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Abstract
Noisy gradient descent and its variants are the
predominant algorithms for differentially private
machine learning. It is a fundamental question to
quantify their privacy leakage, yet tight charac-
terizations remain open even in the foundational
setting of convex losses. This paper improves
over previous analyses by establishing (and re-
fining) the “privacy amplification by iteration”
phenomenon in the unifying framework of f -
differential privacy—which tightly captures all
aspects of the privacy loss and immediately im-
plies tighter privacy accounting in other notions
of differential privacy, e.g., (ε, δ)-DP and Rényi
DP. Our key technical insight is the construction
of shifted interpolated processes that unravel the
popular shifted-divergences argument, enabling
generalizations beyond divergence-based relax-
ations of DP. Notably, this leads to the first ex-
act privacy analysis in the foundational setting
of strongly convex optimization. Our techniques
extend to many settings: convex/strongly convex,
constrained/unconstrained, full/cyclic/stochastic
batches, and all combinations thereof. As an im-
mediate corollary, we recover the f -DP character-
ization of the exponential mechanism for strongly
convex optimization in Gopi et al. (2022), and
moreover extend this result to more general set-
tings.

1. Introduction
Private optimization is the primary approach for private ma-
chine learning. The goal is to train good models while not
leaking sensitive attributes of the training data. Differential
privacy (DP) is the gold standard for measuring information
leakage (Dwork et al., 2006; Dwork & Roth, 2014), and
noisy gradient descent and its variants are the predominant
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algorithms for private optimization. It is therefore a central
question to quantify the differential privacy of these algo-
rithms. However, tight characterizations remain open, even
in the seemingly simple setting of convex optimization.

In words, DP measures how distinguishable the output
of a (randomized) algorithm is when run on two adja-
cent datasets, i.e., two datasets that differ in only one
individual record. There are several ways to measure
distinguishability—leading to many relaxations of DP, e.g.,
(Bun & Steinke, 2016; Mironov, 2017; Dong et al., 2022).
Different DP notions lead to different privacy analyses, and
a long line of work has sought to prove sharp privacy bounds
for noisy gradient descent and its variants (Bassily et al.,
2014; Abadi et al., 2016; Feldman et al., 2018; Chourasia
et al., 2021; Ye & Shokri, 2022; Altschuler & Talwar, 2022).

A common approach is to use the composition theorem,
which essentially pays a price in privacy for every inter-
mediate iterate along the optimization trajectory, leading
to possibly suboptimal privacy bounds. Recent work has
significantly improved the privacy analysis in the case of
convex and strongly convex losses by leveraging stability
properties of (stochastic) gradient descent (Chourasia et al.,
2021; Ye & Shokri, 2022; Altschuler & Talwar, 2022) in
order to show that the privacy leakage does not increase
ad infinitum in the number of iterations t. This is in stark
contrast to the composition-based approach, which gives
privacy bounds that scale as

√
t.

All these “convergent” privacy bounds were proved in the
Rényi DP framework, which is inherently lossy. To achieve
the tightest possible privacy bound on private gradient meth-
ods, a natural goal is to use the f -DP framework (Dong et al.,
2022) for analysis, since it is an information-theoretically
lossless definition of DP. This definition measures distin-
guishability in terms of the Type I vs Type II error tradeoff
curve f for the hypothesis testing problem of whether a
given user was in the training dataset. The f -DP frame-
work is desirable because: (1) f -DP exactly characterizes
all relevant aspects of the hypothesis testing problem defin-
ing DP, and thus (optimal) f -DP bounds can be losslessly
converted to (optimal) bounds in other notions of privacy
such as (ε, δ)-DP or Rényi DP, (2) f -DP is lossless under
composition of multiple private mechanisms, which is the
most ubiquitous operation in DP since it enables combining
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building blocks, and (3) f -DP is easily interpretable in terms
of the original hypothesis testing definition of DP.

However, analyzing privacy leakage in the f -DP framework
is often challenging since quantifying the entire tradeoff
between Type I/II error is substantially more difficult than
quantifying (less informative) alternative notions of privacy.
Consequently, the analysis toolbox for f -DP is currently
limited. These limitations are pronounced for the fundamen-
tal problem of analyzing the privacy loss of noisy gradient
descent and its variants. To put it into perspective, existing
privacy guarantees based on f -DP diverge as the number
of iterations t increases, whereas the aforementioned recent
work has used divergence-based DP definitions to show that
for convex problems, noisy gradient descent and its variants
can remain private even when run indefinitely (Chourasia
et al., 2021; Ye & Shokri, 2022; Altschuler & Talwar, 2022).
Convergent privacy bounds complement celebrated results
for minimax-optimal privacy-utility tradeoffs (Bassily et al.,
2014; 2019) because they enable longer training—which is
useful since typical learning problems are not worst-case
and benefit from training longer.

Can convergent privacy bounds be achieved directly1 in
the tight framework of f -DP? All current arguments are
tailored to Rényi DP—an analytically convenient but inher-
ently lossy relaxation of DP—and do not appear to extend.
Answering this question necessitates developing fundamen-
tally different techniques for f -DP, since convergent privacy
bounds require only releasing the algorithm’s final iterate—
in sharp contrast to existing f -DP techniques such as the
composition theorem which can only argue about the accu-
mulated privacy loss of releasing all intermediate iterates.
Tight f -DP analyses typically require closed-form expres-
sions for the random variable in question—in order to argue
about the tradeoff of Type I/II error—but this is impossible
for the final iterate of (stochastic) gradient descent due to
the non-linearity intrinsic to each iteration.

1.1. Contribution

Our primary technical contribution is establishing (and re-
fining) the “privacy amplification by iteration” phenomenon
in the unifying framework of f -DP. This enables directly
analyzing the privacy loss of the final iterate of noisy gra-
dient descent (and its variants), leading to the first direct
f -DP analysis that is convergent as the number of iterations
t→∞. §1.2 overviews this new analysis technique.

Notably, this leads to the first exact privacy analysis in
the foundational setting of strongly convex losses. To our
knowledge, there is no other setting where exact convergent

1Convergent RDP bounds can of course be lossily converted to
convergent f -DP bounds, but that defeats the purpose of using the
lossless f -DP framework.
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Figure 1. Left: improved f -DP vs the standard composition analy-
sis. Right: improved (ε, δ)-DP by losslessly converting from f -DP.
Our privacy bound is optimal in all parameters, here for NoisyGD
on strongly convex losses; see §D for the parameter choices and
other settings. Our f -DP analysis also implies optimal bounds
for the Rényi DP framework (previously unknown), but f -DP is
strictly better since it captures all aspects of the privacy leakage,
whereas Rényi DP is intrinsically lossy.

privacy analyses are known for any t > 1, except for the set-
ting of convex quadratic losses which is analytically trivial
because all iterates are explicit Gaussians.2

We emphasize that our techniques are versatile and read-
ily extend to many settings—a well-known challenge for
other convergent analyses, even for simpler relaxations of
DP like Rényi DP (Chourasia et al., 2021; Ye & Shokri,
2022; Altschuler & Talwar, 2022). In §4, we illustrate how
our analysis extends to convex/strongly convex losses, con-
strained/unconstrained optimization, full/cyclic/stochastic
batches, and all combinations thereof.

Since our improved privacy guarantees are for f -DP (Fig-
ure 1, left), lossless conversions immediately imply im-
proved guarantees for other notions of privacy like Rényi
DP and (ε, δ)-DP (Figure 1, right). For example, for the
strongly convex setting, our exact bound improves over pre-
vious results by a factor of 2 in Rényi DP, and thus by even
more in (ε, δ)-DP due to the intrinsic lossiness of Rényi DP
that we overcome by directly analyzing in f -DP. In practice,
improving the privacy by a factor of two enables training
with half the noise, while satisfying the same privacy budget.
Although this paper’s focus is the theoretical methodology,
preliminary numerics in §4.4 corroborate that our improved
privacy guarantees can be helpful in practice.

Since our privacy bounds are convergent in the number of
iterations t, we can take the limit t→∞ to bound the f -DP
of the stationary distributions of these optimization algo-
rithms. As an immediate corollary, we recover the recent
f -DP characterization of the exponential mechanism for

2The standard analysis approach based on the composition
theorem is nearly tight for small numbers of iterations t, but as
mentioned above, yields an arbitrarily loose bound (in fact vacu-
ous) for convex losses as t → ∞.
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strongly convex losses in Gopi et al. (2022), and moreover
extend this result to more general settings in §5.

1.2. Techniques

The core innovation underlying our results is the construc-
tion of certain auxiliary processes, shifted interpolated pro-
cesses, which enable directly analyzing the Type I/II er-
ror tradeoff between the final iterates of two stochastic
processes—even when their laws are complicated and non-
explicit. Informally, this argument enables running cou-
pling arguments—traditionally possible only for Wasser-
stein analysis—to analyze tradeoff functions for the first
time. In this paper, the two processes are noisy (stochastic,
projected) gradient descent run on two adjacent datasets,
but the technique is more general and we believe may be of
independent interest. See §3 for a detailed discussion.

Crucially, our argument is geometrically aware: it exploits
(strong) convexity of losses via (strong) contractivity of gra-
dient descent updates, in order to argue that the sensitive
gradient queries have (exponentially) decaying privacy leak-
age, the longer ago they were performed. This is essential
for convergent privacy bounds, and is impossible with the
standard composition-based analysis—which only exploits
the sensitivity of the losses, and is oblivious to any further
geometric phenomena like convexity or contractivity.

A key motivation behind the construction of our auxiliary
sequence is that it demystifies the popular privacy amplifica-
tion by iteration analysis (Feldman et al., 2018), which has
been used in many contexts, and in particular was recently
shown to give convergent Rényi DP bounds (Altschuler &
Talwar, 2022). Those arguments rely on shifted divergences,
which combine Rényi divergence and Wasserstein distance,
and it was an open question whether this ad-hoc potential
function could be simplified. Our shifted interpolated pro-
cess answers this: its iterates coincide with the optimal
“shifts” in the shifted divergence argument, which allows us
to disentangle the Rényi and Wasserstein components of the
shifted divergence argument; details in §B. Crucially, this
disentanglement enables generalizations beyond divergence-
based relaxations of DP, to f -DP.3

1.3. Organization

§2 recalls relevant preliminaries from differential privacy
and convex optimization. §3 introduces our core technique
of shifted interpolation. §4 uses this technique to estab-
lish improved privacy bounds for noisy gradient descent
and its variants for the foundational settings of convex and

3Naı̈vely extending the “shifted divergence” argument to
“shifted tradeoffs” runs into subtle but fundamental issues since
tradeoff functions do not enjoy key properties that divergences do.
Details in §B.

strongly convex losses. §5 describes how, as immediate
corollaries of these convergent privacy bounds, taking an
appropriate limit recovers and generalizes recent results on
the f -DP of the exponential mechanism. §6 discusses future
directions motivated by our results. Code reproducing our
numerics can be found here: https://github.com/
jinhobok/shifted_interpolation_dp.

2. Preliminaries
2.1. Differential privacy

DP measures the distinguishability between outputs of a
randomized algorithm run on adjacent datasets, i.e., datasets
that differ on at most one data point (Dwork et al., 2006).
The most popular definition is (ε, δ)-DP.

Definition 2.1 ((ε, δ)-DP). A randomized algorithm A is
(ε, δ)-DP if for any adjacent datasets S, S′ and event E,

P(A(S) ∈ E) ≤ eεP(A(S′) ∈ E) + δ .

However, the most precise quantification of DP is based on
the (optimal) hypothesis testing formulation (Wasserman
& Zhou, 2010; Kairouz et al., 2017). This is formalized
as f -DP (Dong et al., 2022), where f denotes a tradeoff
function, i.e., a curve of hypothesis testing errors.

Definition 2.2 (f -DP). For distributions P,Q on the same
space, the tradeoff function T (P,Q) : [0, 1]→ [0, 1] is

T (P,Q)(α) = inf{1− EQϕ : EPϕ ≤ α, 0 ≤ ϕ ≤ 1}

A randomized algorithm A is f -DP if for any adjacent
datasets S and S′, T (A(S),A(S′)) ≥ f .

The following lemma provides a useful characterization
of tradeoff functions (Dong et al., 2022, Proposition 1).
It follows that the most private tradeoff function is Id :
[0, 1]→ [0, 1], given by Id(α) = 1− α. See Figure 2.

Lemma 2.3 (Characterization of tradeoff functions). A func-
tion f : [0, 1]→ [0, 1] is a tradeoff function iff f is decreas-
ing, convex and f(α) ≤ 1− α for all α ∈ [0, 1].

See §A.2 for further details on tradeoff functions. Gaussian
tradeoff functions are a particularly useful family, providing
a notion of Gaussian DP (GDP) parametrized by a single
scalar. These are central to our analysis due to the Gaussian
noise in noisy (stochastic) gradient descent.

Definition 2.4 (GDP). For GDP parameter µ ≥ 0, the
Gaussian tradeoff function G(µ) is defined as G(µ) =
T (N (0, 1),N (µ, 1)). Its value at α ∈ [0, 1] is given as
G(µ)(α) = Φ(Φ−1(1−α)−µ), where Φ denotes the CDF
of N (0, 1). A randomized algorithm A is µ-GDP if for any
adjacent datasets S and S′, T (A(S),A(S′)) ≥ G(µ).
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Figure 2. Illustration of f -DP and GDP. Gaussian tradeoff func-
tions G(µ) are less private as µ increases from 0 (full privacy) to
∞ (no privacy). The closer to Id, the more private. Here A is
1-GDP but not 0.5-GDP because its tradeoff function is pointwise
above G(1) but not pointwise above G(0.5).

We now recall two key properties of tradeoff functions
that are central to our analysis. The first states that post-
processing two distributions in the same way cannot make
them easier to distinguish (Dong et al., 2022, Lemma 1).
Lemma 2.5 (Post-processing). For any probability dis-
tributions P,Q and (random) map Proc, we have
T (Proc(P ),Proc(Q)) ≥ T (P,Q).

The next lemma enables analyzing the composition of mul-
tiple private mechanisms (Dong et al., 2022, Definition 5 &
Lemma C.1).
Definition 2.6 (Composition). The composition of two
tradeoff functions f = T (P,Q) and g = T (P ′, Q′) is
defined as f ⊗ g = T (P × P ′, Q×Q′). The n-fold com-
position of f with itself is denoted f⊗n.
Lemma 2.7 (Strong composition). Let K1,K

′
1,K2,K

′
2 be

(random) maps such that for all y, T (K1(y),K
′
1(y)) ≥

T (K2(y),K
′
2(y)). Then T ((P,K1(P )), (Q,K

′
1(Q))) ≥

T ((P,K2(P )), (Q,K
′
2(Q))). If g = T (K2(y),K

′
2(y))

does not depend on y, then T ((P,K1(P )), (Q,K
′
1(Q))) ≥

T (P,Q)⊗ g.

2.2. Convex optimization

This paper focuses on convex losses because tight privacy
guarantees for noisy gradient descent (and variants) are open
even in this seemingly simple setting. We make use of the
following two basic facts from convex optimization. Below,
we say a function is contractive if it is 1-Lipschitz. Recall
that a function f is M -smooth if∇f is M -Lipschitz, and is
m-strongly convex if x 7→ f(x)− m

2 ∥x∥
2 is convex.

Lemma 2.8. If f is convex andM -smooth, then the gradient
descent update g(x) = x− η∇f(x) is contractive for each
η ∈ [0, 2

M ]. If f is additionally m-strongly convex and
η ∈ (0, 2

M ), then g is c-Lipschitz where c = max{|1 −
ηm|, |1− ηM |} < 1.
Lemma 2.9. Let K be a closed and convex set in Rd.
Then the projection ΠK(x) = argminz∈K∥z − x∥ is well-
defined and is a contraction.

2.3. Algorithms

Throughout, we consider a private optimization setting in
which the goal is to minimize the objective function F (x) =
1
n

∑n
i=1 fi(x), where the i-th loss function fi is associated

with the i-th data point in a dataset S. An adjacent dataset
S′ corresponds to loss functions {f ′i}i∈[n] where fi ≡ f ′i
except for a single index i∗.

Noisy gradient descent and its variants follow the general
template of

Xk+1 ← ΠK

[
Xk − η

(
1

b

∑
i∈Bk

∇fi(Xk) + Zk+1

)]
,

k = 0, 1, . . . , t− 1 (1)

where X0 is the initialization (e.g., zero), η is the learning
rate, Zk+1 ∼ N (0, σ2Id) independently, σ is the noise rate,
K is the constraint set, and t is the number of steps. The
batch Bk of size b can be chosen in several ways:

• Full batches (NoisyGD): Bk ≡ [n].

• Cyclic batches (NoisyCGD): Partition [n] into batches
of sizes b and cycle through them.

• Stochastic batches (NoisySGD): Choose a batch of
size b uniformly at random from [n].

The advantage of the latter two variants is that they avoid
computing the gradient of the objective, which can be com-
putationally burdensome when n is large.

A standard assumption in private optimization is the follow-
ing notion of gradient sensitivity:

Definition 2.10 (Gradient sensitivity). A family of loss
functions F (defined on X ) has gradient sensitivity L if
supf,g∈F,x∈X ∥∇f(x)−∇g(x)∥ ≤ L.

For example, a family of L-Lipschitz loss functions has
gradient sensitivity 2L. Another example is loss func-
tions of the form fi = ℓi + r, where ℓi are convex, L-
Lipschitz losses, and r is a (non-Lipschitz) strongly convex
regularization—the point being that this family of loss func-
tions {fi} has finite gradient sensitivity 2L despite each fi
not being Lipschitz.

3. Shifted interpolation for f -DP
Here we explain the key conceptual ideas enabling our con-
vergent f -DP bounds (see §1.2 for a high-level overview).
To preserve the logical flow of ideas we defer proofs to §C.1.
Below, in §3.1 we first recall the standard f -DP analysis
based on the composition theorem and why it yields diver-
gent bounds. Then in §3.2 we describe our technique of
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shifted interpolated processes and how this enables conver-
gent f -DP bounds.

To explain the ideas in their simplest form, we consider
here the setting of full-batch gradients and unconstrained
optimization. Let {fi}i∈[n] and {f ′i}i∈[n] be the losses cor-
responding to two adjacent datasets, where fi ≡ f ′i except
for one index i∗. Then NoisyGD forms the iterates

Xk+1 = ϕ(Xk) + Zk+1 (2)
X ′

k+1 = ϕ′(X ′
k) + Z ′

k+1 (3)

where X0 = X ′
0, ϕ(x) := x − η

n

∑n
i=1∇fi(x), ϕ′(x′) :=

x′ − η
n

∑n
i=1∇f ′i(x′), and Zk+1, Z

′
k+1 ∼ N (0, η2σ2Id).

3.1. Previous (divergent) f -DP bounds, via composition

f -DP requires bounding T (Xt, X
′
t). The standard approach,

based on the composition theorem, argues as follows:

T (Xt, X
′
t) ≥ T (Xt−1, X

′
t−1)⊗G(c)

≥ T (Xt−2, X
′
t−2)⊗G(c

√
2)

· · ·
≥ T (X0, X

′
0)︸ ︷︷ ︸

=Id since X0=X′
0

⊗ G(c
√
t) . (4)

Here, the composition theorem simultaneously “unrolls”
both processes, at some price G(c) in each iteration.
(These prices are collected via a basic GDP identity, see
Lemma A.2.) This is due to the following simple lemma,
which relies on the f -DP of the Gaussian mechanism using
different updates ϕ, ϕ′ (Dong et al., 2022, Theorem 2).
Lemma 3.1. Suppose ∥ϕ(x)− ϕ′(x)∥ ≤ s for all x.
Then T (ϕ(X) + N (0, σ2Id), ϕ

′(X ′) + N (0, σ2Id)) ≥
T (X,X ′)⊗G( s

σ ).

Bounding s via sensitivity enables the argument (4) and
gives the appropriate c. See Dong et al. (2022) for details.

However, while this argument (4) is reasonably tight for
small t, it is vacuous as t → ∞. Conceptually, this is
because this analysis considers releasing all intermediate
iterates, hence it bounds T ((X1, . . . , Xt), (X

′
1, . . . X

′
t)) ≥

G(c
√
t). Concretely, this is because the above analysis

requires completely unrolling to iteration 0. Indeed, the
identical initialization X0 = X ′

0 ensures T (X0, X
′
0) = Id,

whereas at any other iteration k > 0 it is unclear how to
directly bound T (Xk, X

′
k) as Xk ̸= X ′

k. This inevitably
leads to final privacy bounds which diverge in t since a
penalty is incurred in each of the t iterations.

3.2. Convergent f -DP bounds, via shifted interpolation

The central idea underlying our analysis is the construction
of a certain auxiliary process {X̃k} that interpolates be-
tween the two processes in the sense that X̃τ = X ′

τ at some

Figure 3. Illustration of shifted interpolated process (6). The in-
terpolated process {X̃k} starts from one process (X̃τ = X ′

τ ) and
ends at the other (X̃t = Xt). The intermediate time τ is an analy-
sis parameter that we optimize to get the best final privacy bound.

intermediate time τ and X̃t = Xt at the final time. See
Figure 3. Crucially, this enables running the argument (5)
where we unroll only from t to τ , rather than all the way to
initialization:

T (Xt, X
′
t) = T (X̃t, X

′
t)

≥ T (X̃t−1, X
′
t−1)⊗G(at)

≥ T (X̃t−2, X
′
t−2)⊗G

((
a2t + a2t−1

)1/2)
· · ·

≥ T (X̃τ , X
′
τ )︸ ︷︷ ︸

=Id since X̃τ=X′
τ

⊗ G
(( t∑

k=τ+1

a2k
)1/2)

. (5)

Intuitively, this argument replaces the divergent
√
t depen-

dence of prior f -DP bounds with something scaling in t− τ .
Here τ is an analysis parameter that we can optimize based
on the following intuitive tradeoff: larger τ enables un-
rolling less, whereas smaller τ gives the auxiliary process
X̃k more time to interpolate between X ′

τ and Xt which
leads to smaller penalties ak for unrolling at each iteration.

Formalizing (5) leads to two interconnected questions:

• Q1. How to construct the auxiliary process {X̃k}?

• Q2. How to unroll each iteration? I.e., what is the
analog of Lemma 3.1?

3.2.1. SHIFTED INTERPOLATED PROCESS

For Q1, we initialize X̃τ = X ′
τ and define

X̃k+1 = λk+1ϕ(Xk) + (1− λk+1)ϕ
′(X̃k) + Zk+1 (6)

for k = τ, . . . , t − 1. Intuitively, this auxiliary process
{Xk} uses a convex combination of the updates performed
by the two processes, enabling it to gracefully interpolate
from its initialization at one process to its termination at
the other. Here λk controls the speed at which we shift
from one process to the other. We set λt = 1 so that X̃t =
Xt achieves the desired interpolation; the other {λk} are
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analysis parameters that we optimize to get the best final
bound. An important technical remark is that this auxiliary
process uses the same noise increments {Zk} as {Xk}; this
coupling enables bounding the distance betweenXk and X̃k

by a deterministic value (i.e., in the∞-Wasserstein distance
W∞).

We remark that auxiliary interpolating processes have been
used in the context of proving Harnack inequalities (or equiv-
alently, Rényi reverse transport inequalities) for diffusions
on manifolds (Arnaudon et al., 2006; Wang, 2013; 2014;
Altschuler & Chewi, 2023b;c). Two key challenges posed by
the present setting are that f -DP requires tradeoff functions
(rather than Rényi divergences), and also tracking stochastic
processes that undergo different dynamics (rather than the
same diffusion). This requires constructing and analyzing
the auxiliary process (6).

3.2.2. GEOMETRICALLY AWARE COMPOSITION

For Q2, we develop the following lemma, which general-
izes Lemma 3.1 by allowing for an auxiliary process X̃
and a shift parameter λ (Lemma 3.1 is recovered in the
special case λ = 1 and X̃ = X). A key feature is that
unlike Lemma 3.1, this lemma is geometrically aware in
that it exploits the Lipschitzness of the gradient descent up-
dates ϕ, ϕ′—recall from Lemma 2.8 that ϕ, ϕ′ are (strongly)
contractive whenever the losses are (strongly) convex. In-
tuitively, this contractivity ensures that long-ago gradient
queries incur (exponentially) less privacy loss, thus making
the total privacy loss convergent; c.f., the discussion in §1.2.

Lemma 3.2. Suppose that ∥ϕ(x)− ϕ′(x)∥ ≤ s for all x
and that ϕ, ϕ′ are c-Lipschitz. Then for any λ ≥ 0 and any
random variable X̃ satisfying ∥X − X̃∥ ≤ z, T (λϕ(X) +

(1 − λ)ϕ′(X̃) + N (0, σ2Id), ϕ
′(X ′) + N (0, σ2Id)) ≥

T (X̃,X ′)⊗G(λ(cz+s)
σ ) .

3.2.3. CONVERGENT f -DP BOUNDS

Combining our answers to Q1 (shifted interpolated process)
and Q2 (geometrically aware composition) enables formal-
izing the argument (5). The remaining proof details are
straightforward and deferred to §C.2. For clarity, we state
this result as a “meta-theorem” where the shifts λk and
intermediate time τ are parameters; our final bounds are
obtained by optimizing them, see §4.

Theorem 3.3. Consider the stochastic processes
{Xk}, {X ′

k}, {X̃k} defined in (2), (3), (6), with λt = 1.
Suppose that ∥ϕ(x)− ϕ′(x)∥ ≤ s for all x and that
ϕ, ϕ′ are c-Lipschitz. For any sequence {zk} such that
∥Xk − X̃k∥ ≤ zk,

T (Xt, X
′
t) ≥ G

 1

σ

√√√√ t∑
k=τ+1

a2k



where ak = λk(czk−1 + s).

We emphasize that although this technique-overview sec-
tion focused on the simple case of full-batch gradients
and strongly convex losses for clarity, these techniques
readily extend to more general settings. Briefly, for con-
strained optimization, projections are handled by using
the post-processing inequality for tradeoff functions; for
(non-strongly) convex optimization, the optimal shifts ak
will be of similar size rather than geometrically increasing;
for cyclic batches, the update functions ϕk, ϕ′k and corre-
sponding sensitivity sk are time-varying; and for stochastic
batches, the analog of Lemma 3.2 incorporates the cele-
brated privacy amplification by subsampling phenomenon.
Details in §4.

4. Improved privacy for noisy optimization
algorithms

Here we apply the shifted interpolation technique devel-
oped in §3 to establish improved privacy bounds for noisy
gradient descent and its variants. We showcase the versa-
tility of our techniques by investigating gradient descent
with full-batch gradients in §4.1, cyclic batches in §4.2, and
stochastic batches in §4.3. In all cases, we show convergent
f -DP bounds for unconstrained strongly convex and con-
strained convex settings; the constrained strongly convex
setting is similar and omitted for brevity (and the uncon-
strained convex setting has divergent privacy). The proofs
are similar for all these different settings, based on the ap-
proach in §3; for brevity the proofs are deferred to §C. See
also §D for numerical illustrations of the improvements of
our bounds.

Below, recall from §2 that we denote the learning rate by η,
the noise rate by σ, the number of data points by n, the batch
size by b, the constraint set by K, and its diameter by D.
Throughout we denote by c = max{|1− ηm|, |1− ηM |}
the Lipschitz constant for a step of gradient descent on
m-strongly convex and M -smooth losses (c.f., Lemma 2.8).

4.1. Noisy gradient descent

Here we consider full-batch gradient descent. For compari-
son, we first recall the standard f -DP bound implied by the
composition theorem (Dong et al., 2022).

Theorem 4.1. Consider loss functions with gradient sensi-
tivity L. Then NoisyGD is µ-GDP where µ = L

nσ

√
t.

This (divergent) bound is tight without further assumptions
on the losses. Below we show convergent f -DP bounds for
NoisyGD in the setting of strongly convex losses, and the
setting of constrained convex losses.

Theorem 4.2. Consider m-strongly convex, M -smooth loss
functions with gradient sensitivity L. Then for any η ∈

6
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(0, 2/M), NoisyGD is µ-GDP where

µ =

√
1− ct
1 + ct

1 + c

1− c
L

nσ
.

For η ∈ (0, 2
M+m ], this bound is optimal.

Theorem 4.3. Consider convex, M -smooth loss functions
with gradient sensitivity L and constraint set K of diameter
D. Then for any η ∈ [0, 2/M ] and t ≥ Dn

ηL , NoisyGD is
µ-GDP where

µ =
1

σ

√
3LD

ηn
+
L2

n2

⌈
Dn

ηL

⌉
.

Theorem 4.2 is exactly tight in all parameters, and improves
over the composition-based analysis (Theorem 4.1) for all
t > 1. Theorem 4.3 is tight up to a constant factor (see
Theorem C.16), and for t > 4Dn

ηL it dominates Theorem 4.1
since its convergent nature outweighs the slightly subopti-
mal constant.

4.2. Noisy cyclic gradient descent

We now turn to cyclic batches. For simplicity, suppose
that the number of batches per epoch l = n/b and the
number of epochs E = t/l are integers. We state our results
with respect to E rather than t. For comparison, we first
state the standard (divergent) f -DP bound implied by the
composition theorem (Dong et al., 2022).

Theorem 4.4. Consider loss functions with gradient sensi-
tivity L. Then NoisyCGD is µ-GDP where µ = L

bσ

√
E.

Below we show convergent f -DP bounds for NoisyCGD
in the setting of strongly convex losses, and the setting of
constrained convex losses.

Theorem 4.5. Consider m-strongly convex, M -smooth loss
functions with gradient sensitivity L. Then for any η ∈
(0, 2/M), NoisyCGD is µ-GDP where

µ =

√
1 + c2l−2

1− c2
(1− cl)2

1− cl(E−1)

1 + cl(E−1)

L

bσ
.

Theorem 4.6. Consider convex, M -smooth loss functions
with gradient sensitivity L and constraint set K of diameter
D. Then for any η ∈ [0, 2/M ] and E ≥ Db

ηL , NoisyCGD is
µ-GDP where

µ =
1

σ

√
3LD

ηbl
+

(
L

b

)2

+
L2

b2l

⌈
Db

ηL

⌉
.

The convergent nature of these bounds ensures that they
dominate Theorem 4.4 when NoisyCGD is run long
enough. This threshold is roughly E ≈ c2l−2 1−c2

(1−cl)2
for

Theorem 4.5 and E ≈ 4Db
ηℓL for Theorem 4.6.

4.3. Noisy stochastic gradient descent

Compared to NoisyGD, the privacy leakage in NoisySGD
only occurs when the index i∗ is in the sampled batch. This
phenomenon is known as privacy amplification by subsam-
pling (Kasiviswanathan et al., 2011), which is formulated in
f -DP as follows (Dong et al., 2022, Definition 6).
Definition 4.7. For tradeoff function f and p ∈ [0, 1], define
fp = pf + (1− p)Id. The subsampling operator Cp (with
respect to f ) is defined as Cp(f) = min{fp, (fp)−1}∗∗
where −1 denotes the (left-continuous) inverse and ∗ denotes
the convex conjugate.

For comparison, we first recall the standard f -DP bound
based on composition (Dong et al., 2022, Theorem 9).
Theorem 4.8. Consider loss functions with gradient
sensitivity L. Then NoisySGD is f -DP where f =
Cb/n(G(

L
bσ ))

⊗t.

This (divergent) bound is tight for t = 1 without further
assumptions on the losses. Below we show convergent f -
DP bounds for NoisySGD in the setting of strongly convex
losses, and the setting of constrained convex losses.
Theorem 4.9. Consider m-strongly convex, M -smooth loss
functions with gradient sensitivity L. Then for any η ∈
(0, 2/M), NoisySGD is f -DP for

f = G(
2
√
2L

bσ

ct−τ+1 − ct

1− c
)

⊗ Cb/n(G(
2
√
2L

bσ
))⊗ Cb/n(G(

2L

bσ
))⊗(t−τ)

for any τ = 0, 1, . . . , t− 1.
Theorem 4.10. Consider convex, M -smooth loss functions
with gradient sensitivity L and constraint set K of diameter
D. Then for any η ∈ [0, 2/M ], NoisySGD is f -DP where

f = (

√
2D

ησ
√
t− τ

)⊗ Cb/n(G(
2
√
2L

bσ
))⊗(t−τ)

for any τ = 0, 1, . . . , t− 1.

Both theorems give convergent privacy by taking t − τ
constant as t→∞. In contrast, Theorem 4.8 is convergent
in the regime t = O(n

2

b2 ), but yields a vacuous privacy as
t→∞ for fixed b

n (Dong et al., 2022). We remark that for
finite but large t, one can set t−τ to be sufficiently large and
apply CLT (Lemma A.5) to approximate the composition
of Cp(G(·)); see Lemma A.11 and §C.4.3. We also remark
that by choosing t − τ = Θ(Dn

ηL ), Theorem 4.10 recovers
the asymptotically tight Rényi DP bound of (Altschuler &
Talwar, 2022).

4.4. Numerical example

As a proof of concept, here we consider regularized logistic
regression on MNIST (LeCun et al., 2010). We compare our
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results with the state-of-the-art Rényi DP bounds, and exist-
ing f -DP bounds (based on the composition theorem) which
we denote as GDP Composition. For a fair comparison, we
use the same algorithm NoisyCGD, with all parameters un-
changed, and only focus on the privacy accounting. Table 1
demonstrates that for this problem, our privacy guarantees
are tighter, enabling longer training for the same privacy
budget—which helps both training and testing accuracy (c.f.,
Table 2). For full details of the experiment, see §D.2.

Table 1. Privacy ε of NoisyCGD on regularized logistic regression
for δ = 10−5 in (ε, δ)-DP. Our results provide better privacy than
both GDP Composition and RDP bounds in all cases.

Epochs GDP Composition RDP Our Bounds

50 30.51 5.82 4.34
100 49.88 7.61 5.60
200 83.83 9.88 7.58

Table 2. Training and test accuracy (%) of NoisyCGD for regular-
ized logistic regression, averaged over 10 runs. Both the training
and test accuracy improve as the number of epochs increases.

Epochs Training Test

50 89.36 ± 0.03 90.12 ± 0.04
100 90.24 ± 0.03 90.94 ± 0.07
200 90.85 ± 0.02 91.37 ± 0.08

5. f -DP of the exponential mechanism
Since we show convergent f -DP bounds for randomized
algorithms, we can take the limit t → ∞ to obtain f -DP
bounds for their stationary distributions. We focus here on
NoisyGD because, up to a simple rescaling, it is equiva-
lent to Langevin Monte Carlo (LMC), one of the most well-
studied sampling algorithms in the statistics literature; see,
e.g., (Robert et al., 1999; Liu, 2001; Andrieu et al., 2003).
Our results for (strongly) convex losses not only imply new
results for (strongly) log-concave sampling for LMC, but
also imply f -DP bounds for the exponential mechanism
(McSherry & Talwar, 2007)—a foundational concept in
DP—since it is obtained from LMC’s stationary distribution
in the limit as the stepsize η → 0.

5.1. Strongly log-concave targets

Our optimal f -DP bounds for NoisyGD immediately imply
optimal4 f -DP bounds for LMC.

Proposition 5.1. Suppose that F, F ′ are m-strongly convex,
M -smooth and F − F ′ is L-Lipschitz. Consider the LMC

4Although here we bound the optimal constants for simplicity.

updates

Xk+1 = Xk − η∇F (Xk) + Zk+1

X ′
k+1 = X ′

k − η∇F ′(X ′
k) + Z ′

k+1

where X0 = X ′
0 and Zk+1, Z

′
k+1 ∼ N (0, 2ηId). Then for

any η ∈ (0, 2
M+m ], T (Xt, X

′
t) ≥ G

(√
2−ηm

2
L√
m

)
.

Proof. LMC is a special case of NoisyGD with n = 1,
f1 = F, f ′1 = F ′, and σ =

√
2/η. Apply Theorem 4.2.

Taking t → ∞ gives f -DP guarantees for the stationary
distributions π(η) and π′(η) of these LMC chains. We also
obtain f -DP guarantees between the exponential mecha-
nisms π ∝ e−F and π′ ∝ e−F ′

for F and F ′.

Corollary 5.2. In the setting of Proposition 5.1,

T (π(η), π′(η)) ≥ G

(√
2−ηm

2
L√
m

)
and T (π, π′) ≥

G
(

L√
m

)
.

Proof. It is well-known that under these assumptions, LMC
converges to its stationary distribution in TV as t →
∞, and the stationary distribution converges to the expo-
nential mechanism as η → 0, see e.g., (Chewi, 2023).
By Lemma A.10, tradeoff functions converge under TV.

Thus, we recover the recent result (Gopi et al., 2022, The-
orem 4) which characterizes the f -DP of the exponential
mechanism. The proof in (Gopi et al., 2022) is entirely
different, based on the Gaussian isoperimetry inequality
(Ledoux, 1999) rather than connecting LMC to the exponen-
tial mechanism. Our results can be viewed as algorithmic
generalizations of theirs in the sense that we also obtain
tight f -DP bounds on the iterates of LMC and its stationary
distribution.
Remark 5.3 (Tightness). As noted in (Gopi et al.,
2022), the exponential mechanism bound in Corollary 5.2
is tight by considering F (x) = m

2 ∥x∥
2, F ′(x) =

m
2 ∥x−

L
mv∥

2 (where v is a unit vector) which yields
π = N (0, 1

mId), π
′ = N ( L

mv,
1
mId). With the same loss

functions, it is straightforward to check that this construc-
tion also shows optimality for our results on the f -DP of
LMC and its stationary distribution.

5.2. Log-concave targets

A similar story holds in the setting of convex losses, al-
though this requires a constrained setting since otherwise
stationary distributions may not exist. Hence we consider
projected NoisyGD (Theorem 4.3), which corresponds to
projected LMC. As above, this leads to f -DP bounds for
the exponential mechanism due to known TV convergence
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results, for projected LMC to its stationary distribution as
t→∞ (Altschuler & Talwar, 2023), and from that distribu-
tion to the exponential mechanism as η → 0 (Bubeck et al.,
2018).

Corollary 5.4. Let F, F ′ be convex, M -smooth and L-
Lipschitz functions and K be a convex body with diame-
ter D containing a unit ball. Then for π ∝ e−F1K and
π′ ∝ e−F ′

1K, T (π, π′) ≥ G(2
√
LD).

Furthermore, for η ∈ (0, 2/M ], the respective station-
ary distributions π(η), π′(η) of the projected LMC satisfy
T (π(η), π′(η)) ≥ G(

√
4LD + 2ηL2).

Unlike the strongly convex case (Minami et al., 2016; Gopi
et al., 2022), we are unaware of any results in this setting
beyond the standard analysis (McSherry & Talwar, 2007)
on the exponential mechanism. That yields (2LD, 0)-DP,
and our result provides nontrivial improvement in privacy
when LD > 0.677. See §D.4.

6. Discussion
The techniques and results of this paper suggest several di-
rections for future work. One natural direction is whether
convergent f -DP bounds can be shown in more general
settings, e.g., (structured) non-convex landscapes, het-
eroscedastic or correlated noise (Choquette-Choo et al.,
2023), adaptive first-order algorithms, or second-order algo-
rithms (Ganesh et al., 2023). A technical question is whether
one can relax the W∞ bounds between our shifted interpo-
lated process {X̃k} and the target process {Xk}, and if this
can enable tighter analyses of stochastic algorithms. While
W∞ has traditionally been used for privacy amplification
by iteration (Feldman et al., 2018), (Altschuler & Chewi,
2023a) recently showed that some of this analysis extends
to the Orlicz–Wasserstein distance, which is even necessary
in some applications. Another natural direction is more
computationally tractable f -DP bounds. Although the f -DP
framework provides an information-theoretically lossless
quantification of DP, it is often computationally burdensome,
e.g., for NoisySGD bounds expressed as the composition
of many tradeoff functions. Recent work has developed
useful tools for approximation (Zheng et al., 2020; Gopi
et al., 2021; Zhu et al., 2022), and further developments
would help practitioners who need to adhere to given pri-
vacy budgets.
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A. Rényi DP and tradeoff functions
Here we provide helper lemmas and other relevant background about Rényi DP (§A.1), tradeoff functions (§A.2), and their
convergence properties (§A.3).

A.1. Rényi DP

A popular notion of DP that is often analytically tractable is Rényi DP (RDP) (Mironov, 2017).
Definition A.1 (RDP). The Rényi divergence of order α > 1 between probability distributions P,Q is defined as

Dα(P ∥Q) =
1

α− 1
log

∫ (
dP

dQ
(ω)

)α

dQ(ω) .

A randomized algorithm A is (α, ε)-RDP if for any adjacent datasets S and S′,

Dα(A(S) ∥ A(S′)) ≤ ε .

Numerical conversion. Conversion from RDP to (ε, δ)-DP is inherently lossy and there are many proposed formulae for
this. Since the RDP bounds mentioned in this text are of the form (α, ρα)-RDP for all α > 1, given ρ and a fixed level of δ
the corresponding converted value of ε = ε(α, ρ, δ) can be found by optimizing over α. Also, in addition to RDP, results on
zero concentrated DP (Bun & Steinke, 2016) can be applied. Throughout, we calculate the minimum ε (aka the best bound)
among the following formulae: (Bun & Steinke, 2016, Lemma 3.5), (Mironov, 2017, Proposition 3), (Balle et al., 2020,
Theorem 20), and (Asoodeh et al., 2021, Lemma 1).

A.2. Lemmas on tradeoff functions

Here we recall various useful facts about tradeoff functions. The first lemma records basic properties of tradeoff functions
that we use repeatedly (Dong et al., 2022, Proposition D.1).
Lemma A.2 (Basic properties). For tradeoff functions f, g1, g2 and µ = (µ1, . . . , µd) ∈ Rd,

(a) g1 ≥ g2 ⇒ f ⊗ g1 ≥ f ⊗ g2.

(b) f ⊗ Id = Id⊗ f = f .

(c) T (N (0, σ2Id),N (µ, σ2Id)) = G(|µ1|/σ)⊗ · · · ⊗G(|µd|/σ) = G(∥µ∥/σ).

Next, we recall tight conversion formulae from GDP to other standard notions of DP, namely (ε, δ)-DP (Balle & Wang,
2018, Theorem 8) and RDP (Dong et al., 2022, Corollary B.6).
Lemma A.3 (GDP to (ε, δ)-DP). A µ-GDP mechanism is (ε, δ(ε))-DP for all ε > 0 where

δ(ε) = Φ

(
− ε
µ
+
µ

2

)
− eεΦ

(
− ε
µ
− µ

2

)
.

Lemma A.4 (GDP to RDP). A µ-GDP mechanism is (α, 12µ
2α)-RDP for any α > 1.

An appealing property of tradeoff functions is that they admit a central limit theorem (CLT) that approximates multiple
compositions to GDP. In particular, the subsampled GDP can be approximated as follows (Dong et al., 2022, Corollary 4).
Lemma A.5 (CLT). Let µ ≥ 0 and assume that p

√
t→ p0 as t→∞. Then

Cp(G(µ))
⊗t → G

(√
2p0

√
eµ2Φ(1.5µ) + 3Φ(−0.5µ)− 2

)
.

A.3. Convergence of tradeoff functions

Here we present results about the convergence of distributions as measured by tradeoff functions. The main results are
Lemma A.6 and Lemma A.10, which state that this is equivalent to convergence in TV distance; we also present intermediate
results which may be of independent interest. For notation, we use Pn, P,Qn, Q to denote probability distributions, and
α, α′ to respectively denote elements in [0, 1] and (0, 1]. Also, we use a ∨ b and a ∧ b to respectively denote max{a, b} and
min{a, b}.
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Lemma A.6. The following are equivalent.

(a) T (Pn, P )→ Id.

(b) T (P, Pn)→ Id.

(c) TV (Pn, P )→ 0.

Proof. On one hand, if TV(P, Pn)→ 0, then T (P, Pn)→ Id since

1− TV(P, Pn) ≤ α+ T (P, Pn)(α) ≤ 1 .

On the other hand, if TV(P, Pn) ↛ 0 then by taking a subsequence {n′} such that TV(P, Pn′) ≥ ε > 0 we know that the
first equality holds for some α = αn′ and thus

T (P, Pn′)(αn′) ≤ 1− ε− αn′ .

By taking a further subsequence {n′′} of {n′} such that αn′′ → α for some α (note that αn′ ≤ 1− ε for all n′ and thus
α ≤ 1− ε), there exists N ∈ N such that n′′ > N ⇒ αn′′ < α+ ε/2, from which we have

T (P, Pn′′)(α+
ε

2
) ≤ 1− ε− αn′′

for all n′′ > N . Thus
lim inf

n′′
T (P, Pn′′)(α+

ε

2
) ≤ 1− ε

2
− (α+

ε

2
) ,

implying that T (P, Pn) does not converge to Id.

Lemma A.7. If T (Pn, P )→ Id then for any probability distribution Q,

lim
n
T (Pn, Q)(α′) = T (P,Q)(α′)

for every α′ ∈ (0, 1]. In particular, if T (P,Q)(0) = 1 then limn T (Pn, Q) = T (P,Q).

Proof. From (Dong et al., 2022, Lemma A.5) we have

T (P,Q)(α′) ≥ T (Pn, Q)(1− T (P, Pn)(α
′))

T (Pn, Q)(α) ≥ T (P,Q)(1− T (Pn, P )(α)) .

By taking lim infn in the second line, we have lim infn T (Pn, Q)(α) ≥ T (P,Q)(α).

On the other hand, for any α′ ∈ (0, 1] and sufficiently small ε > 0 we have 1 − T (P, Pn)(α
′) ≤ (α′ + ε) ∧ 1 for all

sufficiently large n, from which in the first line we have

T (P,Q)(α′) ≥ T (Pn, Q)((α′ + ε) ∧ 1) .

Taking lim supn (it is straightforward to check that a limit supremum of tradeoff function is continuous on (0, 1)) and letting
ε→ 0, we have T (P,Q)(α′) ≥ lim supn T (Pn, Q)(α′).

Remark A.8 (Necessity of the restriction on α′). The restriction α′ ∈ (0, 1] is necessary. For example, if P = δ0,
Q = 1

2δ0 +
1
2δ1, and Pn = (1 − 1

n )δ0 +
1
nδ1 (here, δx denotes the Dirac measure at x and pP + (1 − p)Q denotes the

mixture of (P,Q) with mixing rate (p, 1− p)), then TV(Pn, P )→ 0 implies T (Pn, P )→ Id and T (P,Q)(α) = 1
2 (1− α),

yet

T (Pn, Q)(α) =

{
1− 1

2nα α ≤ 1
n

1
2 (

1−α
1− 1

n

) α > 1
n

⇒ lim
n
T (Pn, Q)(α) =

{
1 α = 0
1
2 (1− α) α > 0 .

However, if the limit is switched to the second argument, then this restriction on α′ simplifies and is unnecessary, as proven
in the following lemma.

13
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Lemma A.9. If T (Qn, Q)→ Id then for any probability distribution P ,

lim
n
T (P,Qn) = T (P,Q) .

Proof. Again, from (Dong et al., 2022, Lemma A.5) we have

T (P,Qn)(α) ≥ T (Q,Qn)(1− T (P,Q)(α))

T (P,Q)(α) ≥ T (Qn, Q)(1− T (P,Qn)(α)) .

Taking lim infn in the first line, we have lim infn T (P,Qn)(α) ≥ T (P,Q)(α). On the other hand, we know that the limit
T (Qn, Q)→ Id is uniform over [0, 1]—see, for example, (Dong et al., 2022, Lemma A.7)—and thus for any ε > 0 we have
T (Qn, Q)(α) ≥ 1− α− ε for all α ∈ [0, 1] when n is sufficiently large, from which we have

T (P,Q)(α) ≥ T (P,Qn)(α)− ε .

Taking lim supn and letting ε→ 0, we have T (P,Q)(α) ≥ lim supn T (P,Qn)(α).

Lemma A.10. If TV(Pn, P )→ 0 and TV(Qn, Q)→ 0 then

lim
n
T (Pn, Qn)(α

′) = T (P,Q)(α′)

for every α′ ∈ (0, 1].5 In particular, if T (P,Q)(0) = 1 then limn T (Pn, Qn) = T (P,Q).

Proof. From T (Pn, Qn)(α) ≥ T (P,Qn)(1 − T (Pn, P )(α)) and T (P,Qn) → T (P,Q) uniformly over [0, 1] (by
Lemma A.6 and Lemma A.9), taking lim infn we have lim infn T (Pn, Qn)(α) ≥ T (P,Q)(α).

From T (P,Qn)(α) ≥ T (Pn, Qn)(1− T (P, Pn)(α)), for any α′ ∈ (0, 1] and sufficiently small ε > 0, for all sufficiently
large n we have 1− T (P, Pn)(α

′) ≤ (α′ + ε) ∧ 1 and thus

T (P,Qn)(α
′) ≥ T (Pn, Qn)((α

′ + ε) ∧ 1) .

Taking lim supn and letting ε→ 0, we have T (P,Q)(α′) ≥ lim supn T (Pn, Qn)(α
′).

The final lemma shows how composition and limit of tradeoff functions can be combined. This is useful when, for example,
we have a lower bound of the formG(µ)⊗gt, and gt converges toG(ν) as t→∞ (e.g., by CLT), which can be approximated
by the lemma as G(µ)⊗ gt ≈ G(

√
µ2 + ν2).

Lemma A.11. Let f, g, gn be tradeoff functions such that g(α) > 0 for all α < 16 and gn → g. Then

lim inf
n

(f ⊗ gn) ≥ f ⊗ g .

Proof. Fix 0 < δ < 1, and let hδ be the tradeoff function defined as

hδ(α) =

{
1− δ − α α ≤ 1− δ
0 α > 1− δ .

Then it is known—see (Dong et al., 2022, Equation 12)—that for any tradeoff function f ,

f ⊗ hδ =

{
(1− δ)f( α

1−δ ) α ≤ 1− δ
0 α > 1− δ .

5In (Awan & Dong, 2022), this result is stated without the restriction on α′ ∈ (0, 1]. However, this restriction is needed, as evidenced
by the counterexample in Remark A.8.

6This condition is technical and is not necessary; the same proof applies by defining r(δ) as the minimum over α ∈ [0, z(1 − δ)]
where z = inf{α : g(α) = 0}.
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Now we approximate g by g⊗ hδ . Defining r(δ) = min0≤α≤1−δ |g(α)− (g⊗ hδ)(α)| (the minimum exists as the function
is continuous and [0, 1− δ] is compact), we have r(δ) > 0 because for any α ∈ [0, 1− δ]

g(α)− (g ⊗ hδ)(α) = g(α)− g( α

1− δ
) + δg(

α

1− δ
) ≥ δg( α

1− δ
) ≥ 0 ,

where the first inequality is from g decreasing; if this value is 0 then we should have α = 1− δ from the second inequality,
but then g(α)− g( α

1−δ ) = g(1− δ)− g(1) > 0, a contradiction.

Since the limit gn → g is uniform, for all sufficiently large n we have gn ≥ (g − r(δ)) ∨ 0 ≥ g ⊗ hδ , implying

lim inf
n

(f ⊗ gn) ≥ f ⊗ (g ⊗ hδ) = hδ ⊗ (f ⊗ g) .

Then from limδ→0 hδ ⊗ (f ⊗ g) = f ⊗ g, we obtain the result.

B. Disentangling the shift in shifted divergences
As mentioned in §1.2, a key motivation behind the construction of our shifted interpolated process (6) is that it demystifies
the popular privacy amplification by iteration analysis for Rényi DP (Feldman et al., 2018), which has been used in many
contexts, and in particular was recently shown to give convergent Rényi DP bounds for NoisyGD and variants (Altschuler
& Talwar, 2022). Here we explain this connection.

Briefly, privacy amplification by iteration arguments for Rényi DP use as a Lyapunov function the shifted Rényi divergence
D

(z)
α (P ∥ Q) = infP ′:W∞(P,P ′)≤z(P

′ ∥ Q), which combines the Rényi divergence Dα and ∞-Wasserstein distance
W∞. (Feldman et al., 2018) bounds the Rényi DP via an argument of the form

Dα(Xt ∥X ′
t) = D(zt)

α (Xt ∥X ′
t)

≤ D(zt−1)
α (Xt−1 ∥X ′

t−1) +O(a2t )

≤ D(zt−2)
α (Xt−2 ∥X ′

t−2) +O(a2t + a2t−1) (7)
. . .

≤ D(z0)
α (X0 ∥X ′

0)︸ ︷︷ ︸
=0 since X0=X′

0

+O
( t∑
k=1

a2k
)

(8)

where zt = 0 and zk+1 = czk + s − ak+1. (Altschuler & Talwar, 2022) obtained convergent Rényi DP bounds by
essentially unrolling this argument only to an intermediate time τ , and then arguing that the shifted Rényi divergence
D

(zτ )
α (Xτ , X

′
τ ) = 0 if the shift zτ is made sufficiently large.

Several open questions remained: (1) Can this argument be performed without using shifted divergences, which is an
admittedly ad-hoc combination of Rényi divergences and Wasserstein distances? (2) Can this argument be extended beyond
divergence-based relaxations of DP, namely to f -DP? Our paper answers both questions.

For (1), our argument makes explicit the surrogates implicit in the shifted divergences

D(zk)
α (Xk ∥X ′

k) = inf
X̃k : W∞(X̃k,Xk)≤zk

Dα(X̃k ∥X ′
k)

in each intermediate iteration of the argument. Indeed, it can be shown that our shifted interpolating process {X̃k}, defined
in (6), gives such a random variable that achieves the value required by this shifted divergence argument. This enables
re-writing the argument (8) without any notion of shifted divergences, in terms of the auxiliary process {X̃k}, as we did
for f -DP in §3.2. This completely disentangles the Rényi divergence and Wasserstein distance in the shifted divergence
argument.

For (2), the disentangling we achieve in (1) appears essential. The naı̈ve approach of directly extending the shifted
divergence argument to “shifted tradeoffs” T (z)(P,Q) = supP ′:W∞(P,P ′)≤z(P

′, Q) runs into several subtle technical
issues. For example, the argument appears to require the existence of an optimal shift P ′. For the shifted Rényi argument,
it suffices to find a nearly-optimal shift D(z)

α (P ∥ Q) = infP ′:W∞(P,P ′)≤zDα(P
′ ∥ Q), and moreover have the shift be
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nearly-optimal for a given Rényi parameter α but perhaps not uniformly so over all α. Due to the more involved calculus of
tradeoff functions, these issues become subtle but important problems, and have led others to state the problem of privacy
amplification by iteration in f -DP as open, e.g., (Wang et al., 2023). Although the general problem of finding an optimal
shift for general tradeoff functions remains open, the answer to (1)—our shifted interpolated process—explicitly constructs
an optimal shift for the tradeoff functions specifically needed to analyze two contractive noisy iterations.

C. Deferred details for §4
In this section we provide details for the proofs in §4. See §3 for a high-level overview of the analysis approach. We
formalize the technique of shifted interpolated processes in a general context in §C.1, then prove the results of §4.1, §4.2, §4.3
in §C.2, §C.3, §C.4, respectively.

C.1. Shifted interpolation for contractive noisy iterations

We begin by providing definitions that unify the presentation of the different settings. The first definition abstracts the
fundamental reason underlying why noisy gradient descent and all its variants enjoy the phenomenon of privacy amplification
by iteration for convex optimization—and is why the results stated in this section are for contractive noisy iterations (CNI).
This is based on the observation that the variants of noisy gradient descent update by alternately applying contraction maps
and noise convolutions (Feldman et al., 2018, Definition 19).

Definition C.1 (CNI). The CNI corresponding to a sequence of contractive functions {ϕk}k∈[t], a sequence of noise
distributions {ξk}k∈[t], and a closed and convex set K, is the stochastic process

Xk+1 = ΠK(ϕk+1(Xk) + Zk+1) (9)

where Zk+1 ∼ ξk+1 is independent of (X0, . . . , Xk).

Although CNI(X0, {ϕk}k∈[t], {ξk}k∈[t],K) usually refers to the distribution of the final iterate Xt, we occasionally abuse
notation by using this to refer to the entire sequence of iterates {Xk}.

The second definition abstracts the idea of shifted interpolated processes at the level of generality of CNI. See §3.2 for an
informal overview.

Definition C.2 (Shifted interpolated process). Consider processes {Xk} and {X ′
k} corresponding respectively to

CNI(X0, {ϕk}k∈[t], {ξk}k∈[t],K) and CNI(X ′
0, {ϕ′k}k∈[t], {ξk}k∈[t],K). The shifted interpolated process between these

two CNI is the auxiliary process {X̃k} satisfying X̃τ = X ′
τ and

X̃k+1 = ΠK

(
λk+1ϕk+1(Xk) + (1− λk+1)ϕ

′
k+1(X̃k) + Zk+1

)
(10)

for all k = τ, . . . , t − 1. Here, the noise Zk ∼ ξk is coupled between the processes {Xk} and {X̃k}. The parameters
τ ∈ {0, . . . , t}, and λk ∈ [0, 1] can be chosen arbitrarily, with the one restriction that λt = 1 so that X̃t = Xt.

The upshot of shifted interpolation is the following meta-theorem. See §3.2 for a high-level overview of this result, its proof,
and its uses. Here, we state this meta-theorem in the more general framework of CNI.

Theorem C.3 (Meta-theorem for shifted interpolation). Let Xt and X ′
t respectively be the output of

CNI(X0, {ϕk}k∈[t], {N (0, σ2Id)}k∈[t],K) and CNI(X0, {ϕ′k}k∈[t], {N (0, σ2Id)}k∈[t],K) such that each ϕk, ϕ
′
k is c-

Lipschitz and ∥ϕk(x)− ϕ′k(x)∥ ≤ sk for all x and k ∈ [t]. Then for any intermediate time τ and shift parameters
λτ+1, . . . , λt ∈ [0, 1] with λt = 1,

T (Xt, X
′
t) ≥ G

 1

σ

√√√√ t∑
k=τ+1

a2k


where ak+1 = λk+1(czk + sk+1), zk+1 = (1− λk+1)(czk + sk+1), and ∥Xτ −X ′

τ∥ ≤ zτ .

To prove Theorem C.3, we first prove two helper lemmas. The first lemma characterizes the worst-case tradeoff function
between a Gaussian and its convolution with a bounded random variable. The lemma is tight, with equality achieved when
the random variable is a constant.
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Lemma C.4. For s ≥ 0, let R(s, σ) = inf{T (W + Z,Z) : ∥W∥ ≤ s, Z ∼ N (0, σ2Id),W,Z are independent}, where
the infimum is taken pointwise.7 Then

R(s, σ) = G(
s

σ
) .

Proof. For any random variable W with ∥W∥ ≤ s, the post-processing inequality (Lemma 2.5) implies

T (W + Z,Z) ≥ T ((W,Z), (W,−W + Z)) .

Letting K1(y) = Z and K ′
1(y) = −y + Z, we have T (K1(y),K

′
1(y)) = G(∥y∥σ ) ≥ G( s

σ ) for any fixed y with ∥y∥ ≤ s
and thus by strong composition (Lemma 2.7),

T ((W,Z), (W,−W + Z)) ≥ T (W,W )⊗G( s
σ
) = G(

s

σ
) .

The bound is tight since equality holds with W = sv for any fixed unit vector v.

The second lemma, Lemma 3.2, is the “one-step” version of the desired result Theorem C.3. It uses the first lemma in its
proof.

Proof of Lemma 3.2. For shorthand, let Z,Z ′ ∼ N (0, σ2Id) be independent. Then

T (λϕ(X) + (1− λ)ϕ′(X̃) + Z, ϕ′(X ′) + Z ′) ≥ T ((X̃, λ(ϕ(X)− ϕ′(X̃)) + Z), (X ′, Z ′))

≥ T (X̃,X ′)⊗R(λ(cz + s), σ)

= T (X̃,X ′)⊗G(λ(cz + s)

σ
) .

Above, the first step is by the post-processing inequality (Lemma 2.5) for the post-processing function (x, y) 7→
ϕ′(x) + y. The second step is by strong composition (Lemma 2.7), which we can apply since λ(∥ϕ(X)− ϕ′(X̃)∥) ≤
λ(∥ϕ(X)− ϕ(X̃)∥+ ∥ϕ(X̃)− ϕ′(X̃)∥) ≤ λ(cz + s). The final step is by Lemma C.4.

Proof of Theorem C.3. Let {X̃k} be as in (10). By induction, ∥Xk − X̃k∥ ≤ zk for all k = τ, . . . , t from

∥Xk+1 − X̃k+1∥ ≤ (1− λk+1)(∥ϕk+1(Xk)− ϕ′k+1(Xk)∥+ ∥ϕ′k+1(Xk)− ϕ′k+1(X̃k)∥)
≤ (1− λk+1)(sk+1 + czk) ,

where the first line holds from Lemma 2.9. Letting Zk+1, Z
′
k+1 ∼ N (0, σ2Id) be independent noises,

T (X̃k+1, X
′
k+1) ≥ T (λk+1ϕk+1(Xk) + (1− λk+1)ϕ

′
k+1(X̃k) + Zk+1, ϕ

′
k+1(X

′
k) + Z ′

k+1)

≥ T (X̃k, X
′
k)⊗G(

ak+1

σ
) ,

where the first inequality is by the post-processing inequality (Lemma 2.5) with respect to ΠK, and the second inequality is
by Lemma 3.2. Repeating this for k = t− 1, . . . , τ , and using the fact that the shifted interpolated process satisfy X̃t = Xt

(from λt = 1) and X̃τ = X ′
τ , we conclude the desired bound

T (Xt, X
′
t) = T (X̃t, X

′
t) ≥ T (X̃τ , X

′
τ )⊗G

 1

σ

√√√√ t∑
k=τ+1

a2k

 = G

 1

σ

√√√√ t∑
k=τ+1

a2k

 .

7The infimum of tradeoff functions is in general not a tradeoff function; however, we prove a lower bound that is in fact a tradeoff
function. That is, we show that T (W + Z,Z) ≥ G( s

σ
) for all W,Z satisfying the conditions in the definition of R(s, σ). An analogous

discussion also applies to Lemma C.12.
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C.2. Deferred proofs for §4.1

C.2.1. PROOF OF THEOREM 4.2

First, we consider the following setting where the contractive factor is strictly less than 1, which corresponds to the strongly
convex setting for NoisyGD.

Theorem C.5. In the setting of Theorem C.3, additionally assume that 0 < c < 1 and sk ≡ s. Then

T (Xt, X
′
t) ≥ G

(√
1− ct
1 + ct

1 + c

1− c
s

σ

)

with equality holding if X0 = X ′
0 = 0, ϕk(x) = cx, ϕ′k(x) = cx+ sv for any unit vector v and K = Rd.

Proof. In Theorem C.3, we can take τ = 0 and zτ = 0. Then the values of {λk}, {zk}, {ak} obtained from the elementary
optimization problem (Lemma C.6) yield the desired result. Finally, for the equality case, by direct calculation we have
Xt ∼ N (0, 1−c2t

1−c2 σ
2Id) and X ′

t ∼ N ( 1−ct

1−c sv,
1−c2t

1−c2 σ
2Id), giving

T (Xt, X
′
t) = G(

√
1− ct
1 + ct

1 + c

1− c
s

σ
) .

Lemma C.6. Given s > 0 and 0 < c < 1, the optimal value of

minimize
t∑

k=1

a2k

subject to zk+1 = (1− λk+1)(czk + s), ak+1 = λk+1(czk + s)

zk, ak ≥ 0, z0 = zt = 0

λk ∈ [0, 1]

is 1−ct

1+ct
1+c
1−cs

2.

Proof. Since zk+1 = (1−λk+1)(czk+s) and ak+1 = λk+1(czk+s), we have zk+1+ak+1 = s+czk for k = 0, . . . , t−1,
from which we obtain

zt = ctz0 + (1 + c+ · · ·+ ct−1)s− (at + cat−1 + · · ·+ ct−1a1) .

From z0 = zt = 0, we have

at + cat−1 + · · ·+ ct−1a1 =
1− ct

1− c
s .

By the Cauchy-Schwarz inequality,

t∑
k=1

a2k ≥
(at + cat−1 + · · ·+ ct−1a1)

2∑t
k=1 c

2(t−k)
=

1− ct

1 + ct
1 + c

1− c
s2

where equality holds if the corresponding equality criterion of the Cauchy-Schwarz inequality is satisfied. The explicit
formulae are zk = (1−ck)(1−ct−k)

(1+ct)(1−c) s, ak = ct−k(1+c)
1+ct s, and λk = ct−k(1−c2)

1−ct−k+2−ck+ct
.

Proof of Theorem 4.2. This follows as a direct corollary of Theorem C.5 with ϕk(x) ≡ ϕ(x) = x− η
n

∑n
i=1∇fi(x) and

ϕ′k(x
′) ≡ ϕ′(x′) = x′ − η

n

∑n
i=1∇f ′i(x′). For this application, consider parameters c = max{|1− ηm|, |1− ηM |} < 1

(by Lemma 2.8), s← ηL/n, and σ ← ησ (rescaling to simplify notation). The equality case is a straightforward calculation
in the setting that K = Rd, X0 = 0, ∇fi(x) = mx for all i ∈ [n], and ∇f ′i(x) defined as mx for i ̸= i∗, and otherwise
mx− Lv for some unit vector v.
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C.2.2. PROOF OF THEOREM 4.3

We consider here the setting of optimization over a bounded constraint set.

Theorem C.7. In the setting of Theorem C.3, additionally assume that K has a finite diameter D and sk ≡ s. Then for any
integer 0 ≤ τ < t,

T (Xt, X
′
t) ≥ G

(
1

σ
(s
√
t− τ + D√

t− τ
)

)
.

In particular, if t ≥ D/s then

T (Xt, X
′
t) ≥ G

(
1

σ

√
3sD + s2

⌈
D

s

⌉)
.

Proof. From ∥Xτ − X̃τ∥ ≤ D for all τ , in Theorem C.3 we can take zτ = D and c = 1. The values of {λk}, {zk}, {ak}
are obtained by analyzing the following elementary optimization problem (Lemma C.8).

Lemma C.8. Given s > 0 and D > 0, the optimal value of

minimize
t∑

k=τ+1

a2k

subject to zk+1 = (1− λk+1)(zk + s), ak+1 = λk+1(zk + s)

zk, ak ≥ 0, zτ = D, zt = 0

λk ∈ [0, 1]

is
(
s+ D

t−τ

)2
(t− τ). As a function of t− τ ∈ (0,∞), this value is minimized when t− τ = D/s.

Proof. By adding the equations zk+1 = (1 − λk+1)(zk + s) and ak+1 = λk+1(zk + s) for k = τ, . . . , t − 1, we obtain
(with zτ = D and zt = 0)

at + at−1 + · · ·+ aτ+1 = D + (t− τ)s .

By the Cauchy-Schwarz inequality, the minimum value of
∑t

k=τ+1 a
2
k is (s+R)2(t−τ) and is obtained when zk = R(t−k),

ak ≡ s+R, and λk = s+R
s+R(t−k+1) , where we use the shorthand R := D

t−τ . The last part is straightforward from the strict

convexity of the one-dimensional function z 7→ z
(
s+ D

z

)2
= s2z + D2

z + 2sD, z > 0.

Proof of Theorem 4.3. This follows by considering s← ηL
n and σ ← ησ as in the proof of Theorem 4.2.

C.3. Deferred proofs for §4.2

As done in the case of NoisyGD, we first characterize NoisyCGD as a particular instance of CNI and proceed to the proofs
of the theorems. The following proposition holds straight from the definition; recall that l = n/b is the number of batches.

Proposition C.9. For t = lE and k = 0, 1, . . . , t − 1, let B1, . . . , Bl be a fixed partition of [n] with size b, and
define ϕk+1(x) = x − η

b

∑
i∈Br

∇fi(x) and ϕ′k+1(x
′) = x′ − η

b

∑
i∈Br

∇f ′i(x′) where r = k + 1 − l⌊kl ⌋. Then
the f -DP of NoisyCGD is equal to that between Xt = CNI(X0, {ϕk}k∈[t], {N (0, η2σ2Id)}k∈[t],K) and X ′

t =
CNI(X0, {ϕ′k}k∈[t], {N (0, η2σ2Id)}k∈[t],K).

Proof of Theorem 4.5. Let j∗ ∈ [l] be the index such that i∗ ∈ Bj∗ and consider the setting in Proposition C.9. We will
establish a lower bound on T (Xt∗ , X

′
t∗) where t∗ = t+ j∗ − l − 1; the lower bound on T (Xt, X

′
t) is then given by

T (Xt, X
′
t) ≥ T (Xt+j∗−l, X

′
t+j∗−l) ≥ T (Xt+j∗−l−1, X

′
t+j∗−l−1)⊗G(

L

bσ
)

where the first inequality holds from the post-processing inequality with ϕk ≡ ϕ′k for all k = t+ j∗ − l + 1, . . . , t, and the
second inequality holds from ∥ϕt+j∗−l(x)− ϕ′t+j∗−l(x)∥ ≤

ηL
b for all x with Lemma 3.1.
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In general, ϕk+1 = ϕ′k+1 when r = r(k) = k + 1 − l⌊kl ⌋ is not equal to j∗; otherwise ∥ϕk+1(x)− ϕ′k+1(x)∥ ≤
ηL
b for

all x. Thus, in Theorem C.3 we can take τ = 0, zτ = 0 and sk+1 = s1{r=j∗} where s = ηL
b . Using {λk}, {zk}, {ak}

obtained from the following result (Lemma C.10),

T (Xt, X
′
t) ≥ G

 1

σ

√√√√(L
b

)2

+
1

η2

t∗∑
k=1

a2k

 .

Lemma C.10. Given s > 0 and 0 < c < 1, let t∗ = t+ j∗ − l − 1 and consider a system

zk+1 = (1− λk+1)(czk + s1{r=j∗}), ak+1 = λk+1(czk + s1{r=j∗})

zk, ak ≥ 0, z0 = zt∗ = 0

λk ∈ [0, 1] .

Then {ak}1≤k≤t∗ , {zk}0≤k≤t∗ , {λk}1≤k≤t∗ defined as

ak =

{
ct−k+j∗−2

1−cl
1−c2

1+ct−l s k ≥ j∗

0 k < j∗

zk+1 = czk + s1{r=j∗} − ak+1, z0 = 0

λk =

{
ak

zk+ak
zk + ak > 0

0 zk + ak = 0

is a solution, where r = r(k) = k + 1− l⌊kl ⌋.

Proof. From the stated formulae and zk+1 + ak+1 = czk + s1{r=j∗}, every condition except zk ≥ 0 and zt∗ = 0 are
straightforward to check.

If k < j∗ then zk ≡ 0. For k ≥ j∗, let q be the integer such that l(q − 1) + j∗ ≤ k < lq + j∗ and r′ = k− (l(q − 1) + j∗).
Then

zk = cr
′
(1 + cl + · · ·+ cl(q−1))s− (ak + cak−1 + · · ·+ ck−j∗aj∗)

=

(
cr

′
(1 + cl + · · ·+ cl(q−1))− ct−k+j∗−2 1− c2

(1− cl)(1 + ct−l)
(1 + c2 + · · ·+ c2(k−j∗))

)
s .

For any fixed q, this is a decreasing function in r′ and thus it suffices to consider r′ = l − 1. Then

cr
′
(1 + cl + · · ·+ cl(q−1))− ct−k+j∗−2 1− c2

(1− cl)(1 + ct−l)
(1 + c2 + · · ·+ c2(k−j∗))

= cl−1 1− clq

1− cl
− cl(E−q)−1 1− c2lq

(1− cl)(1 + ct−l)
= cl−1 1− clq

1− cl
1− cl(E−q−1)

1 + cE(l−1)
,

which is nonnegative for q ≤ E − 1. Also, for q = E − 1 this is equal to 0, implying zl(E−1)+j∗−1 = zt∗ = 0 and thus
λt∗ = 1.

Proof of Theorem 4.6. As in the proof of Theorem 4.5, we establish a lower bound on T (Xt∗ , X
′
t∗) for t∗ = t+ j∗ − l− 1.

For any τ , letting τ∗ = j∗ + l(τ − 1) we have ∥Xτ∗ − X̃τ∗∥ ≤ D. Thus in Theorem C.3 we can take zτ∗ = D, sk+1 =
s1{r=j∗}(s = ηL

b ) and c = 1. The sequences {λk}, {zk}, {ak} can be chosen as in the following result (Lemma C.11),
which yields a bound of

T (Xt, X
′
t) ≥ G

 1

σ

√√√√(L
b

)2

+
1

η2

t∗∑
k=τ∗+1

a2k

 ≥ G
 1

σ

√(
L

b

)2

+
(D/η + L(E − τ)/b)2

l(E − τ)


by Proposition C.9. Optimizing over the choice of E − τ can be done similarly as in Theorem C.7; in particular, one can
take E − τ = ⌈Db

ηL ⌉ when E ≥ Db
ηL .
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Lemma C.11. Given s > 0 and D > 0, let t∗ = t+ j∗ − l − 1, τ∗ = j∗ + l(τ − 1) and consider a system

zk+1 = (1− λk+1)(zk + s1{r=j∗}), ak+1 = λk+1(zk + s1{r=j∗})

zk, ak ≥ 0, zτ∗ = D, zt∗ = 0

λk ∈ [0, 1] .

Then {ak}τ∗+1≤k≤t∗ , {zk}τ∗≤k≤t∗ , {λk}τ∗+1≤k≤t∗ defined as

ak ≡
D + s(E − τ)
l(E − τ)

zk+1 = zk + s1{r=j∗} − ak+1, zτ∗ = D

λk =

{
ak

zk+ak
zk + ak > 0

0 zk + ak = 0

is a solution, where r = r(k) = k + 1− l⌊kl ⌋.

Proof. As in the proof of Lemma C.10, it suffices to check that zk ≥ 0 and zt∗ = 0. Let q ≥ τ be the integer such that
l(q − 1) + j∗ ≤ k < lq + j∗ and r′ = k − (l(q − 1) + j∗). Then

zk = D + (q − τ + 1)s− (l(q − τ) + r′ + 1)
D + s(E − τ)
l(E − τ)

≥ D + (q − τ + 1)s− (q − τ + 1)
D + s(E − τ)

(E − τ)

= D(1− q − τ + 1

E − τ
) ≥ 0 ,

where the inequality is from that the first line is minimized when r′ = l − 1 for any fixed q. Also, zk = 0 and λk = 1 when
r′ = l − 1 and q = E − 1, i.e., k = t+ j∗ − l − 1 = t∗.

C.4. Deferred proofs for §4.3

C.4.1. NOISYSGD AS STOCHASTIC VERSION OF CNI

We first revisit the composition bound (Theorem 4.8). The key point in this proof relevant to our new results is the following
formulation, which can be considered as a stochastic version of CNI (9) with each map x 7→ ψs(x), ϕs(x), ϕ

′
s(x) being

contractive.

Xk+1 = ΠK(ψSk
(Xk) + Vk(ϕSk

− ψSk
)(Xk) + Zk+1)

X ′
k+1 = ΠK(ψS′

k
(X ′

k) + V ′
k(ϕ

′
S′
k
− ψS′

k
)(X ′

k) + Z ′
k+1)

(11)

Proof of Theorem 4.8. Let Xk and Xk+1 respectively be the k-th and (k+1)-th iterate of NoisySGD with losses {fi}i∈[n],
and similarly define X ′

k and X ′
k+1 for NoisySGD with losses {f ′i}i∈[n]. It suffices to show

T (Xk+1, X
′
k+1) ≥ T (Xk, X

′
k)⊗ Cb/n(G(

L

bσ
)) .

For the corresponding random batch Bk, we sample a random pair of set and element Sk = (Rk, Ck) as described below.
This Sk will be here and after used as a representation for the random batch Bk.

1. Sample a set A1 of size b in [n] \ {i∗} uniformly at random.

2. Sample an element A2 from A1 uniformly at random. This element will serve as a candidate to be (potentially) replaced
by i∗.

3. Let Rk = A1 \ {A2}, Ck = A2.
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Finally, let Vk ∼ Ber(p) be a Bernoulli random variable with success probability p = b/n, which serves as an indicator
denoting whether i∗ ∈ Bk (i.e., Vk = 1) or not (i.e., Vk = 0). Then

Bk =

{
Rk ∪ {Ck} Vk = 0

Rk ∪ {i∗} Vk = 1

is a valid sampling procedure for Bk (i.e., the marginal distribution of Bk is uniform over size b subsets of [n]). These can
be defined similarly for X ′

k+1 as B′
k, V

′
k and S′

k.

The reason for formulating this alternative sampling scheme is to separate the subsampling part—which only depends on
whether the index i∗ is included in the batch—from the rest of the information on the batch. In particular, in (11), Sk and Vk
are independent and Vk is still distributed as Ber(p) after conditioning on Sk.

Now for a pair of set and element S = (R,C), define

ϕS(x) = x− η

b
(∇fi∗ +

∑
i∈R

∇fi)(x)

ϕ′S(x) = x− η

b
(∇f ′i∗ +

∑
i∈R

∇fi)(x)

ψS(x) = x− η

b

∑
i∈R∪{C}

∇fi(x) .

(12)

Then the updates for Xk+1 and X ′
k+1 can be respectively written as (11), where Zk+1, Z

′
k+1 ∼ N (0, η2σ2Id) are

independent of anything else. Now the tradeoff function between Xk+1 and X ′
k+1 satisfies

T (Xk+1, X
′
k+1) ≥ T ((Xk, Sk, Vk(ϕSk

− ψSk
)(Xk) + Zk+1), (X

′
k, S

′
k, V

′
k(ϕ

′
S′
k
− ψS′

k
)(X ′

k) + Z ′
k+1))

by the post-processing inequality with respect to (x, s, y) 7→ ΠK(ψs(x) + y). For any fixed realization (x, s) = (x, (r, c))
of the first two arguments, we find a lower bound on

T (Vk(ϕs − ψs)(x) + Zk+1, V
′
k(ϕ

′
s − ψs)(x) + Z ′

k+1) . (13)

In fact, this is tradeoff function of the subsampled Gaussian mechanism as presented in (Dong et al., 2022, Theorem 9). To
see this, we construct a new private setting as follows:

• Datasets: S = {y1, y2, . . . , yn}, S′ = {y′1, y2, . . . , yn} where y′1, y1, . . . , yn are distinct alphabets. Note that the
“datasets” here are considered only for this part of the proof and are irrelevant with the original datasets in the private
optimization setting.

• Mechanisms:

(a) Sampleb: From a set of size n, sample a set of size b uniformly at random.
(b) M: Given a set R of size b, output θ(R) +N (0, η2σ2Id) where

θ(R) =


(ϕs − ψs)(x) y1 ∈ R, y′1 /∈ R
(ϕ′s − ψs)(x) y1 /∈ R, y′1 ∈ R
0 else .

Then a lower bound f on (13) is equivalent to M ◦ Sampleb being f -DP (when considered as being applied to S and S′).
Note that from

ϕs − ψs =
η

b
(∇fc −∇fi∗)

ϕ′s − ψs =
η

b
(∇fc −∇f ′i∗)

ϕs − ϕ′s =
η

b
(∇f ′i∗ −∇fi∗) ,
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0.0 0.5 1.0
0.0
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f(0.5)

f(1)

Cp(f)

Figure 4. Illustration of Cp(G( L
bσ

)) and f (λ), for λ ∈ {0, 0.5, 1} with p = 0.25, L/(bσ) = 2.5.

θ has (l2-)sensitivity ηL
b and thus M is G( L

bσ )-DP by (Dong et al., 2022, Theorem 1). Then by (Dong et al., 2022, Theorem
9), M ◦ Sampleb is Cb/n(G(

L
bσ ))-DP. Thus,

T ((Xk, Sk, Vk(ϕSk
− ψSk

)(Xk) + Zk+1), (X
′
k, S

′
k, V

′
k(ϕ

′
S′
k
− ψS′

k
)(X ′

k) + Z ′
k+1))

≥ T ((Xk, Sk), (X
′
k, S

′
k))⊗ Cb/n(G(

L

bσ
))

= T (Xk, X
′
k)⊗ Cb/n(G(

L

bσ
))

where the equality is from that Sk(S
′
k) is independent of Xk(X

′
k), and that Sk and S′

k have the same distribution.

One step optimality. Now we show the optimality of Theorem 4.8 for t = 1, i.e.,

T (X1, X
′
1) ≥ Cb/n(G(

L

bσ
)) .

Let X0 = X ′
0 = 0,K = Rd and for λ ∈ [0, 1], consider the gradients

∇fi = ∇f ′i = 0

∇fi∗ = (1− λ)Lu
∇f ′i∗ = −λLu

where u is a unit vector. Then

T (X1, X
′
1) = T (−(1− λ)ηL

b
uV0 +N (0, η2σ2Id), λ

ηL

b
uV ′

0 +N (0, η2σ2Id))

= T (−(1− λ) L
bσ
V0 +N (0, 1), λ

L

bσ
V ′
0 +N (0, 1))

where V0, V ′
0 ∼ Ber(p). Denoting the corresponding tradeoff function as f (λ), a valid lower bound for T (X1, X

′
1) is

(pointwise) at most infλ∈[0,1] f
(λ) and thus it suffices to show that infλ∈[0,1] f

(λ) = Cb/n(G(
L
bσ )). Now the rest of the

proof is a combination of following facts.

(a) f (1)(α) ≥ Cb/n(G(
L
bσ ))(α) with equality holding for all α ∈ [0,Φ(− L

2bσ )].

(b) f (0)(α) ≥ Cb/n(G(
L
bσ ))(α) with equality holding for all α ∈ [pΦ(− L

2bσ ) + (1− p)Φ( L
2bσ ), 1].

(c) For λ ∈ (0, 1), f (λ)(α) ≥ Cb/n(G(
L
bσ ))(α) with equality holding at α = pΦ(− L

2bσ )+(1−p)Φ(( 12 −λ)
L
bσ ) (note that

as λ varies, this covers the range of α at which Cb/n(G(
L
bσ )) is linear with slope −1 and interpolates the boundaries in

(a) and (b)).
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The first two facts are straightforward from Definition 4.7, with G(µ)p = T (N (0, 1), pN (µ, 1) + (1 − p)N (0, 1)) and
(f (0))−1 = f (1).8 For (c), note that as a mixture of one-dimensional Gaussians the likelihood ratio between the two
distributions is monotone and thus for any z ∈ R, with α = 1− (1− p)Φ(z)− pΦ(z + (1− λ) L

bσ ) we have

f (λ)(α) = (1− p)Φ(z) + pΦ(z − λ L
bσ

) .

Thus from (here φ denotes the probability density function of N (0, 1))

dα

dz
= −(1− p)φ(z)− pφ(z + (1− λ) L

bσ
)

df (λ)(α)

dz
= (1− p)φ(z) + pφ(z − λ L

bσ
) ,

at z = (λ− 1
2 )

L
bσ we have α = pΦ(− L

2bσ )+(1−p)Φ(( 12 −λ)
L
bσ ) where α+f (λ)(α) = (1+p)Φ(− L

2bσ )+(1−p)Φ( L
2bσ )

and df(λ)

dα (α) = dfλ(α)
dz /dα

dz = −1. This implies that f (λ) is tangent to Cb/n(G(
L
bσ )) at the point, and (c) follows by

Lemma 2.3.

C.4.2. PROOFS OF NEW RESULTS

As in the case of NoisyGD (Lemma C.4), we start by establishing a lower bound for tradeoff function between convolutions
of Gaussian random variables with bounded random variables—now including the subsampling.

Lemma C.12. For s ≥ 0 and p = b/n, let

R(s, σ, p) = inf{T (VW + Z, V W ′ + Z) : V ∼ Ber(p), ∥W∥, ∥W ′∥ ≤ s, Z ∼ N (0, σ2Id)}

where the infimum is taken pointwise and is over independent V,W,W ′, Z. Then R(s, σ, p) ≥ Cp(G(
2s
σ )).9

Proof. The proof is fairly similar to the subsampling part in the proof of Theorem 4.8. Let V,W,W ′, Z be as in the
definition of R(s, σ, p), and consider the following private setting:

• Datasets: S = {y1, y2, . . . , yn}, S′ = {y′1, y2, . . . , yn} where y′1, y1, . . . , yn are distinct alphabets.

• Mechanisms:

(a) Sampleb: From a set of size n, sample a set of size b uniformly at random.
(b) M: Given a set R of size b, output θ(R) + Z where

θ(R) =


W y1 ∈ R, y′1 /∈ R
W ′ y1 /∈ R, y′1 ∈ R
0 else .

From ∥W∥, ∥W ′∥, ∥W −W ′∥ ≤ 2s, θ has sensitivity 2s and thus M is a G( 2sσ )-DP mechanism by (Dong et al., 2022,
Theorem 1). By (Dong et al., 2022, Theorem 9), M◦Sampleb is Cp(G(

2s
σ ))-DP, which is equivalent to T (VW +Z, V W ′+

Z) ≥ Cp(G(
2s
σ )).

Now we proceed to the proofs of the new results. The key point here is that we build shifted interpolated processes by not
only coupling the noise Zk+1 but also the subsampling indicator Vk; see Figure 5. For the strongly convex and smooth
setting, we state and prove a general theorem that allows one to choose the sequences of shift and sensitivity.

8In fact, since tradeoff functions are convex, (a) and (b) are enough to conclude that Cp(G(µ)) is the best tradeoff function bound; (c)
provides an additional explanation on the linear part of Cp(G(µ)). See Figure 4.

9We conjecture that a strictly better lower bound holds, which corresponds to the case when W and W ′ are constant vectors aligned in
the opposite direction, i.e., R(s, σ, p) = T (pN (− s

σ
, 1) + (1− p)N (0, 1), pN ( s

σ
, 1) + (1− p)N (0, 1)).
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Figure 5. Illustration of shifted interpolated processes in the proofs of Theorem 4.9 (left) and Theorem 4.10 (right). The solid lines denote
the updates based on the realized values of {Vk}, and the dashed lines denote the alternative updates based on their unrealized values;
each interpolated process uses the same (coupled) values of {Vk} as expressed in the figure. In Theorem 4.9, we build two processes,
each of which tracks its corresponding original process. In Theorem 4.10, only one process is built and it inherits the identical deviation
based on the realizations of {Vk}.

Theorem C.13. Consider m-strongly convex, M -smooth loss functions with gradient sensitivity L. Then for any η ∈
(0, 2/M), NoisySGD is f -DP where

f = G(
2
√
2czt−1

ησ
)⊗

t−1⊗
k=0

Cb/n(G(
2ak
ησ

))

for any sequence {zk}0≤k≤t−1, {ak}0≤k≤t−1 such that z0 = 0, a0 =
√
2ηL
b , ak ≤ ηL

b for all k ≥ 1 and zt−1 =
1−ct−1

1−c
ηL
b −

∑t−1
k=1 c

t−k−1ak and where c = max{|1− ηm|, |1− ηM |}.

Proof. As in (11) and (12), the iterates of NoisySGD with respect to {fi}i∈[n] and {f ′i}i∈[n] are

Xk+1 = ΠK(ψSk
(Xk) + Vk(ϕSk

− ψSk
)(Xk) + Zk+1)

X ′
k+1 = ΠK(ψS′

k
(X ′

k) + V ′
k(ϕ

′
S′
k
− ψS′

k
)(X ′

k) + Z ′
k+1) ,

where Zk+1, Z
′
k+1 ∼ N (0, η2σ2Id). Now consider shifted interpolated processes defined as

X̃k+1 = ΠK(ψSk
(X̃k) + λk+1Vk(ϕSk

(Xk)− ψSk
(X̃k)) + Zk+1)

X̃ ′
k+1 = ΠK(ψS′

k
(X̃ ′

k) + λk+1V
′
k(ϕ

′
S′
k
(X ′

k)− ψS′
k
(X̃ ′

k)) + Z ′
k+1) ,

with X̃0 = X̃ ′
0 = X0 and λk = ak

zk+ak
· 1{zk+ak>0} for {zk}0≤k≤t−1 and {ak}0≤k≤t−1 such that z0 = 0, a0 =

√
2ηL
b and

zk+1 = czk + ηL
b − ak+1 for all k ≥ 0. Then inductively ∥X̃k −Xk∥ ≤ zk for all k from

∥X̃k+1 −Xk+1∥ ≤

{
∥ψSk

(Xk)− ψSk
(X̃k)∥ ≤ czk Vk = 0

∥(1− λk+1)(ϕSk
(Xk)− ψSk

(X̃k))∥ ≤ czk + ηL
b − ak+1 Vk = 1

and ∥λk+1(ϕSk
(Xk)− ψSk

(X̃k))∥ ≤ ak+1; similar results hold for {X ′
k}. Thus as in the proof of Theorem 4.8 (see also

Theorem C.3), with Lemma C.12

T (X̃t−1, X̃
′
t−1) ≥

t−1⊗
k=1

Cb/n(G(
2ak
ησ

)) .
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To relate this with T (Xt, X
′
t), note that there is no choice of λt that yields X̃t = Xt. Instead, we can proceed as follows:

write down the corresponding update (before taking the projection) as

ψSt−1(Xt−1) + Vt−1(ϕSt−1 − ψSt−1)(Xt−1) + Zt

= ψSt−1(X̃t−1) + ψSt−1(Xt−1)− ψSt−1(X̃t−1) + Z
(1)
t + Vt−1(ϕSt−1 − ψSt−1)(Xt−1) + Z

(2)
t

where Z(1)
t , Z

(2)
t ∼ N (0, η

2σ2

2 Id)
10 are independent, ψSt−1

(Xt−1) − ψSt−1
(X̃t−1) is bounded by czt−1 and (ϕSt−1

−
ψSt−1

)(Xt−1) is bounded by ηL
b . Then

T (Xt, X
′
t)

≥ T ((X̃t−1, St−1, ψSt−1(Xt−1)− ψSt−1(X̃t−1) + Z
(1)
t ), (X̃ ′

t−1, S
′
t−1, ψS′

t−1
(X ′

t−1)− ψS′
t−1

(X̃ ′
t−1) + Z

(1)′

t ))

⊗R(ηL
b
,
ησ√
2
, b/n)

≥ T ((X̃t−1, St−1), (X̃
′
t−1, S

′
t−1))⊗R(czt−1,

ησ√
2
, 1)⊗R(ηL

b
,
ησ√
2
, b/n)

≥ T (X̃t−1, X̃
′
t−1)⊗G(

2
√
2czt−1

ησ
)⊗ Cb/n(G(

2
√
2L

bσ
)) .

In this formulation, optimizing over the sequences {zk} and {ak} is intractable because of the analytically complicated
nature of the subsampled operator and composition of tradeoff functions. Heuristically, when b/n is small, each individual
Cb/n(G(·)) is very close to Id and the most substantial factor is the GDP part. In this sense, sequences that make zt−1 small
can be considered as a reasonable choice.

Proof of Theorem 4.9. Consider at−1 = · · · = aτ = ηL
b and ak = 0 for all 1 ≤ k < τ in Theorem C.13.

Proof of Theorem 4.10. For the iterates (11) and (12), consider the shifted interpolated process

X̃k+1 = ΠK(ψSk
(X̃k) + λk+1(ψSk

(Xk)− ψSk
(X̃k)) + Vk(ϕSk

− ψSk
)(Xk) + Zk+1)

where λk+1 = 1
t−k and X̃τ = X ′

τ . Then for any k ≥ τ , ∥X̃k −Xk∥ ≤ zk and ∥λk+1(ψSk
(Xk)− ψSk

(X̃k))∥ ≤ ak+1

where

zk =
D

t− τ
(t− k)

ak+1 ≡
D

t− τ
.

The first inequality is inductively from ∥X̃τ −Xτ∥ = ∥X ′
τ −Xτ∥ ≤ D and

∥X̃k+1 −Xk+1∥ ≤ (1− λk+1)∥X̃k −Xk∥ ≤ zk+1 .

The second inequality is from ∥λk+1(ψSk
(Xk)− ψSk

(X̃k))∥ ≤ λk+1zk = ak+1. Also, note that X̃t = Xt. As in the proof
of Theorem 4.9, we can write down as

ψSk
(X̃k) + λk+1(ψSk

(Xk)− ψSk
(X̃k)) + Vk(ϕSk

(Xk)− ψSk
(Xk)) + Zk+1

= ψSk
(X̃k) + λk+1(ψSk

(Xk)− ψSk
(X̃k)) + Z

(1)
k+1 + Vk(ϕSk

− ψSk
)(Xk) + Z

(2)
k+1

10In general, we can split the noise into Zt = Z
(1)
t + Z

(2)
t where Z

(1)
t ∼ N (0, η2σ2

α2 Id) and Z
(2)
t ∼ N (0, η2σ2

β2 Id) are independent

and 1/α2 + 1/β2 = 1. Then the part G(
2
√
2czt−1

ησ
) ⊗ Cb/n(G( 2

√
2L

bσ
)) in the last line of the proof is replaced with G(

2αczt−1

ησ
) ⊗

Cb/n(G( 2βL
bσ

)).
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where Z(1)
k+1, Z

(2)
k+1 ∼ N (0, η

2σ2

2 Id)
11 are independent and similarly

ψS′
k
(X ′

k) + V ′
k(ϕ

′
S′
k
− ψS′

k
)(X ′

k) + Z ′
k+1 = ψS′

k
(X ′

k) + Z
(1)′

k+1 + V ′
k(ϕ

′
S′
k
− ψS′

k
)(X ′

k) + Z
(2)′

k+1 .

Thus

T (X̃k+1, X
′
k+1) ≥ T ((X̃k, Sk, λk+1(ψSk

(Xk)− ψSk
(X̃k)) + Z

(1)
k+1), (X

′
k, S

′
k, Z

(1)′

k+1))⊗R(
ηL

b
,
ησ√
2
, b/n)

≥ T ((X̃k, Sk), (X
′
k, S

′
k))⊗R(ak+1,

ησ√
2
)⊗R(ηL

b
,
ησ√
2
, b/n)

≥ T (X̃k, X
′
k)⊗G(

√
2D

(t− τ)ησ
)⊗ Cb/n(G(

2
√
2L

bσ
)) .

Repeating this for k = t− 1, . . . , τ yields the result.

C.4.3. CHOICE OF t− τ BASED ON APPROXIMATION

Since Theorem 4.9 and Theorem 4.10 hold for every t− τ , we can calculate the corresponding f -DP bound for each t− τ
and then take the pointwise maximum as a valid privacy guarantee; however, this may be computationally burdensome if t
is large. One way to bypass this calculation is to approximate the composition of subsampled Gaussian mechanisms via
CLT, (Lemma A.5), where the resulting f -DP bound becomes a GDP bound and thus optimization over t− τ is analytically
tractable.
Proposition C.14. In the setting of Theorem 4.9, by choosing (modulo floor or ceiling)

t− τ = −
log b2σ(1−c)

2
√
2nL
√

log(1/c)

√
e4L2/(bσ)2Φ( 3Lbσ ) + 3Φ(− L

bσ )− 2

log(1/c)
− 1

NoisySGD is approximately µ-GDP, where

µ =

√
8

(
L

bσ

ct−τ+1

1− c

)2

+
2b2

n2
(t− τ)(e4L2/(bσ)2Φ(

3L

bσ
) + 3Φ(− L

bσ
)− 2) . (14)

Proof. By Lemma A.5,

Cb/n(G(
2
√
2L

bσ
))⊗ Cb/n(G(

2L

bσ
))⊗(t−τ) ≈ G

(
√
2
b

n

√
(t− τ)(e4L2/(bσ)2Φ(

3L

bσ
) + 3Φ(− L

bσ
)− 2)

)
.

Also, by bounding
2
√
2L

bσ

ct−τ+1 − ct

1− c
≤ 2
√
2L

bσ

ct−τ+1

1− c
we obtain an approximate lower bound G(µ) of the form (14). As a function of t − τ ∈ (0,∞) it is convex, and the
first-order optimality condition provides the stated formula for t− τ .

Proposition C.15. In the setting of Theorem 4.10, by choosing (modulo floor or ceiling)

t− τ =
Dn

bησ

√
e8L2/(bσ)2Φ( 3

√
2L

bσ ) + 3Φ(−
√
2L
bσ )− 2

NoisySGD is approximately µ-GDP, where

µ =

√
2D2

η2σ2(t− τ)
+ 2

b2

n2
(t− τ)(e8L2/(bσ)2Φ(

3
√
2L

bσ
) + 3Φ(−

√
2L

bσ
)− 2) . (15)

Proof. As in the proof of Proposition C.14, the CLT approximation of Cb/n(G(
2
√
2L

bσ ))⊗(t−τ) provides a lower bound G(µ)
of the form (15), which is a convex function in t− τ ; the first-order optimality condition yields the stated result.

11As before, setting Z
(1)
k+1 ∼ N (0, η2σ2

α2 Id) and Z
(2)
k+1 ∼ N (0, η2σ2

β2 Id) with 1/α2 + 1/β2 = 1 replaces G(
√
2D

(t−τ)ησ
) ⊗

Cb/n(G( 2
√
2L

bσ
)) with G( αD

(t−τ)ησ
)⊗ Cb/n(G( 2βL

bσ
)).

27



Shifted Interpolation for Differential Privacy

C.5. Lower bounds

Here we elaborate on lower bounds for the amount of privacy preserved (i.e., upper bounds on the f -DP guarantee) that
complement our results in §4. Note that an exactly matching bound for NoisyGD in the strongly convex setting was
obtained in Theorem 4.2, and an asymptotically matching bound for NoisySGD in the constrained convex setting was
obtained in (Altschuler & Talwar, 2022). Below, we present results for the other related settings using similar techniques.
For the strongly convex setting, these lower bounds are built based on convex quadratics which yield iterates with explicit
Gaussians; and for the constrained convex setting, these are obtained by comparing symmetric and biased (projected)
Gaussians. We refer the readers to (Altschuler & Talwar, 2022) for further discussion about these constructions.

Theorem C.16. Consider the setting of Theorem 4.3 or Theorem 4.6. There exist universal constants 0 < c0 < 1/5, c1 > 0

such that if σ2 ≤ c0 LD
ηn and µ = c1

1
σ

√
LD
ηn , then

(a) NoisyGD is not µ-GDP for all t ≥ Dn
ηL ≥

1
2 .

(b) NoisyCGD is not µ-GDP for all E ≥ Db
ηL ≥

1
2 .

Proof. (a) For NoisyGD, let µ0 = µ
c1

= 1
σ

√
LD
ηn . Consider d = 1 and loss functions such that∇fi(x) = 0 for all i ∈ [n],

∇f ′i(x) = 0 for all i ̸= i∗ and ∇f ′i∗(x) = −L.12 Also, let X0 = 0 and K = [−D
2 ,

D
2 ]. Note that by Lemma A.3, a

µ-GDP algorithm is (µ2,Φ(−µ
2 ))-DP. We will show that for E = [−D

2 , 0],

P(Xt ∈ E) =
1

2

P(X ′
t ∈ E) < exp(−µ2)(

1

2
− Φ(−µ

2
))

which implies that NoisyGD is not (µ2,Φ(−µ
2 ))-DP and thus NoisyGD is not µ-GDP. First, recall that

Xk+1 = ΠK(Xk + Zk+1)

X ′
k+1 = ΠK(X

′
k +

ηL

n
+ Z ′

k+1)

where Zk+1, Z
′
k+1 ∼ N (0, η2σ2). Since the distribution of Xk is symmetric for all k, P(Xt ∈ E) = 1

2 . On the other
hand, for t0 = t− ⌈0.8Dn

ηL ⌉+ 1 consider a process {X ′′
k }t0≤k≤t such that X ′′

t0 = −D
2 and

X ′′
k+1 = min{X ′′

k +
ηL

n
+ Z ′

k+1,
D

2
} .

Then inductively, P(X ′
k ≤ z) ≤ P(X ′′

k ≤ z) for all z. Letting E0 = {maxt0≤k≤t

∑k
j=t0

Zj ≤ 0.1D}, by Doob’s
submartingale inequality we have

P(Ec
0) ≤ exp(− (0.1D)2

2× ⌈0.8Dn
ηL ⌉ × (ησ)2

) ≤ exp(− 0.01LD

5.6nησ2
) = exp(−0.01

5.6
µ2
0) .

12For general d > 1, a similar argument (with slightly different constants) can be made by considering ∇f ′
i∗(x) = −Le1 and

K = [−Θ(D),Θ(D)]× [−Θ(D/
√
d− 1),Θ(D/

√
d− 1)]d−1 (constant factors chosen such that K has diameter D).
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Also, conditioning on E0, X ′′
t = −D

2 + ηL
n × ⌈0.8

Dn
ηL ⌉+

∑t
j=t0

Zj ≥ 0.3D +
∑t

j=t0
Zj . Thus

P(X ′
t /∈ E) ≥ P(X ′′

t > 0)

≥ P({X ′′
t > 0} ∩ E0)

≥ P({0.3D +

t∑
j=t0

Zj > 0} ∩ E0)

≥ P(0.3D +

t∑
j=t0

Zj > 0)− exp(−0.01

5.6
µ2
0)

≥ Φ(
0.3√
2.8

µ0)− exp(−0.01

5.6
µ2
0)

≥ 1− exp(−0.9

5.6
µ2
0)− exp(−0.01

5.6
µ2
0)

where the penultimate inequality is from that
∑t

j=t0
Zj is a mean zero Gaussian with variance ⌈0.8Dn

ηL ⌉η
2σ2 ≤

2.8Dnησ2

L = 2.8D2

µ2
0

, and the last inequality is from Φ(x) ≥ 1 − exp(− 1
2x

2) for all x ≥ 1√
2π

(with 0.3µ0/
√
2.8 ≥

0.3/
√
2.8c0 ≥ 1/

√
2π). By taking sufficiently small c1 <

√
0.01
5.6 and c0 < c21 such that

exp(−0.9

5.6
µ2
0) + exp(−0.01

5.6
µ2
0) ≤ exp(−c21µ2

0)(
1

2
− Φ(−1

2
))

for all µ2
0 ≥ 1

c0
, we have

exp(−µ2)(
1

2
− Φ(−µ

2
)) = exp(−c21µ2

0)(
1

2
− Φ(−c1µ0

2
))

≥ exp(−c21µ2
0)(

1

2
− Φ(− c1

2
√
c0

))

> exp(−c21µ2
0)(

1

2
− Φ(−1

2
))

≥ exp(−0.9

5.6
µ2
0) + exp(−0.01

5.6
µ2
0)

≥ P(X ′
t ∈ E)

as desired.

(b) The proof for NoisyCGD is similar to that for NoisyGD (recall that t = lE and n = lb); consider the same loss
functions, initialization, constraint set with i∗ ∈ Bl. Then

Xk+1 = ΠK(Xk + Zk+1)

X ′
k+1 = ΠK(X

′
k +

ηL

b
1{r(k)=l} + Z ′

k+1)

where r(k) = k+ 1− l⌊kl ⌋. For t0 = l(E − ⌈0.8Db
ηL ⌉) + 1, consider a process {X ′′

k }t0≤k≤t such that X ′′
t0 = −D

2 and

X ′′
k+1 = min{X ′′

k +
ηL

b
1{r(k)=l} + Z ′

k+1,
D

2
} .

Then with the same events E and E0, P(Xt ∈ E) = 1/2 and

P(X ′
k ≤ z) ≤ P(X ′′

k ≤ z) for all z

P(Ec
0) ≤ exp(− (0.1D)2

2× l⌈0.8Db
ηL ⌉ × (ησ)2

) ≤ exp(−0.01

5.6
µ2
0)

and conditioning on E0, X ′′
t = −D

2 + ηL
b × ⌈0.8

Db
ηL ⌉ ≥ 0.3D +

∑t
j=t0

Zj ; the rest are identical.
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Theorem C.17. In the setting of Theorem 4.5, any valid f -DP lower bound for NoisyCGD satisfies

G(µ) ≥ f

where µ = L
bσ

√
1−clE

1+clE
1−c2

(1−cl)2
.

Proof. Consider the loss functions in the proof of Theorem 4.2, with X0 = 0,K = Rd and i∗ ∈ Bl. By direct calculation
XlE = N (0, 1−c2lE

1−c2 η2σ2Id) and X ′
lE = N (ηLb

1−clE

1−cl
v, 1−c2lE

1−c2 η2σ2Id), implying T (XlE , X
′
lE) = G(µ) with µ as

stated.

D. Numerical details and results
In this section, we provide numerical details of the figures and experiments in the main text and additional numerical results
for different algorithms. Code reproducing these numerics can be found here: https://github.com/jinhobok/
shifted_interpolation_dp.

D.1. Details for Figure 1

In Figure 1, we consider 1-strongly convex and 10-smooth loss functions with learning rate η = 0.05, effective sensitivity
L/(nσ) = 0.1, and t ∈ {10, 20, 40, 80, 160}, with t = 160 in the left figure and δ = 10−5 in the right figure. Our f -DP
bound is from Theorem 4.2, our RDP bound is from Theorem 4.2 and Lemma A.4, the prior RDP bound is from (Ye &
Shokri, 2022, Theorem D.6), and the composition bound is from Theorem 4.1. For conversion from GDP and RDP to
(ε, δ)-DP, see §A.1 and §A.2. We emphasize that different choices of parameters lead to qualitatively similar plots; see §D.3
for further numerical comparisons in other settings.

D.2. Details for §4.4

Here we provide further numerical details for the experiment in §4.4. The purpose of this simple numerical example is
to corroborate our theoretical findings by comparing them with existing privacy bounds. As such, we simply compare
algorithms with the same hyperparameters, and do not attempt to optimize these choices for individual algorithms.

In §4.4, Table 1 shows that our results provide improved privacy bounds. That table considers the privacy leakage of
NoisyCGD in (ε, δ)-DP with regularization parameter λ = 0.002. Table 3 and Table 4 provide more details on this
numerical comparison by also considering another algorithm (NoisySGD), another notion of privacy leakage (GDP), and
another parameter (λ = 0.004). Details on these tables: for the GDP Composition privacy bound on NoisySGD, we present
the approximate value of the GDP parameter provided by CLT since this is computationally tractable; for (ε, δ)-DP we
compute the corresponding ε to an error of 10−3 using the numerical procedure in §D.5; and we convert the currently known
best RDP bounds provided by (Ye & Shokri, 2022, Theorem 3.3) to (ε, δ)-DP using the numerical procedure in §A.1.

Table 3. More detailed version of Table 1, for GDP. Lists the GDP parameters of private algorithms for the regularized logistic regression
problem. Note that GDP Composition yields the same privacy bound regardless of the regularization parameter. Our results provide
improved privacy.

Epochs GDP Composition Our Bounds

Algorithms NoisyCGD NoisySGD NoisyCGD
λ {0.002, 0.004} 0.002 0.004

50 4.71 1.03 0.99 0.99
100 6.67 1.45 1.24 1.22
200 9.43 2.05 1.59 1.51
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Table 4. More detailed version of Table 1, for (ε, δ)-DP. Lists ε of private algorithms on the regularized logistic regression problem for
δ = 10−5. Note that GDP Composition yields the same privacy bound regardless of λ. Our results provide improved privacy over both
GDP Composition and RDP.

Epochs GDP Composition RDP Our Bounds

Algorithms NoisyCGD NoisySGD NoisyCGD NoisyCGD
λ {0.002, 0.004} 0.002 0.004 0.002 0.004

50 30.51 4.44 5.82 5.61 4.34 4.32
100 49.88 6.65 7.61 7.00 5.60 5.51
200 83.83 10.11 9.88 8.38 7.58 7.09

These tables show that compared to our results (Theorem 4.5), the standard GDP Composition bound for NoisyCGD
(Theorem 4.4) provides essentially no privacy. This is because that standard bound incurs a large privacy loss in each
epoch (at the step in which the adjacent datasets use different gradients), and this privacy leakage accumulates indefinitely—
whereas our analysis captures the contractivity of the algorithm’s updates, which effectively ensures that previous gradient
queries leak less privacy the longer ago they were performed. See §3 for a further discussion of this. Combined with the
lossless conversion enabled by our f -DP analysis, our results also provide better privacy than the state-of-the-art RDP
bounds.

Table 5 and Table 6 (reporting (mean) ± (standard deviation) of accuracies over 10 runs) show that (1) NoisyCGD and
NoisySGD have comparable training and test accuracy for this problem, and (2) both algorithms improve when run longer,
thus necessitating better privacy guarantees in order to achieve a target error (for either training or test) given a fixed privacy
budget. Note that while NoisySGD enjoys better privacy bounds than NoisyCGD using the standard GDP Composition
argument, our new privacy guarantees for NoisyCGD improve over GDP Composition bounds for both algorithms (c.f.,
Table 3 and Table 4). In particular, observe that while running algorithms longer leads to better accuracy, the privacy leak in
NoisySGD from GDP Composition grows faster relative to our results (e.g., compare the values of ε when E = 50 and
E = 200). This highlights the convergent dynamics of our privacy bounds and exemplifies how this enables algorithms to
be run longer while preserving privacy.

Table 5. More detailed version of Table 2. Lists training accuracy (%) of NoisyCGD and NoisySGD for regularized logistic regression.
Note that both algorithms perform similarly and improve when run longer.

Epochs NoisyCGD NoisySGD

λ 0.002 0.004 0.002 0.004

50 89.36 ± 0.03 89.23 ± 0.02 89.36 ± 0.04 89.22 ± 0.04
100 90.24 ± 0.03 90.00 ± 0.03 90.25 ± 0.02 89.99 ± 0.03
200 90.85 ± 0.02 90.39 ± 0.04 90.84 ± 0.03 90.37 ± 0.02

Table 6. More detailed version of Table 2. Lists test accuracy (%) of NoisyCGD and NoisySGD for regularized logistic regression.
Again, note that both algorithms perform similarly and improve when run longer.

Epochs NoisyCGD NoisySGD

λ 0.002 0.004 0.002 0.004

50 90.12 ± 0.04 90.03 ± 0.07 90.12 ± 0.08 90.00 ± 0.06
100 90.94 ± 0.07 90.70 ± 0.05 90.97 ± 0.04 90.75 ± 0.03
200 91.37 ± 0.08 91.02 ± 0.07 91.40 ± 0.07 91.01 ± 0.04

For the experiment, we closely follow the setting considered in (Ye & Shokri, 2022)—for proofs and details on theoretical
guarantees with respect to the setting, see (Ye & Shokri, 2022, Section 5). The MNIST dataset has n = 60000 training
data points and 10000 test data points; for both NoisyCGD and NoisySGD, we set the parameters as C = 8, η = 0.05,
b = 1500, σ = 1/100, L = 10, E ∈ {50, 100, 200} and λ ∈ {0.002, 0.004}. First, we clip the feature so that it has norm
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C. For the loss function l(θ, (x, y)) of the (unregularized) logistic regression, we calculate the gradient for each data point
(x, y) as

∇f(θ, (x, y)) = ∇l(θ, (x, y))
∥∇l(θ, (x, y))∥

·min{∥∇l(θ, (x, y))∥, L
2
}+ λθ .

In other words, we first clip the gradient byL/2 so that the gradient sensitivity isL, and add a gradient λθ of the regularization
term (λ/2)∥θ∥2 (which does not affect the gradient sensitivity).

D.3. Additional numerics

Here we provide additional numerical results to illustrate our privacy bounds in §4, by comparing our f -DP bounds with the
counterparts derived by the standard GDP Composition analysis. We cover the settings and algorithms covered in the main
text over a broad range of parameters, emphasizing the convergent dynamics of our privacy bounds. The different settings
lead to qualitatively similar comparisons. Recall that the relevant parameters of the algorithms are the learning rate η, noise
rate σ, number of data points n, batch size b, gradient sensitivity L, and diameter D of the constraint set K; see §2.3.

D.3.1. NOISYGD

Figure 6 shows our results for f -DP (left) and its conversion into (ε, δ)-DP (right) for NoisyGD in the strongly convex
setting (Theorem 4.2), where our bound is exact. In contrast, observe that while the bound from GDP Composition is nearly
tight for a small number of iterations t, the guarantee becomes vacuous as t increases. This is also evident from the (ε, δ)-DP
plot, where the discrepancy between the two bounds increases in t.

In Table 7, since we obtain GDP bounds, we provide the GDP parameter µ as a function of the number of iterations t and
the contractivity c = max{|1− ηm|, |1− ηM |}. All values in Table 7 scale linearly in the effective sensitivity L/(nσ);
for simplicity we set it to 0.1. Note that the GDP Composition bound is independent of c because it is not “geometrically
aware” in the sense described in §3. Our bound is optimal and always improves over GDP composition—substantially so as
t increases.
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Figure 6. Comparison of our exact privacy characterization (Theorem 4.2) with the standard GDP Composition bound (Theorem 4.1) for
NoisyGD, for c = 0.99. Shown for f -DP (left) and (ε, δ)-DP (right).

Table 7. GDP parameter µ from our exact privacy characterization (Theorem 4.2), for varying t and c.

Steps GDP Composition Our Bounds

c {0.92, 0.96, 0.98, 0.99, 0.995} 0.92 0.96 0.98 0.99 0.995

10 0.316 0.308 0.314 0.316 0.316 0.316
100 1.000 0.490 0.688 0.871 0.961 0.990

1000 3.162 0.490 0.700 0.995 1.411 1.984

Figure 7 and Table 8 turn to the setting of constrained convex optimization in Theorem 4.3. In the (ε, δ)-DP figure, we
plot the minimum ε between Theorem 4.3 and GDP Composition. A distinctive feature from both plots is that our privacy
bound stays constant after a number of iterations, compared to GDP Composition. In particular, there exists a threshold
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t∗ = t∗(L/n, η) such that the algorithm can run beyond the threshold (and even indefinitely) with a provable guarantee
of µ∗-GDP. To highlight this fact, we provide the pairs of (t∗, µ∗) in the table over multiple combinations of parameters.
We set the diameter of the constraint set K to be D = 1 and noise parameter to be σ = 8; note that as in the previous case,
the GDP parameters in this setting scale linearly with respect to 1/σ. Other parameter choices lead to qualitatively similar
comparisons.
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Figure 7. Comparison of our bound (Theorem 4.3) with the standard GDP Composition bound (Theorem 4.1) for NoisyGD, for
L/n = 0.5 and η = 0.1. Shown for f -DP (left) and (ε, δ)-DP (right).

Table 8. Threshold number of iterations t∗ at which point our GDP bound µ∗ from Theorem 4.3 no longer increases. Shown for varying
parameters L/n and η.

L/n \ η 0.2 0.1 0.05

0.25 (80, 0.280) (160, 0.395) (320, 0.559)
0.5 (40, 0.395) (80, 0.559) (160, 0.791)
1 (20, 0.559) (40, 0.791) (80, 1.118)

D.3.2. NOISYCGD

Figure 8 and Table 9 show the analog of Figure 6 and Table 7, now for NoisyCGD rather than NoisyGD. Recall that l
denotes the number of batches and c = max{|1 − ηm|, |1 − ηM |} is the contraction factor. All GDP parameters scale
linearly in the effective sensitivity L/(bσ); we set it to 0.2 for concreteness. The improvement of our bounds over the
standard GDP Composition bound is pronounced: our bounds yield strong privacy in both f -DP (left) and (ε, δ)-DP (right),
whereas the GDP Composition bound becomes effectively non-private as the number of epochs E increases. This is also
evident from Table 9, where our bound produces better privacy (even with E = 500 epochs) than GDP Composition (even
with E = 5).
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Figure 8. (Left) f -DP, (Right) (ε, δ)-DP comparison of our bound (Theorem 4.5) with the standard GDP Composition bound (Theorem 4.4)
for NoisyCGD, for c = 0.99 and l = 20.
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Table 9. GDP parameter µ, for varying number of epochs E and contractivity c.

Epochs GDP Composition Our Bounds

l {10, 20, 40} 10 20 40
c {0.98, 0.99, 0.995} 0.98 0.99 0.995 0.98 0.99 0.995 0.98 0.99 0.995

5 0.447 0.229 0.233 0.235 0.211 0.215 0.217 0.202 0.205 0.208
50 1.414 0.270 0.334 0.410 0.216 0.237 0.275 0.203 0.208 0.219

500 4.472 0.270 0.336 0.439 0.216 0.237 0.276 0.203 0.208 0.219

Next we turn to the setting of constrained convex losses from Theorem 4.6. Again, our bounds converge in the number of
epochs quickly and uniformly improve over the bounds from GDP Composition after only a few number of epochs—for the
(ε, δ)-DP plot, we show the minimum ε between Theorem 4.6 and GDP Composition. In particular, from the table one can
observe that there are even a few cases in which our bounds are better than those from GDP Composition after less than 10
epochs. We chose D = 1 and σ = 3; the GDP parameters scale linear in 1/σ.
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Figure 9. (Left) f -DP, (Right) (ε, δ)-DP comparison of our bound (Theorem 4.6) with the existing bound from GDP Composition
(Theorem 4.4) for NoisyCGD under constrained set, with η = 0.02, L/b = 0.5 and l = 20.

Table 10. (E∗, µ∗) over different values of (L/b, η), with l = 10.

L/b \ η 0.04 0.02 0.01

0.25 (31, 0.534) (62, 0.750) (123, 1.057)
0.5 (17, 0.764) (33, 1.067) (65, 1.500)
1 (10, 1.106) (20, 1.528) (40, 2.134)

Table 11. (E∗, µ∗) over different values of (L/b, η), with l = 20.

L/b \ η 0.04 0.02 0.01

0.25 (16, 0.382) (31, 0.534) (62, 0.750)
0.5 (9, 0.553) (17, 0.764) (33, 1.067)
1 (5, 0.816) (10, 1.106) (20, 1.528)

Table 12. (E∗, µ∗) over different values of (L/b, η), with l = 40.

L/b \ η 0.04 0.02 0.01

0.25 (8, 0.276) (16, 0.382) (31, 0.534)
0.5 (5, 0.408) (9, 0.553) (17, 0.764)
1 (3, 0.624) (5, 0.816) (10, 1.106)
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D.3.3. NOISYSGD

For brevity, here we consider just the setting of constrained convex losses; similar plots can be obtained for the strongly
convex setting. Figure 10 compares our new privacy bound (Theorem 4.10) with the standard GDP Composition bound
(Theorem 4.8), by illustrating the f -DP tradeoff curves of both bounds for a broad range of parameters. For most parameter
choices, our bounds provide reasonable privacy that is valid even beyond the number of iterations in the plots. On the other
hand, the divergence of the GDP Composition bound clearly degrades the privacy as the number of iterations increases.
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Figure 10. Comparison of our new privacy bound (Theorem 4.10) with the standard GDP Composition bound (Theorem 4.8) for
NoisySGD in the setting of constrained convex losses. Each subplot illustrates the f -DP tradeoff curve of these bounds, for a given
relative batch size b/n and effective sensitivity L/b.

To make this figure, we approximated the compositions of Cb/n(G(·)) in Theorem 4.10 by CLT, by choosing the best privacy
bound among t− τ ∈ {100, 200, . . . , 4900} after applying CLT; this is a valid approximation by Lemma A.11. We also
note that for improved numerical results, instead of the respective factors of (

√
2,
√
2) inside G(·) and Cb/n(G(·)) of the

statement of Theorem 4.10 we used (
√
10,
√
10/3) (see the proof of Theorem 4.10 for details). For parameters unspecified

in the plots we used D = 1 and σ = 3.
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D.4. Comparison of privacy bounds for the exponential mechanism

Let fε be the tradeoff function corresponding to (ε, 0)-DP. From (Dong et al., 2022, Proposition 3), it is straightforward to
check that fε ≥ G(µ) iff

eε ≤
1− Φ(−µ

2 )

Φ(−µ
2 )

.

Plugging in ε = 2LD and µ = 2
√
LD from Corollary 5.4, one can check (using standard nonlinear equation solvers) that

this holds iff LD ≤ c∗ where c∗ ≈ 0.676.

D.5. Numerical composition of subsampled GDP

Here we mention details on the numerical procedure for calculating an (ε, δ)-DP bound from an f -DP bound of the form
f = Cp(G(µ))

⊗t; this is used in §4.4. This formula appears in multiple settings of NoisySGD, with each Cp(G(µ))
representing the f -DP of subsampled Gaussian mechanism. This conversion process is important for both notions: First,
while the composition can be approximated by CLT (Lemma A.5), in practice the approximation is not enough to guarantee
whether the algorithm achieves a given privacy budget, typically expressed in (ε, δ)-DP. On the other hand, if one can obtain
an accurate collection of different (ε, δ)-DP bounds, it can be converted into an f -DP bound of comparable accuracy due to
the duality between the two notions (Dong et al., 2022, Proposition 5 & 6).

We implement the framework of privacy loss random variables (PRV)—which is an equivalent notion of f -DP—and
the corresponding analytical procedure provided in (Gopi et al., 2021). Given a fixed value of δ and (possibly different)
compositions of private mechanisms, the algorithm presented in the paper allows one to numerically calculate ε with
user-specified margin of error. We refer the readers to (Gopi et al., 2021) for the background and overview of the PRV
framework and only present relevant results for the problem of our interest.13

The privacy curve and PRV are characterized as follows (Gopi et al., 2021, Definition 2.1 & 3.1).

Definition D.1 (Privacy curve and PRV). Let f = T (X,Y ) be a tradeoff function. Then the privacy curve δ : R→ [0, 1]
with respect to (X,Y ) is defined as δ(X||Y )(ε) = supE{P(Y ∈ E) − eεP(X ∈ E)} where the supermum is over all
events. Conversely, given a privacy curve δ : R→ [0, 1], (X,Y ) are privacy loss random variables if the following holds.

• X,Y are supported on the extended real line R̄.

• δ(X||Y ) ≡ δ.

• Let X(t), Y (t) respectively be the probability density functions of X,Y . Then Y (t) = etX(t) and Y (−∞) =
X(∞) = 0.

The probability density functions of PRVs can be calculated from the privacy curve (Gopi et al., 2021, Theorem 3.3).

Lemma D.2 (Conversion). Given a privacy curve δ : R→ [0, 1], the probability density functions of its PRVs (X,Y ) are
given as Y (t) = δ′′(t)− δ′(t) and X(t) = et(δ′′(t)− δ′(t)).

Also, symmetric tradeoff functions have the simple form of PRVs (X,Y ) with X = −Y (Gopi et al., 2021, Proposition
D.9).

Lemma D.3 (Symmetry). If (X,Y ) are PRVs for a privacy curve δ(P ||Q), the PRVs for δ(Q||P ) are (−Y,−X). In
particular, if the privacy curve is symmetric (i.e., δ(P ||Q) = δ(Q||P ); equivalently, the corresponding tradeoff function is
symmetric) then X = −Y .

By the following result, we can numerically calculate the (ε, δ)-DP converted from f -DP for f = Cp(G(µ))
⊗t.

Proposition D.4. Let (X,Y ) be such that the CDF of Y is given as

FY (t) =

{
pΦ( ε

+

µ −
µ
2 ) + (1− p)Φ( ε

+

µ + µ
2 ) t > 0

Φ(− ε−

µ −
µ
2 ) t ≤ 0

13We also note that while a corresponding result for the one-sided version of G(µ)p = T (N (0, 1), pN (µ, 1) + (1− p)N (0, 1)) was
already presented in (Gopi et al., 2021) and is often interchangeably used, it is quantitatively different from Cp(G(µ)), even in the
limiting regime of CLT. Compare, for example, Lemma A.5 and (Bu et al., 2020).
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where ε+ = log((p − 1 + et)/p), ε− = log((p − 1 + e−t)/p) and X = −Y . Then (X,Y ) are PRVs for the tradeoff
function Cp(G(µ)).

Proof. Let δ, δ0 respectively be the privacy curves of Cp(G(µ)) and G(µ)p. Then it is straightforward to check that

δ(t) =

{
δ0(t) t > 0

1− et(1− δ0(−t)) t ≤ 0

from the definition of Cp(G(µ)) (as a symmetrized version of G(µ)p; see Definition 4.7) and the duality between (ε, δ)-DP
and f -DP. By taking antiderivative from Lemma D.2, the CDF of Y is given as

FY (t) =

{
δ′0(t)− δ0(t) + C t > 0

−etδ′0(−t)− 1 + C t ≤ 0

for some constant C. By either obtaining δ0(t) directly from (Dong et al., 2022, Lemma 2) or comparing the t > 0 part of
FY (t) with (Gopi et al., 2021, Proposition C.4), one can derive the formula of FY (t) as stated with C = 1. Also, X = −Y
from Lemma D.3.
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