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The notion of multivariate total positivity has proved to be useful in fi-
nance and psychology but may be too restrictive in other applications. In
this paper we propose a concept of local association, where highly connected
components in a graphical model are positively associated and study its prop-
erties. Our main motivation comes from gene expression data, where graphi-
cal models have become a popular exploratory tool. The models are instances
of what we term mixed convex exponential families and we show that a mixed
dual likelihood estimator has simple exact properties for such families as
well as asymptotic properties similar to the maximum likelihood estimator.
We further relax the positivity assumption by penalizing negative partial cor-
relations in what we term the positive graphical lasso. Finally, we develop
a GOLAZO algorithm based on block-coordinate descent that applies to a
number of optimization procedures that arise in the context of graphical mod-
els, including the estimation problems described above. We derive results on
existence of the optimum for such problems.

1. Introduction and summary. It has been illustrated recently in a number of publi-
cations that explicitly incorporating positive dependence constraints can be useful for mod-
elling in various contexts where components are naturally positively associated (e.g. finance
or psychology) [33, 1, 17, 34, 46]. The main distinctive feature of this line of work as op-
posed to more classical literature on positive dependence is that they link to techniques used
in high-dimensional statistics and graphical models using the positivity constraint as an im-
plicit regularizer.

In the Gaussian case, a natural positivity constraint is that all partial correlations are non-
negative or, equivalently, the inverse covariance matrix is an M-matrix, pΣ´1qij ď 0 for all
i‰ j. Optimizing a loss function under this restriction typically results in a sparse estimate,
which was the driving idea in [46]. For standard stock market datasets this may lead to an
estimate that gives both a sparser graph and a higher value of the likelihood function than
estimates from the graphical lasso approach [45].

Although useful, this global positivity constraint is often too restrictive. In this paper we
propose and study natural relaxations of the condition. With an underlying graph represent-
ing the dependence structure between the variables, we will require that highly connected
components are positively dependent, in the precise sense that variables in the same clique
are associated [16], which in the Gaussian case is equivalent to having a covariance matrix
with positive entries [42]. Unfortunately, maximum likelihood estimation (MLE) in this type
of model is problematic as the likelihood function may get complicated. The model is an in-
stance of what we term a mixed convex exponential family. We develop an associated mixed
dual estimator (MDE) which overcomes the problems faced by the MLE. The MDE can be
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found by solving two convex optimization problems, and has asymptotic properties similar
to the MLE. We note that Maliutov et al. [38] suggest a different relaxation of the MTP2

condition, unrelated to ours.
In this situation, when the underlying graph is not known, we also consider a further relax-

ation of local association through what we name the positive graphical lasso which penalizes
large negative partial correlations. As for the now classical graphical lasso, this will typically
identify a sparse structure.

1.1. A motivating example. A motivating problem is the exploratory analysis of gene
expression data. The graphical lasso has become a standard technique for estimating gene
expression networks. While constructing and interpreting the network, researchers often fo-
cus on positive co-expression (e.g. [40]), where pairs of genes show a proportional expres-
sion pattern across samples. Also, in various scenarios it has been observed that positively
co-expressed genes within the same pathway tend to cluster close together in the pathway
structure, while negatively correlated genes typically occupy more distant positions; see e.g.
[29, 52]. We shall later, in Section 9.2 analyse publicly available microarray expression data
profiling umbilical cord tissue in a study of fetal inflammatory response (FIR); cf. [11, 12].
From an initial set of 12,093 genes with reliable expression, Costa and Castelo [12] iden-
tified 1,097 as differentially expressed between FIR-affected and unaffected infants, from
which 592 were upregulated in FIR. This subset of 592 upregulated genes was significantly
enriched by 136 genes involved in the innate immune response ([7]) and we shall focus our
analysis on this subset of 136 genes.

A typical approach to explicitly model positive co-expression is by building weighted gene
co-expression networks where correlations are mapped monotonely from r´1,1s to r0,1s and
then thresholded. This approach is subject to standard problems with building co-expression
networks based on correlations alone not taking the effect of other genes into account. Our
approach is based on partial correlations and so may provide more meaningful estimates of
the underlying network.

1.2. An optimization algorithm. An important first step in modelling large systems that
satisfy some positive dependence constraint is to reduce to a sparser representation without
loosing the positive dependence information. In this respect, `1-regularized approaches do
not work well, since they treat positive and negative partial correlations in an equal manner.
In this paper we propose a version where only negative partial correlations are penalized.

This approach is developed further in a general GOLAZO1 algorithm (Graphical Oriented
LAZy Optimization) where a penalty of the form

ÿ

i‰j

maxtLijKij ,UijKiju

is employed to obtain sparse estimation of K “ Σ´1. Here the penalty parameters L,U sat-
isfy ´8ď Lij ď 0ď Uij ď`8; including zero and infinite values solves several optimiza-
tion problems proposed in this paper and a number of related problems in graphical models.
The advantage of our general approach is that it provides a detailed analysis of convergence
and existence of the optimum.

1.3. Main contributions and structure of paper. The main contributions in this paper are

(i) A class of Gaussian graphical models with relaxation of positivity restrictions, either via
a graph or via a positive lasso-type penalty, or both;

1Pronounced goh-lah-soh, like the Spanish word golazo but without the Castilian lisp.
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(ii) A general framework for mixed convex exponential families with an associated method
of estimation that has asymptotic properties similar to maximum likelihood but more
favourable computational properties;

(iii) The GOLAZO algorithm for solving a range of estimation problems associated with
graphical models, including positivity restrictions. The associated R package golazo is
available on GitHub.

The structure of the paper is as follows. In Section 2 we study the basic properties of locally
associated distributions and discuss their relation to other models involving positivity. Sec-
tion 3 introduces and studies mixed convex exponential families. The mixed dual estimator
is introduced in Section 4 and applied to locally associated Gaussian graphical models (laG-
GMs) in Section 5. The asymptotic properties of the estimator are established in Section 6.
In Section 7 we focus on learning the structure of a laGGM and introduce the positive graph-
ical lasso for this purpose. We derive the GOLAZO algorithm in Section 8 and argue that a
number of optimization problems in graphical models can be seen as special instances and
hence solved by this algorithm. Section 9 concludes the paper by applying the methodology
to two datasets.

2. Locally associated distributions. In this section we define local association and lo-
cally associated Gaussian graphical models linking to other relevant statistical models.

2.1. Definition and basic properties. We say that a function f : Rd Ñ R is increasing
if x ď x1 (coordinatewise) implies that fpxq ď fpx1q. A d-dimensional random vector X
is (positively) associated if for any two increasing functions f, g : RdÑ R, the covariance
VpfpXq, gpXqq is non-negative; for basic properties of this notion see [16].

In general, association is hard to check and [26] introduced the strictly stronger notion
of multivariate total positivity which in the Gaussian case is equivalent to the covariance Σ
being an inverse M-matrix [27, 33]. We recall that K “ Σ´1 is an M-matrix if it is positive
definite and Kij ď 0 for all i ‰ j; so this condition corresponds to assuming that all partial
correlations are non-negative.

In the Gaussian case there is a simple condition for association, as stated in the theorem
below:

THEOREM 2.1 (Pitt [42]). Suppose X is a Gaussian vector with covariance matrix Σ. It
then holds that X is associated if and only if Σij ě 0 for all i, j.

Positive semi-definite matrices with non-negative entries are also called doubly non-
negative matrices. If Σ is an inverse M-matrix, then it is doubly non-negative, but the reverse
implication does not hold.

The requirement that a distribution is associated is strong and we wish to relax this in rela-
tion to a local structure given by a graph. We build on the standard terminology for undirected
and directed graphs as given, for example, in [35]. If G“ pV,Eq is an undirected graph with
vertex set V “ t1, . . . , du and edge set E, a complete subset of G is any subset C of V such
that any two vertices i, j PC are connected by an edge, that is, ij PE. A clique is a complete
subset that is maximal with respect to inclusion. Let X “ pX1, . . . ,Xdq be a random vector
and fix a graph G“ pV,Eq. For any C Ď V , by XC denote the subvector of X with entries
Xi, i PC .

DEFINITION 2.2. The random vectorX is said to be locally associated w.r.t.G if it holds
for any clique C of G that the subvector XC is associated.
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Denote by ApGq the set of covariance matrices of Gaussian vectors that are locally asso-
ciated with respect to G. By Theorem 2.1 these are the positive definite matrices Σ such that
Σij ě 0 for all edges ij PE.

2.2. Locally associated Gaussian graphical models. Our main interest lies in locally
associated distributions for Gaussian graphical models. We say that a distribution of a random
vector X is Markov with respect to G, or MpGq, if X satisfies global Markov properties over
the graph G; for more on graphical models see [35]. A Gaussian vector X with covariance
matrix Σ is Markov with respect to G if pΣ´1qij “ 0 for all ij R EpGq. The distributions
that are Markov and locally associated with respect to G are denoted by M`pGq. We refer
to M`pGq as a locally associated Gaussian graphical model (locally associated GGM). By
definition we have

M`pGq “ ApGq XMpGq.

The set of locally associated Gaussian distributions that are Markov with respect to a graph
is given as the intersection of a set that is convex in K with a set that is convex in Σ. The
intersection is typically neither convex in K nor in Σ but a locally associated GGM is an
instance of what we shall term a mixed convex exponential family; see Section 3 below.

2.3. Positive linear systems and factor models. In this section we link locally associ-
ated Gaussian graphical models to a broad class of models that includes, for example, factor
analysis models with non-negative loadings.

Recall that a Gaussian model over a directed acyclic graph (DAG) D has the linear struc-
tural representation

Yi “
ÿ

iÑj

λijYj ` εi for all i P V,

where pε1, . . . , εdq is a mean-zero vector of Gaussian independent noise terms and λij P R.
Write MpDq for the class of all such distributions parameterized by Λ“ rλijs and the vari-
ances of εi. Moreover, M`pDq denotes the subset of MpDq where Λ ě 0, i.e. where all
regression coefficients are non-negative.

PROPOSITION 2.3. Suppose that the distribution of a zero-mean Gaussian Y lies in
M`pDq. Then Y is associated and so is each margin of Y .

PROOF. Since pI ´ΛqY “ ε then VpY q “ pI ´Λq´1ΩpI ´Λq´T , where Ω is a diagonal
matrix with the variances of ε on the diagonal and pI´Λq being invertible by acyclicity ofD.
Since pI´Λq´1 “ I`Λ`Λ2` . . . and Λě 0 we conclude that VpY q has only non-negative
entries. This concludes the proof.

Proposition 2.3 shows that associated distributions contain the interesting family of posi-
tive DAG models M`pDq, potentially with some nodes unobserved. Factor analysis models
with non-negative loadings form a particular instance of margins of DAG models of the form
M`pDq. Recall that the factor analysis model Fd,s is the family of multivariate Gaussian dis-
tributions with an arbitrary mean and whose covariance matrix Σ is of the form Σ“∆`ΛΛT

with a positive diagonal matrix ∆ and Λ PRdˆs. We write F`d,s if the loading matrix Λ is re-
stricted to have non-negative entries.

One of the standard arguments for why MTP2 distributions may be useful in statistical
modelling is that they contain the one factor model with non-negative loadings, F`d,1. This
observation and the corresponding link to the Capital Asset Pricing Model was used in [1]
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to argue why MTP2 distributions are particularly suitable for modelling financial data. How-
ever, it is easy to show by explicit examples that distributions in F`d,s for są 1 need not be
MTP2. In this context, the fact that all of them are (globally) associated may provide use-
ful regularization procedures in applications where factor analysis models with non-negative
loadings are expected to perform well; see Section 9 for some evidence.

2.4. Gaussian distributions and Gaussian copulas. Since association is preserved af-
ter applying a strictly increasing function φi : RÑ R to each Xi, our definition of local
association naturally extends to Gaussian copula models, as in Proposition 2.4 below. A d-
dimensional random vector Y has a non-paranormal distribution if there exist strictly increas-
ing functions φi : RÑR for i“ 1, . . . , d such that the vector φpY q :“ pφ1pY1q, . . . , φdpYdqq
has a Gaussian distribution.

PROPOSITION 2.4. If G“ pV,Eq is an undirected graph and Y has a non-paranormal
distribution then Y is locally associated with respect to G if and only if φpY q is in ApGq.
Moreover, Y is Markov with respect to G if and only if φpY q is.

3. Mixed convex exponential families. It is useful to see locally associated Gaussian
graphical models as a special case of a more general type of models. Consider a random
variable X with values in a general state-space X . Suppose that the distribution of X is in
a minimally represented regular exponential family E “ tPθ |θ PΘu with canonical statistic
t : X ÞÑ Rk and canonical parameter θ. This means that the density function ppx;θq of the
distribution Pθ with respect to some underlying measure ν on X takes the form

(1) ppx;θq “ exptxθ, tpxqy ´Apθqu for θ PΘ,

where νtx : xλ, tpxqy “ cu “ 0 if λ‰ 0. The space of canonical parameters

Θ :“

"

θ PRk :

ż

X
exp

 

xθ, tpxqy
(

νpdxq ă8

*

is an open set in Rk and the cumulant function A : ΘÑR is strictly convex and smooth. The
map µ between canonical parameter θ PΘ and the mean parameter µ PM satisfies

µpθq “∇Apθq

and establishes a bijection between Θ and M . Moreover, M is the interior of the convex hull
of tpX q; see any of the references [5, 8, 49] for more details. The inverse map is denoted by
θ, that is, θ “ θpµq.

Suppose we split the sufficient statistics into two subvectors tpxq “ pu,vq of dimension
r, s where r ` s “ k. Let θ “ pθu,θvq, µ “ pµu,µvq be the corresponding splits in the
canonical and in the mean parameter. In analogy with µ “ µpθq, we also use the notation
µupθq “µu, µvpθq “µv , θupµq “ θu, and θvpµq “ θv . For example, µupθq is the composi-
tion of µ : ΘÑM with the projection pµu,µvq ÞÑµu.

By [5, Theorem 8.4], the pair pµu,θvq forms an alternative parametrization for the expo-
nential family E called the mixed parametrization. The parameters µu and θv are variation
independent, that is, the parameter space for pµu,θvq is the Cartesian product spaceMuˆΘv

where Θv is the projection of Θ on θv and Mu is the projection of the space of mean param-
eters M onto µu. So we may without ambiguity write

E “ tPθ |θ PΘu “ tPµ |µ PMu “ tPpµu,θvq |µu PMu,θv PΘvu.

We may thus consider the model E 1 obtained from E by a convex restriction on µu and a
convex restriction on θv . More precisely, we define:
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DEFINITION 3.1. Fix a mixed parametrization pµu,θvq PMu ˆΘv of the exponential
family E . The model E 1 is called a mixed convex submodel of E and a mixed convex exponen-
tial family if it consists of all mixed parameters pµu,θvq PM 1

u ˆΘ1v , where M 1
u and Θ1v are

convex and relatively closed subsets of Mu and Θv respectively. We say that E 1 is a mixed
linear exponential family, if both of M 1

u and Θ1v are given by affine restrictions.

It is useful to introduce the following notation:

(2) Cu “ tµ PM : µu PM
1
uu, Cv “ tθ PΘ : θv PΘ1vu.

The mixed convex exponential family is then given as an intersection E 1 “ Eu X Ev Ď E ,
where Eu “ tPµ |µ P Cuu and Ev “ tPθ |θ P Cvu (one model is convex in the mean
parametrization and the other is convex in the canonical parametrization). Note that these
restrictions are also variation independent so that

E 1 “ tPpµu,θvq |µ PCu,θ PCvu “ tPpµu,θvq | pµu,θvq PM
1
u ˆΘ1vu.

We now discuss a few examples of this. Recall that the family of multivariate Gaussian dis-
tributions with zero mean and unknown covariance matrix Σ is indeed a regular exponential
family with inner product xA,By “ trpABq and

tpxq “ ´xxT {2, θ “K, µ“´Σ{2, ApKq “ ´
1

2
log detK.

The space of canonical parameters is the cone of positive definite matrices and the space of
mean parameters is the cone of negative definite matrices.

EXAMPLE 3.2. Fix a graph G “ pV,Eq on d vertices V “ t1, . . . , du and consider the
family of d-variate mean zero Gaussian distributions. We split the sufficient statistics into
u “ p´xixj{2qijPE and v “ p´xixj{2qijRE . The diagonal entries ´x2

i {2 are included in
u. Then µu “ p´Σij{2qijPE and θv “ pKijqijRE . We may consider a mixed convex family
given by µu ď 0 and θv “ 0. These are precisely the locally associated Gaussian graphical
models discussed in Section 2.2.

Mixed convex exponential families enable easy formulation of other relevant models en-
coding positive dependence in Gaussian distributions:

EXAMPLE 3.3. With the set-up as in Example 3.2, we alternatively split the sufficient
statistics into u“ p´xixj{2qijRE and v “ p´xixj{2qijPE . The diagonal entries are now in-
cluded in v. Then µu “ p´Σij{2qijRE and θv “ pKijqijPE . We may consider a mixed convex
family given by µu ď 0 and θv ď 0. Here cliques in the graph correspond to subsystems char-
acterized by a strong notion of positive dependence (all partial correlations nonnegative) or,
in other words, the conditional distribution of variables in a clique given the remaining vari-
ables is MTP2. Otherwise the system is weakly positively dependent (positive correlations).

An example of a mixed linear model can be easily motivated by causal analysis [41],
where zero restrictions on some entries of Σ correspond to marginal independence and zero
restrictions onK correspond to conditional independence. Models of this form fit our general
set-up:

EXAMPLE 3.4. Given a graph GCOV, called the covariance graph, over V “ t1, . . . , du,
we define the corresponding covariance graph model BpGCOVq given by all covariance matri-
ces that satisfy Σij “ 0 if ij REpGCOVq. Given the covariance graph GCOV and the concentra-
tion graph GCON we want to understand the intersection BpGCOVq XMpGCONq. In the special
case when ij R EpGCONq implies ij P EpGCOVq, the corresponding model is a mixed linear
model. Models of this type were studied in detail in [28], see also [6, 14, 41].
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EXAMPLE 3.5. Recently [13] discussed the problem of testing equality of mean zero
d-variate Gaussian distributions under the assumption that they lie in a fixed graphical
model over the graph G. So suppose that X,Y are independent Gaussian with covariance
matrices Σp1q,Σp2q. Here the mixed parameters are pΣp1qij ,Σ

p2q
ij qijPE for the mean part and

pK
p1q
ij ,K

p2q
ij qijRE for the canonical part. The mixed linear model which assures that both dis-

tributions are equal is given by Σ
p1q
ij “Σ

p2q
ij for all ij PE and Kp1q

ij “K
p2q
ij “ 0 for all ij RE.

Although the Gaussian case is our focus here, there are interesting examples beyond this
case.

EXAMPLE 3.6. Consider discrete random variables X and Y taking values in S “
t0,1, . . . , ku and let pxy “ P pX “ x,Y “ yq with pxy ą 0 for all x, y P S . This specifies
a regular exponential family with canonical parameters

λxy, x, y P S and px, yq ‰ p0,0q

where

λxy “ log pxy ´ log p00

and so λ00 “ 0. The corresponding sufficient statistics are t“ ptxyq where

txypx
1, y1q “ 1tpx,yqupx

1, y1q

and the corresponding mean parameters are pxy for px, yq ‰ p0,0q. We will consider a linear
transformation of the canonical parameters and sufficient statistics into

θxy “ λxy ´ λx0 ´ λ0y, x, y P Szt0u, θx0 “ λx0, θ0y “ λ0y, x, y P Szt0u

with corresponding sufficient statistics

txy, x, y P Szt0u; tx` “
ÿ

yPS
txy, x P Szt0u t`y “

ÿ

xPS
, y P Szt0u.

This exponential family may thus be mixed parametrized with the marginals

µx` “ px` “ Ettx`pX,Y qu “
ÿ

y

pxy, x P Szt0u,

µ`y “ p`y “ Ett`ypX,Y qu “
ÿ

x

pxy, y P Szt0u

and the interactions

θxy, x, y P Szt0u.

We may then consider the hypothesis of marginal homogeneity ([31]), i.e.

(3) px` “ p`x for all x P S

in combination with the distribution being MTP2; the latter is equivalent to the condition

(4) θxy ` θx1y1 ´ θxy1 ´ θx1y ě 0 for all xě x1 and y ě y1.

The restriction (3) is convex (in fact linear) in the mean parameters and (4) is convex in θxy
so these restrictions jointly specify a mixed convex exponential family.
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Another alternative would exploit that categories are ordered and for example specify that
pi` is stochastically smaller than p`i i.e.

j
ÿ

x“0

px` ď

j
ÿ

y“0

p`y for all j P S ,

yielding a convex restriction also on the mean parameters; see [2] and [3] for further details
of this model.

The mixed parametrization can be naturally used in discrete exponential families when the
mean vector is regressed via a link function on some covariates and the remaining canonical
parameters are used to handle higher order interactions. Similar ideas emerge for models with
restrictions on marginal and conditional distributions; see e.g. [19] and [22].

4. Estimation in mixed convex exponential families. Since mixed convex models are
not necessarily convex exponential families (given by convex constraints on θ only), maxi-
mum likelihood estimation leads in general to non-convex optimization problems that may
have many local optima. In this section we propose a simple alternative approach leading to
two convex optimization problems. In Section 6 we will show that, asymptotically, the re-
sulting estimator has the same asymptotic distribution as the MLE up to the first order in the
sense that the difference between the estimators converges in probability to zero, even after
multiplying with

?
n.

4.1. Likelihood and its dual. Before we present our optimization procedure, we quickly
recall the definition of the dual likelihood function; cf. Chapter 6 in [8]. Given a random
sample Xp1q, . . . ,Xpnq of size n from the exponential family E in (1), denote t “ tn “
řn
i“1 tpX

piqq{n. The log-likelihood function is a strictly concave function of θ given as

(5) `pθ; tq “ xθ, ty ´Apθq,

where we here and in the following have suppressed the index n as we are not yet considering
the asymptotic behaviour. Since

∇`pθ; tq “ t´∇Apθq “ t´ µpθq,

the unconstrained optimum based on data t is the parameter θ for which the mean parameter
µpθq is equal to t; in other words, this is θptq and is well-defined if t PM . In what follows we
ignore that t comes from data and write `pθ;µq, where µ is a general point in the topological
closure M of the space of mean parameters.

The Fenchel conjugate of the cumulant function A is the function

A˚pµq “ supt`pθ;µq : θ PRku.

The function A˚ is convex as a supremum of linear functions and indeed strictly convex. The
unique optimizer of the log-likelihood is θpµq, so

(6) A˚pµq “ `pθpµq;µq “ xθpµq,µy ´Apθpµqq

implying in particular that A˚ is smooth, i.e. infinitely often differentiable, since θ and A are
both smooth. For any fixed θ, the function

(7) q`pµ;θq :“ xθ,µy ´A˚pµq

is a strictly concave function of µ PM called the dual log-likelihood function. Analogously
to the log-likelihood function, q` satisfies

∇µq`pµ;θq “ θ´∇µA˚pµq “ θ´ θpµq,
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which follows by composite differentiation in (6) since µpθpµqq “µ and thus

∇µA˚pµq “ θpµq `∇µθpµq ¨µ´∇µθpµq ¨ µpθpµqq “ θpµq.

Consider two distributions in E , one with the mean parameter µ1 and the other with canon-
ical parameter θ2. The Kullback–Leibler divergence ([32]) between these two distributions
is

(8) Kpµ1,θ2q “ ´xµ1,θ2y `A
˚pµ1q `Apθ2q,

which follows directly from Proposition 6.3 in [8] and the definition of A˚pµ1q. The
Kullback–Leibler divergence is well defined and nonnegative over M ˆ Θ. Moreover,
Kpµ1,θ2q “ 0 if and only if µ1 “ µpθ2q. We will extend the definition of Kp¨,θq to all
Rk by semicontinuity; cf. [8, p. 175]. Then Kpµ,θq may be well-defined even if µ does not
lie in the space of mean parameters but in its closure.

The reason to express the Kullback–Leibler distance in terms of µ1 and θ2 rather than
θ1,θ2 (as usually done in the literature) is that we wish to exploit the following basic result.

PROPOSITION 4.1. The Kullback–Leibler divergence Kpµ1,θ2q is strictly convex both
in µ1 and in θ2.

PROOF. This follows dicrectly from (8) and the fact that both Apθq and A˚pµq are strictly
convex functions

REMARK 4.2. Minimizing Kpt,θq with respect to θ with t fixed is equivalent to maxi-
mizing `pθ; tq in (5). Similarly, minimizing Kpµ,θq with respect to µ with θ fixed is equiv-
alent to maximizing the dual log-likelihood q`pµ;θq in (7).

4.2. The mixed dual estimator. Recall the definition of the sets Cu,Cv in (2) and that
t “

řn
i“1 tpX

piqq{n. We propose the following two-step procedure to estimate the mixed
parameter pµu,θvq in the mixed convex family E 1 from data t:

(S1) First minimize Kpt,θq over θ P Cv Ď Θ. Denote the unique optimum, assuming it
exists, by pθ.

(S2) Then minimize Kpµ,pθq subject to µ PCu ĎM . Denote the unique optimum by qµ.

We shall term our estimator qµ the mixed dual estimator (MDE) and show below in Theo-
rem 4.5 that indeed P

qµ P E 1. By Proposition 4.1, both steps (S1) and (S2) rely on solving a
convex optimization problem. Note that the optimum in (S1) is the MLE under the convex
exponential family given by θ P Cv (cf. Remark 4.2). This MLE may not exist (if t lies on
the boundary of the space of mean parameters) but we have the following:

PROPOSITION 4.3. If the optimum pθ in (S1) exists then it is unique and the optimum qµ
in (S2) exists and is unique too.

PROOF. Suppose that the optimum in (S1) exists. Uniqueness follows by strict convexity.
Note that (S2) is equivalent to the maximization of the dual likelihood q`pµ,pθq over allµ PCu.
Let |M “ tµ :A˚pµq ă 8u, which contains M but is typically bigger, M Ď |M ĎM where
M is the topological closure of M . Let S be the closure (in |M ) of Cu. Since Cu is relatively
closed in M , the only extra points are those in |MzM . Now, by Theorem 6.13 in [8], the
fact that pθ PΘ implies that q`pµ,pθq attains an optimum over S and the optimum is uniquely
attained in SXM “Cu. In particular, the optimum in (S2) exists. (Note that the extra points
we added to the model played only an auxiliary role in this proof.)
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REMARK 4.4. Let t “ pu,vq. Theorem 4.5 below implies that u PMu is a necessary
condition for pθ to exist.

Our main result of this section shows that after the steps (S1) and (S2), we indeed obtain
a point in the mixed convex family E 1.

THEOREM 4.5. Let t “ pu,vq and suppose that pθ in step (S1) exists. Then, µuppθq “
u PMu and in step (S2) we get that θvpqµq “ pθv . In particular, after steps (S1) and (S2), the
optimum qµ represents an element in the mixed convex family E 1.

PROOF. If the optimum pθ P Cv in step (S1) exists then, by convexity of Kpt,θq and of
Cv , it must satisfy x∇θKpt,pθq,θ ´ pθy ě 0 for all θ P Cu. Since Θ is an open set, a small
perturbation pθ ` τ also lies in Θ. If, in addition, τ v “ 0 then this perturbation lies in Cv .
Thus, for any sufficiently small vector τ PRk such that τ v “ 0, we must have

x∇θKpt,pθq,τ y “ xµuppθq ´u,τuy ě 0.

Since τu is small but otherwise arbitrary, this is only possible if µuppθq “ u, which proves
the first part of the theorem.

The second part is proved in the same way: In step (S2), the optimum qµ exists and is unique
by Proposition 4.3. By convexity of Kpµ,pθq, the optimum satisfies x∇µKpqµ,pθq,µ´ qµy ě 0
for all µ P Cu. Since qµ is an interior point of M , a small perturbation qµ` τ also lies in M
and, if τu “ 0, it also lies in Cu. For any such perturbation, we necessarily have

x∇µKpqµ,pθq,τ y “ xθvpqµq ´ pθv,τ vy ě 0.

Since τ v is small but otherwise arbitrary, this is only possible if θvpqµq “ pθv .

REMARK 4.6. In principle, we may interchange the order of optimization with respect
to θ and µ by starting from θptq and running Step (S2) first. However, if t does not lie in the
space of mean parameters (but in its closure) θptq is not well-defined. Here we exploit that pθ
might exist even if t is on the boundary of M due to the additional convex restriction θ PCv .

REMARK 4.7. Note that when Cv is given by affine constraints, the first step just corre-
sponds to reducing data by sufficiency; then the MDE is simply the dual likelihood estimate
(DLE), studied by [8, 10, 15] and used extensively by [30]. This provides, for example, a
straight-forward way to test equality of distributions in Example 3.5 because the likelihood
ratio statistics based on the dual likelihood has asymptotically the same distribution as the
standard likelihood ratio statistics, cf. [10, Theorem 3.3].

5. Estimating Gaussian locally associated distributions. As mentioned in Section 2.2,
a locally associated Gaussian graphical model M`pGq is determined as

M`pGq “ ApGq XMpGq

and thus it forms an instance of a mixed convex exponential family since ApGq is convex
in Σ and MpGq is convex in K and the restrictions refer to distinct parts of the canonical
statistic and parameters; see Example 3.2 for details.



LOCALLY ASSOCIATED GRAPHICAL MODELS 11

5.1. The Gaussian log-likelihood. Given the data X PRnˆd with independent rows dis-
tributed as Np0,Σ˚q our goal is to estimate Σ˚. Let S “XTX{n be the sample covariance
matrix. The Gaussian log-likelihood (ignoring a multiplicative constant n) is

(9) `pKq “
1

2
log detpKq ´

1

2
trpSKq.

Note that here and elsewhere we ignore the multiplicative constant n in the log-likelihood
function. Recall that for the Gaussian family

tpxq “ ´xxT {2, θ “K, µ“´Σ{2, ApKq “ ´
1

2
log detK.

The unique optimizer of `pKq is S´1 and so

A˚p´Σ{2q “ ´
1

2
log detpΣq ´

d

2

and thus the Kullback–Leibler divergence as above becomes

Kp´Σ1{2,K2q “
1

2
trpΣ1K2 ´ Iq ´

1

2
log detpΣ1K2q.

5.2. The mixed dual estimator. We consider now the mixed dual estimator MDE as de-
veloped above - in this case equivalent to the dual likelihood estimator, since the first step is
just estimation in the standard graphical model given by edge restrictions on K (see e.g. [35,
Section 5.2.1]).

The second step corresponds to the following convex optimization problem:

minimize
Σľ0

´ log detpΣq ` trpΣ pKq(10)

subject to Σij ě 0 for all ij PEpGq,

where, as before, pK is the MLE of K in the linear exponential family MpGq. Note that
we ignore the Markov constraint on Σ that would destroy convexity of this problem. As
shown in Theorem 4.5 above, the Markov constraint becomes automatically fulfilled in the
optimization. The Lagrangian for this problem is

LpΣ,Λq “ ´ log det Σ` trpΣ pKq ´ trpΣΛq “ ´ log det Σ` trpΣp pK ´Λqq

where Λ is a symmetric matrix with diagonal equal to 0, Λij “ 0 unless ij P EpGq, and
Λij ě 0. The Lagrangian is mimimized in Σ for fixed Λ by the matrix Σ˚ given as

(11) Σ˚ “ p pK ´Λq´1

and complementary slackness implies for the optimal Λ“ Λ˚ that

Σ˚ijΛ
˚
ij “ 0, ij PE

or, equivalently,

Σ˚ijp
pKij ´K

˚
ijq “ 0, ij PE.

Note that it follows directly from (11) that Σ˚ PMpGq if pΣ PMpGq, conforming with The-
orem 4.5 and hence Σ˚ “ qΣ is in fact the MDE we are looking for. In summary, we have the
following:

THEOREM 5.1. If the MDE qΣ of Σ under M`pGq exists, it is given as the unique positive
definite solution to the following system of equations and inequalities, where qK “ qΣ´1 and
pK “ pΣ´1:
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i) qΣij ě 0, ij PEpGq

ii) pΣij “ Sij , ij PEpGq

iii) pΣii “ Sii, i P V pGq

iv) qKij “ pKij “ 0, ij REpGq

v) qKij ď pKij , ij PEpGq

vi) qKii “ pKii, i P V pGq

vii) qΣijp pKij ´ qKijq “ 0, ij PEpGq.

Note that the equations (ii), (iii), and the last part of (iv) are equations determining the
MLE pK under MpGq. The condition (vii) naturally induces sparsity in qΣ.

Further, denoting by qG the graph whose edges correspond to non-zero entries of qΣ, we
note that the zero entries in Σ obtained in this way are complementary to the zero entries in
K; cf. also Example 3.4. We also have the following.

COROLLARY 5.2. The mixed dual estimate qΣ in the model Bp qGqXMpGq is identical to
the mixed dual estimate in the model M`pGq “ApGqXMpGq as determined in Theorem 5.1
above.

PROOF. By construction, if ij R Ep qGq then ij P EpGq. Denoting by E0 the set of pairs
that do not lie in Ep qGq we get that E0 ĎEpGq. The optimality conditions for pK over MpGq
are standard and given by

(a) pΣii “ Sii, i P V pGq

(b) pΣij “ Sij , ij PEpGq

(c) pKij “ 0, ij REpGq.

By an analogous argument, the dual likelihood estimate in Bp qGq based on pK is the unique
positive definite matrix rΣ“ rK´1 satisfying

(d) rKii “ pKii, i P V pGq

(e) rKij “ pKij , ij PEp qGq

(f) rΣij “ 0, ij PE0.

Our aim is to show that rΣ“ qΣ. First note that, (d) together with condition (vi) in Theorem 5.1,
implies that rKii “ qKii for all i P V . Similarly, (iv) and (e) imply that rKij “ pKij “ qKij for
ij REpGq. This equality extends to all ij PEpGqzE0 by (vii) and (e). Moreover qΣij “ rΣij “

0 for all ij PE0. It is a standard result that there is a unique completion of a partially specified
positive definite matrix K to a matrix such that Σ“K´1 has zero entries on the unspecified
entries of K . It follows that rK “ qK .

Note that the statement in Corollary 5.2 is not trivial since Bp qGq XMpGq is not a subset
of M`pGq.

The conditions for existence of qΣ do not seem to simplify beyond the conditions for exis-
tence of pK; see also Theorem 4.5. Conditions for existence of pK may be rather involved, see
for example [50, 23].

6. Asymptotic behaviour of the mixed dual estimator. We now return to the the gen-
eral mixed dual estimator. In this section we work entirely in the corresponding mixed
parametrization ψ “ pµu,θvq. The MLE and the MDE for E 1 in this parametrization are
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denoted simply by rψ and qψ. The maximizer of the log-likelihood function obtained in step
(S1) is denoted pψ. Suppose that the true data generating distribution with the mixed param-
eter ψ0 lies in E 1, that is, ψ0 PM

1
u ˆΘ1v . We study the asymptotic distribution of the MDE

qψn, where n is the sample size and show that the MDE is
?
n-consistent and has exactly the

same asymptotic distribution as the maximum likelihood estimator rψn.

THEOREM 6.1. The MDE and MLE are asymptotically equivalent, i.e. it holds that
?
npqψn´

rψnqÑ 0 in probability, implying that
?
npqψn´ψ0q converges in distribution and

the limiting distribution of
?
npqψn ´ψ0q equals the limiting distribution of

?
nprψn ´ψ0q.

PROOF. The proof is provided in Appendix A.

Let ψn “ pun, θvptnqq be the MLE in the unrestricted exponential family E expressed in
the mixed parametrization. The limiting distribution in Theorem 6.1 is obtained by projecting
the Gaussian limiting distribution of

?
npψn´ψ0q onto the tangent cone of the mixed expo-

nential family at the true parameter ψ0; cf. [21]. If the constraints defining Θ1v are affine, it is
useful to equivalently describe this distribution as the limiting distribution of

?
nppψn ´ψ0q

(which is also Gaussian), onto the tangent cone TM 1
uˆΘ1vpψ0q. In the case of locally associ-

ated Gaussian graphical models, this results with the Gaussian distribution (the asymptotic
distribution of the MLE in a Gaussian graphical model; cf. [35, Proposition 5.8]) projected
onto the cone given by the edge covariances being nonnegative. The problem is that even if
we can describe this distribution exactly, it depends in a very complicated way on the true
covariance matrix. It will be given as a mixture of normal distributions that are ‘truncated’
to regions projecting onto the various facets with weights that are generally impossible to
compute exactly. As an alternative to using asymptotic results, the distribution of the MDE
may be simulated using bootstrap methods, as the estimation algorithm is fast and guaranteed
to converge, whereas simulating the distribution of the MLE is difficult as the MLE may not
even be well-defined for all bootstrap samples.

7. Learning the local structure. In this section we consider the situation where the
graph G defining the local structure in locally associated Gaussian graphical models is un-
known. We aim at obtaining a sparse structure in K through a lasso type penalty.

7.1. The positive graphical lasso. To avoid losing any positive dependence information
we only penalize positive values in the inverse covariance matrix, corresponding to large
negative partial correlations. More precisely, we want to solve the following optimization
problem

(12) minimize ´ 2`pKq ` ρ}K`}1 subject to K ą 0,

where `npKq is the Gaussian log-likelihood in (9) and

}K`}1 “
ÿ

i‰j

maxt0,Kiju.

We shall refer to this procedure as the positive graphical lasso. Note that for ρ “ 8, the
penalty forces the solution pKρ to be an M-matrix and hence the positive graphical lasso can
be seen as a direct relaxation of the estimation under the assumption that the distribution is
MTP2 ([33, 46]); cf. Section 8.4.
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By computing subgradients, we easily check that pKρ is the unique optimal point of (12) if
and only if

(13) pΣρ
ij ´ Sij P

$

’

&

’

%

t0u if pKρ
ij ă 0

r0, ρs if pKρ
ij “ 0

tρu if pKρ
ij ą 0

for all i‰ j P V,

As a corollary we get an alternative characterization of the optimal solution that links it to
the MLE in the Gaussian graphical model.

COROLLARY 7.1. Let pGρ “ pV, pEρq be the graph with edges determined by pKρ and
define the modified sample covariance as

Sρij “

#

Sij if pKρ
ij ď 0

Sij ` ρ if pKρ
ij ą 0

for all i‰ j P V.

Then pKρ is the MLE under the Gaussian graphical model determined by pGρ, based on the
modified sample covariance Sρ.

PROOF. The MLE is uniquely determined by fitting covariances along edges in pEρ and
satisfying pKij “ 0 for non-edges.

See also Proposition 8.2 and Corollary 8.10 below for generalizations of this result.
The positive graphical lasso estimate, as described and calculated above, will avoid large

negative partial correlations and as such it may often directly result in a locally associated
covariance matrix, in particular for large penalty parameters, as shown in Theorem 8.9. If this
is not the case, we may wish to take the additional restriction of edge positivity into account
using the estimate qΣρ given as

qΣρ “ argmin
ΣPM`p pGρq

Kp´Σ{2, pKρq “ argmin
ΣPAp pGρq

Kp´Σ{2, pKρq.

This is exactly the dual likelihood estimate in (10) calculated with pKρ as starting point, rather
than pK . We may then again think of the two-step procedure as first obtaining a compact
representation pKρ of the data matrix S, adapting and taking into account the penalty for
negative partial correlations, and subsequently approximating this compact representation
with a locally associated, and hence locally associated Gaussian distribution qΣρ. We refer to
this procedure as the dual penalized likelihood estimate (DPLE).

7.2. A comment on high-dimensional analysis. A careful analysis of the high-dimensional
properties of the positive graphical lasso estimator is beyond the scope of this paper. Here
we share some cautionary remarks. In [47] the authors analysed the convergence rates for the
operator norm } pK´K˚} for the problem of M-matrix estimation. As we argue in Section 8.4
below, M-matrix estimation is a special case of our positive graphical LASSO set-up. In par-
ticular, Section 3 in [47] suggests that we cannot expect good rates for the operator norm
} pKρ ´K˚} if K˚ is sparse. So in the high-dimensional regime, the spectral properties pΣρ

should be interpreted with caution. Similarly, pK will not have good support recovery. For
example, if K˚ “ Id, pK will typically not even be sparse. A natural way to obtain an esti-
mator with better statistical properties is by replacing the sample covariance matrix S in (12)
with a better estimator of Σ˚ (e.g. shrinkage estimator). Our motivating example is high-
dimensional with d “ 136 and n “ 43. In this case the positive graphical lasso estimator
outperforms the graphical lasso estimator by a large margin also producing a much sparser
graph; cf. Section 9.2.
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8. The GOLAZO algorithm. In this section we formulate a general optimization prob-
lem and algorithm that unifies the positive graphical lasso, estimation under MTP2 con-
straints, under local association, and a number of other forms of likelihood-based estimation
for graphical models. It allows us to flexibly introduce sign constraints, zero restrictions, and
to penalize different signs of Kij at different rates.

Let L,U be two symmetric matrices with entries in RY t´8,`8u with the restriction
that Lij ď 0ď Uij for all i‰ j, and Lii “ Uii “ 0 for all i. Denote

}K}LU :“
ÿ

i‰j

maxtLijKij ,UijKiju.

The function }K}LU is convex, positively homogeneous, continuous, and non-negative. Al-
though it is sublinear, that is }K `K 1}LU ď }K}LU ` }K

1}LU , it does not define a norm
unless |Lij | “ |Uij | for all i‰ j.

The penalty function }K}LU enables us to obtain sparse estimates of K in a way that takes
into account the signs of K or, equivalently, the signs of the partial correlations. We aim at
solving the following problem

(14) minimize ´ 2`pKq ` }K}LU ,

and refer to this as Graphical Oriented LAZy Optimization (GOLAZO). To get a procedure
that is invariant under diagonal rescaling we also typically replace the sample covariance
matrix S in `npKq with the sample correlation matrix R.

REMARK 8.1. For non-paranormal distributions we replace the sample correlation ma-
trix R with another estimate of the correlation matrix. Following the SKEPTIC approach
of [37], we first compute Kendall’s tau pτij , which can be estimated without knowledge of
the underlying monotone transformations fi. Then we compute pρij “ sinpπ2 pτijq, which is a
natural plug-in estimator of the correlation based on the main result of [36].

To illustrate usefulness of this general approach we list a number of situation that are
included in this set-up.

Graphical lasso and SCAD penalties: If |Lij | “ |Uij | “ ρ ą 0 for all i ‰ j, (14) corre-
sponds to the standard graphical lasso. More generally, if |Lij | “ |Uij | “ ρij , that is when
}K}LU is a norm, we obtain a version of the graphical lasso that takes into account different
scalings of the variables. This general version is used in the adaptive GLASSO procedure and
the local linear approximation algorithm used for general concave penalties rely on solving
one or more problems of this form; see [18] for details.

Asymmetric graphical lasso: If Lij “ ´ρ´ and Uij “ ρ` for all i ‰ j where 0 ă
ρ´, ρ` ă `8, we obtain a version of the graphical lasso, where positive entries of K are
penalized at a different rate than the negative entries.

Positive graphical lasso: If L “ 0 and Uij “ ρ for all i ‰ j then (14) corresponds to
the positive graphical lasso problem in (12). This looks like the asymmetric graphical lasso
problem with ρ´ “ 0 but as we will see, a zero penalty introduces additional complications
concerning existence of the optimum.

MTP2 distributions: If L“ 0 and Uij “`8 for all i‰ j then (14) gives the maximum
likelihood estimator for constrained M-matrix estimation. In Remark 8.3 we show that, rather
than infinite, Uij must be sufficiently large.

Gaussian graphical models: In certain situations we may in advance wish to specify
that some entries of K should be zero. If Kij “ 0, this can be imposed by setting Lij “´8,
Uij “`8 (by the standard convention˘8¨0“ 0). Thus the optimization algorithm detailed
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in Section 8.1 also yields an interesting alternative to the IPS algorithm and other edge based
algorithms in [48] which may occasionally be slow.

Dual likelihood estimate: The optimization problem in (10) is equivalent to (14) just
replacing K with Σ, S with pK , setting Lij “´8 and Uij “ 0.

PROPOSITION 8.2. If the optimum in (14) exists, it is the unique positive definite matrix
pK (with pΣ“ pK´1) satisfying

pΣij ´ Sij P

$

’

&

’

%

tLiju if pKij ă 0,

rLij ,Uijs if pKij “ 0,

tUiju if pKij ą 0.

for all i, j P V.

PROOF. The subgradient of the function maxtLijKij ,UijKiju at Kij “ 0 is the interval
rLij ,Uijs. This subgradient is tLiju, tUiju if Kij ă 0, Kij ą 0 respectively. Now the con-
clusion follows from the standard theory for non-differentiable convex functions; see, for
example, [43].

The problem (14) is a convex optimization problem. Its dual problem is particularly simple
and admits a straight-forward block-coordinate descent procedure. To obtain the dual, note
that

maxtLijKij ,UijKiju “ sup
LijďΓijďUij

ΓijKij

and so

}K}LU “ sup
LďΓďU

trpΓKq

whereby (14) becomes

inf
Ką0

sup
LďΓďU

 

´ log detK ` trppS ` ΓqKq
(

.

Swapping inf with sup and using the fact that the unique optimizer with respect to K of
´ log detK ` trppS ` ΓqKq (if exists) is pS ` Γq´1, we obtain the dual problem by letting
Σ“ S ` Γ:

(15) maximize log det Σ` d subject to S `LďΣď S `U.

In particular, every feasible point of the dual problem (15) has the same diagonal as S2. In
particular, if the correlation matrix R is used as the data input, the optimum is a correlation
matrix too.

REMARK 8.3. Since Σ is positive definite we have in particular that ´
a

SiiSjj ăΣij ă
a

SiiSjj for all i‰ j. It follows that every dually feasible Σ satisfies

maxtSij `Lij ,´
a

SiiSjju ď Σij ď mintSij `Uij ,
a

SiiSjju.

This allows us to replace Uij with Uij ^ p
a

SiiSjj ´ Sijq and Lij with Lij _ p´Sij ´
a

SiiSjjq, which is particularly useful if Lij “´8 or Uij “`8.

2Our setting can be easily extended to the case when the diagonal entries of K are also penalized. In this case
the optimal point of the dual problem has the same diagonal as S `U .
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COROLLARY 8.4. Let pK be the optimal solution to (14). If Lij ď´Sij ´
a

SiiSjj then
pKij ě 0. If Uij ě ´Sij `

a

SiiSjj then pKij ď 0. In particular, pKij “ 0 if both conditions
hold.

Since (14) is always feasible, feasibility of the dual problem (15) assures that the optimum
of (14) exists and is unique. We show below that it always holds if L and U have no zeros
outside of the diagonal. Under minor conditions this also holds for the positive graphical
lasso in which case L is a zero matrix. We provide a more detailed treatment of this problem
in Section 8.2. But first we introduce our optimization algorithm.

8.1. Optimization. To solve (15) we use a straightforward block-coordinate descent ap-
proach that is a direct modification of the algorithm used for the dual graphical lasso problem
in [4]. An important difference is that, by default, we do not penalize the diagonal, which
leads to additional issues that may arise. We optimize the determinant of Σ updating row by
row, but keep the diagonal entries fixed to be equal to the diagonal of S.

For the j-th row we consider log det Σ as the function of Σj,zj keeping the other entries of
Σ fixed. By standard matrix algebra

log det Σ “ log det Σzj ` log detpΣjj ´Σj,zjpΣzjq
´1Σzj,jq.

Thus maximizing log det Σ with respect to y :“Σj,zj is equivalent to minimizing yT pΣzjq´1y,
where we need to impose linear conditions that Sij ` Lij ď yi ď Sij ` Uij for every
i P V ztju. This is an instance of a quadratic program. The following result is a straight-
forward generalization of [4, Theorem 4]. It allows to quickly identify disconnected nodes in
the underlying graph.

LEMMA 8.5. If Sj,zj `Lj,zj ď 0ď Sj,zj `Uj,zj for some j P V then pΣj,zj “
pKj,zj “ 0.

The starting point Σ0 of the algorithm needs to be chosen carefully so that Σ0 is dually
feasible. In this case, each iterate of the algorithm is guaranteed to be dually feasible. In Sec-
tion 8.2 we show how to find such a starting point. Given the starting point, our procedure is
straightforward and described in Algorithm 1. Corollary 8.4 and Lemma 8.5 give an obvious
way to speed up the computations but reducing the number of nodes that have to be visited at
each step. To solve the quadratic problem in each iteration we use the quadprog package
in R.

Data: A positive semidefinite matrix S, penalty matrices Lď 0ď U .
Result: A maximizer of (12).
Initialize: Σ“Σ0 (a dually feasible point);
while there is no convergence do

for j “ 1, . . . , d do
Update Σj,zj Ð py, where

py “ arg min
y

!

yT pΣzjq
´1y : Sj,zj `Lj,zj ď y ď Sj,zj `Uj,zj

)

.

end
end
Algorithm 1: The Graphical Oriented LAZy Optimization (GOLAZO) Algorithm.
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To establish convergence in Algorithm 1 we track the duality gap

trpSKq ´ d` }K}LU ,

which is guaranteed to be non-negative for each step of the algorithm, decrease at each iter-
ation, and to be zero at the optimum. We stop the algorithm once this positive gap becomes
sufficiently close to zero.

In the actual implementation it is important to compute the dual gap carefully in case L,U
contain infinite entries. We simply make use of Remark 8.3 and replace˘8 with appropriate
finite bounds. The only remaining issue to complete the description of the algorithm is a
procedure to obtain a dually feasible starting point. We address this issue in the next section.

8.2. Dually feasible starting point. Recall that Σ is dually feasible if Σ is positive defi-
nite and Lď Σ´ S ď U . If S is positive definite, it is dually feasible, and we take Σ0 “ S.
We then focus on the case when S is rank deficient. Since S is a sample covariance matrix it
is always positive semidefinite and it has rank at least one. This implies that (with probability
one) the diagonal entries are strictly positive. Clearly, if some Sii “ 0 then no feasible point
exists. We then always assume that Sii ą 0 for all i P V .

We first show how to construct a starting point in the case when for each i ‰ j both the
negative and the positive values of Kij are penalized. Denote by diagpSq the diagonal matrix
whose diagonal is equal to the diagonal of S.

LEMMA 8.6. If Lij ă 0 ă Uij for all i ‰ j then there exists t P p0,1q such that Σ0 “

p1´ tqS` tdiagpSq is dually feasible. The condition for dual feasibility becomes that Lij ď
´tSij ď Uij for all i‰ j.

PROOF. Since diagpSq is positive definite, Σ0 “ p1´ tqS ` tdiagpSq is positive definite
for every t P p0,1s. We have Σ0 ´ S “ t pdiagpSq ´ Sq and so pΣ0 ´ Sqij “ ´tSij for all
i‰ j. Since Lij ă 0 and Uij ą 0, it holds that if t is sufficiently small then Lij ď t pdiagpSq´
Sqij ď Uij for all i‰ j.

The conditions of Lemma 8.6 are satisfied for the graphical lasso and this result can be
turned into an explicit procedure for computing a starting point. Note that using glasso or
EBICglasso in R outputs either a warning or an error when S is not positive definite. As a
consequence of Lemma 8.6, we have:

THEOREM 8.7. The optimum in the graphical lasso problem always exists and is unique.
More generally, this also holds for the GOLAZO if Lij ă 0ă Uij for all i‰ j.

The conditions of Lemma 8.6 are not satisfied for the positive graphical lasso and, in
general, for any case where S lies on the boundary of the rectangle tΣ : LďΣ´ S ď Uu. If
L has potentially zero entries but Uij ą 0 for all i ‰ j then we still can prove that a dually
feasible point exists under very mild additional assumptions on S. This relies on an explicit
construction of a dually feasible point based on the definition of a single-linkage matrix of S
given in [33]. We provide the details of this construction in Appendix B, which also contains
the proof of the following result.

THEOREM 8.8. The optimum in the positive graphical lasso problem exists and is unique
as long as Sij ă

a

SiiSjj for all i‰ j, which happens with probability one if the sample size
is at least two. The same holds in general whenever Uij ą 0 for all i‰ j.



LOCALLY ASSOCIATED GRAPHICAL MODELS 19

8.3. Choice of the penalty parameter. In this section we propose a simple method to
choose the penalty parameters in L and U . Our method is based on the Extended Bayesian
Information Criterion (EBIC) proposed in [9] and adapted to problems of graphical lasso
type in [20]. Given a sample of n independent and identically distributed observations, let pK

denote an estimate and pE the set of edges of the underlying graph of pK . The EBIC criterion
takes the form

BICγp pEq “ ´n`np pKq ` | pE|plogpnq ` 4γ logpdqq.

The criterion is indexed by a parameter γ P r0,1s. If γ “ 0 then the classical BIC is recovered,
which is known to be asymptotically consistent for model selection in case d is fixed and n
goes to infinity. Positive values of γ lead to better graph estimates in the case when d and n
are comparable. This observation can be formalized in certain scenarios but otherwise relies
on numerical experiments; cf. [20].

The model selection procedure based on EBIC relies on choosing a sequence of potential
penalty parameters ρ1, . . . , ρl. Then for fixed L,U we then compute l optima for the GO-
LAZO problem with parameters ρiL,ρiU . For each of these we compute EBIC and choose ρi
that minimizes this criterion. For positive glasso the canonical choice is Lij “ 0 and Uij “ 1
for all i ‰ j. Finally note that this procedure is trivially parallelizable, which we exploit in
our code.

8.4. Sign-constrained likelihood optimization. The positive graphical lasso problem
links to the problem of maximum likelihood estimation under M-matrix constraints [46, 33],
that is to the problem

minimize ´ `pKq subject to Kij ď 0 for all i‰ j.

More generally, if Lij P t´8,0u and Uij P t0,`8u then (14) is equivalent to optimizing the
Gaussian likelihood under sign-constraints. If EL is the set of all i‰ j such that Lij “´8
and EU is the set of all i ‰ j such that Uij “ `8 then (14) amounts to maximizing the
Gaussian likelihood over the set of all inverse covariance matrices K such that Kij ě 0 for
all ij PEL and Kij ď 0 for all ij PEU . If ij PEL XEU then Kij “ 0.

One of the important reasons why we choose not to penalize the diagonal of K is the
following result.

THEOREM 8.9. Let L,U be such that Lij P t´8,0u and Uij P t0,`8u for all i ‰ j.
The GOLAZO estimator is equal to the maximum likelihood estimator under the constraints
Kij ě 0 for all ij PEL and Kij ď 0 for all ij PEU .

Recall from Remark 8.3 that infinity can be replaced by a sufficiently large number.

8.5. A link to graphical models. Let pG denote the graph determined by the support of
pK . Proposition 8.2 implies the following result.

COROLLARY 8.10. The optimum pK of (14) is equal to the maximum likelihood estimator
in the Gaussian graphical model Mp pGq with the sufficient statistics ppSijqijP pG, where pSij “

Sij `Lij if pKij ă 0 and pSij “ Sij `Uij if pKij ą 0.

PROOF. We have that pΣ PMp pGq and it coincides with pS on the edges of pG. It is then the
unique optimum of the MLE problem.
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This result implies that as soon as we have access to the matrix of signs of pK with
sgnp pKijq P t´1,0,1u we could alternatively find pK by augmenting the sufficient statistics
and fitting the corresponding Gaussian graphical model. If pG is decomposable, the optimum
is then given in a closed form.

9. Applications and simulations. In this section we illustrate our methods with two
applications and a small simulation study. The computations are based on the GOLAZO
algorithm described in Section 8 as implemented in the R package golazo available on
GitHub. The corresponding R Markdown files can be downloaded from http://econ.
upf.edu/~piotr/supps/2020-LZ-golazo.zip.

9.1. Body fat data. As a simple illustration for our method we analyse the body fat data
first studied in [25] and available in the R package gRim.
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FIG 1. The sample correlation matrix for the body fat data (left) and its normalized inverse (right).

In the data, percentage of body fat, age, weight, height, and ten body circumference mea-
surements are recorded for 252 men. We remove 11 individuals from the study for various
problems reported for their respective observations. As shown in Figure 1 the variables in
this dataset are strongly positively correlated. The only exception is Age. Its negative corre-
lation with height reflects the fact that the growth in wealth, especially after the second world
war, has made the new generations taller. Also, the negative correlation with thigh and an-
kle could reflect that muscle mass tends to be reduced with age. In other words, the relation
between Age and the other variables is complex and certainly not approximately linear. For
these reasons and for simplicity, we remove Age from our analysis.

As the inverse of the sample covariance matrix has a significant number of positive entries,
MTP2 seems to be too strong hypothesis for this dataset. After normalizing the data we run
the positive graphical lasso procedure with ρ“ 0.11. This choice was based on the EBIC cri-
terion with parameter γ “ 0.5 as described in Section 8.3. Figure 2 shows the graph (together
with signs of the partial correlations) of the optimum pK (left) compared with the graphical
lasso estimate. The penalty in the graphical lasso estimate is chosen close to zero both by
cross-validation and by the EBIC criterion. Although the positive glasso estimate gives lower
likelihood than the glasso estimate, it is much sparser and beats glasso in the EBIC criterion
with γ “ 0.5: ´364.9 for the positive glasso and ´237.65 for the graphical lasso.

http://econ.upf.edu/~piotr/supps/2020-LZ-golazo.zip
http://econ.upf.edu/~piotr/supps/2020-LZ-golazo.zip
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FIG 2. Partial correlations in the estimated positive glasso graph (left) and glasso graph (right).

In the second step of our procedure we take the resulting estimate pK of the positive glasso
procedure and compute the dual MLE qΣ under edge positivity to further regularize the pos-
itive glasso estimate. However, although pK is not an M-matrix, it corresponds to a locally
associated distribution and so the second step of the algorithm becomes redundant.

9.2. Positive co-expression gene network. As we argued in the introduction, our main
motivation was to develop statistically sound methods for building gene expression networks
that focus on positive co-expression. For illustrative purposes we focus on a relatively small
subsample of genes. We analyse a publicly available microarray expression data profiling
umbilical cord tissue; cf. [11, 12]. From https://functionalgenomics.upf.edu/
supplements/FIRinELGANs we downloaded the normalized and filtered gene expres-
sion data, as well as its corresponding phenotype data, including a batch indicator variable
that specifies the groups in which samples were processed, birth weight, gestational age, sex
and fetal inflammatory response (FIR) status.

As described in the introduction, we focus our analysis on 136 genes which were co-
ordinately upregulated in FIR-affected infants to trigger an innate immune response, and
therefore, we can assume their positive co-expression.

We first run the GOLAZO procedure penalizing negative partial correlations with an EBIC
optimal penalty parameter. This computation takes less than a minute on a standard laptop.
The penalty ρ“ 0.5 was chosen as optimal with respect to the EBIC criterion with γ “ 0.5.
The resulting estimate pKρ is very sparse with the edge density 0.067 (an entry of pKρ is
always treated nonzero if its absolute value exceeded 10´6). Still the diameter of this graph,
displayed in Fig. 3, is very small, just 5.

Like in the Body Fat example in the previous section, also here the EBIC criterion chooses
much smaller penalty parameter for the standard graphical lasso, ρ “ 0.1. The EBIC crite-
rion for the optimal positive graphical lasso model penalty is ´8784 on the other hand, the
graphical lasso gives a much denser graph with edge density 0.21 and the EBIC is also much
higher, 13478. The optimum pKρ is not an M-matrix and there are several significant negative
partial correlations, displayed in red in Fig. 3. However, the distribution is already locally
associated so the second step of our procedure is again redundant. This also confirms that
local association is a reasonable assumption for this dataset.

https://functionalgenomics.upf.edu/supplements/FIRinELGANs
https://functionalgenomics.upf.edu/supplements/FIRinELGANs
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FIG 3. The concentration graph for the co-expression gene network. Positive partial correlations are indicated
with green color and negative partial correlations with red color. The thickness of edges is proportional to their
absolute size.

APPENDIX A: PROOF OF THEOREM 6.1

A.1. Chernoff regularity and convexity. The asymptotic analysis of statistical proce-
dures under constraints typically involves technical assumptions on the local geometry of the
constrained space around the true parameter ψ0. Conditions of this form are called Chernoff
regularity conditions; cf. [21] and references therein. In our case, convexity ensures these
conditions to hold, but we provide the relevant definitions for completeness.

DEFINITION A.1. The tangent cone TCpψ0q of the set C ĎRk at the point ψ0 is the set
of vectors in Rk that are limits of sequences αnpψn ´ψ0q, where αn are positive reals and
ψn PC converge to µ0.

DEFINITION A.2. The set C ĎRk is Chernoff regular at ψ0 if for every vector τ in the
tangent cone TCpψ0q there exists εą 0 and a map α : r0, εq Ñ C with αp0q “ψ0 such that
τ “ limtÑ0`rαptq´αp0qs{t. In this case we say that TCpψ0q is derivable; cf. Definition 6.1
in [44].

The standard asymptotic results typically assume Chernoff regularity. We will use the
following result.

THEOREM A.3 (Theorem 6.9, [44]). A convex set C Ď Rk is Chernoff regular at any
ψ0 PC .

It is clear from the definition that Chernoff regularity is preserved under a smooth and
regular change of variables G : RkÑRk. Indeed, the tangent cone TGpCqpGpψ0qq is equal to
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∇Gpψ0q ¨TCpψ0q; cf. Section 6.C in [44]. If τ P TGpCqpGpψ0qq and TCpGpψ0qq is derivable
then

p∇Gpψ0qq
´1 ¨ τ “ lim

tÑ0`
rαptq ´ αp0qs{t

for some α : r0, εq ÑC . Then αG “ p∇Gpψ0qq ¨ α : r0, εq ÑGpCq can be used to show that
τ is derivable.

A.2. Asymptotics of the maximum likelihood and mixed dual estimator. Recall our
notation tn “

řn
i“1 tpX

piqq{n. It is a standard result that
?
nptn ´ µ0q is asymptotically

normally distributed; see Proposition 4.3 in [49]. In this section we show that the maximum
likelihood estimator under a convex restriction has a similar rate of convergence, with the lim-
iting distribution not necessarily being normal. Using equivariance of the MLE and the delta
method, we can show this also holds for the MLE and MDE in a mixed convex exponential
family.

Let ψ “ ψpθq be an alternative smooth, regular, and bijective parametrization of the ex-
ponential family E , so that, θ “ ψ´1pψq. The log-likelihood function expressed in this new
parametrization is denoted by `pψ; tnq “ xψ

´1pψq, tny ´Apψ
´1pψqq.

PROPOSITION A.4. Consider an alternative smooth and regular parametrization ψ “
ψpθq of the exponential family E . Let C be a closed and convex subset of the parameter
space ψpΘq. Let pψn “ arg maxψPC `pψ; tnq be the maximum likelihood estimator over C .
If the data are generated from the distribution with parameter ψ0 P C then

?
nppψn ´ ψ0q

converges in distribution.

PROOF. Since the maximum likelihood estimator is equivariant, we have that pψn “

ψppθnq, where pθn “ arg maxθPψ´1pCq `pθ; tnq. By the delta method (see Theorem 3.1 in [51]),
it is enough to show that

?
nppθn ´ θ0q converges in distribution. Since the MLE is an M-

estimator, this follows from Theorem 4.4 in [21]. This theorem uses a number of assumptions
that we verify one by one: Assumption A holds because the function F pθq “Apθq´ xθ,µ0y

admits a quadratic approximation around θ0 with a positive definite Hessian ∇2Apθ0q and
∇F pθ0q “ 0. Assumption B is satisfied simply because the second derivative of the likeli-
hood does not depend on the data at all and so condition (4.3) in [21] trivially holds. As-
sumption C requires that the standard central limit theorem for the gradient of the likelihood
function holds, which again is automatic for exponential families. Assumption D holds sim-
ply because pθn is the exact minimizer of Fnpθq “ ´`pθ; tnq over ψ´1pCq. Finally, Chernoff
regularity of ψ´1pCq at θ0 follows by convexity of C and the fact that the property is invari-
ant under smooth transformations; cf. Theorem A.3 and the discussion below it.

As in Section 6, we now reserve the notation ψ for the underlying mixed parametrization,
ψ “ pµu,θvq. The maximum likelihood estimator in our problem is obtained by maximizing
`pψ; tnq over all parameters ψ in the mixed convex exponential family E 1, ψ PM 1

u ˆ Θ1v .
This MLE is denoted rψn (rθn, rµn resp.) to distinguish from the estimator pθn obtained in
step (S1) of the procedure for finding the MDE. Recall that ψn “ pun, θvptnqq and denote
pψn “ pun,

pθvq, i.e. pψn is pθn “ ppθu,pθvq expressed in the mixed parametrization, where the
fact that the first component of pψn is equal to un follows from Theorem 4.5.

COROLLARY A.5. The sequences
?
npψn´ψ0q,

?
nppψn´ψ0q, and

?
nprψn´ψ0q all

converge in distribution.
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PROOF. The estimators ψn, pψn, and rψn are all maximum likelihood estimators in fami-
lies that satisfy the conditions in Proposition A.4.

The proof of our main result relies on the fact that the log-likelihood and dual log-
likelihood have locally a similar shape around their global maximum. Moreover, the Hessian
at this point is block diagonal.

LEMMA A.6. Let t “ pu,vq PM , ψ “ pu, θvptqq, and θ “ θptq. Then ∇ψ`pψ; tq “

∇ψq`pψ; tq “ 0 and

∇2
ψ`pψ; tq “ ∇2

ψ
q`pψ; tq “ ´

„

varpuq´1 0
0 pvarptqvvq´1



,

where varptqvv stands for the vv-block of varptq´1 and the variance is computed with respect
to the distribution Pθ .

PROOF. Slightly abusing notation, we write µpψq (θpψq) for the map that maps the mixed
parameter ψ to the corresponding mean (canonical) parameter. We have

∇ψ`pψ, tq “
ˆ

Bθ

Bψ

˙T

¨ pt´ µpψqq

∇ψq`pψ, tq “
ˆ

Bµ

Bψ

˙T

¨ pθ´ θpψqq

from which the statement about the gradients easily follows by plugging ψ “ψ as µpψq “ t
and θpψq “ θ. The particular block-diagonal form of the Hessian ∇2

ψ`pψ; tq follows by

Proposition 3.20 in [49]. It remains to show that ∇2
ψ`pψ; tq “ ∇2

ψ
q`pψ; tq. Using the Leib-

niz rule, we observe that differentiating ∇ψ`pψ, tq with respect to ψ, we get one term that
vanishes at ψ “ψ and so

∇2
ψ`pψ; tq “ ´

ˆ

Bθ

Bψ

˙T
Bµ

Bψ
.

Using the same argument for ∇ψq`pψ, tq we get

∇2
ψ
q`pψ; tq “ ´

ˆ

Bµ

Bψ

˙T
Bθ

Bψ
.

Since both matrices are symmetric, the equality follows.

Using Lemma A.6 with t“ tn, we see that the observed information satisfies

Jn :“´∇2
ψ`pψn; tnq “ ´∇2

ψ
q`pψn; tnq.

In particular, Jn is always positive definite. Taking t“ pµn we get

pJn :“´∇2
ψ`p

pψn; pµnq “ ´∇2
ψ
q`ppψn; pµnq.

Both of Jn and pJn converge in probability to the Fisher information matrix since the mapping
t ÞÑ ´∇2

ψ`pψ; tq is continuous and both of tn and pµn converge in probability to µ0. We thus
conclude

(16) pJn “ Jn ` oP p1q.
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Denote by } ¨ }Jn (} ¨ }
pJn

) the norm induced by the matrix Jn ( pJn respectively), that is,

}x}Jn :“
a

xTJnx, }x}
pJn

:“

b

xT pJnx.

Note that for every x PRd

λminpJnq}x}
2 ď }x}2Jn ď λmaxpJnq}x}

2,

where λminpJnq and λmaxpJnq are the minimal and the maximal eigenvalue of Jn. Since
the eigenvalues are continuous functions of the matrix (use [24, Theorem 2.6.4]) and the
fact that for a positive definite matrix singular values are equal to the eigenvalues), the se-
quences λminpJnq and λmaxpJnq converge in probability to the corresponding eigenvalues of
the Fisher information matrix, which we denote by λ˚min, λ

˚
max. The same argument applies

to λminp pJnq and λmaxp pJnq. We conclude that for every x PRd

pλ˚min ` oP p1qq}x}
2 ď }x}2Jn ď pλ˚max ` oP p1qq}x}

2(17)

pλ˚min ` oP p1qq}x}
2 ď }x}2

pJn
ď pλ˚max ` oP p1qq}x}

2.(18)

Now let

Fnpψq “ ´`pψ; tnq and qFnpψq “ ´q`pψ; pµnq.

The MLE rψn is the minimizer of Fn over M 1
u ˆ Θ1v and qψn is the minimizer of qFn over

M 1
u ˆΘv (equivalently over M 1

u ˆΘ1v , as argued in Theorem 4.5, because pψn PMu ˆΘ1v).
Recall that Un “OP p1q denotes that Un is bounded in probability, that is, for every εą 0

there exists M PR such that Pp}Un} ąMq ă ε.

LEMMA A.7. It holds that
?
npψn ´ ψ0q “ OP p1q,

?
nprψn ´ ψ0q “ OP p1q, and

?
npqψn ´ψ0q “OP p1q.

PROOF. By Corollary A.5,
?
npψn´ψ0q and

?
nprψn´ψ0q converge in distribution and

thus they are bounded in probability. To show the same for the other estimator, we use the
fact that locally it is obtained by suitably projecting pψn on M 1

u ˆΘv and
?
nppψn ´ψ0q is

bounded in probability because it converges in distribution by Corollary A.5. More formally,
since pψn is the global minimizer of qFn, qψn is the minimizer over M 1

u ˆ Θv , and ψ0 P

M 1
u ˆΘv , we get

0ď qFnpqψnq ´ qFnppψnq ď qFnpψ0q ´
qFnppψnq.

Using the second-order expansion of qFnpψq around ψ “ pψn and Lemma A.6, we get

0 ď 1
2}
qψn ´

pψn}
2
pJn
` oP p}qψn ´

pψn}
2q ď 1

2}
pψn ´ψ0}

2
pJn
` oP p}pψn ´ψ0}

2q.

Here we have also used the basic fact that Rphq “ op}h}2q implies RpUnq “ oP p}Un}2q; cf.
Lemma 2.12 in [51]. Multiply this inequality by n so that the right hand side becomes

1
2}
?
nppψn ´ψ0q}

2
pJn
` oP p}

?
nppψn ´ψ0q}

2q.

Since
?
nppψn´ψ0q is bounded in probability, so is }

?
nppψn´ψ0q}

2. Using (18) and the fact
that oP pOP p1qq “ oP p1q we conclude that the right hand side is bounded in probability and
so the left hand side is bounded too, that is,

?
npqψn´

pψnq “OP p1q. The triangle inequality
now implies

?
npqψn ´ψ0q “OP p1q, which concludes the proof.
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We are now ready to prove the Theorem.

PROOF OF THEOREM 6.1. Since, by Corollary A.5,
?
nprψn ´ ψ0q converges in distri-

bution, it remains to show that
?
nprψn ´

qψnq “ oP p1q; see [39, Theorem 3]. The standard
local first order conditions for optimality of rψn are

(19) ∇FnprψnqT ¨ pψ´ rψnq ě 0 for all ψ PM 1
u ˆΘ1v,

expressing that the directional derivative in any feasible direction must be non-negative. First-
order Taylor expansion at ψn gives

∇Fnprψnq “ Jn ¨ prψn ´ψnq ` oP p}rψn ´ψn}q,

where we used Lemma A.6 and the fact that ∇Fnpψnq “ 0. After multiplying by
?
n the

last term becomes oP p
?
n}rψn ´ψn}q. By the triangle inequality and Lemma A.7, we have

?
n}rψn´ψn} ď

?
n}rψn´ψ0}`

?
n}ψ0´ψn} “OP p1q. Using the fact that oP pOP p1qq “

oP p1q, we get

(20)
?
n∇Fnprψnq “ Jn ¨

?
nprψn ´ψnq ` oP p1q.

Multiply (19) by n and insert the expression in (20) for
?
n∇Fnprψnq to conclude that for all

ψ PM 1
u ˆΘ1v

(21)
?
nprψn ´ψnq

T ¨ Jn ¨
?
npψ´ rψnq ` }

?
npψ´ rψnq}oP p1q ě 0.

Here we used a basic fact that if rn is a sequence of random vectors in a finite dimensional
vector space such that each coordinate is oP p1q and qn is another sequence of random vectors
then rTnqn ď }qn}oP p1q.

Similarly, local optimality conditions for qψn are

∇ qFnpqψnq
T ¨ pψ´ qψnq ě 0 for all ψ PM 1

u ˆΘv.

By Lemma A.6, we have ∇ qFnppψnq “ 0 and ∇2
qFnppψnq “ pJn “ Jn`oP p1q (cf. (16)), which

gives that

∇ qFnpqψnq “ Jn ¨ pqψn ´
pψnq ` oP p}

qψn ´
pψn}q,

and so, again using Lemma A.7, the first order optimality conditions for qψn, we get that for
all ψ PM 1

u ˆΘv

(22)
?
npqψn ´

pψnq
T ¨ Jn ¨

?
npψ´ qψnq ` }

?
npqψn ´ψq}oP p1q ě 0.

Note also that the optimality conditions for pψn are

∇FnppψnqT ¨ pψ´ pψnq ě 0 for all ψ PMu ˆΘ1v.

Like in the previous two cases, we argue that for all ψ PMu ˆΘ1v

(23)
?
nppψn ´ψnq

T ¨ Jn ¨
?
npψ´ pψnq ` }

?
npψ´ pψnq}oP p1q ě 0.

The rest of the proof relies on using (21), (22), and (23) evaluated at various points ψ in
order to show that

?
nprψn´

qψnq “ oP p1q. We now drop dependence on n from our notation
to keep it simple. We will exploit the fact that J is positive definite and has a block-diagonal
form with blocks, which we denote by Juu and Jvv but the exact form of these blocks given
in Lemma A.6 is irrelevant here.
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Insert pqµu,rθvq for ψ in (21) and prµu,qθvq for ψ in (22) noting that both are valid points in
M 1
u ˆΘ1v; then add both expressions and use that the u-block of ψn and pψn are both equal

to un (cf. Theorem 4.5). From this calculation we get

´}
?
npqµu ´ rµuq}

2
Juu ` }

?
npqµu ´ rµuq} ¨ oP p1q ě 0.

This can be rewritten as

0ď }
?
npqµu ´ rµuq}

2
Juu ď }

?
npqµu ´ rµuq} ¨ oP p1q.

Using a version of (17) for Juu, we conclude that
?
nprµu ´ qµuq “ oP p1q.

Equation (21) evaluated at ψ “ prµu,qθvq PM 1
u ˆΘ1v (note that qθv “ pθv by Theorem 4.5)

yields
?
nprθv ´ θvq

T ¨ Jvv ¨
?
nppθv ´ rθvq ` }

?
nppθv ´ rθvq}oP p1q ě 0.

Similarly, insert ψ “ pu,rθvq “ ppµu,rθvq PMu ˆΘ1v into (23) to get
?
nppθv ´ θvq

T ¨ Jvv ¨
?
nprθv ´ pθvq ` }

?
nprθ´ pθvq}oP p1q ě 0.

Adding these two inequalities yields

0ď }
?
npqθv ´ rθvq}

2
Jvv ď }

?
npqθv ´ rθvq} ¨ oP p1q.

Using a version of (17) for Jvv , we conclude that
?
nprθv ´ qθvq “ oP p1q. This finally gives

that
?
nprψn ´

qψnq “ oP p1q, as desired.

APPENDIX B: THE SINGLE-LINKAGE MATRIX

We first define the single-linkage matrix of a covariance matrix S. Let R be a symmetric
pˆ p positive semidefinite matrix such that Rii “ 1 for all i“ 1, . . . , p. In our case R will be
the corresponding correlation matrix of S. Consider the graph G` over V “ t1, . . . , du with
an edge between i and j whenever Rij ą 0. Assign to each edge the corresponding positive
weight Rij and note that G` in general does not have to be connected. Define a dˆ d matrix
Z by setting Zii “ 1 for all i and

(24) Zij :“ max
P

min
uvPP

Ruv,

where the maximum is taken over all paths P in G` between i and j and is set to zero if no
such path exists. We call Z the single-linkage matrix of R.

PROPOSITION B.1 ([33]). Let R be a symmetric dˆ d positive semidefinite matrix sat-
isfying Rii “ 1 for all i “ 1, . . . , p. Then the single-linkage matrix Z of R has ones on the
diagonal and satisfies Z ě R. If, in addition, Rij ă 1 for all i ‰ j, then Z is an inverse
M-matrix.

Now if S is a symmetric positive semidefinite matrix with strictly positive entries on the
diagonal and such that Sij ă

a

SiiSjj . Then, by Proposition B.1, there exists an inverse M-
matrix Z such that Z ě S and Zii “ Sii for all i“ 1, . . . , d, obtained by appropriate scaling
of the correlation matrix R of S. This matrix is called the single-linkage matrix of S. If S
is a sample covariance matrix based on at least two observations, the single-linkage matrix
is always positive definite with probability one. We are now ready to show that the positive
graphical lasso estimate exists for ně 2 observations.
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PROOF OF THEOREM 8.8. We must construct a feasible point Σ0 of the dual problem
(15) in the case when L is the zero matrix. If S is positive definite, we can take Σ0 “ S so
assume that S is rank deficient. The single-linkage matrix Z of S by construction satisfies
Z ě S. If the entries of U are sufficiently large then S `Lď Z ď S `U and so Z is dually
feasible. If Z is not upper bounded by S ` U we proceed as follows. Let ρ “mini‰j Uij .
Since }Z ´ S}8 ą 0, we can define

(25) Σ0 :“ p1´ t˚qS ` t˚Z, where t˚ “ min

"

1,
ρ

}Z ´ S}8

*

which lets Σ0 “ Z if ρ“8. Then Σ0 ě S and it is equal to S on the diagonal. Moreover,

}Σ0 ´ S} “ t˚}Z ´ S}8 ď ρ

and hence Σ0 is dually feasible. Since Σ0 is dually feasible, the optimum exists. This con-
cludes the proof.

Finally, we comment briefly on computational issues. Computing Z can be done efficiently
using the link of this construction to single-linkage clustering; cf. [33, Proposition 3.7]. More
precisely, we first take the corresponding correlation matrixR and form a dissimilarity matrix
D, where

Dij “

#

´ logRij if Rij ą 0

8 otherwise.

By construction Dii “ 0 for all i P V . We then run the single linkage clustering algorithm on
D. The time complexity of this step is Opd2q. The R function hclust by default does not
return the underlying ultrametric matrix pD of distances but this information can be recovered
from the standard output with a bit of work. Now the single-linkage matrix of R is simply

Zij “ expp´ pDijq.

The single linkage matrix of S is obtained by rescaling the matrix Z with the diagonal entries
of S.
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