — o) = Op(1), and
V¥, —1g) = Op(1).

PROOF. By Corollary A.5, /n(v,, — 1) and Vn(p, — 1) converge in distribution and
thus they are bounded in probability. To show the same for the other estimator, we use the
fact that locally it is obtained by suitably projecting @n on M, x ©, and \/ﬁ('z’[)n — ) is
bounded in probability because it converges in distribution by Corollary A.5. More formally,
since ’l//\)n is the global minimizer of E,, 'J)n is the minimizer over M x ©O,, and 1, €
M x ©,, we get

0< Fn("»bn) - F’n("pn) < ﬁn("/’o) - ﬁn('ﬁbn)
Using the second-order expansion of 15”(1#) around ¢ = fpn and Lemma A.6, we get
0 < Htbn—Buld +0p(lhn — ul®) < S —wol3 +op(ldb, — ol)-

Here we have also used the basic fact that R(h) = o(||h||?) implies R(U,,) = op(|Uy|?); cf.
Lemma 2.12 in [51]. Multiply this inequality by n so that the right hand side becomes

LV, —wo)l% + op(In/n(h, — o) ).

Since v/n(1),,— 1) is bounded in probability, so is |/72(1,, — 1) ||2. Using (18) and the fact
that op(Op(1)) = op(1) we conclude that the right hand side is bounded in probability and
so the left hand side is bounded too, that is, v/7(tp,, — 1,Abn) = Op(1). The triangle inequality
now implies \/n(%,, — 1by) = Op(1), which concludes the proof. O
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We are now ready to prove the Theorem.

PROOF OF THEOREM 6.1. Since, by Corollary A.5, /n(t,, — ) converges in distri-
bution, it remains to show that \/n(t,, — ¥,,) = op(1); see [39, Theorem 3]. The standard
local first order conditions for optimality of 1),, are
(19) VE,($,)" - (p—1,) =0  forallspe M, x O,

expressing that the directional derivative in any feasible direction must be non-negative. First-
order Taylor expansion at ¥, gives

VFn({bn) =Jp - (17}11 - En) + OP(“'J}n _En”)a

where we used Lemma A.6 and the fact that VF,,(1),,) = 0. After multiplying by /n the
last term becomes op(+/n/1,, — 1,,||). By the triangle inequality and Lemma A.7, we have

Vi, =] < v/l — o]+ Vnllbo =, = Op(1). Using the fact that op(Op(1)) =

op(1), we get

(20) VAV E, () = Jn - V/(h, — ) + op(1).

Multiply (19) by n and insert the expression in (20) for \/HVFR(J)H) to conclude that for all
PeM] x 0O

@1 Vi, = )" Tn /(=) + [V — ) op(1) = 0.

Here we used a basic fact that if r,, is a sequence of random vectors in a finite dimensional
vector space such that each coordinate is op(1) and g,, is another sequence of random vectors
then r2q, < |g,llor(1). 5

Similarly, local optimality conditions for 1),, are

VE, () - (p—p,) =0  forallgpe M, x O,

By Lemma A.6, we have V., (3,,) = 0 and V2E, (¢,,) = J,, = Jn + 0p(1) (cf. (16)), which
gives that

Vﬁn({j)n) = Jn- (":Ln _{Ln) + OP(H":Ln _{LnH)a

and so, again using Lemma A.7, the first order optimality conditions for 17;n, we get that for
all e M), x ©,

(22) Vi, = )" T (= ahy) + [V, = )op(1) = 0.
Note also that the optimality conditions for {bn are

VE, () - (0 —1p,)=0  forallepe M, x O,
Like in the previous two cases, we argue that for all ¢ € M,, x O

23) Vi, =) Jn -V —aby,) + VA —,)op(1) = 0.

The rest of the proof relies on using (21), (22), and (23) evaluated at various points ) in
order to show that v/n(1,, — 1,,) = op(1). We now drop dependence on n from our notation
to keep it simple. We will exploit the fact that J is positive definite and has a block-diagonal
form with blocks, which we denote by J,,,, and J,, but the exact form of these blocks given
in Lemma A.6 is irrelevant here.
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Insert (fi,,,0,) for ¥ in (21) and (fi,, 6 ») for ¢ in (22) noting that both are valid points in
M x ©!; then add both expressions and use that the u-block of 1,, and 1Pn are both equal
to u,, (cf. Theorem 4.5). From this calculation we get

~ v, = B35, + IV, — )] -op(1) = 0.

This can be rewritten as

0 < V(i — )7, <|vr(h, =Bl - op(l

Using a version of (17) for J,,,, we conclude that /n(ft,, — ft,,) = op
Equation (21) evaluated at ¥ = (f1,,, 6 v) € M, x O] (note that 8,
yields

)-
(1)
= 0, by Theorem 4.5)

V(. vo - V(By —8,) + [0, — 8,)op(1) = 0.

6.)" -
Similarly, insert ¥ = (u, 8,) = (fi,, 8,) € M, x O/, into (23) to get
Vi@, —8,)7 - Juy - /1(By — 0,) + |v/n(B — 8,)op(1) = 0.

Adding these two inequalities yields
0<[vn(B, - 8,)]3,, <Ivn(B, —8,)]-op(1).

Using a version of (17) for J,, we conclude that 1/n(8,, — HU) = op(1). This finally gives
that \/n(v,, —1,,) = op(1), as desired. O

APPENDIX B: THE SINGLE-LINKAGE MATRIX

We first define the single-linkage matrix of a covariance matrix S. Let R be a symmetric
p % p positive semidefinite matrix such that R;; =1 forall:=1,...,p. In our case R will be
the corresponding correlation matrix of S. Consider the graph G* over V = {1, ...,d} with
an edge between ¢ and j whenever I;; > 0. Assign to each edge the corresponding positive
weight R;; and note that G in general does not have to be connected. Define a d x d matrix
Z by setting Z;; = 1 for all ¢ and
(24) Zij = mgx E}lérlg Ry,
where the maximum is taken over all paths P in G between i and j and is set to zero if no
such path exists. We call Z the single-linkage matrix of R.

PROPOSITION B.1 ([33]). Let R be a symmetric d x d positive semidefinite matrix sat-
isfying Ri;; =1 forall i =1,...,p. Then the single-linkage matrix Z of R has ones on the
diagonal and satisfies Z > R. If, in addition, R;; <1 for all i # j, then Z is an inverse
M-matrix.

Now if S is a symmetric positive semidefinite matrix with strictly positive entries on the
diagonal and such that S;; < 4/5;;S;;. Then, by Proposition B.1, there exists an inverse M-
matrix Z such that Z > S and Z;; = S;; forall i = 1,. .., d, obtained by appropriate scaling
of the correlation matrix R of S. This matrix is called the single-linkage matrix of S. If .S
is a sample covariance matrix based on at least two observations, the single-linkage matrix
is always positive definite with probability one. We are now ready to show that the positive
graphical lasso estimate exists for n > 2 observations.
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PROOF OF THEOREM 8.8. We must construct a feasible point X9 of the dual problem
(15) in the case when L is the zero matrix. If S is positive definite, we can take X° = S so
assume that .S is rank deficient. The single-linkage matrix Z of S by construction satisfies
Z = S. If the entries of U are sufficiently large then S + L < Z < .S + U and so Z is dually
feasible. If Z is not upper bounded by S + U we proceed as follows. Let p = min;.; U;;.
Since | Z — S|« > 0, we can define

(25) Y= (1-t*)S+t*Z, wheret* = min{l,’o}
12 = Sleo

which lets X0 = Z if p = o0. Then X" > S and it is equal to .S on the diagonal. Moreover,
|=° =S| = t*]Z ~ Sl < p

and hence X is dually feasible. Since X is dually feasible, the optimum exists. This con-
cludes the proof. O

Finally, we comment briefly on computational issues. Computing Z can be done efficiently
using the link of this construction to single-linkage clustering; cf. [33, Proposition 3.7]. More
precisely, we first take the corresponding correlation matrix /2 and form a dissimilarity matrix
D, where

D )
0's) otherwise.

{— log Rij if Ri; >0

ij =

By construction D;; = 0 for all : € V. We then run the single linkage clustering algorithm on
D. The time complexity of this step is O(d?). The R function hclust by default does not

~

return the underlying ultrametric matrix D of distances but this information can be recovered
from the standard output with a bit of work. Now the single-linkage matrix of R is simply

~

Zij = exp(—Dij).

The single linkage matrix of S is obtained by rescaling the matrix Z with the diagonal entries
of S.
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