
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RUNTIME LEARNING MACHINE

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper proposes the Runtime Learning Machine for safety-critical au-
tonomous systems. The learning machine has three interactive components: a
high-performance (HP)-Student, a high-assurance (HA)-Teacher, and a Coordi-
nator. The HP-Student is a high-performance but not fully verified Phy-DRL
(physics-regulated deep reinforcement learning) agent that performs safe runtime
learning in real plants, using real-time sensor data from real-time physical environ-
ments. On the other hand, HA-Teacher is a verified but simplified design, focusing
on safety-critical functions. As a complementary, HA-Teacher’s novelty lies in
real-time patch for two missions: i) correcting unsafe learning of HP-Student,
and ii) backing up safety. The Coordinator manages the interaction between HP-
Student and HA-Teacher. Powered by the three interactive components, the runtime
learning machine notably features i) assuring lifetime safety (i.e., safety guarantee
in any runtime learning stage), ii) tolerating unknown unknowns, iii) addressing
Sim2Real gap, and iv) automatic hierarchy learning (i.e., safety-first learning, and
then high-performance learning). Experiments involving a cart-pole system, two
quadruped robots, and a 2D quadrotor, as well as comparisons with state-of-the-
art safe DRL, fault-tolerant DRL, and approaches for addressing Sim2Real gap,
demonstrate the machine’s effectiveness and unique features.

1 INTRODUCTION

Deep reinforcement learning (DRL) has been incorporated into numerous autonomous systems and
has shown significant advancements in making sequential and complex decisions in various fields,
such as autonomous driving Kendall et al. (2019); Kiran et al. (2021), chemical processes Savage
et al. (2021); He et al. (2021), and robot locomotion Ibarz et al. (2021); Levine et al. (2016). These
DRL-enabled systems have the potential to revolutionize many processes across different industries,
leading to tangible economic impacts Tolentino (2019). However, the public-facing AI Incident
database in AID has revealed that machine learning (ML) techniques, including DRL, can achieve
remarkable performance without ensuring safety Zachary & Helen (2021). For instance, a report by
the National Highway Traffic Safety Administration highlighted 351 car crashes related to advanced
driver assistance systems from July 2023 to March 2024 in the US alone NHTSA. Therefore, ensuring
high-performance DRL with verifiable safety is even more crucial today, aligning well with the
market’s demand for safe ML techniques.

1.1 SAFETY CHALLENGES AND OPEN PROBLEMS

Our considered safety challenges are rooted in the unknown unknowns and the Sim2Real gap.

Challenge 1: Unknown Unknowns. The unknown unknowns generally refer to outcomes, events,
circumstances, or consequences that are not known in advance and cannot be predicted in time and
distributions Bartz-Beielstein (2019). The dynamics of many safety-critical autonomous systems (e.g.,
autonomous vehicles Rajamani (2011), airplanes Roskam (1995), and quadrupedal robots Bledt et al.
(2018)) are governed by a combination of known knowns (e.g., Newton’s laws of motion), known
unknowns (e.g., Gaussian noise without knowing to mean and variance), and unknown unknowns.
The unknown unknowns are due to, for example, unforeseen operating environments and DNN’s
colossal parameter space, intractable activation, and hard-to-verify. The safety assurance also requires
resilience to unknown unknowns, which is very challenging. The reasons stem from characteristics
of unknown unknowns: there is almost zero historical data, unpredictable timing and distributions,
resulting in the unavailability of models for scientific discoveries and understanding.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Challenge 2: Sim2Real Gap. The prevalent DRL involves training a policy within a simulator using
synthetic data and deploying it to physical platforms. However, the difference between the simulated
environment and the real world creates a gap known as the Sim2Real gap. This gap causes a drop in
performance when using pre-trained DRL in real physical environments. Numerous approaches have
been developed to address the Sim2Real gap Peng et al. (2018); Nagabandi et al. (2019); Tan et al.
(2018); Yu et al. (2017); Cao et al. (2022); Imai et al. (2022); Du et al. (2021); Vuong et al. (2019);
Yang et al. (2022a). These methods aim to improve the realism of the simulator and can mitigate the
Sim2Real and domain gaps to varying degrees. Nevertheless, undisclosed gaps and missing dynamics
continue to hinder the safety assurance of real plants.

To address Challenges 1 and 2, the most appealing solution is provided in Prospect 1.1 below.
Prospect 1.1. Runtime learning for a high-performance action policy in real plants – using real-time
sensor data generated from real-time physical environments while prioritizing safety.

However, two open problems arise about bringing Prospect 1.1 into reality.
Problem 1.2. If the DRL agent’s actions lead to a safety violation, how can we correct his unsafe
learning and back up the safety of real plants in a timely manner?
Problem 1.3. How to tolerate and also teach the DRL agent to tolerate unknown unknowns and
Sim2Real gap for assuring safety of real plants?

1.2 RELATED WORK

Significant efforts have been devoted to DRL safety by developing safe DRL and fault-tolerant DRL.

Safe DRL. One research focus of safe DRL is the safety-embedded reward, as a DRL agent must
learn a high-performance action policy with verifiable safety. The control Lyapunov function (CLF)
proposed in Perkins & Barto (2002); Berkenkamp et al. (2017); Chang & Gao (2021); Zhao et al.
(2023) is a candidate. Meanwhile, seminal work in Westenbroek et al. (2022) revealed that a CLF-like
reward could enable DRL with verifiable stability. At the same time, enabling verifiable safety
is achievable by extending CLF-like rewards with given safety regulations. However, systematic
guidance for constructing such CLF-like rewards remains open. The residual action policy is another
shift in safe DRL, which integrates data-driven action policy and physics-model-based action policy.
The existing residual diagrams focus on stability guarantee Rana et al.; Li et al.; Cheng et al. (2019b);
Johannink et al. (2019), with the exception being Cheng et al. (2019a) on safety guarantee. However,
the physics models considered are nonlinear and intractable, which thwarts delivering a verifiable
safety guarantee or assurance, if not impossible. The recently developed Phy-DRL (physics-regulated
DRL) framework Cao et al. (2024; 2023) can satisfactorily address the open problems of safe DRL.
Summarily, Phy-DRL permits simplifying the model of nonlinear dynamics to an analyzable and
tractable linear one. This linear model can then be a model-based guide for constructing the safety-
embedded (CLF-like) reward and residual action policy. Meanwhile, the Phy-DRL exhibits verifiable
safety. However, it is only mathematically or theoretically possible due to the underlying assumptions
of manageable Sim2Real gap and unknown unknowns. In other words, Phy-DRL cannot offer
verifiable safety for real plants in the face of unknown unknowns and the Sim2Real gap.

Fault-tolerant DRL. Fault-tolerant DRL is another direction for DRL safety in real plants. Recent
approaches include neural Simplex Phan et al. (2020), runtime assurance Brat & Pai (2023); Sifakis
& Harel (2023); Chen et al. (2022), and model predictive shielding Bastani (2021); Banerjee et al.
(2024). They treat the DRL agent as a high-performance module (HPM) but a black box that runs
in parallel with a verified high-assurance module (HAM). Normally, HPM controls the real plants.
HAM takes over once safety violation occurs. These architectures can ensure the safe running of
DRL in real plants under the assumption that Challenges 1 and 2 do not cause HAM to fail, which is
not practical for systems whose operating environments are dynamic and unpredictable. Furthermore,
they are not solutions to Problem 1.2 and Problem 1.3. Specifically, in all these architectures, HAM
and HPM are independent, that is, HPM cannot learn from HAM, and HAM cannot teach HPM how
to be safe. Meanwhile, HAM is the static model-based controller, and its action will be unreliable if
the real-time unknown unknowns and Sim2Real gap create a significant model mismatch.

1.3 CONTRIBUTION: RUNTIME LEARNING MACHINE: FROM THEORY TO IMPLEMENTATION

To address Problem 1.2 and Problem 1.3 for delivering Prospect 1.1, we propose the Runtime

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Safety-Critical Environment: A Real Plant

HA-Teacher:
Theorem 6.4

Actor

⋮⋮

Critic

⋮ ⋯⋯batch
sample

Mission 1: Correct unsafe learning:
Eqs. (6) and (10)

HP-Student: Phy-DRL:
Eqs. (4) and (5)

terminal action a() 𝑘

⋮

Safety

⋮

⋯

s(t-1)s(t)
ℛ̂(𝑡)

𝐚drl(t−1)
s(t)s(t+1)

ℛ(t−1)
�̂�HA(𝑡)

s(k+1) s(k) ℛ̂(𝑘)�̂�HA(𝑘)

⋯ ⋯ ⋯
Replay Buffer

𝝉𝐚HP(𝑘)𝐚𝐇𝐀(𝑘)

state s() 𝑘state s() 𝑘state s() 𝑘

Mission 2: Back up
safety: Eq. (9)

switch?

Examples
:

Safety
regulations & envelope

Coordinator:
Eq. (7)

Figure 1: Runtime learning machine framework.

Learning Machine, whose frame-
work is shown in Figure 1. The ma-
chine constitutes high-performance
(HP)-Student, high-assurance (HA)-
Teacher, and Coordinator. HP-
Student is a Phy-DRL agent that can
be pre-trained and continue to learn
in real plants that operate in real-
time physical environments. HA-
Teacher is a verified and physics-
based design, with its functional-
ity being reduced to a safety-critical
level. Coordinator manages inter-
actions between HP-Student and
HA-Teacher. As a metaphor, HP-
Student’s runtime learning in our ma-
chine is like a student’s journey. First, he learns from teachers in middle school, high school, college,
etc., who have verified domain knowledge in subjects like physics and mathematics, to gain essential
knowledge. Then, he delves deeper into specific areas during graduate studies to acquire expertise in
those fields. Summarily, our runtime machine learning has following three distinct characteristics.

Characteristic 1: Automatic Hierarchy Learning Mechanism. HP-Student’s growth in our runtime
learning machine is an automatic hierarchical learning mechanism that respects safety-first principles
for safety-critical autonomous systems without compromising mission performance. As depicted in
Figure 7 in Appendix A, HP-Student undergoes a two-stage learning process:

• Stage 1: Safety-first Learning. HP-Student first learns from HA-Teacher how to be safe
(i.e., constraining the system states of real plants into a safety set). Meanwhile, Figure 7
illustrates that prioritizing safety does not compromise mission performance. In other words,
violating safety protocols results in decreased mission performance.

• Stage 2: Self High-performance Learning. After HP-Student has learned how to control
system states within safety envelopes, Coordinator rarely activates HA-Teacher. Con-
sequently, HP-Student engages in self-learning within the safety envelope for a high-
performance action policy, such as the car closely following the planned blue path in
stage 2 in Figure 7 in Appendix A.

Characteristic 2: Assuring Safety by Tolerating Unknown Unknowns and Sim2Real Gap.
HA-Teacher’s real-time patch, enabled by a real-time model, real-time action mission, and real-time
model-based policy computation, aim to ensure lifetime safety. This means guaranteeing the safety
of real plants during any runtime learning stages, regardless of HP-Student’s failures, and in the face
of real-time unknown unknowns and the Sim2Real gap.

Characteristic 3: Highly Interactive HP-Student and HA-Teacher The interactions between
HP-Student and HA-Teacher in the runtime learning machine occur in two dimensions:

• HP-Student −→ HA-Teacher: HP-Student shares his safety regulations and envelope with
HA-Teacher for his real-time patch design.

• HP-Student ←− HA-Teacher: Showing in Figure 1, HA-Teacher has two missions: i)
correct unsafe learning of HP-Student and ii) back up the safety of the real plants, in the
face of unknown unknowns and Sim2Real gap.

Note: Appendix B summarizes notations used throughout the paper.

2 PRELIMINARIES: DEFINITIONS OF SAFETY AND HIGH PERFORMANCE

We introduce the dynamics model of a DRL-enabled real plant:

s(k + 1) = A(s(k)) · s(k) +B(s(k)) · a(k) + f(s(k)), k ∈ N (1)

whose equilibrium point is s∗ = 0. In Equation (1), f(s(k)) ∈ Rn is the model mismatch, A(s(k)) ∈
Rn×n and B(s(k)) ∈ Rn×m denote system matrix and control structure matrix, respectively, s(k) ∈
Rn is real plant’s state in real-time, a(k) ∈ Rm is the action command in real-time.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The safety issue arises from the system’s state s(k) and the associated safety regulations, defining the
permissible state space for the system:

Safety set: X ≜ {s ∈ Rn|v ≤ D · s ≤ v, with D ∈ Rh×n, v, v ∈ Rh
}
. (2)

where D, v and v are given in advance for formulating h ∈ N safety regulations. Inequalities
in Equation (2) are generic, as they can cover many safety regulations, such as speed regulation,
collision avoidance, lane keeping, and tracking for autonomous vehicles. Building on the safety set,
the lifetime safety is formally defined below.

Definition 2.1 (Lifetime Safety). Consider the safety set X in Equation (2). The real plant in
Equation (1) is said to have lifetime safety, if given any s(1) ∈ X, the s(k) ∈ X holds at any time
k ∈ N, regardless of HP-Student’s failure.

Definition: High Performance. ‘High Performance’ in this paper has two-dimensional definition:
1) mission performance (measured by, for example, tracking errors in the lane-tracking and path-
following tasks) and 2) operation performance (measured by, for example, jerky movements for
customers’ comfort in autonomous vehicles). In the learning machine, HP-Student’s reward encodes
safety regulations, mission, and operation for learning a high-performance action policy with a safety
guarantee. On the other hand, HA-Teacher’s function is reduced to be safety-critical only, and his
performance consideration is only about the operation regulations.

3 DESIGN OVERVIEW

Our proposed runtime learning machine aims to address Problem 1.2 and Problem 1.3 to deliver
Prospect 1.1. To do so, showing in Figure 1, it is designed to have three interactive components:

• HP-Student builds on Phy-DRL agent, which can be pre-trained in a simulator or another
domain but performs runtime learning in a real plant to tolerate unknown unknowns and
address the Sim2real gap.

• HA-Teacher is a verified safety-only design whose novelty lies in real-time patches with
two missions: timely correcting unsafe learning and backing up safety.

• Coordinator is responsible for monitoring the real-time safety status and facilitating inter-
actions between HP-Student and HA-Teacher. Specifically, when the real-time safety status
of the plant being controlled by HP-Student approaches the safety boundary, Coordinator
prompts HA-Teacher to intervene and assure the safety of real plant, and correct unsafe
learning of HP-Student. When the real-time states return to a safe region, Coordinator
triggers the switch back to HP-Student and terminates the learning correction.

Next, we will describe the designs of the three interactive components in Sections 4 to 6, respectively.

4 RUNTIME LEARNING MACHINE: HP-STUDENT COMPONENT

4.1 HP-STUDENT CANDIDATES

We acknowledge that DRL is unable to directly embed high-dimensional or many safety regulations
(represented by h ∈ N in Equation (2)) into the reward function due to the reward being a one-
dimensional real value, creating a dimension gap. To bridge this dimension gap, the literature
Cao et al. (2024; 2023) introduces the concept of a safety envelope, which has the one-dimensional
condition and can be designed as a subset of the safety set X (refer to Figures 2 and 7 for visualization).

Safety envelope: Ω ≜
{
s ∈ Rn| s⊤ ·P · s ≤ 1, P ≻ 0

}
. (3)

So, our HP-Student candidates are those whose rewards can successfully embed the safety envelope
in Equation (3), and such safety-embedded rewards can be shared with HA-Teacher for his real-time
patch design. Along with this direction, DRL with CLF-like reward proposed in Westenbroek et al.
(2022) and Phy-DRL (physics-regulated DRL) proposed in Cao et al. (2024; 2023) are two preferred
candidates, as they can successfully embed the safety envelope into their rewards. Finally, HP-Student
adopts Phy-DRL because Phy-DRL also features fast training theoretically and experimentally, which
is desirable for runtime learning in real plants. Next, we will review the HP-Student design.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 HP-STUDENT: PHY-DRL: RESIDUAL ACTION POLICY AND SAFETY-EMBEDDED REWARD

Recalling Phy-DRL in Cao et al. (2024; 2023), HP-Student has residual action policy formula:
aHP(k) = adrl(k)︸ ︷︷ ︸

data-driven

+aphy(k) (= F · s(k))︸ ︷︷ ︸
model-based

, (4)

where adrl(k) denotes a date-driven action from DRL, while aphy(k) is a model-based action. Refer-
ring to safety envelope in Equation (3), HP-Student’s safety-embedded reward is

R(s(k),adrl(k)) = s⊤(k) ·P · s(k)− s⊤(k + 1) ·P · s(k + 1)︸ ︷︷ ︸
≜ r(s(k), s(k+1))

+ w(s(k),aHP(k)), (5)

where the sub-reward r(s(k), s(k + 1)) is safety-embedded, while the sub-reward w(s(k),a(k))
aims at high operation performance (e.g., minimizing energy consumption of resource-limited robots
and avoiding jerks for customers’ comfort in autonomous vehicles). The matrices F in Equation (4)
and P in Equation (3) and Equation (5) are the design variables. Their automatic computation by the
CVXPY toolbox is detailed in Cao et al. (2024).
Remark 4.1 (Safety- And Also Mission-Embedded). The equilibrium s∗ = 0 means that the system
described in Equation (1) can be interpreted as the dynamics of mission-tracking error. For instance, in
a path-following task, the path represents the mission goal, while s(k) denotes the real-time tracking
error of the path. Additionally, as indicated in Equation (3), the center of the safety envelope is the
s∗ = 0. Based on this, we can conclude that the sub-reward r(s(k), s(k+1)) defined in Equation (5)
encompasses both safety and mission considerations, and HP-Student’s learning encourages actions
that increase r(s(k), s(k + 1)) over time. Furthermore, an increase in r(s(k), s(k + 1)) signifies
progress towards both the envelope center and the mission goal. This also explains Figure 7, where
prioritizing safety does not compromise mission performance (violating safety protocols results in
decreased mission performance).

4.3 HP-STUDENT: CORRECTION OF UNSAFE RUNTIME LEARNING

HP-Student can be pre-trained in a simulator or another domain, and then he performs runtime
learning in real plants within a real-time physical environment. HP-Student utilizes the actor-critic
architecture-based DRL such as those outlined in Lillicrap et al. (2016) and Haarnoja et al. (2018)
for runtime learning, in order to learn a safe data-driven policy that maximizes the expected return.
HP-Student consists of an action policy and an action-value function.

Sampling efficiency is crucial for runtime learning. Experience replay (ER) Andrychowicz et al.
(2017) enables off-policy algorithms to reuse past experiences, significantly improving sampling
efficiency and preventing forgetting of learned knowledge Khetarpal et al. (2022). ER also helps
break the correlation between adjacent transitions to avoid sampling bias for a stable learning process,
which is important when online data is limited due to the expensive interaction with physical systems.
During online inference, we continuously store real transitions resulting from the actions of HP-
Student and corrected unsafe actions by HA-Teacher in the replay buffer. As shown in Figure 1,
if the action aHP(k) from HP-Student leads to unsafe behavior of a real plant, HA-Teacher takes
control to ensure safety of real plant, and corrects the unsafe data-driven action to âHA(k) and the
corresponding reward to R̂(k), according to

adrl(k)← âHA(k) ≜ aHA(k)− aphy(k), R(s(k),adrl(k))← R̂(k) ≜ R(s(k), âHA(k)), (6)
where aphy(k) is HP-Student’s model-based action in Equation (4), and aHA(k) is the action from
HA-Teacher, whose design is presented in Section 6. In the meantime, during runtime learning, a
minibatch of transitions is uniformly sampled for training or learning Fujimoto et al. (2018).
Remark 4.2. Equation (6) states that according to HP-Student’s residual action policy in Equation (4),
the action correction is only applied to the data-driven adrl(k), as the model-based action policy
aphy(k) = F · s(k) is invariant.

5 RUNTIME LEARNING MACHINE: COORDINATOR COMPONENT

Coordinator manages interactions between HP-Student and HA-Teacher according to

Triggering condition: s⊤(k − 1) ·P · s(k − 1) ≤ 1 and s⊤(k) ·P · s(k) > 1, (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

coupled with which, we introduce the active time phase of HA-Teacher:

HA-Teacher’s active phase: Tσ(k) ≜ {k, k + 1, . . . , k + τ}, τ ∈ N (8)

where σ(k) represents a piece-wise signal for notation. For instance, σ(k) = i for k ∈ Tσ(k) signifies
the i-th time that HA-Teacher is triggered, and its active phase this time is Ti. The switching logic of
actions applied to a real plant for backing up safety is as follows:

a(t)←
{
aHA(t), if triggering condition (7) holds at k and t ∈ Tσ(k)
aHP(t), otherwise

(9)

synchronizing with which is the correcting logic of HP-Student’s unsafe action and reward:

adrl(t)←
{
âHA(t), if triggering condition (7) holds at k and t ∈ Tσ(k)
adrl(k), otherwise

(10a)

R(t)←

{
R̂(t), if triggering condition (7) holds at k and t ∈ Tσ(k)
R(s(t),adrl(t)), otherwise

(10b)

where âHA(t) and R̂(t) are the corrected action and reward by HA-Teacher, defined in Equation (6).
Remark 5.1 (Enabling Automatic Hierarchy Learning). Operating within the safety envelope,
Coordinator activates HA-Teacher, if the real-time states of the real plant move outside the safety
envelope. Once the active phase ends, control transitions back to HP-Student, and HA-Teacher’s
correction of unsafe learning concludes. If condition (7) is no longer met, HP-Student will have
successfully learned to control the real plant within safety envelope, and continual runtime learning
will then focus on achieving high mission and operation performance.
Remark 5.2 (Active Phase). Referring to Equations (8) to (10), the symbol τ represents the correction
horizon for unsafe action and reward of HP-Student and the dwell time of HA-Teacher. Its allowable
minimum value is one. However, if the value of τ is very small, the patch center may not sufficiently
attract system states to the envelope inside, and HA-Teacher will dominate the learning machine,
only ensuring safety. Corollary E.1 in Appendix E guides determining the appropriate value for τ .

6 RUNTIME LEARNING MACHINE: HA-TEACHER COMPONENT

Enabling runtime learning in real plants is straightforward in addressing the Sim2Real gap, but not so
for unknown unknowns, because unknown unknowns lack historical data and cannot be predicted in
time and distribution. When an unknown unknown creates safety issues in a time-critical environment,
it is crucial to update the dynamics models, action plans, and mission goals promptly to ensure safe
and effective responses in real time. The insight inspires us to develop the real-time patch as the
HA-Teacher. Its model knowledge, action policy, and mission goal are dynamic and real-time. The
mathematical formula for a real-time patch is

Ψσ(k) ≜ {s | (s− χ · ŝσ(k))⊤ · P̂σ(k) · (s− χ · ŝσ(k)) ≤ (1−χ)2 · ŝ⊤σ(k) · P̂σ(k) · ŝσ(t)}, (11)

coupled with which is the real-time action policy:

aHA(k) = F̂σ(k) · (s(k)− χ · ŝσ(k)), with χ ∈ (0, 1) such that χ2 · ŝ⊤σ(k) ·P· ŝσ(k) < 1, (12)

where P̂σ(k) ≻ 0, the χ · ŝσ(k) represents the patch center (i.e., the yellow dots in Figure 2), and the
ŝσ(k) denotes the real-time state that triggers HA-Teacher and remains constant for defining patch
center during HA-Teacher’s active phase Tσ(k) (defined in Equation (8)), i.e.,

ŝσ(t) = s(k) for t ∈ Tσ(k), with s(k) satisfying triggering condition (7). (13)

Remark 6.1 (Why called patch?). In today’s world, there are two approaches to achieving the
same control task: a high-dimensional data-driven DRL and a low-dimensional physics-model-based
controller. The data-driven DRL provides superior performance but is challenging to verify (due
to DNN’s huge parameter, nonlinear activation, etc.). On the other hand, the physics-model-based
approach offers analyzable and verifiable behavior but has limited performance (due to model
mismatch). This explains why the set in Equation (11) follows a very similar safety envelope formula
in Equation (3), but it is referred to as a patch: the envelope represents a DRL design, while the patch
represents a physics-model-based design with a small verifiable-safety region.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

When a plant under the control of HP-Student experiences a safety violation at time k (as indicated by
the condition in Equation (7)), Coordinator activates HA-Teacher. HA-Teacher then utilizes real-time
sensor data ŝσ(k) to update the physics-model knowledge (A(ŝσ(k)),B(ŝσ(k))). This update is used
to compute the real-time patch in Equation (11) and the coupled action policy in Equation (12). The
real-time patch and its coupled action policy will empower HA-Teacher to achieve backing up safety
and correcting unsafe learning of HP-Student. However, to deliver the targeted capabilities, real-time
patch must meet following three requirements.

safety envelope 𝛀

safety set

low-performance
patch

Ψ3

unsafe
*

Ψ2

Ψ1

Ψ4

Figure 2: System behavior.

Requirement 1: Attracting Toward Safety Envelope. The center
of the patch must be within the safety envelope. If it’s not, as shown
by the patch Ψ4 in Figure 2, the system’s state can get stuck in the
patch. This can lead to HA-Teacher dominating the machine during
runtime learning, and HP-Student being unable to self-learn for a
high-performance action policy.

Requirement 2: Conformity with Safety Regulations. The real-
time patches must be subsets of the safety set in Equation (2). If not,
the patch will not be able to ensure safety, as shown by patch Ψ3 in
Figure 2, where the system states leave the safety set.

Requirement 3: Conformity with Operation Regulations. It is necessary to confine the real-time
action aHA(k) within a physically-feasible bounded action space:

A≜
{
aHA ∈ Rm | z≤C · aHA≤z, with C∈Rg×m, z, z∈Rm

}
, (14)

where C, z and z are given in advance for formulating operation regulations.

The F̂σ(k) and P̂σ(k) in Equation (12) and Equation (11) are our design variables for delivering the
real-time patch and coupled action policy. Our design focus is on how F̂σ(k) and P̂σ(k) can meet
Requirements 1–3. We observe from Equations (11) and (12) that the patch center χ · ŝσ(k) meets
Requirement 1 because it is located inside the safety envelope (due to χ2· ŝ⊤σ(k)·P· ŝσ(k) < 1) to attract
systems toward the envelope. So, the remaining task is to follow Requirements 2 and 3 to design
F̂σ(k) and P̂σ(k), which relies on a tracking-error dynamics model obtained from Equation (1):

e(k + 1) = A(ŝσ(k)) · e(k) +B(ŝσ(k)) · aHA(k) + h(e(k)), with e(k) ≜ s(k)− χ · ŝσ(k). (15)

Remark 6.2. The design of HA-Teacher needs the knowledge of system dynamics model, denoted as
(A(ŝσ(k)),B(ŝσ(k))). The dynamics of safety-critical autonomous systems have been extensively
studied, allowing us to access the dynamics models of many autonomous systems. For instance,
dynamics models of quadruped robots, drones, and autonomous vehicles can be found in the works
of Di Carlo et al. (2018), Yuan et al. (2022), and Rajamani (2011), respectively.

Next, we present a practical and common assumptions regarding the model mismatch for the design.
Assumption 6.3. The model mismatch in h(·) in Equation (15) is locally Lipschitz in Ψσ(k), i.e.,

(h(e1)−h(e2))⊤ · P̂σ(k) · (h(e1)−h(e2)) ≤ κ · (e1−e2)⊤ · P̂σ(k) · (e1−e2), ∀e1, e2∈Ψσ(k).
We also assume that the computing hardware, mechanical components, sensors, and operating systems
function correctly.

Theorem 6.4 presents the design, meeting Requirements 2 and 3; its proof is in Appendix D.2.
Theorem 6.4 (Real-time Patch Design). Consider the HA-Teacher’s action policy in Equation (12),
the patch Ψσ(k) in Equation (11), and the action space A in Equation (14), where the matrices F̂σ(k)
and P̂σ(k) are computed according to

F̂σ(k) = R̂σ(k) · Q̂−1
σ(k), P̂σ(k) = Q̂−1

σ(k), (16)

with R̂σ(k) and Q̂σ(k) satisfying the conditions in Equations (18), (23) and (27) to (30). Under
Assumption 6.3, the following properties hold, where 0 < α < 1 and Tσ(k) is defined in Equation (8).

1. The real-time patch Ψσ(k) ⊆ X holds for any time k.

2. The e⊤(t+ 1) · P̂σ(t) · e(t+ 1) ≤ α · e⊤(t) · P̂σ(t) · e(t) holds for any time t ∈ Tσ(k).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3. The HA-Teacher’s real-time action satisfies aHA(t) ∈ A for any time t ∈ Tσ(k).

Remark 6.5 (Fast Computation Time). The F̂σ(k) and P̂σ(k) are automatically computed from
Equations (16), (18), (23) and (27) to (30), using the LMI toolbox Gahinet et al. (1994); Boyd et al.
(1994). The computation time is quite short (0.01–0.04 seconds); its impact can be disregarded.
Remark 6.6 (Safety Knowledge from HP-Student). The safety regulations and envelope provided
by HP-Student are applied in Equations (18) and (27) for the patch design. The resulting properties
in Items 1 and 3 of Theorem 6.4 show that the designed patch meets Requirements 2 and 3. The
property in Item 2 is used to develop guidance (i.e., Corollary E.1 in Appendix E) for determining τ ,
which is the dwell time and correction horizon of HA-Teacher.

7 EXPERIMENT

The experiment involved comprehensive comparisons, a cart-pole system, and a real A1 quadruped
robot. Note: Appendix H.5.2 presents the experiment of two additional benchmarks: a Go2 quadruped
robot and a 2D quadrotor.

7.1 CART-POLE SYSTEM

We pre-train HP-Student using the OpenAI Gym Brockman et al. (2016). The pre-training process
includes domain randomization Sadeghi & Levine (2017); Nagabandi et al. (2019) to bridge the
Sim2Real gap, through introducing random force disturbances and randomizing the friction force.
We use the simulator to mimic the real plant. The Sim2Real gap is intentionally created by inducing
a friction force that is out of the distribution of those in pre-training. Unknown unknowns are
disturbances applied to HP-Student’s action commands, generated by a randomized Beta distribution.
Appendix F explains why the randomized Beta distribution can be one kind of unknown unknown.

The system’s state consists of the pendulum angle θ, the cart position x, and their respective velocities
ω = θ̇ and v = ẋ. The goal of HP-Student is to stabilize system at the equilibrium s∗ = [0, 0, 0, 0]⊤,
while keeping the system states within the safety set X = {s | |x| ≤ 1, |θ| < 0.8}. The action space
of HA-Teacher is A = {aHA ∈ R| |aHA| ≤ 40}. The designs for HP-Student and HA-Teacher are
presented in Appendix G.3 and Appendix G.4, respectively. Additionally, Appendix G.1 presents the
pre-training and runtime learning configurations.

3 2 1 0 1 2 35

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(a) Initial condition 1

3 2 1 0 1 2 35

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(b) Initial condition 2

0 20 40 60 80 100
Iterations

400

300

200

100

0

100

Re
wa

rd

CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(c) Rewards (5 seeds, %95 CI).

Figure 3: (a) and (b): Phase plots in Episode 1 under two initial conditions, where the black dot and
star denote the initial condition and final location, respectively. Green and yellow areas denote safety
set and envelope, respectively. (c): Reward trajectories over five random seeds.

When we disable HA-Teacher’s real-time patch and unsafe learning correction, our runtime learning
machine degrades to the recently developed fault-tolerant DRL: runtime assurance Chen et al. (2022)
and neural Simplex Phan et al. (2020). Since runtime assurance is an extension of Simplex Sha
(2001), we refer to the two compared models as ‘CLF-DRL-Simplex’ and ‘Phy-DRL-Simplex’, with
their high-performance components being the newly developed Phy-DRL Cao et al. (2024) and
CLF-DRL Westenbroek et al. (2022), respectively. When HA-Teacher is completely disabled, they
further degrade to pure Phy-DRL and CLF-DRL. Therefore, we now have five models for comparison.
The phase plots of position and angle, as well as the trajectories of learning reward, are presented
in Figure 3. Additionally, Figures 9 to 12 in Appendix G.5.1 include phase plots in episodes 5, 10,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

15, and 20, respectively. It is shown in Figure 3 (a) and (b) and Figures 9 to 12 that our runtime
learning machine can assure lifetime safety in the face of unknown unknowns and the Sim2Real
gap, as system states (magenta curves) never leave the safety set (green area) in any learning stage.
In contrast, current fault-tolerant DRL and safe DRL cannot achieve this. Meanwhile, as seen in
Figure 3 (c), our runtime learning machine provides remarkably stable and fast agent learning.

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

1.0

0.5

0.0

0.5

1.0

x

(a) HP-Student in Episode 5

Initial Condition
Terminal
Mission Goal

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

1.0

0.5

0.0

0.5

1.0

x

(b) HP-Student in Episode 20

Initial Condition
Terminal
Mission Goal

Figure 4: Demonstrating automatic
hierarchy learning.

We next showcase the automatic hierarchy learning mechanism.
To do this, we disable HA-Teacher in episodes 5 and 20 and
observe the system’s behavior under the control of the sole
HP-Student. The phase plot and trajectories of system with
ten random initial conditions (each runs for 2000 steps) are
displayed in Figures 4 and 13. Upon observing Figure 4 (a),
we can conclude that HP-Student has successfully learned from
the HA-Teacher how to ensure safety in episode 5: his action
policy can confine the system states to the safety set (green
area). HP-Student will automatically become independent of
HA-Teacher and self-learn for a high-performance action pol-
icy. This is evident in Figure 4 (b) together with trajectories of
HA-Teacher’s activation ratio in Figure 14, where in episode 20,
HP-Student consistently confines the system within her safety
envelope (yellow area), and HA-Teacher is seldom triggered by
the condition in Equation (7). Additionally, the action policy
of HP-Student in episode 20 demonstrates higher mission per-
formance: faster clustering and much closer proximity to the
mission goal, as observed in Figure 4 (b) and Figure 13. Addi-
tional experiment on behavior or activation ratio of HA-Teacher
is presented in Appendix G.5.3.

Finally, the experimental results in Figure 15 in Appendix G.5.4 emphasize HA-Teacher’s unsafe
learning correction in contributing to HP-Student’s fast and stable learning with larger reward values.

7.2 REAL QUADRUPED ROBOT

The action policy’s mission is to track the robot’s center of mass (CoM) height, CoM x-velocity, and
other states to the corresponding commands rvx , rh, and zeros, constraining system states to a safety
set X = {s | |CoM x-velocity− rvx | ≤ 0.3 m/s, |CoM z-height− rh| ≤ 0.15 m}. HA-Teacher’s
action space is A =

{
aHA ∈ R6

∣∣ |aHA| ≤ [30, 30, 30, 60, 60, 60]⊤
}

. The designs of HP-Student

0 500 1000 1500 2000 2500 3000 3500 4000
Time

0.1

0.2

0.3

0.4

0.5

0.6

Co
M

 H
ei

gh
t

Continual Phy-DRL: delay + domain
Phy-DRL: delay + domain
Runtime Learning Machine
Height Command
Safty Bounds

0 500 1000 1500 2000 2500 3000 3500 4000
Time

0

1

2

3

4

Co
M

 x
-V

el
oc

ity

Continual Phy-DRL: delay + domain
Phy-DRL: delay + domain
Runtime Learning Machine
Velocity Command
Safty Bounds

Figure 5: Trajectories.

and HA-Teacher are presented in Appendix H.3 and Ap-
pendix H.4, respectively. During pre-training in the simulator,
we set rvx = 0.6 m/s and rh = 0.24 m. To better demonstrate the
runtime learning machine, the real robot’s velocity command is
rvx = 0.35 m/s, which is different from the one in simulator. For
the runtime learning, one episode is defined as "running robot
for 15 seconds."

We compared the runtime learning machine with existing ap-
proaches to address the Sim2Real gap in training HP-Student
in the simulator. The approach we compared is called ‘delay +
domain,’ which involves concurrent delay randomization Imai
et al. (2022) and domain randomization Sadeghi & Levine (2017)
(by randomizing friction force). This approach resulted in two
comparison models. 1) ‘Continual Phy-DRL: delay + domain,’
represents a well-trained Phy-DRL using the ‘delay + domain’
approach in the simulator, which performed continual learning in
the real robot to fine-tune the action policy. 2) ‘Phy-DRL: delay
+ domain,’ represents the well-trained Phy-DRL policy directly
deployed to the real robot. The comparison video for episode 1
is available at comparison video link [anonymous hosting and
browsing] and the trajectories of the robot’s CoM height and
CoM-x velocity in episode 1 are shown in Figure 5. Additional

9

https://www.dropbox.com/scl/fi/mjwi9u6ng72oghbm4wkx7/sim2real.mp4?rlkey=2lg4fayh2mrpj2m6nqvx02tox&st=ono7z5na&dl=0
https://www.dropbox.com/scl/fi/mjwi9u6ng72oghbm4wkx7/sim2real.mp4?rlkey=2lg4fayh2mrpj2m6nqvx02tox&st=ono7z5na&dl=0

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

trajectories for episodes 5, 10, 15, and 20 can be found in Figure 16 in Appendix H.5.1. After
watching the comparison video and observing Figures 5 and 16, we concluded that a well-trained
Phy-DRL in the simulator cannot guarantee the safety of the real robot due to the Sim2Real gap
and unknown unknowns that the delay randomization and force randomization failed to capture. In
contrast, our runtime learning machine can provide safety guarantee in any sampled learning episode.

200 400 600 800 1000 1200
Iterations

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Le
ar

ni
ng

 R
ew

ar
d

Continual DRL: delay + domain
Runtime Learning Machine

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Episode Number

2.0

1.5

1.0

0.5

0.0

Ep
iso

de
-A

ve
ra

ge
 R

ew
ar

d

Runtime Learning Machine
Continual Phy-DRL: delay + domain

Figure 6: Rewards.

We continue the comparison with ‘Continual Phy-DRL: delay
+ domain.’ It is a well-trained Phy-DRL in the simulator and
performs continual learning in the real robot for 20 episodes.
Figure 6 presents the trajectories of learning reward in terms
of iteration steps and the episode-average reward. This demon-
strates that the runtime learning machine features stable, fast, and
safe learning in real plants. This notable feature is attributed to
HA-Teacher’s real-time patch for correcting unsafe learning and
backing up safety. In addition, HA-Teacher enables HP-Student’s
safety-first learning from him in the learning machine. To verify
this, we deactivate HA-Teacher in episodes 1 and 20, and com-
pare system behavior. The demonstration video is available at
safety-first-learning video link [anonymous hosting and brows-
ing], which illustrates that HP-Student quickly learned from
HA-Teacher to be safe, within 20 episodes (i.e., 300 seconds).

Finally, we showcase the learning machine’s ability to tolerate
various unknown unknowns. In addition to inherent unknowns,
our experiment includes five unknown unknowns that have never
occurred in HP-Student’s historical training and learning. They
are 1) Beta: Disturbances injected into HP-Student’s actions,
generated by a randomized Beta distribution (see Appendix F for
an explanation of its representation of unknown unknowns); 2) PD: Random and sudden payload
(around 4 lbs) drops on the robot’s back; 3) Kick: Random and sudden kick by a human; 4) DoS:
A real denial-of-service fault of the platform, which can be caused by task scheduling latency,
communication delay, communication block, etc., but is unknown to us; and 5) SP: A sudden side
push. We consider three combinations of these unknown unknowns applied to the runtime learning
stage: i) ‘Beta + PD,’ ii) ‘Beta + DoS + Kick,’ and iii) ‘Beta + SP.’ The demonstration video is
available at unknown-unknown video link [anonymous hosting and browsing]. Meanwhile, Figure 17
presents the corresponding trajectories. The demonstration video and Figure 17 demonstrate that our
learning machine successfully ensures the safety of the real plant by tolerating such unknowns.

8 CONCLUSION AND DISCUSSION

This paper presents a runtime learning machine designed for safety-critical autonomous systems.
The learning machine consists of the interactive HP-Student, HA-Teacher, and Coordinator. The
machine’s goal is to facilitate runtime learning for a high-performance action policy with verified
safety in real plants, using real-time sensor data from real-time physical environments. The learning
machine ensures lifetime safety by accommodating unknown unknowns and addressing the Sim2Real
gap. The runtime learning machine also serves as an automatic hierarchy learning mechanism for
HP-Student. Hierarchically, HP-Student first learns from the HA-Teacher to prioritize safety. After
mastering safety-first learning, HP-Student autonomously self-learns to develop a high-performance
action policy with a safety guarantee. Our runtime learning machine has shown outstanding features
compared to state-of-the-art safe DRL and fault-tolerant DRL, with approaches to addressing the
Sim2Real gap. These were demonstrated through comprehensive experiments on a cart-pole system,
two quadruped robots, and one 2D quadrotor.

Incorporating an early warning function into our runtime learning machine for the Coordinator’s
management of interaction between HP-Student and HA-Teacher constitutes our future research.
Reachability through worst-case dynamics Anderson et al. (2020) could be a solution. Another
future research is to enhance the robustness of our runtime learning machine in handling unknown
unknowns and bridging the Sim2Real gap by utilizing concepts from differentiable simulation Song
et al. (2024) and robust adaptive control Hovakimyan & Cao (2010).

10

https://www.dropbox.com/scl/fi/0chdro6ep3nhtres0c1fg/safety-first.mp4?rlkey=5xvirfejz2lhc4mwzdcp8nyb4&st=7dcjmxl5&dl=0
https://www.dropbox.com/scl/fi/0chdro6ep3nhtres0c1fg/safety-first.mp4?rlkey=5xvirfejz2lhc4mwzdcp8nyb4&st=7dcjmxl5&dl=0
https://www.dropbox.com/scl/fi/jjxlym8xtdxqgr7d5hclp/unk.mp4?rlkey=kh76ojwhspqgslzolmowuuu0l&st=igbjnji3&dl=0

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This paper does not have ethics issues because its applications focus on learning-enabled autonomous
systems and do not involve human subjects, animals, privacy, or social security.

REPRODUCIBILITY STATEMENT

The code to reproduce our experimental results has been uploaded with this paper as Supplementary
Material. If accepted, the code will be open source on GitHub. Meanwhile, the paper has disclosed
all the information needed to reproduce the experimental results. Please refer to Appendices G.3, G.4,
H.3, H.4 and H.5.2 for design details of experiments and Appendices G.1, H.1, I.2.4 and K for the
configurations of training and runtime learning, the computation resources, and the implementation
in real robot.

REFERENCES

AI incident database. https://incidentdatabase.ai/entities/.

Martin S Andersen, Joachim Dahl, Lieven Vandenberghe, et al. CVXOPT: A Python package for
convex optimization. Available at cvxopt. org, 54, 2013.

Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri. Neurosymbolic reinforcement
learning with formally verified exploration. Advances in neural information processing systems,
33:6172–6183, 2020.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 30, 2017.

Arko Banerjee, Kia Rahmani, Joydeep Biswas, and Isil Dillig. Dynamic model predictive shielding
for provably safe reinforcement learning. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https://openreview.net/forum?id=
x2zY4hZcmg.

Thomas Bartz-Beielstein. Why we need an AI-resilient society. arXiv:1912.08786, 2019. URL
https://arxiv.org/pdf/1912.08786.pdf.

Osbert Bastani. Safe reinforcement learning with nonlinear dynamics via model predictive shielding.
In 2021 American control conference, pp. 3488–3494. IEEE, 2021.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. Advances in Neural Information Processing
Systems, 30, 2017.

Gerardo Bledt, Matthew J Powell, Benjamin Katz, Jared Di Carlo, Patrick M Wensing, and Sangbae
Kim. MIT cheetah 3: Design and control of a robust, dynamic quadruped robot. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 2245–2252. IEEE, 2018.

Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. Linear matrix
inequalities in system and control theory. SIAM, 1994.

Guillaume Brat and Ganeshmadhav Pai. Runtime assurance of aeronautical products: preliminary
recommendations. NTRS - NASA Technical Reports Server, 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym, 2016.

Hongpeng Cao, Mirco Theile, Federico G. Wyrwal, and Marco Caccamo. Cloud-edge train-
ing architecture for sim-to-real deep reinforcement learning. In 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 9363–9370, 2022. doi:
10.1109/IROS47612.2022.9981565.

11

https://incidentdatabase.ai/entities/
https://openreview.net/forum?id=x2zY4hZcmg
https://openreview.net/forum?id=x2zY4hZcmg
https://arxiv.org/pdf/1912.08786.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hongpeng Cao, Yanbing Mao, Lui Sha, and Marco Caccamo. Physics-model-regulated deep rein-
forcement learning towards safety & stability guarantees. In 62nd IEEE Conference on Decision
and Control, pp. 8300–8305, 2023.

Hongpeng Cao, Yanbing Mao, Lui Sha, and Marco Caccamo. Physics-regulated deep reinforce-
ment learning: Invariant embeddings. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=5Dwqu5urzs.

Ya-Chien Chang and Sicun Gao. Stabilizing neural control using self-learned almost Lyapunov critics.
In 2021 IEEE International Conference on Robotics and Automation, pp. 1803–1809. IEEE, 2021.

Shengduo Chen, Yaowei Sun, Dachuan Li, Qiang Wang, Qi Hao, and Joseph Sifakis. Runtime safety
assurance for learning-enabled control of autonomous driving vehicles. In 2022 International
Conference on Robotics and Automation (ICRA), pp. 8978–8984. IEEE, 2022.

Yiyu Chen and Quan Nguyen. Learning agile locomotion and adaptive behaviors via RL-augmented
MPC. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 11436–
11442. IEEE, 2024.

Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks. In Proceedings of
the AAAI conference on artificial intelligence, volume 33, pp. 3387–3395, 2019a.

Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and Joel Burdick.
Control regularization for reduced variance reinforcement learning. In International Conference
on Machine Learning, pp. 1141–1150, 2019b.

Jared Di Carlo, Patrick M Wensing, Benjamin Katz, Gerardo Bledt, and Sangbae Kim. Dynamic
locomotion in the mit cheetah 3 through convex model-predictive control. In 2018 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pp. 1–9. IEEE, 2018.

Yuqing Du, Olivia Watkins, Trevor Darrell, Pieter Abbeel, and Deepak Pathak. Auto-tuned sim-to-real
transfer, 2021.

Răzvan Florian. Correct equations for the dynamics of the cart-pole system. 08 2005.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Pascal Gahinet, Arkadii Nemirovskii, Alan J Laub, and Mahmoud Chilali. The lmi control toolbox.
In Proceedings of 1994 33rd IEEE conference on decision and control, volume 3, pp. 2038–2041.
IEEE, 1994.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/haarnoja18b.html.

Zhenglei He, Kim-Phuc Tran, Sebastien Thomassey, Xianyi Zeng, Jie Xu, and Changhai Yi. A deep
reinforcement learning based multi-criteria decision support system for optimizing textile chemical
process. Computers in Industry, 125:103373, 2021.

Naira Hovakimyan and Chengyu Cao. L1 adaptive control theory: Guaranteed robustness with fast
adaptation. SIAM, 2010.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How to
train your robot with deep reinforcement learning: lessons we have learned. The International
Journal of Robotics Research, 40(4-5):698–721, 2021.

Chieko Sarah Imai, Minghao Zhang, Yuchen Zhang, Marcin Kierebiński, Ruihan Yang, Yuzhe Qin,
and Xiaolong Wang. Vision-guided quadrupedal locomotion in the wild with multi-modal delay
randomization. In 2022 IEEE/RSJ international conference on intelligent robots and systems
(IROS), pp. 5556–5563. IEEE, 2022.

12

https://openreview.net/forum?id=5Dwqu5urzs
https://proceedings.mlr.press/v80/haarnoja18b.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll,
Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning
for robot control. In 2019 International Conference on Robotics and Automation (ICRA), pp.
6023–6029. IEEE, 2019.

Norman L Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous univariate distri-
butions, volume 2, volume 289. John wiley & sons, 1995.

Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,
Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. In 2019 International
Conference on Robotics and Automation, pp. 8248–8254. IEEE, 2019.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforcement
learning: A review and perspectives. Journal of Artificial Intelligence Research, 75:1401–1476,
2022.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yogamani,
and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Tongxin Li, Ruixiao Yang, Guannan Qu, Yiheng Lin, Steven Low, and Adam Wierman. Equipping
black-box policies with model-based advice for stable nonlinear control. arXiv preprint https:
//arxiv.org/pdf/2206.01341.pdf.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations, ICLR, 2016.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning, 2019.

NHTSA. Summary report: Standing general order on crash reporting for level
2 advanced driver assistance systems. National Highway Traffic Safety Adminis-
tration. URL https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-06/
ADAS-L2-SGO-Report-June-2022.pdf.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer
of robotic control with dynamics randomization. In 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, May 2018. doi: 10.1109/icra.2018.8460528. URL
http://dx.doi.org/10.1109/ICRA.2018.8460528.

Theodore J Perkins and Andrew G Barto. Lyapunov design for safe reinforcement learning. Journal
of Machine Learning Research, 3(Dec):803–832, 2002.

Dung T Phan, Radu Grosu, Nils Jansen, Nicola Paoletti, Scott A Smolka, and Scott D Stoller. Neural
Simplex architecture. In NASA Formal Methods Symposium, pp. 97–114. Springer, 2020.

Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business Media, 2011.

Krishan Rana, Vibhavari Dasagi, Jesse Haviland, Ben Talbot, Michael Milford, and Niko Sünderhauf.
Bayesian controller fusion: Leveraging control priors in deep reinforcement learning for robotics.
arXiv preprint https://arxiv.org/pdf/2107.09822.pdf.

Jan Roskam. Airplane flight dynamics and automatic flight controls. DARcorporation, 1995.

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real image,
2017.

Thomas Savage, Dongda Zhang, Max Mowbray, and Ehecatl Antonio Del Río Chanona. Model-free
safe reinforcement learning for chemical processes using gaussian processes. IFAC-PapersOnLine,
54(3):504–509, 2021.

13

https://arxiv.org/pdf/2206.01341.pdf
https://arxiv.org/pdf/2206.01341.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-06/ADAS-L2-SGO-Report-June-2022.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-06/ADAS-L2-SGO-Report-June-2022.pdf
http://dx.doi.org/10.1109/ICRA.2018.8460528
https://arxiv.org/pdf/2107.09822.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lui Sha. Using simplicity to control complexity. IEEE Software, 18(4):20–28, 2001.

Joseph Sifakis and David Harel. Trustworthy autonomous system development. ACM Transactions
on Embedded Computing Systems, 22(3):1–24, 2023.

Yunlong Song, Sang bae Kim, and Davide Scaramuzza. Learning quadruped locomotion using
differentiable simulation. In 8th Annual Conference on Robot Learning, 2024. URL https:
//openreview.net/forum?id=XopATjibyz.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. Robotics:
Science and Systems, 2018.

Tian Tolentino. Autonomous aircraft market worth usd 23.7bn by 2030. https://www.
traveldailymedia.com/autonomous-aircraft-market-research/, 2019.

Quan Vuong, Sharad Vikram, Hao Su, Sicun Gao, and Henrik I. Christensen. How to pick the domain
randomization parameters for sim-to-real transfer of reinforcement learning policies?, 2019.

Tyler Westenbroek, Fernando Castaneda, Ayush Agrawal, Shankar Sastry, and Koushil Sreenath.
Lyapunov design for robust and efficient robotic reinforcement learning. arXiv:2208.06721, 2022.
URL https://arxiv.org/pdf/2208.06721.pdf.

Tsung-Yen Yang, Tingnan Zhang, Linda Luu, Sehoon Ha, Jie Tan, and Wenhao Yu. Safe reinforcement
learning for legged locomotion. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2454–2461. IEEE, 2022a.

Yuxiang Yang. Github: Quadruped robot simulator. URL https://github.com/yxyang/
locomotion_simulation.

Yuxiang Yang, Tingnan Zhang, Erwin Coumans, Jie Tan, and Byron Boots. Fast and efficient
locomotion via learned gait transitions. In Conference on robot learning, pp. 773–783. PMLR,
2022b.

Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. Preparing for the unknown: Learning a universal
policy with online system identification. Robotics: Science and Systems, 2017.

Zhaocong Yuan, Adam W Hall, Siqi Zhou, Lukas Brunke, Melissa Greeff, Jacopo Panerati, and
Angela P Schoellig. Safe-control-gym: A unified benchmark suite for safe learning-based control
and reinforcement learning in robotics. IEEE Robotics and Automation Letters, 7(4):11142–11149,
2022.

Arnold Zachary and Toner Helen. AI Accidents: An emerging threat. Center for Security and
Emerging Technology, 2021. URL https://doi.org/10.51593/20200072.

Fuzhen Zhang. The Schur complement and its applications, volume 4. Springer Science & Business
Media, 2006.

Liqun Zhao, Konstantinos Gatsis, and Antonis Papachristodoulou. Stable and safe reinforcement
learning via a Barrier-Lyapunov actor-critic approach. In 62nd IEEE Conference on Decision and
Control, pp. 1320–1325. IEEE, 2023.

14

https://openreview.net/forum?id=XopATjibyz
https://openreview.net/forum?id=XopATjibyz
https://www.traveldailymedia.com/autonomous-aircraft-market-research/
https://www.traveldailymedia.com/autonomous-aircraft-market-research/
https://arxiv.org/pdf/2208.06721.pdf
https://github.com/yxyang/locomotion_simulation
https://github.com/yxyang/locomotion_simulation
https://doi.org/10.51593/20200072

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendices

A Illustration: HP-Student’s Hierarchy Learning 16

B Notations 17

C Auxiliary Lemmas 18

D Theorem 6.4: Conditions and Proof 20

D.1 Conditions of Real-time Patch Design in Theorem 6.4 20

D.2 Proof of Theorem 6.4 . 20

E Guidance for Correction Horizon and Dwell Time 24

F Unknown Unknown: Randomized Beta Distribution 25

G Experiment: Cart-Pole System 26

G.1 Configurations of Pre-training and Runtime Learning 26

G.2 System Dynamics . 26

G.3 HP-Student Design . 26

G.4 HA-Teacher Design . 27

G.5 Additional Experiments . 27

H Experiment: Real Quadruped Robot 32

H.1 Policy Learning . 32

H.2 System Dynamics . 32

H.3 HP-Student: Physics Knowledge and Design . 32

H.4 HA-Teacher: Real-time Patch . 33

H.5 Additional Experimental Results . 34

I Experiment: Go2 Quadruped Robot and 2D Quadrotor 35

I.1 Go2 Quadruped Robot . 35

I.2 2D Quadrotor . 37

J Implementation Problems and Solutions 41

K Computation Resources 42

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ILLUSTRATION: HP-STUDENT’S HIERARCHY LEARNING

Figure 7 illustrates HP-Student’s two learning stages in the hierarchy learning mechanism.

• Stage 1: If he cannot guarantee safety, he first learn from HA-Teacher for safety-first
learning to prioritize safety.

• Stage 2: As he masters the capability of safety guarantee (i.e., constraining system states
into his safety envelope), his continuous runtime learning rarely activates the HA-Teacher,
allowing him to automatically self-learn a high-performance action policy.

violating safety and low mission performance!

safety set

safety envelope

Figure 7: HP-Student’s two learning stages.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B NOTATIONS

Notations throughout Paper

a A scalar (integer or real)

a A vector

A A matrix

A A set

Rn Set of n-dimensional real vectors

N Set of natural numbers

[x]i The i-th entry of vector x

[W]i,: The i-th row of matrix W

[W]:,j The j-th column of matrix W

[W]i,j Matrix W’s element at row i and column j

P ≻ (≺) 0 Matrix P is positive (negative) definite

⊤ Transposition of a matrix or vector

⌈·⌉ Ceiling function

P−1 Inverse of matrix P

ln(a) Natural logarithm of the number a > 0

· Matrix multiplication

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C AUXILIARY LEMMAS

This section introduces the auxiliary lemmas used to establish the theoretical framework for our
proposed runtime learning machine.

Lemma C.1 (Schur Complement Zhang (2006)). For any symmetric matrix M =

[
A B
B⊤ C

]
, then

M ≻ 0 holds if and only if C ≻ 0 and A−BC−1B⊤ ≻ 0.

Lemma C.2 (Cao et al. (2024)). Consider the safety set X defined in Equation (2) and define a set

Ωσ(k) ≜ {s | s⊤ · Q̂−1
σ(k) · s ≤ 1, P̂σ(k) ≻ 0}. (17)

We have Ωσ(k) ⊆ X if

[D]i,: · Q̂σ(k) · [D⊤]:,i=

{
≥ 1, [d]i=1

≤ 1, [d]i=−1
, and [D]i,: · Q̂σ(k) · [D

⊤
]:,i≤1, i∈{1, . . . , h} (18)

where D = D
Λ

, D = D
Λ , and for i, j ∈ {1, . . . , h},

[d]i ≜


1, [v]i > 0

1, [v]i < 0

−1, otherwise
, (19)

[Λ]i,j ≜


0, i ̸= j

[v]i , [v]i > 0

[v]i , [v]i < 0

[v]i , otherwise

, (20)

[Λ]i,j ≜


0, i ̸= j

[v]i , [v]i > 0

[v]i , [v]i < 0

− [v]i , otherwise

. (21)

Lemma C.3. Consider the action set A defined in Equation (14), and

Ξ ≜
{
aHA ∈ Rm | a⊤HA ·T−1 · aHA ≤ 1, V ≻ 0

}
. (22)

We have Ξ ⊆ A, if

[C]i,: ·T · [C⊤]:,i =

{
≥ 1, [c]i = 1

≤ 1, [c]i = −1
, and [C]i,: ·T · [C

⊤
]:,i ≤ 1, i∈{1, . . . ,m} (23)

where C = C
∆

and C = C
∆ , and for i, j ∈ {1, . . . ,m}:

[c]i ≜


1, [z]i > 0

1, [z]i < 0

−1, otherwise
, (24)

[∆]i,j ≜


0, i ̸= j

[z]i , [z]i > 0

[z]i , [z]i < 0

[z]i , otherwise

, (25)

[∆]i,j ≜


0, i ̸= j

[z]i , [z]i > 0

[z]i , [z]i < 0

− [z]i , otherwise

. (26)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof. Lemma C.3’s proof path is exactly the same as the proof of Lemma B.2 in Cao et al. (2024),
so it is omitted here.

Lemma C.4. For two vectors x ∈ Rn, y ∈ Rn, and a matrix P ≻ 0, we have

2 · x⊤ ·P · y ≤ γ · x⊤ ·P · x+
1

γ
· y⊤ ·P · y, with γ > 0.

Proof. The proof is straightforward when we consider P ≻ 0 and recall the following inequality:

(
√
γ · x− 1

√
γ
· y)⊤ ·P · (√γ · x− 1

√
γ
· y) = γ · x⊤ ·P · x+

1

γ
· y⊤ ·P · y − 2 · x⊤ ·P · y ≥ 0.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D THEOREM 6.4: CONDITIONS AND PROOF

D.1 CONDITIONS OF REAL-TIME PATCH DESIGN IN THEOREM 6.4

The conditions for designing the real-time path are presented in Equations (18) and (23), and the
remaining are given below.

Q̂σ(k) − µ ·P−1 ≻ 0, with µ > 0 (27)

(1− χ · γ1) · µ ≥ 1− 2 · χ+
χ

γ1
> 0, (28)[

Q̂σ(k) R̂⊤
σ(k)

R̂σ(k) T

]
≻ 0, (29) (

α− κ ·
(
1 + 1

γ2

))
· Q̂σ(k) Q̂σ(k) ·A⊤(ŝσ(k)) + R̂⊤

σ(k) ·B
⊤(ŝσ(k))

A(ŝσ(k)) · Q̂σ(k) +B(ŝσ(k)) · R̂σ(k)
Q̂σ(k)

1+γ2

 ≻ 0, (30)

where the Q̂σ(k), R̂σ(k), T, and µ are variables, while the P, 0 < χ < 1, γ1 > 0, γ2 > 0, 0 < α < 1,
A(ŝσ(k)), and B(ŝσ(k)) are known and given in advance. The variables Q̂σ(k), R̂σ(k), T, and µ can
be automatically computed from Equations (18), (23) and (27) to (30) by using the available LMI
toolbox Gahinet et al. (1994); Boyd et al. (1994).

D.2 PROOF OF THEOREM 6.4

The three statements in Theorem 6.4 are proved separately.

D.2.1 PROOF OF STATEMENT IN ITEM 1

The envelope patch in Equation (11) can be equivalently rewritten as:

Ψσ(k) =
{
s | s⊤ · P̂σ(k) · s ≤ (1− χ)2 · s⊤(k) · P̂σ(k) · s(k) + 2 · χ · s⊤ · P̂σ(k) · ŝσ(k)

− χ2 · ŝ⊤σ(k) · P̂σ(k) · ŝσ(k)
}
, (31)

which, in light of Equation (13), equivalently transforms to

Ψσ(k) =
{
s | s⊤ · P̂σ(k) · s ≤ (1− 2 · χ) · s⊤(k) · P̂σ(k) · s(k) + 2 · χ · s⊤ · P̂σ(k) · ŝ(k)

}
. (32)

In light of Lemma C.4 in Appendix C, we have

2 · s⊤ · P̂σ(k) · s(k) ≤ γ1 · s⊤ · P̂σ(k) · s+
1

γ1
· s⊤(k) · P̂σ(k) · s(k), with γ1 > 0

substituting which into the inequality in Equation (32) and considering 0 < χ < 1 yields

s⊤ · P̂σ(k) · s ≤ (1− 2 · χ) · s⊤(k) · P̂σ(k) · s(k) + 2 · χ · s⊤ · P̂σ(k) · ŝ(k)

≤ (1− 2 · χ+
χ

γ1
) · s⊤(k) · P̂σ(k) · s(k) + χ · γ1 · s⊤ · P̂σ(k) · s, (33)

which leads to

(1− χ · γ1) · s⊤ · P̂σ(k) · s ≤ (1− 2 · χ+
χ

γ1
) · s⊤(k) · P̂σ(k) · s(k). (34)

We conclude from Equations (32) to (34) that if the inequality for defining the envelope patch Ψσ(k)
in Equation (32) holds, the inequality in Equation (34) holds as well. Therefore, we can define the
first auxiliary set:

Θ1 =

{
s | (1− χ · γ1) · s⊤ · P̂σ(k) · s ≤ (1− 2 · χ+

χ

γ1
) · s⊤(k) · P̂σ(k) · s(k)

}
, (35)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

and it satisfies

Ψσ(k) ⊆ Θ1. (36)

Considering µ > 0, we can conclude from Equation (28) that 1 − χ · γ > 0. Therefore, the set in
Equation (35) can be equivalently transformed to

Θ1 =

{
s | s⊤ · P̂σ(k) · s ≤

1− 2 · χ+ χ
γ1

1− χ · γ1
· s⊤(k) · P̂σ(k) · s(k)

}
. (37)

Considering P̂σ(k) = Q̂−1
σ(k) and µ > 0, the condition in Equation (27) is equivalent to

1

µ
·P ≻ P̂σ(k),

substituting which into the inequality in Equation (37) results in

s⊤ · P̂σ(k) · s ≤
1− 2 · χ+ χ

γ1

1− χ · γ1
· s⊤(k) · P̂σ(k) · s(k)

≤
1− 2 · χ+ χ

γ1

1− χ · γ1
· 1
µ
· s⊤(k) ·P · s(k) =

1− 2 · χ+ χ
γ1

1− χ · γ1
· 1
µ
, (38)

where last equality is obtained because s(k) approaches the boundary of the safety envelope, i.e.,
s⊤(k) · P · s(k) = 1. From this, we can conclude that if the inequality defining the set Θ1 in
Equation (37) holds, the inequality in Equation (38) holds as well. Therefore, we can define the
second auxiliary set as:

Θ2 =

{
s | s⊤ · P̂σ(k) · s ≤

1− 2 · χ+ χ
γ1

1− χ · γ1
· 1
µ

}
, (39)

and it satisfies

Θ1 ⊆ Θ2. (40)

Moving forward, we note that the condition in Equation (28) is equivalent to 0 <
1−2χ+ χ

γ1

1−χ·γ1 ·
1
µ < 1.

Therefore, we can define the third auxiliary set as

Θ3 =
{
s | s⊤ · P̂σ(k) · s ≤ 1, P̂σ(k) ≻ 0

}
, (41)

and referring to Equation (39), it satisfies

Θ2 ⊆ Θ3. (42)

At the moment, we can draw conclusions from Equations (36), (40) and (43):

Ψσ(k) ⊆ Θ1 ⊆ Θ2 ⊆ Θ3. (43)

Observing Equations (17) and (41), we have Θ3 = Ωσ(k). Then, applying Lemma C.2 in Appendix C,
we have Θ3 = Ωσ(k) ⊆ X, which, in light of Equation (43), results in Ψσ(k) ⊆ X. We thus complete
the proof of the statement in Item 1.

D.2.2 PROOF OF STATEMENT IN ITEM 2

We define a Lyapunov candidate for the tracking-error dynamics described in Equation (15) as:

V (t) = e⊤ (t) · P̂σ(t) · e (t) , (44)

which, combined with the dynamics in Equation (15) and the action policy in Equation (12), leads to

V (t+ 1)− α · V (t)

= e⊤ (t+ 1) · P̂σ(t) · e (t+ 1)− α · e⊤ (t) · P̂σ(t) · e (t)

= e⊤ (t) ·
(
A

⊤
(ŝσ(t)) · P̂σ(t) ·A(ŝσ(t))− α · P̂σ(t)

)
· e (t) + h⊤ (e (t)) · P̂σ(t) · h (e (t))

+ 2 · e⊤ (t) ·
(
A(ŝσ(t)) · P̂σ(t)

)
· h (e (t)) , (45)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where we define:

A(ŝσ(t))
∆
= A(ŝσ(t)) +B(ŝσ(t)) · F̂σ(t). (46)

After applying Lemma C.4 in Appendix C, we have:

2e⊤ (t) ·
(
A(ŝσ(t)) · P̂σ(t)

)
· h (e (t))

≤ γ2 · e⊤ (t) ·A⊤
(ŝσ(t)) · P̂σ(t) ·A(ŝσ(t)) · e (t) +

1

γ2
· h⊤ (e (t)) · P̂σ(t) · h (e (t)) , (47)

where γ2 > 0.

We note that Assumption 6.3 implies:

h⊤(e (t)) · P̂σ(t) · h(e (t)) ≤ κ · e⊤ (t) · P̂σ(t) · e (t). (48)

Substituting inequalities in Equations (47) and (48) into Equation (45) yields:

V (t+ 1)− α · V (t)

≤ e⊤ (t) ·
(
(1 + γ2) ·A

⊤
(ŝσ(t)) · P̂σ(t) ·A(ŝσ(t))− (α− κ · (1 + 1

γ2
)) · P̂σ(t)

)
· e (t) . (49)

Recalling the Schur Complement in Lemma C.1 of Appendix C and considering P̂σ(t) ≻ 0, we
conclude that the inequality in Equation (30) is equivalent to

(α− κ · (1 + 1

γ2
)) · Q̂σ(t) − (1 + γ2) · (Q̂σ(t) ·A⊤(ŝσ(t)) + R̂⊤

σ(t) ·B
⊤(ŝσ(t)) · Q̂−1

σ(t)

· (A(ŝσ(t)) · Q̂σ(t) +B(ŝσ(t)) · R̂σ(t)) ≻ 0,

multiplying both the left-hand side and the right-hand side of which by Q̂−1 yields:

(α− κ · (1 + 1

γ2
)) · Q̂−1

σ(t) − (1 + γ2) · (A⊤(ŝσ(t)) + Q̂−1
σ(t) · R̂

⊤
σ(t) ·B

⊤(ŝσ(t))) · Q̂−1
σ(t)

· (A(ŝσ(k)) +B(ŝσ(t)) · R̂σ(t) ·Q−1
σ(t)) ≻ 0,

Substituting the definitions in Equation (16) into which, we arrive at

(α− κ · (1 + 1

γ2
)) · P̂σ(t) − (1 + γ2) · (A⊤(ŝσ(t)) + F̂⊤

σ(t) ·B
⊤(ŝσ(t)) · P̂σ(t)

· (A(ŝσ(t)) +B(ŝσ(t)) · F̂σ(t)) ≻ 0. (50)

Recalling Equation (46), the inequality in Equation (50) is equivalent to the following:

(1 + γ2) ·A
⊤
(ŝσ(t)) · P̂σ(t) ·A(ŝσ(t))− (α− κ · (1 + 1

γ2
)) · P̂σ(t) ≺ 0,

which, in conjunction with Equation (49), leads to V (t+ 1)− α · V (t) ≤ 0, i.e., e⊤(t+ 1) · P̂σ(t) ·
e(t+ 1) ≤ α · e⊤(t) · P̂σ(t) · e(t), we thus complete the proof of the statement in Item 2.

D.2.3 PROOF OF STATEMENT IN ITEM 3

With the consideration of T−1 = V, according to Lemma C.1, the condition in Equation (29) implies:

Q̂σ(t) − R̂⊤
σ(t) ·T

−1 · R̂σ(t) = Q̂σ(t) − R̂⊤
σ(t) ·V · R̂σ(t) ≻ 0. (51)

Substituting F̂σ(t) · Q̂σ(t) = R̂σ(t) into Equation (51) leads to

Q̂σ(t) − (F̂σ(t) · Q̂σ(t))
⊤ ·V · (F̂σ(t) · Q̂σ(t)) ≻ 0. (52)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

multiplying both left-hand and right-hand sides of which by Q̂−1
σ(k) yields:

Q̂−1
σ(t) − F̂⊤

σ(t) ·V · Q̂σ(t) ≻ 0,

from which we thus have

e⊤(t) · Q̂−1
σ(t) · e(t)− e⊤(t) · F̂⊤

σ(t) ·V · F̂σ(t) · e(t)

= e⊤(t) · P̂σ(t) · e(t)− a⊤HA(t) ·V · aHA(t) > 0, (53)

which is obtained via considering P̂σ(t) = Q̂−1
σ(t), and Equation (12) with e(t) = s(t)− χ · ŝσ(t).

We let e = s− χ · ŝσ(k). The patch definition in Equation (11) can re-expressed as

Ψσ(k) ≜ {e | e⊤ · P̂σ(k) · e ≤ (1− χ)2 · s⊤(k) · P̂σ(k) · s(k),

with s(k) subject to Equation (7), and P̂σ(k) ≻ 0}. (54)

The inequality in Equation (53) can be expressed as e⊤(t) · P̂σ(t) · e(t) > a⊤HA(t) ·V ·aHA(t). Based
on Equation (41), we can conclude that if e(t) ∈ Θ3, meaning it satisfies e⊤(t) ·P̂σ(t) ·e(t) < 1, then
a⊤HA(t) ·V · aHA(t) < 1. Additionally, considering Equation (43) and Equation (54), if e(t) ∈ Ψσ(k),
then a⊤HA(t) ·V ·aHA(t) < 1. It’s important to note that t ∈ {k, . . . , k+τ} = Tσ(k), and k represents
the triggering time of HA-Teacher.

Upon verification from Equation (13), it becomes evident that e(k) = s(k)−χ·ŝσ(k) = s(k)−χ·ŝ(k),
where e(k) lies on the boundary of the patch: e(k)⊤ · P̂σ(k) · e(k) = (1− χ)2 · s⊤(k) · P̂σ(k) · s(k).
Furthermore, as per the second statement in Item 2, i.e., e⊤(t+ 1) · P̂σ(t) · e(t+ 1) ≤ α · e⊤(t) ·
P̂σ(t) · e(t) for time t ∈ Tσ(k), we can infer that e(t) never exits the patch during the active time of
HA-Teacher initiated at time k. Hence, we can conclude that a⊤HA(t) ·V · aHA(t) < 1 holds for any
time t ∈ Tσ(k).

Finally, taking into account Equation (23) and Lemma C.3 in Appendix C, we can establish that
aHA(t) ∈ A for any time t ∈ Tσ(k), thus completing the proof.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E GUIDANCE FOR CORRECTION HORIZON AND DWELL TIME

Upon reviewing Figure 1 and Equations (8) to (10), we can conclude that τ serves as both the
correction horizon for the unsafe actions of HP-Student and the dwell time for HA-Teacher. The
value of τ significantly influences HP-Student’s runtime learning in achieving a high-performance
policy. If τ is small, the patch center fails to attract the system states to the envelope inside, resulting
in HA-Teacher dominating the learning process, solely ensuring safety. Conversely, if τ is very
large, HP-Student is unable to effectively and swiftly self-learn to achieve his goal. Thus, these
considerations should guide the selection of τ . This guidance is based on the results from Theorem 6.4,
as presented in the following corollary.
Corollary E.1. If the correction horizon and the dwell time of HA-Teacher, denoted as τ , satisfy:

τ =

⌈
ln(δ · µ)− ln(e⊤ (k) ·P · e(k))

lnα

⌉
, (55)

we have e⊤ (k + τ) · P̂σ(k) · e(k + τ) ≤ δ, where k denotes the triggering time of HA-Teacher.

Proof. We obtain from Item 2 that

e⊤ (t) · P̂σ(t) · e(t) ≤ αt−k · e⊤ (k) · P̂σ(k) · e(k), t ∈ Tσ(k). (56)

Considering 0 < α < 1, we can verify from Equation (56) that αt−k · e⊤ (k) · P̂σ(k) · e(k) ≤ δ is
equivalent to

τ = t− k ≥
ln δ − ln(e⊤ (k) · P̂σ(k) · e(k))

lnα
. (57)

In addition, considering P̂σ(k) = Q̂−1
σ(k) and µ > 0, the condition in Equation (27) used for designing

real-time patch in Theorem 6.4 is equivalent to

1

µ
·P ≻ P̂σ(k),

which, in conjunction with 0 < α < 1, leads to

ln δ − ln(e⊤ (k) · P̂σ(k) · e(k))
lnα

≤
ln δ − ln(1µ · e

⊤ (k) ·P · e(k))
lnα

=
ln(δ · µ)− ln(e⊤ (k) ·P · e(k))

lnα

≤
⌈
ln(δ · µ)− ln(e⊤ (k) ·P · e(k))

lnα

⌉
. (58)

Based on Equation (58), we can conclude that if the condition in Equation (55) is satisfied, then the
inequality in Equation (57) also holds. Consequently, we have αt−k · e⊤ (k) · P̂σ(k) · e(k) ≤ δ. This,
together with Equation (56), implies e⊤ (t) · P̂σ(t) · e(t) ≤ δ. Furthermore, if we consider σ(k) as a
piece-wise signal (i.e., σ(m) = σ(k) for m ∈ Tσ(k) = {k, k + 1, . . . , k + τ}) and τ = t− k, then
e⊤ (t) · P̂σ(t) · e(t) ≤ δ can be rewritten as e⊤ (k + τ) · P̂σ(k) · e(k + τ) ≤ δ. This completes the
proof.

The real-time tracking error e(t) represents the distance to the patch center χ · ŝσ(k). Therefore,
e⊤ (t) · P̂σ(t) · e (t) serves as a measurement metric for proximity to the patch center. Additionally,
e⊤ (k + τ) · P̂σ(k) · e(k+ τ) ≤ δ can be interpreted as a safety criterion for returning to HP-Student.
Consequently, Corollary E.1 implies that τ is computed to ensure that the real plant, under the control
of HA-Teacher, satisfies the preset safety criteria rather than infinitely approaching the patch center.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F UNKNOWN UNKNOWN: RANDOMIZED BETA DISTRIBUTION

In the real world, plants can encounter a multitude of unknown variables, each with unique charac-
teristics. To tackle this challenge, we propose utilizing a variant of the Beta distribution Johnson
et al. (1995) to effectively model one type of these unknowns. This approach holds promise in
mathematically defining and addressing these uncertainties.
Definition F.1 (Randomized Beta Distribution). The disturbance, noise, or fault, denoted by d(k),
is considered to be a bounded unknown if (i) d(k) ∼ Beta(α(k), β(k), c, a), and (ii) α(k) and β(k)
are random parameters. In other words, the disturbance d(k) is within the range of [a, c], and its
probability density function (pdf) is given by

f (d(k); α(k), β(k), a, c) =
(d(k)− a)α−1

(c− d(k))
α(k)−1

Γ (α(k) + β(k))

(c− a)α(k)+β(k)−1
Γ (α(k)) Γ (β(k))

, (59)

where Γ (α(k)) =
∫∞
0
tα(k)−1e−tdt, Re (α(k)) > 0, α(k) and β(k) are randomly given at every k.

The randomized Beta distribution defined in Definition F.1 is crucial for describing a certain type
of unknown unknown. This is due to two critical reasons. First, the characteristics of unknown
unknowns involve minimal historical data and unpredictable time and distributions. This leads to
unavailable models for scientific discoveries and understanding.

In the example shown in Figure 8, the parameters α and β directly influence the probability density
function (pdf) of the distribution, and consequently, the mean and variance. Suppose α and β are
randomized (expressed as α(k) and β(k)). In that case, the distribution of d(k) can take the form of
a uniform distribution, exponential distribution, truncated Gaussian distribution, or a combination
of these. However, the specific distribution is unknown. Therefore, the randomized α(k) and
β(k), which result in a randomized Beta distribution, can effectively capture the characteristics of
"unavailable model" and "unforeseen" traits associated with unknown unknowns in both time and
distribution. Furthermore, the randomized Beta distributions are bounded, with the bounds denoted as
a and c. This is motivated by the fact that, in general, there are no probabilistic solutions for handling
unbounded unknowns, such as earthquakes and volcanic eruptions.

0 0.2 0.4 0.6 0.8 1
d(k)

0

1

2

3

4

f(
d(

k)
;,

(k
),-

(k
),
c,

a)

c	=	0,	a	=	1

,(k)	=	-(k)	=	0.15
,(k)	=	-(k)	=	1
,(k)	=	-(k)	=	11
,(k)	=	5,	-(k)	=	1
,(k)	=	1,	-(k)	=	3
,(k)	=	2,	-(k)	=	7

Figure 8: α(k) and β(k) control the robability density the function of the distribution.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

G EXPERIMENT: CART-POLE SYSTEM

G.1 CONFIGURATIONS OF PRE-TRAINING AND RUNTIME LEARNING

The pre-training configurations for HP-Student, other DRL agents, and the runtime learning mim-
icking real plants are all the same to ensure fair comparisons. Specifically, we utilize the DDPG
algorithm Lillicrap et al. (2016) to pre-train DRL and Phy-DRL models and to support runtime
learning. The actor and critic networks are implemented as Multi-Layer Perceptrons (MLPs) with
four fully connected layers. The output dimensions of the critic and actor networks are 256, 128,
64, and 1, respectively. The activation functions of the first three neural layers are ReLU, while the
output of the last layer is the Tanh function for the actor network and Linear for the critic network.
The input of the critic network is [s;a], while the input of the actor network is s. In more detail, we
set the discount factor γ = 0.9 and the learning rates of the critic and actor networks to be the same at
0.0003. We set the batch size to 200. The episode consists of 1000 steps, and the sampling frequency
is 30 Hz.

G.2 SYSTEM DYNAMICS

The physics knowledge about the dynamics of cart-pole systems used by HP-Student and HA-Teacher
for their designs is from the following dynamics model in Florian (2005):

θ̈ =
g sin θ + cos θ

(
−F−mplθ̇

2 sin θ
mc+mp

)
l
(

4
3 −

mp cos2 θ
mc+mp

) , (60a)

ẍ =
F +mpl

(
θ̇2 sin θ − θ̈ cos θ

)
mc +mp

, (60b)

whose g represents the gravitational acceleration, with mc = 0.94 kg, mp = 0.29 kg, l = 0.32 m,
and F as the actuator input.

G.3 HP-STUDENT DESIGN

As Phy-DRL allows us to simplify the nonlinear dynamics model in Equation (60) to an analyzable
linear model:

ṡ = Â · s+ B̂ · a, (61)

where s = [x, v, θ, ω]⊤. To obtain Â and B̂ from equation Equation (60), we approximate cos θ as
1, sin θ as θ, and ω2 sin θ as 0. Additionally, the sampling technique converts the continuous-time
model in Equation (61) to a discrete-time model:

s(k + 1) = A · s(k) +B · a(k), with A = I4 + T · Â, B = T · Â,
where we have

A =

 1 0.0333 0 0
0 1 −0.0565 0
0 0 1 0.0333
0 0 0.8980 1

 , B = [0 0.0334 0 − 0.0783]
⊤
. (62)

Considering the safety set

X =
{
s ∈ R4

∣∣− 0.8 ≤ x ≤ 0.8,−0.7 < θ < 0.7,−4 ≤ ẋ ≤ 4,−4 ≤ θ̇ ≤ 4
}
,

the model knowledge (A,B) in Equation (62), and according to the design of Phy-DRL in Cao et al.
(2024), we have

P =

 54.1134178606985 26.2600592637275 61.7975412804215 12.9959418258126
26.2600592637275 14.3613985149923 34.6710819094179 7.27321583818861
61.7975412804215 34.6710819094179 88.7394386456256 18.0856894519164
12.9959418258126 7.27321583818861 18.0856894519164 3.83961074325448

 ,
F = [46.1347017672011 31.4100347880721 106.033772085368 19.9606055711095] ,

With which, and letting w(s(k),aHP(k)) = −a2drl(k), the residual action policy in Equation (4) and
the safety-embedded reward in Equation (5) are then ready for HP-Student, i.e., Phy-DRL agent.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

G.4 HA-TEACHER DESIGN

G.4.1 MODEL KNOWLEDGE

Compared to HP-Student, HA-Teacher possesses a more comprehensive understanding of system
dynamics in physics, directly and equivalently derived from Equation (60) as

d

dt

 x
ẋ
θ

θ̇


︸ ︷︷ ︸

s

=


0 1 0 0

0 0
−mpg sin θ cos θ

θ[43 (mc+mp)−mpcos2θ]

4
3mpl sin θθ̇

4
3 (mc+mp)−mpcos2θ

0 0 0 1

0 0
g sin θ(mc+mp)

lθ[43 (mc+mp)−mpcos2θ]

−mp sin θ cos θθ̇
4
3 (mc+mp)−mpcos2θ


︸ ︷︷ ︸

Â(s)

·

 x
ẋ
θ

θ̇



+


0
4
3

4
3 (mc+mp)−mpcos2θ

0
− cos θ

l[43 (mc+mp)−mpcos2θ]


︸ ︷︷ ︸

B̂(s)

· F︸︷︷︸
a

, (63)

where Â(s) and B̂(s) are known to the HA-Teacher. The sampling technique transforms the
continuous-time dynamics model equation 68 to the discrete-time one:

s(k + 1) = (I4 + T · Â(s)) · s(k) + T · B̂(s) · a(k),

from which we obtain the model knowledge A(ŝσ(k)) and B(ŝσ(k)) in Equation (15) as

A(ŝσ(k)) = I4 + T · Â(ŝσ(k)), B(s∗) = T · B̂(ŝσ(k)), (64)

where T = 1
30 second, i.e., the sampling frequency is 30 Hz.

G.4.2 PARAMETERS FOR REAL-TIME PATCH COMPUTING

Right now, we have A(ŝσ(k)) and B(ŝσ(k)) in Equation (77). To satisfy Assumption 6.3, we let
κ = 0.01. For inequalities in Equations (27) to (30), we set α = 0.999, χ = 0.3, γ1 = 1, γ2 =
0.1, and τ = 10. Finally, according to the given safety set X = {s ∈| |x| ≤ 1, |θ| < 0.8} and the
action space of HA-Teacher A = {aHA ∈ R| |aHA| ≤ 20}, we obtain following knowledge for the
inequalities in Equations (18) and (23):

We currently have A(ŝσ(k)) and B(ŝσ(k)) in Equation (77). To satisfy Assumption 6.3, we set κ
to be 0.01. For the inequalities in Equations (27) to (30), we assign the values α = 0.99, χ = 0.3,
γ1 = 1, and γ2 = 0.1. Finally, based on the given safety set X = {s ∈ Rn | |x| ≤ 1, |θ| < 0.8} and
the action space of HA-Teacher A = {aHA ∈ R | |aHA| ≤ 40}, we obtain the following information
for the inequalities in Equations (18) and (23):

D =

[
1 0 0 0
0 0 1/0.8 0

]
, C = 1/40.

G.5 ADDITIONAL EXPERIMENTS

The section presents additional experimental results to bolster the claims of our proposed runtime
learning machine.

G.5.1 RUNTIME LEARNING MACHINE V.S. FAULT-TOLERANT DRL AND SAFE DRL

We have included additional phase plots to illustrate further the key feature of our runtime learning
machine: ensuring lifetime safety, meaning safety assurance at any stage of the learning process.
To achieve this, we conducted 5 learning episodes where we observed the system behavior under
the control of the runtime learning machine at episodes 5, 10, 15, and 20. Additionally, for each
episode, we tested the models using three random initial conditions. The phase plots of position

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

and angle, including those of the four compared models, can be found in Figures 9 to 12. Upon
observing Figures 9 to 12, we conclude that our runtime learning machine can consistently guarantee
the safety of real plants across all sampled learning episodes, in the presence of unknown factors and
the Sim2Real gap. This level of safety cannot be achieved by the current state-of-the-art safe DRL
and fault-tolerant DRL methods.

3 2 1 0 1 2 35

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(a) Initial Condition 1

3 2 1 0 1 2 35

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(b) Initial Condition 2

3 2 1 0 1 2 3

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(c) Initial Condition 3

Figure 9: Episode 5. Phase plots, given the same initial condition. The black dot and star denote the
initial condition and final location, respectively.

3 2 1 0 1 2 35

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(a) Initial Condition 1

3 2 1 0 1 2 35

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(b) Initial Condition 2

3 2 1 0 1 2 3

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(c) Initial Condition 3

Figure 10: Episode 10. Phase plots, given the same initial condition. The black dot and star denote
the initial condition and final location, respectively.

3 2 1 0 1 2 35

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(a) Initial Condition 1

3 2 1 0 1 2 35

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(b) Initial Condition 2

3 2 1 0 1 2 3

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(c) Initial Condition 3

Figure 11: Episode 15. Phase plots, given the same initial condition. The black dot and star denote
the initial condition and final location, respectively.

G.5.2 AUTOMATIC HIERARCHY LEARNING MECHANISM

The trajectories of system states under the control of the HP-Student are shown in Figure 13 for ten
random initial conditions. The HP-Student engages in runtime learning. After reviewing Figure 13,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

3 2 1 0 1 2 35

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(a) Initial Condition 1

3 2 1 0 1 2 35

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(b) Initial Condition 2

3 2 1 0 1 2 3

4

3

2

1

0

1

x CLF-DRL
Phy-DRL
CLF-DRL-Simplex
Phy-DRL-Simplex
Runtime Learning Machine

(c) Initial Condition 3

Figure 12: Episode 20. Phase plots, given the same initial condition. The black dot and star denote
the initial condition and final location, respectively.

we can conclude that the action policy of the HP-Student in episode 20 demonstrates higher mission
performance compared to episode 5. It is much closer to the mission goal and remains stable.

0 250 500 750 1000 1250 1500 1750
Time Steps

0.0

0.1

0.2

0.3

0.4

0.5

x

HP-Student in Episode 5
HP-Student in Episode 20
Mission Goal

(a) State x

0 250 500 750 1000 1250 1500 1750
Time Steps

0.4

0.2

0.0

0.2

0.4

0.6
v

HP-Student in Episode 5
HP-Student in Episode 20
Mission Goal

(b) State v

0 250 500 750 1000 1250 1500 1750
Time Steps

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075 HP-Student in Episode 5
HP-Student in Episode 20
Mission Goal

(c) State θ

0 250 500 750 1000 1250 1500 1750
Time Steps

0.3

0.2

0.1

0.0

0.1

0.2 HP-Student in Episode 5
HP-Student in Episode 20
Mission Goal

(d) State ω

Figure 13: Sole HP-Student controls the real plant: Trajectories of the system for ten random initial
conditions in episodes 5 and 20 (95% CI).

G.5.3 ACTIVATION RATIO OF HA-TEACHER

To demonstrate HA-Teacher’s contributions to the claimed automatic hierarchy learning Mechanism,
we first define the metric of HA-Teacher’s activation ratio:

HA-Teacher’s activation ratio =
HA-Teacher’s total dwell/activation time in one episode

one episode length
∈ (0, 1),

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

where a ratio of 0 means HA-Teacher is never activated throughout the entire episode of learning,
while a ratio of 1 means HA-Teacher completely dominates HP-Student for the entire episode.

The graph in Figure 14 illustrates the activation ratio trajectories over the episode steps during runtime
learning for three different episode lengths and five random seeds. From the graph, we can conclude
that HA-Teacher is rarely activated to correct the unsafe learning of HP-Student and support the
safety of real plants after 15 episode-steps of runtime learning. This also indicates that HP-Student
has learned safety from HA-Teacher.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Episode Steps

0.0

0.2

0.4

0.6

0.8
HA

-Te
ac

he
r's

 A
ct

iv
at

io
n

Ra
tio

Episode Length: 500
Episode Length: 1000
Episode Length: 2000

Figure 14: HA-Teacher’s activation ratio over 20 episodes, five random seeds (%95 CI).

G.5.4 HA-TEACHER’S UNSAFE LEARNING CORRECTION

We define “bad" learning data as data that leads to HP-Student’s unsafe actions, resulting in the
unsafe behavior of real plants. In our runtime learning machine, when such data is detected according
to the condition in Equation (7), HA-Teacher steps in to ensure the safety of the real plants and
correct the problematic learning data. The corrected data is then stored in HP-Student’s replay
buffer. This highlights HA-Teacher’s role in providing a safe physical learning environment and
delivering corrected data to HP-Student. Ultimately, HA-Teacher’s correction of unsafe learning,
as described in Equations (6) and (10), will contribute to HP-Student’s fast and stable learning
with larger reward values. To demonstrate this, we conduct an ablation experiment, in which we
disable HA-Teacher’s mission of unsafe learning correction, resulting in a runtime learning machine
“without unsafe-learning correction." So, the compact runtime learning machine is the one “with
unsafe-learning correction."

The trajectories of HP-Student’s learning reward are shown in Figure 15 for the two learning machines:
one with unsafe-learning correction and one without. These trajectories were generated using the
same four random initial conditions and ten seeds. Figure 15 emphasizes the important role of
HA-Teacher’s unsafe learning correction in contributing to HP-Student’s fast and stable learning,
with larger reward values.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Iteration Steps

0.02

0.01

0.00

0.01

0.02

Le
ar

ni
ng

 R
ew

ar
d

Without Unsafe-learning Correction
With Unsafe-learning Correction

(a) Initial Condition 1

0 25 50 75 100 125 150 175 200
Iteration Steps

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Le
ar

ni
ng

 R
ew

ar
d

Without Unsafe-learning Correction
With Unsafe-learning Correction

(b) Initial Condition 2

0 25 50 75 100 125 150 175 200
Iteration Steps

0.03

0.02

0.01

0.00

0.01

0.02

Le
ar

ni
ng

 R
ew

ar
d

Without Unsafe-learning Correction
With Unsafe-learning Correction

(c) Initial Condition 3

0 25 50 75 100 125 150 175 200
Iteration Steps

0.020

0.015

0.010

0.005

0.000

0.005

0.010

Le
ar

ni
ng

 R
ew

ar
d

Without Unsafe-learning Correction
With Unsafe-learning Correction

(d) Initial Condition 4

Figure 15: HP-Student’s learning rewards for two runtime learning machines: one with HA-Teacher’s
unsafe learning correction and one without. Trajectories: four random initial conditions and ten seeds
(%95 CI).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

H EXPERIMENT: REAL QUADRUPED ROBOT

In the real quadruped robot experiment, we utilized a Python-based framework designed for the
Unitree A1 robot, which was released on GitHub by Yang. This framework consists of a Pybullet-
based simulation, an interface for direct simulation-to-real transfer, and an implementation of the
Convex Model Predictive Controller for fundamental motion control.

H.1 POLICY LEARNING

The runtime learning machine and Phy-DRL are designed to achieve the safe mission described
in Section 7.2. The policy observation consists of a 10-dimensional tracking error vector between
the robot’s state vector and the mission vector. Both systems are based on the DDPG algorithm
Lillicrap et al. (2016). The actor and critic networks are implemented as Multi-Layer Perceptrons
(MLPs) with four fully connected layers. The output dimensions of the critic network are 256, 128,
64, and 1, while the output dimensions of the actor network are 256, 128, 64, and 6. The input for
the critic-network consists of the tracking error vector and the action vector, while the input for the
actor network is the tracking error vector. The activation functions for the first three neural layers are
ReLU, and the output of the last layer is the Tanh function for the actor network and Linear for the
critic network. Additionally, the discount factor γ is set to 0.9, and the learning rates for the critic
and actor networks are both 0.0003. Finally, the batch size is set to 512.

H.2 SYSTEM DYNAMICS

The robot’s physics knowledge used by HP-Student and HA-Teacher for their designs is based on
the dynamics model of the robot, which involves a single rigid body subject to forces at the contact
patches Di Carlo et al. (2018). Our robot dynamics include the position of the body’s center of mass
(CoM) height (h), the CoM velocity (v) represented as a 3D vector [CoM x-velocity, CoM y-velocity,
CoM z-velocity], the Euler angles (e) described as a 3D vector [roll, pitch, yaw], and the angular
velocity in world coordinates (w). According to Di Carlo et al. (2018), this model can describe the
body dynamics of quadruped robots.

d

dt

 h
ẽ
v
w


︸ ︷︷ ︸

≜ ŝ

=

 O1×1 O1×5 1 O1×3

O3×3 O3×3 O3×3 R(ϕ, θ, ψ)
O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3


︸ ︷︷ ︸

≜ Â(ϕ,θ,ψ)

·

 h
ẽ
v
w

+ B̂ · â+

 0
O3×1

O3×1

g̃



+ f(ŝ), (65)

where g̃ = [0; 0;−g] ∈ R3, with g being the gravitational acceleration. f(ŝ) denotes model mismatch,
B̃ = [O4×6; I6]

⊤, and R(ϕ, θ, ψ) = Rz(ψ) ·Ry(θ) ·Rx(ϕ) ∈ R3×3 is the rotation matrix, with

Rx(ϕ)=

[
1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

]
,Ry(θ)=

[
cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

]
,Rz(ψ)=

[
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

]
.

H.3 HP-STUDENT: PHYSICS KNOWLEDGE AND DESIGN

In order to represent the model knowledge denoted by (A, B) for robot dynamics in Equation (65),
we simplify by setting R(ϕ, θ, ψ) = I3, which is achieved by setting the roll, pitch, and yaw angles
to zero, i.e., ϕ = θ = ψ = 0. By referring to Equation (65) and disregarding any unknown model
mismatch, we can derive a simplified linear model for robot dynamics, that is the one below.

d

dt


h̃˜̃e
ṽ
w̃


︸ ︷︷ ︸

≜ s̃

=

 O1×1 O1×3 1 O1×5

O3×3 O3×3 O3×3 R(ϕ, θ, ψ)
O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3


︸ ︷︷ ︸

≜ Ã

·


h̃˜̃e
ṽ
w̃

+ B̂ · ã (66)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Given the equilibrium point (or control goal) s∗ and s̃ ≜ χ · ŝσ(k), we define s ≜ s̃− s∗. It is then
straightforward to obtain a dynamics from Equation (66) as ṡ = Ã · s+ B̂ · ã, which transforms to a
discrete-time model via sampling technique:

s(k + 1) = A · s(k) +B · ã(k), with A = I10 + T · Ã and B = T · B̂, (67)

where T is the sampling period.

Given the model knowledge (A,B) in Equation (67), and according to the design of Phy-DRL in
Cao et al. (2024), we have

P =



122.1647861 0 0 0 2.487166 0 0
0 1.5e− 6 0 0 0 0 0
0 0 1.5e− 6 0 0 0 0
0 0 0 480.6210753 0 0 0

2.487166 0 0 0 3.2176033 0 0
0 0 0 0 0 1.3e− 6 0
0 0 0 0 0 0 1.2e− 6
0 9e− 7 0 0 0 0 0
0 0 9e− 7 0 −0 0 0
0 0 0 155.2954559 0 0

0 0 0
9e− 7 0 0

0 9e− 7 0
0 0 155.2954559
0 0 0
0 0 0
0 0 0

7e− 7 0 0
0 7e− 7 0
0 0 −0, 156.3068079


,

F =


0 0 0 0 −23.65 0 0 0 0 0
0 0 0 0 0 −20 0 0 0 0

−63.11 0 0 0 0 0 −20 0 0 0
0 −32.51 0 0 0 0 0 −21.88 0 0
0 0 −32.51 0 0 0 0 0 −21.88 0
0 0 0 −30.95 0 0 0 0 0 −22.28

 ,
with which and matrices A and B in Equation (67), we are able to deliver the residual action policy
in Equation (4) and safety-embedded reward in Equation (5).

H.4 HA-TEACHER: REAL-TIME PATCH

Compared to HP-Student, HA-Teacher possesses a deeper understanding of system dynamics, which
is directly and equivalently derived from Equation (65) as

d

dt

 h
ẽ
v
w


︸ ︷︷ ︸

s

=

 O1×1 O1×3 1 O1×5

O3×3 O3×3 O3×3 R(ϕ, θ, ψ)
O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3


︸ ︷︷ ︸

Â(s)

·

 h
ẽ
v
w

+

 O3 O3 O3 O3

O3 O3 O3 O3

O3 O3 I3 O3

O3 O3 O3 I3


︸ ︷︷ ︸

B̂(s)

·a

+ g(s), (68)

where Â(s) and B̂(s) are known to the HA-Teacher. The sampling technique transforms the
continuous-time dynamics model in Equation (68) to the discrete-time one:

s(k + 1) = (I4 + T · Â(s)) · s(k) + T · B̂(s) · a(k) + T · g(s),
from which we obtain the knowledge of A(ŝσ(k)) and B(ŝσ(k)) in Equation (15) as

A(ŝσ(k)) = I4 + T · Â(ŝσ(k)) and B(ŝσ(k)) = T · B̂(ŝσ(k)). (69)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Meanwhile, for the patch in Equation (11), the model mismatch in Assumption 6.3, and the dwell
time in Equation (8), we let χ = 0.25, κ = 0.01, and τ = 100. For LMIs in Equations (27)
to (30), we let α = 0.9, γ1 = 1, and γ2 = 0.45. Finally, according to the given safety set
X = {s | |CoM x-velocity− 0.3 m/s| ≤ 0.3 m/s, |CoM z-height− 0.24 m| ≤ 0.15 m} and the ac-
tion space of HA-Teacher A =

{
aHA| |aHA| ≤ [30, 30, 30, 60, 60, 60]⊤

}
, we obtain following knowl-

edge for the LMIs in Equations (18) and (23):

D =

[
1/0.15 0 0 0 0 0 0 0 0 0

0 0 0 0 1/0.3 0 0 0 0 0

]
,

C =


1/30 0 0 0 0 0
0 1/30 0 0 0 0
0 0 1/30 0 0 0
0 0 0 1/60 0 0
0 0 0 0 1/60 0
0 0 0 0 0 1/60

 .

H.5 ADDITIONAL EXPERIMENTAL RESULTS

H.5.1 TRAJECTORIES IN DIFFERENT EPISODES

The real robot’s trajectories of CoM height and CoM x-velocities under the control of runtime learning
machine in episodes 5, 10, 15, and 20 are shown in Figure 16. The trajectories straightforwardly
depict that the runtime learning machine guarantees the safety of real robots in all picked episodes.

0 500 1000 1500 2000 2500 3000 3500 4000
Time

0.0

0.2

0.4

0.6

0.8

1.0

CO
M

 x
-V

el
oc

ity

Episode 5
Episode 10
Episode 15

Episode 20
Velocity Command
Safty Bounds

(a) Height trajectory

0 500 1000 1500 2000 2500 3000 3500 4000
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

CO
M

 H
ei

gh
t

Episode 5
Episode 10
Episode 15

Episode 20
Height Command
Safty Bounds

(b) Velocity trajectory

Figure 16: Robot’s trajectories of CoM height and x-velocity under control of runtime learning
machine in the episodes 5, 10, 15, and 20.

H.5.2 TRAJECTORIES IN FACE OF UNKNOWN UNKNOWNS

Figure 17 presents the trajectories of CoM height and CoM x-velocity of real robot under control of
runtime learning machines, in the face of three unknown unknowns: i) ‘Beta + PD,’ ii) ‘Beta + DoS
+ Kick,’ and iii) ‘Beta + PS.’ Figure 17 shows that the two states are successfully constrained into
safety set, i.e., never exceed safety bounds.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000
Time

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Co
M

-x
 V

el
oc

ity

Beta + DoS + Kick
Beta + SP
Beta + PD
Velocity Command
Safety Bounds

0 1000 2000 3000 4000 5000
Time

0.15

0.20

0.25

0.30

0.35

0.40

CO
M

 H
ei

gh
t

Beta + DoS + Kick
Beta + SP
Beta + PD
Height Command
Safety Bounds

Figure 17: Trajectories in the presence of unknown unknowns.

I EXPERIMENT: GO2 QUADRUPED ROBOT AND 2D QUADROTOR

The section presents experiments on two new benchmarks: a go2 quadruped robot and a 2D quadrotor.

I.1 GO2 QUADRUPED ROBOT

Many safety-critical autonomous systems, such as quadruped robots, drones, UAVs, and autonomous
vehicles, interact dynamically with their environments. For instance, the movement dynamics on
a sandy road will be different from those on a surface covered in freezing rain. As a result, the
operating environment plays a crucial role in introducing real-time unknown unknowns, Sim2Real
gap, and domain gap. So, this subsection’s experiment aims to demonstrate the safety assurance of
our runtime learning machine in challenging environments.

To do so, we initially pre-trained HP-Student for the A1 robot in the PyBullet simulator, using a flat
terrain environment, as the same one in Section 7.2. After this pre-training, we directly deployed
HP-Student to the Go2 robot. We utilized NVIDIA Isaac Sim to create an operating environment
for showcasing the Go2 robot’s runtime learning capabilities. This environment transitions from flat
terrain to unstructured and uneven ground, further complicated by ice from unforseen freezing rain.
We here can conclude that Go2 robot’s operating environment are non-stationary and unforeseen, and
never occur in the pre-training stage. Besides, A1 and Go2 robots are very different in their motors,
weights, heights, mass, etc.

For the Go2 robot, its safety set is

X = {s | |CoM x-velocity− rvx | ≤ 0.4 m/s, |CoM z-height− rh| ≤ 0.15 m} . (70)

All other designs are the same as those of A1 quadruped robot, presented in Appendix H.

I.1.1 NON-STATIONARY, UNSTRUCTURED, UNEVEN, AND UNFORESEEN ENVIRONMENTS

In the challenging real-time operating environments, our first mission command sent to the robot is
walking forward at velocity 0.7 m/s (i.e., rvx = 0.7 m/s) and maintaining CoM height at rh = 0.3 m,
while constraining them to the safety set in Equation (70). When we disable HA-Teacher’s real-time
patch and unsafe learning correction, our runtime learning machine degrades to the recently runtime
assurance Chen et al. (2022); Brat & Pai (2023); Sifakis & Harel (2023), which is also proposed to
support runtime learning in real plants. When HA-Teacher is completely disabled for backing up
safety, our runtime learning machine further degrade to pure Phy-DRL Cao et al. (2024; 2023).

The demonstration video of the well-pretrained HP-Student (Phy-DRL) in PyBullet, along with
the execution of mission command by our runtime learning machine and runtime assurance, is
available at Go2 Forward [anonymous hosting and browsing]. Besides, Figure 18 shows the robot’s
trajectories of CoM height and CoM x-velocity. We also set the second mission command: walking
backward at velocity 0.7 m/s (i.e., rvx = -0.7 m/s) while maintaining CoM height at rh = 0.3 m,

35

https://www.dropbox.com/scl/fi/b1l7uskmx5wg2uw6n8tzz/forward.mp4?rlkey=6k4mfs1f8symff3ilquajsd3o&st=a17uvfo9&dl=0

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500 600 700
Time

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Co

M
 H

ei
gh

t
Runtime Learning Machine
Runtime Assurance
HP-Student: Phy-DRL
Height Command
Safety Bounds

0 100 200 300 400 500 600 700
Time

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Co
M

-x
 V

el
oc

ity

Runtime Learning Machine
Runtime Assurance
HP-Student: Phy-DRL
Velocity Command
Safety Bounds

Figure 18: Trajectories of CoM height and CoM velocity in non-stationary, unstructured, uneven, and
unforeseen environments, given the command of walking forward at 0.7 m/s.

while constraining them to the safety set in Equation (70). The demonstration video is available at
Go2 Backward [anonymous hosting and browsing]. Figure 19 shows the robot’s trajectories of CoM
height and CoM x-velocity for the second mission command.

0 200 400 600 800
Time

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Co
M

 H
ei

gh
t

Runtime Learning Machine
Runtime Assurance
HP-Student: Phy-DRL
Height Command
Safety Bounds

0 200 400 600 800
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Co
M

-x
 V

el
oc

ity

Runtime Learning Machine
Runtime Assurance
HP-Student: Phy-DRL
Velocity Command
Safety Bounds

Figure 19: Trajectories of CoM height and CoM velocity in non-stationary, unstructured, uneven, and
unforeseen environments, given the command of walking backward at 0.7 m/s.

Upon watching the demonstration videos and observing Figures 18 and 19, we concluded that our
runtime learning machine can guarantee the safety of the Go2 robot operating in non-stationary,
unstructured, uneven, and unforeseen environments. In contrast, runtime assurance and continual
learning by sole Phy-DRl cannot achieve this.

I.1.2 RANDOM KICKING AND NOISY STATE SAMPLING

In addition to the non-stationary, unstructured, and uneven operating environments, we inject
unknown-unknown noise into state samplings and randomly kick the Go2 robot to demonstrate
the machine’s capability of assuring safety. Following the method of inducing action noise in
Section 7, the unknown-unknown noise for state samplings are generated by a randomized Beta dis-
tribution. Appendix F explains why the randomized Beta distribution generate one kind of unknown

36

https://www.dropbox.com/scl/fi/fclb0npdyatq93qzq2i72/backward.mp4?rlkey=7u9bcmw3sz30zk6njqu79vtel&st=yje3jfwt&dl=0

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

unknown. In presence of the two additional unknown unknowns, the demonstration video of robot’s
execution of the two mission commands (given in Appendix I.1.1) by our runtime learning machine
is available at Go2: Kick–Sensor [anonymous hosting and browsing]. Meanwhile, the phase plots of
CoM height and CoM x-velocity are shown in Figure 20. They well demonstrate the significantly
enhanced safety assurance by our runtime learning machine in the complex setting.

0.15 0.20 0.25 0.30 0.35 0.40 0.45
CoM Height

0.0

0.2

0.4

0.6

0.8

1.0

Co
M

 x
-V

el
oc

ity

Forward
Initial
Terminal
Mission Goal

0.15 0.20 0.25 0.30 0.35 0.40 0.45
CoM Height

1.0

0.8

0.6

0.4

0.2

0.0

Co
M

 X
-V

el
oc

ity

Backward
Initial
Terminal
Mission Goal

Figure 20: Phase plots of CoM height and CoM x-velocity in non-stationary, unstructured, and uneven
operating environments, with unknown-unknown noise injected into state samplings and randomly
kicking on robot.

I.2 2D QUADROTOR

We take the 2D quadrotor simulator provided in Safe-Control-Gym Yuan et al. (2022) as an experi-
mental system to demonstrate of the mechanism of automatic hierarchy learning. It is characterized
by (x, z) – the translation position of the CoM of the quadrotor in the xz-plane, θ – the pitch angle,
and their velocities vx = ẋ, vz = ż, and vθ = θ̇. The mission of the action policy is to stabilize the
quadrotor at the waypoint (rx, rz , rθ) under safety constraints:

|x− rx| ≤ 0.5 m, |z − rz| ≤ 0.8 m, |θ−rθ| ≤ 0.8 rad. (71)

I.2.1 POLICY LEARNING

The actor and critic networks are implemented as a Multi-Layer Perceptron (MLP) with four fully
connected layers. The output dimensions of critic and actor networks are 256, 128, 64, and 1,
respectively. The activation functions of the first three neural layers are ReLU, while the output of
the last layer is the Tanh function for the actor-network and Linear for the critic network. The input
of the critic network is [s;a], while the input of the actor-network is s. In more detail, we let discount
factor γ = 0.9, and the learning rates of critic and actor networks are the same as 0.0003. We set the
batch size to 200.

I.2.2 HP-STUDENT: PHY-DRL DESIGN

According to Safe-Control-Gym Yuan et al. (2022), the dynamics model of 2D Quadrotor is

ẍ =
T1 + T2
m

· sin (θ) (72a)

z̈ =
T1 + T2
m

· cos (θ)− g (72b)

θ̈ =

√
2

2
· l · (T2 − T1)

Iyy
, (72c)

where (x, z) is the translation position of the CoM of the quadrotor in the xz-plane, θ is the pitch
angle, T1 and T2 are the thrusts generated by two pairs of motors (one on each side of the body’s y-
axis), m = 0.027 is the mass of quadrotor, g = 9.8 m/s2 is the gravitational acceleration, l = 0.0397
m is the arm length of the quadrotor, and Iyy = 1.4e−5 is the moment of inertia about the y-axis.

37

https://www.dropbox.com/scl/fi/glqv1o9viltxvp083vmdt/sensorkick.mp4?rlkey=cj06mdbrdfnmcdqr688jjn38k&st=u0cs6312&dl=0

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

To have the model for Phy-DRL, we let sin (θ) ≈ θ, cos (θ) ≈ 1, and z̈ ≈ 0. In this way, the
dynamics model in Equation (72) transforms to

ẍ = g · θ (73a)

z̈ =
T1 + T2
m

− g (73b)

θ̈ =

√
2

2
· l · (T2 − T1)

Iyy
, (73c)

The state vector s ∈ R6 is [x, ẋ, z, ż, θ̇, θ̈]. The action vector a ∈ R2 is [T1, T2]. We let vx = ẋ,
vz = ż, and vθ = θ̇. The linear state space model is transformed from Equation (73) as

d

dt


x
vx
z
vz
θ
vθ


︸ ︷︷ ︸

≜ ŝ

=


0 1 0 0 0 0
0 0 0 0 g 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


︸ ︷︷ ︸

≜ Â

·


x
vx
z
vz
θ
vθ

+


0 0
0 0
0 0
1
m

1
m

0 0
−
√
2l

2·Iyy

√
2l

2·Iyy


︸ ︷︷ ︸

≜ B̂

·
[
T1
T2

]
︸ ︷︷ ︸

≜ a

+


0
0
0
−g
0
0


︸ ︷︷ ︸

≜ f

. (74)

For trajectory tracking tasks, the set point varies depending on the pre-computed set points, which is
denoted by s∗ = [xr, 0, zr, 0, 0, 0]

⊤, and define s = ŝ− s∗. We then consider the digital sampling
technique, which yields a discrete-time model of tracking error from Equation (74)

s(k + 1) = A · s(k) +B · u(k) + T · f , (75)
where T = 1

50 sec is the sampling period, and

A = I6 + T · Â, B = T · B̂, (76)

Considering equation 71, we have

D =

[
2 0 0 0 0 0
0 0 1.25 0 0 0
0 0 0 0 1.25 0

]
,

with which, α = 0.85, and the knowledge of the model (A,B) in Equation (76), by solving the
analytic centering problem via PYCVX toolbox, we have

P =


17.7508 5.9194 −0.0000 −0.0000 8.1374 0.0810
5.9194 2.5987 −0.0000 −0.0000 3.6321 0.0369
−0.0000 −0.0000 1.9843 0.1046 −0.0000 −0.0000
−0.0000 −0.0000 0.1046 0.0259 −0.0000 −0.0000
8.1374 3.6321 −0.0000 −0.0000 7.3610 0.0764
0.0810 0.0369 −0.0000 −0.0000 0.0764 0.0014

 ,

F =

[
0.3282 0.1500 −0.2075 −0.0249 0.3275 0.0066
−0.3282 −0.1500 −0.2075 −0.0249 −0.3275 −0.0066

]
.

Now, with P, F, A, and B at hand, we can deliver the safety-embedded reward in Equation (5), and
the model-based policy in for the residual policy diagram Equation (4).

I.2.3 HA-TEACHER DESIGN

The model in Equation (72) is used for HA-Teacher to have real-time, state-dependent dynamics
model. The dynamics model can equivalently transform to

d

dt


x
vx
z
vz
θ
vθ


︸ ︷︷ ︸

≜ ŝ

=


0 1 0 0 0 0
0 0 0 0 g 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


︸ ︷︷ ︸

≜ Â

·


x
vx
z
vz
θ
vθ

+



0 0
sin(θ)
m

sin(θ)
m

0 0
cos(θ)
m

cos(θ)
m

0 0
−
√
2l

2·Iyy

√
2l

2·Iyy


︸ ︷︷ ︸

≜ B̂(̂s)

·
[
T1
T2

]
︸ ︷︷ ︸

≜ a

+


0
0
0
−g
0
0


︸ ︷︷ ︸

≜ f

,

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

from which, with the consideration of sampling technique, we can obtain the knowledge of A(ŝσ(k))
and B(ŝσ(k)) in Equation (15) as

A(ŝσ(k)) = I4 + T · Â and B(ŝσ(k)) = T · B̂(ŝσ(k)). (77)

Meanwhile, for the patch in Equation (11), the model mismatch in Assumption 6.3, and the dwell
time in Equation (8), we let χ = 0.25, κ = 0.01, and τ = 30. For LMIs in Equations (27) to (30),
we let α = 0.9, γ1 = 1, and γ2 = 0.45. The the actions’ space are set as [−0.15, 0.15].

I.2.4 AUTOMATIC HIERARCHY LEARNING AND LIFETIME SAFETY: LEARNING FROM
SCRATCH

We now present the experimental results to demonstrate the automatic hierarchy learning (i.e., safety-
first learning, and then high-performance learning for high-performance action policy) of our runtime
learning machine. We note the runtime learning can be understood as safe continual learning (if
having after pre-training of HP-Student) for a high-performance action policy in real plants – using
real-time sensor data generated from real-time physical environments. The pre-training can help
reduce the workload of runtime learning or test the operational mechanisms, it is not mandatory for
the runtime learning process. If the pre-training is removed, the our runtime learning will be learning
from scratch in real plants. All the previous experiment of cart-pole system, A1 and Go2 robots
have the pre-training of HP-Student. We now consider the case, where the HP-Student does not have
pre-training. The episode length is 1500 steps.

The phase plots illustrating tracking errors of the x and z positions across episodes 1 to 8 are presented
in Figure 21. In these plots, red dots represent the states of the system controlled by HA-Teacher,
while blue dots represent the system controlled by HP-Student. Initially, the HA-Teacher was
frequently activated because the HP-Student had not yet learned how to ensure safety. However, as
the HP-Student spent more time learning, his ability to maintain safety improved. This progress
is particularly evident in episodes 1 to 5, during which the frequency of HA-Teacher activation
decreased. By episode 6, the HP-Student had mastered the capability to ensure safety, and thereafter,
his continued runtime learning no longer required assistance from the HA-Teacher. This advancement
enabled him to autonomously develop a high-performance action policy, resulting in an end state
close to the goal (i.e., the center of the ellipse safety envelope).

Figure 21 also demonstrate the distinguished feature – lifetime safety: safety guarantee (i.e., system
states never leave the green safety set) in any learning episode.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

(a) Episode 1 (b) Episode 2

(c) Episode 3 (d) Episode 4

(e) Episode 5 (f) Episode 6

(g) Episode 7 (h) Episode 8

Figure 21: Phase plots in episodes 1–8.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

J IMPLEMENTATION PROBLEMS AND SOLUTIONS

This section addresses the problems of implementing the runtime learning machine in the cart-pole
system and the real quadruped robot, along with our solutions.

CVXPY TOOLBOX

The runtime learning machine depends on obtaining feasible solutions from Linear Matrix Inequalities
(LMIs) to allow the HA-Teacher to perform safe actions. We found that the default CVX solver, SCS,
exhibited instability and inconsistent accuracy across different computing platforms. Therefore, in
our experiment, we chose to use the CVXOPT solver Andersen et al. (2013) to achieve more stable
and accurate results.

While LMIs can generally be solved in real-time, the operating frequency on our platform still varies
between 10 and 50 Hz. Although this fluctuation does not adversely affect overall performance in
simulations, it does pose challenges when implementing the framework on a physical platform. To
ensure efficient operation on hardware that requires a high frequency, such as a quadruped robot,
we designed the HA-Teacher with an additional process that runs in parallel with the central control
process. This design, however, adds complexity, such as the need for multi-process synchronization,
and increases the demand for computational resources.

HARDWARE REAL-TIME EFFICIENCY

The runtime learning machine was tested by sending remote control commands to the quadruped
robot indoors. All computations were executed on a desktop equipped with a 12th Gen Intel®
Core™ i9-12900K 16-core processor. The onboard computing platform of the Unitree A1 utilizes an
Intel® Atom™ x5-Z8350 CPU, which operates at 1.44 GHz with 6 cores. To enhance development
efficiency, Python was chosen as the programming language for implementing this framework.

Given that the runtime learning process requires significant interaction between the CPU and GPU,
and considering the current architecture includes a high-frequency Model Predictive Control (MPC)
module operating at 500 Hz for the quadruped robot, achieving comparable optimal real-time
performance with the existing onboard hardware may be challenging. However, we believe that this
computational limitation can be addressed or significantly alleviated by either adding extra computing
resources—such as an external mini-PC, as suggested in Yang et al. (2022b)—or by restructuring the
code framework. This restructuring could involve encapsulating the current implementation in C++
to enhance real-time performance, as proposed in Chen & Nguyen (2024).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

K COMPUTATION RESOURCES

In all case studies, we trained and tested the deep reinforcement learning (DRL) algorithm on a
desktop computer running Ubuntu 22.04. The desktop was equipped with a 12th Gen Intel(R)
Core(TM) i9-12900K 16-core processor, 64 GB of RAM, and an NVIDIA GeForce GTX 3090 GPU.
The DRL algorithm was implemented in Python using the TensorFlow framework. We utilized the
open-source Python CVX solver to solve LMI (Linear Matrix Inequalities) problems.

In our system architecture, the computation of F̂σ(k) and P̂σ(k) for the HA-Teacher at each patch
needs to be performed when the Safety Coordinator is triggered. To ensure real-time computation
of CVX and interaction with the environment, we have implemented a multi-processing pipeline to
control the robot and solve LMIs in parallel in real-time. For solving LMIs, we always allow the
solver to use the most recent state so that when the safety coordinator is triggered, the latest F̂ and
P̂ are readily available. We have taken into account the delay issue and formulated it in the LMI
problems.

We observed that the MATLAB-based CVX solver consistently solved the LMIs problem better
than the Python-based solver, providing more reliable solutions. However, transferring data between
MATLAB and Python could cause additional delays when updating F̂σ(k) and P̂σ(k) for HA-Teacher.
Additionally, implementing multiprocessing in both MATLAB and Python posed technical challenges
due to software compatibility issues. As a result, we opted for the Python-based CVX solver for real-
time real-world experiments, while recommending the MATLAB-based solver for less time-sensitive
applications.

42

	Introduction
	Safety Challenges and Open Problems
	Related Work
	Contribution: Runtime Learning Machine: from theory to implementation

	Preliminaries: Definitions of Safety and High Performance
	Design Overview
	Runtime Learning Machine: HP-Student Component
	HP-Student Candidates
	HP-Student: Phy-DRL: Residual Action Policy and Safety-embedded Reward
	HP-Student: Correction of Unsafe Runtime Learning

	Runtime Learning Machine: Coordinator Component
	Runtime Learning Machine: HA-Teacher Component
	Experiment
	Cart-Pole System
	Real Quadruped Robot

	Conclusion and Discussion
	Illustration: HP-Student's Hierarchy Learning
	Notations
	Auxiliary Lemmas
	thm10007p: Conditions and Proof
	Conditions of Real-time Patch Design in thm10007p
	Proof of thm10007p

	Guidance for Correction Horizon and Dwell Time
	Unknown Unknown: Randomized Beta Distribution
	Experiment: Cart-Pole System
	Configurations of Pre-training and Runtime Learning
	System Dynamics
	HP-Student Design
	HA-Teacher Design
	Additional Experiments

	Experiment: Real Quadruped Robot
	Policy Learning
	System Dynamics
	HP-Student: Physics Knowledge and Design
	HA-Teacher: Real-time Patch
	Additional Experimental Results

	Experiment: Go2 Quadruped Robot and 2D Quadrotor
	Go2 Quadruped Robot
	2D Quadrotor

	Implementation Problems and Solutions
	Computation Resources

