
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS CODEC-LM CO-DESIGN FOR NEURAL
CODEC LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural codec language models (or codec LMs) are emerging as a powerful frame-
work for text-to-speech (TTS) and other audio generation tasks. These mod-
els leverage advancements in language modeling and high-fidelity residual vec-
tor quantization (RVQ)-based audio codecs, which compress continuous wave-
forms into discrete codes for LMs to process. Despite the close interdependence
of codecs and LMs in these systems, research on codecs and LMs has largely
remained siloed. In this work, we bridge this gap by proposing several codec-
LM co-design strategies, analyzing their effects on end-to-end TTS performance
and efficiency. Specifically, we introduce three complementary techniques: (i) a
frame-wise codec encoder that improves both LM log-likelihood and end-to-end
TTS metrics, (ii) LM codebook level dropout, a method to efficiently navigate a
portion of the codec-LM design space by training a single LM, and (iii) increased
codec frame duration, which we show can accelerate inference while maintaining
end-to-end performance. Our experiments demonstrate that combining all three
co-design techniques results in doubled inference speed, and improvements in in-
telligibility, audio quality, and speaker control in TTS relative to a siloed baseline.

1 INTRODUCTION

Neural codec language models (or codec LMs) (van den Oord et al., 2017; Wu et al., 2024) have
recently emerged as a prominent framework for text-to-speech (TTS) (Tan et al., 2021; Wang et al.,
2023; Yang et al., 2024) and general audio generation tasks (van den Oord et al., 2016; Copet et al.,
2023; Borsos et al., 2023; Yang et al., 2024), replacing autoregressive methods that model continu-
ous raw waveforms (van den Oord et al., 2016; Kalchbrenner et al., 2018; Goel et al., 2022). The
success of codec LMs can be attributed to improvements in the architecture, scaling, and efficiency
of language models (LMs) (Vaswani et al., 2017; Brown et al., 2020; Dao et al., 2022; Gu & Dao,
2023), as well as increasingly high-fidelity convolutional audio codecs that employ the residual vec-
tor quantization (RVQ) technique (Zeghidour et al., 2021; Défossez et al., 2023; Kumar et al., 2023),
bridging continuous-domain audio generation tasks with LM methods that model discrete tokens.

A codec LM-based TTS or audio generation system consists of two separately trained components
working together: (i) a neural codec that is trained as an autoencoder to encode raw audio waveforms
into discrete code sequences and to decode (reconstruct) the waveform from those codes, and (ii) an
LM that models the code sequences autoregressively. Although these two components are closely
coupled, they represent relatively isolated research areas. Research on codecs (Zeghidour et al.,
2021; Défossez et al., 2023; Kumar et al., 2023; Ahn et al., 2024) primarily focuses on achieving
higher compression rates (i.e., lower bandwidths) while maintaining reconstruction quality, rather
than optimizing for downstream language modeling. Conversely, research on codec-based LMs typ-
ically treats the codec as a fixed module and explores how to best model the codec tokens, enhancing
aspects such as conditioning (Borsos et al., 2023; Yang et al., 2024), RVQ code patterning (Copet
et al., 2023; Yang et al., 2024), or non-autoregression (Wang et al., 2023). While the design space
of codecs and LMs combined is too large to explore exhaustively, considering each in isolation may
be suboptimal when the goal is to improve the end-to-end performance.

In this work, we aim to break the isolation and uncover co-design principles between the codec and
the LM. We identify several aspects that play a key role in the interactions between the two, and
substantially impact the end-to-end generation quality and/or efficiency. Leveraging these co-design

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Codec
Encoder

Codec
Decoder

Audio LM

Codec
Decoder

RVQ Codec-LM System Proposal 1: Framewise Codes

Framewise
Codec Encoder

Proposal 2: LM Codebook Level Dropout

Audio LMCodec
Decoder

Proposal 3:
Longer Code Frame Duration

Framewise
Codec Encoder

Codec
Decoder

Audio LM
…

…

“ how are you? ”

“ how are you? ”

speaker
&

transcript

RVQ
codes

generated audio

(delayed)
RVQ

codes

reconstructed audio

original audio

Q’ = 2 Q’ = 3 Q’ = 1

better
LM loss &
TTS metrics

compute-efficient
(at training) to find
best # of levels (Q’)

faster inference w/
comparable TTS metrics

Figure 1: Overview of an RVQ-based codec-LM system for TTS (left), our contributions (right,
Proposals 1, 2 & 3), and associated benefits. (Shaded triangles are receptive fields per code frame.)

insights, we propose actionable interventions which can improve the performance and efficiency
(both at training and inference) of end-to-end audio generation systems.

First, we consider the receptive fields of neighboring RVQ code frames. In the context of RVQ audio
codecs, we define a frame as a chunk of waveform samples (e.g., 512 samples) that correspond in
time to one or more discrete codes (collectively, a code frame). A code frame contains multiple RVQ
levels capturing increasingly fine-grained information. While typically, the convolutional receptive
fields of neighboring code frames overlap both in the codec’s encoder and decoder, the overlapping
has different implications on the two seemingly symmetrical sides. In the decoder, it widens the in-
formation bottleneck enabling higher-fidelity reconstruction. In the encoder however, it may muddy
the relationship between time in the waveform and time in the code frames, which we show can be
detrimental to the downstream LM. To address this, we propose a framewise codec encoder, i.e., one
which encodes each waveform frame independently. Our experiments show that using a framewise
codec encoder (i) improves the downstream LM’s log-likelihood (>8% higher), and (ii) leads to
consistently better end-to-end metrics on both TTS and unconditional music generation tasks.

Second, given a trained RVQ codec, we propose a method for efficiently determining the subset of
RVQ levels to use in LM training to improve end-to-end metrics. The residual structure of RVQ
enables the LM to be trained on subsets of RVQ levels, raising the question of what number of lev-
els to model for optimal end-to-end performance. Modeling more levels might presumably improve
end-to-end audio generation performance by improving audio reconstruction quality. However, we
observe in pilot experiments that increasing the number of levels past a certain point actually de-
grades end-to-end performance, possibly because the LM cannot effectively model such fine-grained
information. Training multiple LMs to determine the optimal level account is a computationally ex-
pensive endeavor. Accordingly, we present LM codebook level dropout, a technique that trains a
single LM on all possible level counts. We demonstrate that end-to-end performance results from
a single LM training run using our technique on 12-level RVQ codes track the results of 12 LMs
trained on each possible level count for the same number of gradient steps. Accordingly, our pro-
posed technique dramatically improves the efficiency by which researchers can tune this important
hyperparameter.

Finally, in addition to the number of levels, there exist two other salient codec hyperparameters, i.e.,
the frame duration and codebook size. In siloed codec design, these hyperparameters can be freely
traded off with one another without affecting the codec’s bitrate or audio reconstruction quality.
However, in a co-design setting, these individual hyperparameters have unique interactions with
the downstream LM. Crucially, LM sequence length is inversely proportional to frame duration,
providing a strong motivation for using longer frames to increase the efficiency of the LM. We
explore the end-to-end effects of increasing the frame duration while suitably adjusting the other
two hyperparameters to maintain codec reconstruction quality. We show that doubling the frame
duration of the default DAC codec (Kumar et al., 2023) to 22 milliseconds can result in doubled
end-to-end inference speeds and comparable end-to-end metrics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We base our experiments on a streamable (i.e., causal) variant of the DAC codec (Kumar et al., 2023),
implementing our changes (i.e., framewise encoder, longer frame duration, and larger codebook
size) without altering its architecture. We then train Delay-pattern LMs (Copet et al., 2023) for TTS,
where LM codebook level dropout is applied, on the RVQ codes from our codecs.

Our contributions can be summarized as follows:

• We introduce a framewise codec encoder (Sec. 4.1), which leads to significant improvements in
LM log-likelihood (>8% higher), and also consistently better end-to-end TTS metrics on intelli-
gibility, audio quality, and speaker control (Table 1).

• We propose LM codebook level dropout (Sec. 4.2), which allows practitioners to efficiently
tune a salient hyperparameter of the codec-LM design space in a single LM training run (Fig. 3).

• We show that using longer frame durations (Sec. 4.3) can increase end-to-end TTS inference
speeds while preserving the end-to-end TTS metrics (Table 2).

• We demonstrate that combining all three co-design techniques doubles the end-to-end TTS infer-
ence speeds while improving all end-to-end TTS metrics (Table 3).

We plan to open source the implementation and pretrained weights of our framewise codec encoder,
as well as the training-time procedure for LM codebook level dropout upon paper publication.

2 RELATED WORK

Neural audio codecs. Compressing and quantizing long, continuous audio waveforms into shorter
discrete codes using a convolutional autoencoder was first proposed by van den Oord et al. (2017).
Their proposed VQ-VAE method involves online K-Means for quantizing latent representations and
a reconstruction objective on the decoder’s output. Later, SoundStream (Zeghidour et al., 2021)
introduced the 2D-structured Residual Vector Quantization (RVQ) to such codecs. This work also
integrated a mixture of discriminators, a technique adoped from GAN-based audio synthesis (Good-
fellow et al., 2014; Donahue et al., 2019; Kumar et al., 2019; Kong et al., 2020), on top of the decoder
to enhance the perceptual quality of reconstructed waveforms—this RVQ-GAN setup has since been
a norm for neural audio codecs. EnCodec (Défossez et al., 2023) and DAC (Kumar et al., 2023) fur-
ther advanced the RVQ-GAN architecture with optimized discriminator setup, activation function,
and (low) latent dimensionality. HILCodec (Ahn et al., 2024) showed that layer-wise variance con-
straining helps with the depth scaling of lightweight RVQ-GAN codecs. Overall, research in neural
audio codecs has focused on achieving higher compression (i.e., lower bitrates) while maintaining
audio reconstruction quality, rather than downstream audio generation, and often involved detailed
architectural designs and tuning. In contrast, our work approaches codec design from an end-to-end
audio generation practitioners’ perspective, exploring codec hyperparameters that are both easily
configurable and influential to the end-to-end system.

LM-based end-to-end audio generation. Autoregressive modeling of compressed discrete
codes for audio waveforms was first proposed alongside VQ-VAE (van den Oord et al., 2017).
AudioLM (Borsos et al., 2023) introduced a hierarchical LM approach that first generates seman-
tic tokens (Hsu et al., 2021; Chung et al., 2021), derived from BERT-like pretraining (Devlin et al.,
2019) on audio data, followed by RVQ codes (or acoustic tokens), resulting in better long-term
coherence in generated audios. To navigate the efficiency-quality tradeoff given an RVQ codec,
VALL-E (Wang et al., 2023) proposed non-autoregressive modeling for all RVQ levels except the
coarsest one, and MusicGen (Copet et al., 2023) introduced the Delay pattern, dramatically shorten-
ing the sequence length while preserving key autoregressive dependencies. UniAudio (Yang et al.,
2024) unified tokenization schemes for text, phonemes, audio, and symbolic music to build an LM
for a wide range of audio generation tasks. Despite these advancements, all aforementioned work
treated the audio codec, which is upstream from the LM, as a fixed component, leaving out the
potential gains from a co-design between the codec and the LM.

Co-design of audio codecs and LMs. Compared to the two previously discussed areas, design-
ing codecs with the goal of improving end-to-end audio generations is a relatively nascent direc-
tion. SpeechTokenizer (Zhang et al., 2024) proposed to distill information in semantic tokens (Hsu
et al., 2021) into the first (coarsest) level of the RVQ codec, alleviating the need of using two

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

LMs (Borsos et al., 2023; Agostinelli et al., 2023) in tandem for semantic and acoustic RVQ to-
kens. Moshi (Défossez et al., 2024), a work conducted concurrently with ours, adopted this tech-
nique and used a causal codec setup to enable low-latency, streamable real-time voice conversa-
tions. Language-Codec (Ji et al., 2024) proposed to arrange the RVQ levels in a first-parallel, then-
sequential fashion to distribute information more evenly among the RVQ levels. While the methods
above improved the latency and/or quality of end-to-end generations, they focused on single, and
highly specific, modifications to the codec. Meanwhile, our work investigate the downstream impact
of multiple general RVQ codec hyperparameters in combination, painting a more complete picture
for end-to-end system practitioners.

3 TECHNICAL BACKGROUND

Residual vector quantization (RVQ)-based audio codecs. An RVQ-based audio codec com-
presses a continuous waveform w ∈ RTfs , where T is the duration (in seconds) and fs is the sam-
pling rate (in Hz) of the waveform, into discrete codes x ∈ VTfx×Q. Here V := {1, 2, . . . , |V|}
represents the codebook, fx (typically much smaller than fs) is the frame rate (in Hz) of the codec,
and Q is the number of codebook levels used to represent each frame. We also call downsampling
rate of the codec, i.e., fs/fx, the frame size (an integer number of audio samples) and 1/fx the frame
duration (in seconds). The term residual refers to how the Q codebook levels are structured to
progressively refine the quantization (Zeghidour et al., 2021). Let the unquantized representation
(i.e., the codec encoder output) for the i-th frame be denoted by h

(1)
i ∈ RD, where D is the codec

encoder’s output dimension. The RVQ process works iteratively for each level q ∈ {1, . . . , Q} on a
frame-by-frame basis, quantizing the residual information from preceding levels using a level-wise
learned codebook C(q) : V → RD. The operations at each level are:

xi,q := argmin
x̃∈V

∥h(q)
i − C(q)(x̃)∥22 (1)

h
(q+1)
i := h

(q)
i − C(q)(xi,q) , (2)

where xi,q ∈ V becomes an element in the code sequence x, and C(q)(xi,q) ∈ RD is the quantized
representation corresponding to xi,q . The level-wise quantized representations are summed frame-
by-frame, i.e.,

∑Q
q C(q)(xi,q); ∀i ∈ {1, . . . ,Tfx}, to produce the input to the codec decoder for

reconstructing the original waveform.

The basic building blocks of an RVQ codec are 1D convolutional layers. Typically, these layers
use symmetric padding, which introduces a dependency on future inputs, making the codec non-
causal and unsuitable for low-latency streaming. To construct a causal codec, we can shift all
paddings to the left of each layer’s input (Défossez et al., 2023), which limits the theoretical latency
to 1/fx, i.e., the frame duration. However, this causal setting slightly degrades audio reconstruction
quality due to the lack of future context. In our work, we adopt the causal setting, which is also
explored in concurrent work (Défossez et al., 2024), as low-latency streamability is critical in real-
time applications.

The training process of an RVQ codec often includes quantizer dropout (Zeghidour et al., 2021;
Kumar et al., 2023), which sometimes performs Eqn. (1) and Eqn. (2) for Qtrunc < Q levels, forcing
the codec to pack information in the lower codebook levels. Quantizer dropout enables the codec
to encode and reconstruct audio waveforms at all Q possible rates of compression, enhancing its
versatility, and serves as a foundation for our codebook level dropout technique during LM training.

Language modeling with Delay pattern of RVQ codes. Once the RVQ audio codec is trained,
the remaining step in constructing an end-to-end audio generative model is to train an autoregressive
LM on the discrete codes x ∈ VTfx×Q′

, where Q′ ∈ {1, . . . , Q} is a subset of the RVQ levels to
model. A naive method to train LMs on these 2D-structured codes is to flatten them into a 1D
sequence x(flatten) := [x1,1, . . . , x1,Q′ , x2,1, . . . , xTfx,Q′]. However, this would be highly inefficient
as the LM’s sequence length scales with T × Q′. The Delay pattern proposed in (Copet et al.,
2023) makes a good tradeoff between the efficiency and efficacy of modeling the RVQ codes x.
Instead of flattening, it shifts the q-th level of x to the right by q positions, creating a shifted code
sequence x(delay) ∈ V(Tfx+Q′−1)×Q′

, where each frame (i.e., x(delay)
t ∈ VQ′

) can be specified by

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

x(delay)
t := [xt−q+1, q]

Q′

q=1. Then, an LM is trained to model:

p(x) = p(x(delay)) :=

Tfx+Q′−1∏
t=1

p(x(delay)
t | x(delay)

<t) , (3)

predicting the elements in each frame x(delay)
t in parallel. The Delay pattern has two desirable prop-

erties: (i) As the Q′ levels of a frame are collapsed into one LM timestep, the sequence length of
the LM scales only with audio duration T rather than T × Q′; (ii) Although some conditional in-
dependence is assumed between elements in x, key dependencies like neighbor frames of the same
level (e.g., [xt−1,q, xt,q, xt+1,q]) and all levels of the same frame (e.g., [xt,1, xt,2, . . . , xt,Q′]) are
still modeled sequentially as in the case where x is flattened and modeled autoregressively.

Though omitted in Eqn. (3), the LM is typically trained with conditions y expected from the user,
e.g., text transcripts and speaker characteristics. Bringing all components together, our codec-LM
audio generation system models the following distribution:

p(w,x | y) := p(w | x)︸ ︷︷ ︸
learned by codec

· p(x | y)︸ ︷︷ ︸
learned by LM

, (4)

where conditional independence between waveform w and user inputs y is assumed given codes x.
We note that, in practice, p(w | x) is typically a deterministic mapping parameterized by the RVQ
codec decoder.

4 METHOD

4.1 CODES WITH NON-OVERLAPPING RECEPTIVE FIELDS (FRAMEWISE CODEC ENCODER)

Most common RVQ audio codecs (Zeghidour et al., 2021; Défossez et al., 2023; Kumar et al.,
2023) set the stride size of each 1D convolutional layer to be smaller than the filter size. This way
the neighboring outputs (along the time dimension) have overlapping receptive fields, promoting the
smoothness of transitions. When we consider the entire codec encoder, where multiple convolutional
layers are stacked and gradually increase the receptive field of each intermediate representations,
this overlapping property at each layer causes the receptive field of each code frame xt to overlap
with those of preceding code frames [xt−k, . . . ,xt−1].1 2 A similar property also holds in the codec
decoder, i.e., each sample in the reconstructed waveform ŵ is influenced by multiple code frames.

If we reason about the frame-level overlaps, it is intuitive that they benefit the decoder, as the mutual
information between multiple code frames can be leveraged for improved reconstruction. On the
other hand, whether these overlaps are advantageous on the encoder side is less clear. They may
provide the opportunity for the codec to pack information in high-complexity waveform segments
(e.g., fast speech with frequent intonation changes) into neighboring code frames corresponding
to low-information segments (e.g., silence), hence improving audio reconstruction. However, this
could be detrimental for the downstream LM as each code frame may hold varying amounts of
(confounding) information from preceding frames.

Therefore, we propose a setup where the codes are encoded framewise, i.e., each code frame xt has
a receptive field covering only fs/fx waveform samples, without overlapping with other code frames.
Operationally, this is achieved by reshaping the waveform (i.e., the inital input to the codec encoder)
from (B,Tfs, 1), where the dimensions represent (batch, sequence, channels), to (BTfx, fs/fx, 1).
Since the downsampling rate of the entire encoder is precisely fs/fx, the final encoder output is of
shape (BTfx, 1, D), which we then reshape back to (B,Tfx, D) before quantization as in normal
codecs with frame-level overlaps. Note that no architectural changes are required.3

This setup with encoder-framewise and decoder-overlapping receptive fields retains desirable prop-
erties such as leveraging mutual information between code frames for reconstruction, and smooth

1Here, we assume the codec is causal, and hence has no future dependencies.
2For example, for the architecture of DAC (Kumar et al., 2023), the extent of overlap is k = 8.
3We can also construct a framewise codec decoder using a similar reshaping operation on the (quantized)

code frames, but we show (see Table 1) that it harms both reconstruction and end-to-end generation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

transitions of encoder intermediate representations, since their receptive fields remain overlapping
within each frame. Also, the information unique to each frame of waveform samples is forced to
be encoded distinctly into one code frame, instead of spilling over multiple code frames, which we
anticipate might benefit downstream language modeling.

4.2 LM CODEBOOK LEVEL DROPOUT (CL DROP)

1 2 3 4 5 6 7 8 9 10 11 12
levels

0.7

0.8

0.9

1.0

1.1

1.2

M
el

 sp
ec

tra
l L

1
di

st
 (

) audio reconstruction (codec)
end-to-end TTS (codec + LM)

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ec

he
t a

ud
io

 d
ist

 (
)

Figure 2: Impacts of # of codebook levels Q′

are different on codec-only audio reconstruc-
tion vs. end-to-end TTS involving both the
codec and the LM. (frame duration 1/fx =
11ms; codebook size |V| = 215.)

Here we propose a novel method designed to in-
crease the efficiency of hyperparameter tuning for
the number of codec RVQ levels Q′ used when train-
ing the downstream LM. The residual structure of
RVQ quantization combined with quantizer dropout
during codec training offers a useful property: an
RVQ codec pre-trained with Q levels can operate
at inference time with any of Q′ ∈ {1, . . . , Q} code
levels. Accordingly, this hyperparameter offers con-
venient flexibility for LM co-design as LMs with
different Q′ can be trained without re-training the
codec.

The choice of the hyperparameter Q′ can have a sub-
stantial impact on the end-to-end audio generation
performance of the codec LM system. While in-
creasing Q′ monotonically improves codec audio re-
construction due to a wider information bottleneck,
its impact on the combined codec LM system is
more ambiguous. Using too low of a Q′ value in
the LM could result in poor audio quality, while using too high of a value could be detrimental as
modeling finer-grained levels may: (i) present information that is too stochastic for the LM to pro-
cess effectively, or (ii) shift the LM’s capacity away from the coarser-grained levels which contain
more crucial structural or semantic information about the audio.

To demonstrate this, we train a single RVQ codec on speech data with Q = 12 levels and train
12 LMs for text-to-speech (TTS) using each possible value of Q′ ∈ {1, . . . , 12}. In Fig. 2, we
first plot the codec audio reconstruction performance as measured by Mel-spectral L1 distance.
We also plot the end-to-end codec LM system performance as measured by Fréchet audio distance
(FAD) (Kilgour et al., 2019), an end-to-end metric for audio generation. We observe that end-to-end
performance improves as the number of levels increases towards a global minima at 9 levels and
deteriorates afterwards, as opposed to the monotonically improving curve of audio reconstruction.

Fig. 2 clearly demonstrates the potential importance of tuning Q′ in the codec LM. However, because
LM training typically exceeds codec training in terms of required compute, the naive strategy of
training O(Q′) LMs to tune Q′ nullifies the potential compute savings of only needing to train a
single codec. Therefore, we propose codebook level dropout (CL drop), which trains just a single
LM that allows evaluation/inference at all possible level counts up to Q, analogous to the quantizer
dropout method used to train the codec. To perform CL drop, we first define a dropout distribution
P(q) over the all levels q ∈ {1, . . . , Q}, and then during LM training, we truncate inputs x(delay)

along the level dimension according to P(q). The LM’s training objective can hence be written as:

min
θ

E(x,y)∼D,Q′∼P(q)

[
− log pθ

(
x(delay)
:, :Q′ | y

)]
(5)

where D is the LM training set with paired conditions y and RVQ codes x for the desired audio,
and θ is the set of the LM’s trainable parameters.

For CL drop to be effective in determining the best Q′, its end-to-end performance profile across
different level counts should closely mirror the trends without CL drop (i.e., the ‘end-to-end TTS’
curve in Fig. 2). Intuitively, the choice of P(q) is critical in preserving the trends, as it governs how
much the LM’s focus is shifted toward the lower (coarser-grained) levels.4

4Experiments on different P(q)’s are deferred to Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.3 NAVIGATING OTHER KEY CODEC HYPERPARAMETERS

In addition to the number of RVQ levels (Q), there are two additional hyperparameters that affect
the compression factor of the codec: (i) the codec’s frame duration (1/fx), and (ii) the codebook size
(|V|). The bitrate of the codec, equal to Qfx log2(|V|) bits per second, is a function of these three
factors and directly impacts the reconstruction quality. In siloed codec design, these three factors
can be traded off freely to optimize for higher reconstruction quality at some fixed bitrate. However,
in a co-design context, the LM’s behavior can be impacted by different tradeoffs even when the
codec’s bitrate is kept fixed.

Here we make several observations about frame duration and codebook size respectively in the
context of codec-LM co-design. Starting with frame duration, from Eqn. (3), we can observe that
the Delay LM training sequence length is inversely proportional to frame duration. Accordingly,
increasing it by a factor of two can roughly halve sequence length, resulting in efficiency gains and
reduced inference latency. However, codec bitrate is also inversely proportional to frame duration.
Therefore, to preserve audio quality with an increased frame duration, we need to also increase
either the codebook size |V| and/or the number of RVQ levels Q.

On the other hand, increasing the codebook size |V| may have mixed impacts on the LM. On the
positive side, assuming the frame duration and bitrate are controlled, using a larger codebook (and
hence fewer RVQ levels) reduces the extent of packing information from multiple (i.e., Q′) code
frames into one Delay LM timestep x(delay)

t . However, increasing only |V| while holding Q constant
leads to an exponential growth in the LM’s vocabulary size (and embedding parameters) relative to a
linear increase in bitrate. This growth can inflate the LM’s memory footprint and introduce potential
modeling challenges. Thus, while our CL drop technique can help determine the best Q′ efficiently
given a fixed |V|, finding the optimal |V| still requires trial and error.

All three of the aforementioned hyperparameters—Q, |V|, and fx—are relatively straightforward
to adjust in open-source codec implementations (Défossez et al., 2023; Kumar et al., 2023). Only
changing fx is achieved indirectly through specifying stride sizes in each strided convolutional layers
since fs/fx =

∏S
i=1 si, where fs is the audio sampling rate, S is the number of strided convolution

layers in the codec encoder, and si’s are the individual stride sizes.

5 EXPERIMENTAL SETUP

Datasets for codec. For TTS, we collect 1.7K hours of YouTube podcast data in-house to train the
codec. For music experiments, we use the medium version of FMA dataset (Defferrard et al., 2017)
containing 200 hours of multitrack music. To evaluate audio reconstruction of our codecs, we follow
DAC (Kumar et al., 2023) and create a dataset of 3K 10-second audios comprising speech (Mysore,
2014), music (Rafii et al., 2017) and general sounds (Gemmeke et al., 2017) (1K each).

Datasets for LM. For TTS, we use the 550-hour LibriTTS-R (Koizumi et al., 2023) for LM train-
ing, and its test-clean split (8 hours, 4.7K samples) for evaluation. For unconditional music genera-
tion, we train our LMs on 1.5K hours of multitrack music from MTG-Jamendo dataset (Bogdanov
et al., 2019). We exclude examples with vocals using the associated metadata, and and hold out
1.5K examples for evaluation.

Codec model specifics. We utilize the open-source code of DAC (Kumar et al., 2023) and im-
plement our changes on top. Our codecs have 76∼84M non-codebook parameters due to various
frame durations. We train our codecs for 300K steps with an effective batch size of 75 seconds of
audio. We use the AdamW (Loshchilov & Hutter, 2018) optimizer with 10−4 initial learning rate
and exponential decay. The training process takes about 25 hours on 4 NVidia H100 (80G) GPUs.

LM model specifics. Following recent validation that a hybrid of state-space model (SSM) and
attention outperforms either approach alone (Waleffe et al., 2024; Hatamizadeh & Kautz, 2024),
we use 24 layers of stacked Mamba2 (Dao & Gu, 2024) and Transformer decoder blocks (Vaswani
et al., 2017), totaling 400M non-embedding parameters. We prepend the conditioning information
for TTS (i.e., y, which includes text transcripts and speaker embedding) to the RVQ audio codes

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Codec receptive field settings vs. end-to-end TTS & music generation performance. Our
proposed framewise codec encoder (Sec. 4.1) consistently beats the default streamable setting (i.e.,
Causal) both on LM likelihood (cf. NLL) and all end-to-end metrics. Stdev over 5 runs follow ±.

Framewise? Stream? Codec Recons. Text-to-Speech Uncond. Music

Codec Enc. Dec. Mel-L1↓ NLL↓ WER↓ NISQA↑ Spk. sim.↑ NLL↓ FAD↓

Non-caus. ✗ ✗ ✗ .791 5.80 3.94 4.48 82.7 — —
All-frame. ✓ ✓ ✓ .961 4.55 3.82 3.28 70.4 — —
Causal ✗ ✗ ✓ .846 5.46±.00 4.12±.35 4.35±.01 80.2±.1 6.06±.01 18.7±1.2

Proposed ✓ ✗ ✓ .873 4.97±.02 3.71±.19 4.37±.02 80.7±.2 5.16±.00 17.1±0.8

x(delay). The text transcript is transformed into character embeddings, while the speaker embedding
is extracted using a raw waveform-based speaker recognition model (Jung et al., 2022).

We train our LMs for 30K steps with a batch size equivalent to 500 seconds of audio. We use the
AdamW optimizer (Loshchilov & Hutter, 2018) with a peak learning rate of 4 × 10−4, and 10%
warmup steps followed by cosine decay. Training takes 12 hours on 8 H100 (80G) GPUs. For
inference, we use pure sampling from the LM’s output logits.

Evaluation for audio reconstruction (codec). We follow (Kumar et al., 2023) and compute the
L1 distance between the log-scaled Mel spectrograms of the original and reconstructed waveforms
to measure reconstruction at the signal level. We abbreviate this metric as Mel-L1 hereafter.

Evaluation for end-to-end audio generation (codec + LM). To evaluate our end-to-end TTS
system involving both the codec and the LM, we consider the following three aspects:

• Intelligibility: Following (Wang et al., 2023), we measure the word error rate (WER, in %)
between the given text transcript and automatically transcribed text by Whisper (Radford et al.,
2023) (v3 large) model from the generated speech.

• Audio quality: We leverage NISQA (Mittag et al., 2021) overall quality score, which is predicted
by a CNN-Transformer model trained on pairs of speech audios and human-labeled quality scores
in the range of [1, 5]. NISQA has been shown to correlate well (Pearson’s r ≥ 0.9) with human
judgments of speech audio quality.

• Speaker control: Following (Wang et al., 2023; Kim et al., 2024), we compute the cosine sim-
ilarity (∈ [−1, 1], reported in %) between the given speaker embedding and that extracted from
the generated speech, using the same speaker recognition model (Jung et al., 2022).

For experiments on unconditional music generation, following (Copet et al., 2023; Agostinelli et al.,
2023), we report Fréchet audio distance (FAD) (Kilgour et al., 2019) computed on audio embeddings
from the VGGish (Hershey et al., 2017) audio classification model. FAD captures how realistic the
generations are at the dataset level (i.e., all generations vs. all reference inputs) using feature-wise
covariances estimated from all audio embeddings of the generated/reference set.

6 RESULTS AND DISCUSSION

We first conduct experiments specifically for each proposed technique (i.e., Sec 4.1, 4.2, and 4.3) to
elucidate their individual effects, and finally combine them to show their collective benefits.

Framewise codec encoder. Table 1 presents the audio reconstruction and downstream TTS (and
music) generation performance, under different receptive field settings for the codec. Following
the configurations of DAC (Kumar et al., 2023), we set the frame duration of the codec (1/fx) to
11ms, the number of RVQ levels (Q and Q′) to 9, and the per-level codebook size (|V|) to 210.
The first two rows have clear drawbacks—Non-caus, which is default in the official DAC (Kumar
et al., 2023), though achieves strongest performance in all aspects, is not low-latency streamable
due to dependency on future context. The all-frame setting, meanwhile, leads to poor audio quality
(NISQA) and speaker control (Spk. sim.), suggesting that framewise receptive fields (see Sec. 4.1)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12
levels

0.04

0.06

0.08

0.10
WER ()

w/ CL drop
w/o CL drop

1 2 3 4 5 6 7 8 9 10 11 12
levels

3.00

3.25

3.50

3.75

4.00

4.25
NISQA ()

w/ CL drop
w/o CL drop

1 2 3 4 5 6 7 8 9 10 11 12
levels

0.65

0.70

0.75

0.80

Speaker Similarity ()

w/ CL drop
w/o CL drop

Figure 3: Number of RVQ codebook levels used by LM vs. end-to-end TTS metrics. Training one
LM with codebook level dropout (‘CL drop’, Sec. 4.2) leads to a performance profile that trends
almost identically to training Q = 12 LMs without CL drop at each possible level count. Hence, CL
drop can help determine the best level count efficiently. Shaded bands represent stdev over 3 runs.

Table 2: Effects of using longer frame durations (Sec. 4.3), holding audio reconstruction quality
approximately constant by varying codebook size |V| and/or # of RVQ levels Q′. We measure the
actual inference time (LM & codec decoding combined) over 50 samples with batch size 1 and treat
the first row as the baseline for the ‘Inf. speedup’ column. In general, using a 2× frame duration
(22ms) strikes best balance between performance and efficiency. Stdev over 5 runs follow ±. First
row is the default configuration inherited from DAC.

Codec Config Codec Recons. Text-to-Speech Efficiency

Frame dur. log2(|V|) Q′ Rel. bitrate Mel-L1↓ WER↓ NISQA↑ Spk. sim.↑ Inf. speedup↑

11ms 10 9 1.00× .873 3.71 ±.19 4.37 ±.02 80.7 ±.2 1.00×
11ms 15 6 1.00× .874 3.73 ±.28 4.33 ±.01 80.4 ±.1 1.01×
22ms 10 16 0.89× .888 4.21 ±.33 4.42 ±.01 81.0 ±.1 1.94×
22ms 15 11 0.92× .876 3.55 ±.36 4.33 ±.01 79.3 ±.1 2.00×
44ms 10 32 0.89× .875 6.73 4.14 76.7 3.20×
44ms 15 20 0.83× .871 4.53 3.65 73.2 3.77×

should not be applied to the codec decoder. Our proposed framewise codec encoder setting (last row)
outperforms the default streamable causal setting consistently, both on LM likelihood (>8% lower
NLL) and all end-to-end TTS and music generation metrics. Notably, it is slightly worse on Mel-
L1 (though relatively close to causal compared to the other two settings), underscoring the fact that
better audio reconstruction does not always translate to better end-to-end performance. Due
to its validated advantage, we conduct all subsequent experiments with framewise codec encoders
and causal decoders, unless otherwise specified.

LM codebook level dropout (CL drop). Results of training the LM with codebook level dropout
(see Sec. 4.2) are presented in Fig. 3. To examine how end-to-end performance evolves in the
higher-bitrate regime, we use 15-bit codebooks (log2(|V|) = 15) and codebook levels Q = 12 for
the codec, amounting to a maximum bitrate that is 2× that of official DAC. We experiment with
various dropout distributions P(q) (see App. A for details) and conclude that it is best to train at
the full level count (i.e., 12 in this case) for 90% of the steps and uniformly distribute the remaining
10% to all lower level counts. The curves in Fig. 3 show that training a single LM with CL drop
produces a performance profile closely aligned with training 12 separate LMs without CL drop. This
demonstrates that CL drop is a reliable method for practitioners to efficiently optimize for the
level count Q′ with significantly reduced training compute. We also observe that training without
CL drop leads to slightly better performance at each particular level count, which is reasonable since
the LM does not need to generalize to multiple level counts. In practice, practitioners can train a
second LM without CL drop after choosing the best level using the LM trained with CL drop to
capture the improvement. Besides, the curves also show that WER, which focuses on (coarser)
word-level information, reaches the best early at 3∼4 levels, while NISQA and speaker similarity,
which are tied more closely to the fine-grained details, peak at around 9 levels. Since different
metrics behave differently w.r.t. level count, determining the best level count is at the discretion of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Combined improvements from using multiple proposed techniques—#1: Framewise codec
encoder; #2: CL drop; #3: Longer frame duration. Q′ denotes the # of levels the LM is trained with
for end-to-end TTS, while Q denotes the RVQ codec’s full # of levels. We italicize the second best
setting for each metric. Compared to the baseline using a causal codec (1st row), applying all of our
proposed techniques (last row) improves both the efficiency and all end-to-end TTS metrics.

Proposals Codec Config Text-to-Speech Metrics Efficiency

#1 #2 #3 Frame dur. log2(|V|) Q′ : Q WER↓ NISQA↑ Spk. sim.↑ Inf. speedup↑
✗ ✗ ✗ 11ms 10 9 : 9 4.12 ±.35 4.35 ±.01 80.2 ±.1 1.00×
✓ ✗ ✗ 11ms 10 9 : 9 3.71 ±.19 4.37 ±.02 80.7 ±.2 1.01×
✓ ✗ ✓ 22ms 10 16:16 4.21 ±.33 4.42 ±.01 81.0 ±.1 1.95×
✓ ✓ ✓ 22ms 10 14:16 3.86 ±.19 4.43 ±.01 80.8 ±.2 2.01×

practitioners depending on use cases. We find that choosing the best level count based on FAD
(shown in Fig. 2, which uses the same codec as here and would suggest using 9 levels) achieves a
balanced performance between all the TTS metrics we consider.

Longer frame duration. Table 2 displays the effects of using longer frame durations and wider
codebooks. Here, we use the number of levels Q′ (in this set of experiments, Q′ = Q) as a variable
to roughly control for audio reconstruction quality (i.e., Mel-L1). We also measure the total time
of LM inference plus codec decoding under batch size 1 to show the relative inference speed of
the different settings (i.e., Inf. speedup). In general, using a 22ms frame duration (i.e., 2× the
default 11ms for DAC) preserves or improves TTS performance and enjoys a 2× inference
speedup at the same time. Increasing the frame duration to 44ms leads to substantially worse TTS
metrics despite further efficiency gains. However, whether to increase the codebook size |V| from
the default 210 to accommodate longer frame durations remains unclear (better on WER, worse on
other metrics), warranting a more fine-grained exploration (e.g., a dense sweep over 10- to 15-bit
codebooks) in future work.

Combining all techniques. Table 3 illustrates the cumulative impact of progressively integrating
our proposed techniques. The first two rows are derived from Table 1, and the third from Table 2. In
the last row, we apply LM codebook level dropout to a (22ms, 10-bit, 16-level) codec, identifying
the optimal level count Q′ = 14 using FAD on end-to-end TTS. Comparing the streamable base-
line (1st row) and the final model combining all our techniques (last row), we achieve substantial
improvements across all end-to-end TTS metrics, while simultaneously doubling inference speed.

7 CONCLUSION AND FUTURE WORK

In this work, we presented several co-design techniques for neural codec language models to ad-
dress the isolation between codec and language modeling research fronts. Specifically, we proposed
framewise encoder for the codec and codebook level dropout for the LM, and explored the effects of
longer frame durations and wider codebooks. We illustrated the individual benefits of each co-design
technique with end-to-end TTS experiments, and demonstrated that applying all of them improves
both the performance and efficiency of the codec-LM system.

Future endeavors may (i) study the theory of why framewise compressed representations improve
language modeling, (ii) develop RVQ codecs that have flexibility not only in the number of levels,
but also in codebook size and frame duration such that our LM codebook level dropout can be ap-
plied to all three key hyperparameters altogether, and (iii) uncover the scaling properties (Hoffmann
et al., 2022) of the optimal codec settings w.r.t. larger models and more training data.

REFERENCES

Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. MusicLM: Generating
music from text. arXiv preprint arXiv:2301.11325, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sunghwan Ahn, Beom Jun Woo, Min Hyun Han, Chanyeong Moon, and Nam Soo Kim. HILCodec:
High fidelity and lightweight neural audio codec. arXiv preprint arXiv:2405.04752, 2024.

Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter, and Xavier Serra. The MTG-
Jamendo dataset for automatic music tagging. In Proc. Workshop on Machine Learning for Music
Discovery (ML4MD), 2019.

Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Shar-
ifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. AudioLM: a
language modeling approach to audio generation. IEEE/ACM Trans. on Audio, Speech, and Lan-
guage Processing (T-ASLP), 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. Advances in Neural Information
Processing Systems (NeurIPS), 2020.

Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng Chiu, James Qin, Ruoming Pang, and Yonghui
Wu. W2v-bert: Combining contrastive learning and masked language modeling for self-
supervised speech pre-training. In Proc. Automatic Speech Recognition and Understanding Work-
shop (ASRU), 2021.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexan-
dre Défossez. Simple and controllable music generation. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2023.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In Proc. Int. Conf. on Machine Learning (ICML), 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. FMA: A dataset for
music analysis. In Proc. Int. Soc. for Music Information Retrieval Conf. (ISMIR), 2017.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
compression. Transactions on Machine Learning Research (TMLR), 2023.

Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dia-
logue. Technical report, Kyutai, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proc. NAACL, 2019.

Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis. In Proc. Int.
Conf. on Learning Representations (ICLR), 2019.

Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
audio events. In Proc. Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2017.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-
space models. In Proc. Int. Conf. on Machine Learning (ICML), 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Ali Hatamizadeh and Jan Kautz. Mambavision: A hybrid mamba-transformer vision backbone.
arXiv preprint arXiv:2407.08083, 2024.

Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren Jansen, R Channing
Moore, Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Seybold, et al. CNN architectures for
large-scale audio classification. In Proc. Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM Trans. on Audio, Speech, and Language Processing (T-
ASLP), 2021.

Shengpeng Ji, Minghui Fang, Ziyue Jiang, Rongjie Huang, Jialung Zuo, Shulei Wang, and Zhou
Zhao. Language-Codec: Reducing the gaps between discrete codec representation and speech
language models. arXiv preprint arXiv:2402.12208, 2024.

Jee-weon Jung, You Jin Kim, Hee-Soo Heo, Bong-Jin Lee, Youngki Kwon, and Joon Son Chung.
Pushing the limits of raw waveform speaker recognition. In Proc. Interspeech, 2022.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lock-
hart, Florian Stimberg, Aaron Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient neural
audio synthesis. In Proc. Int. Conf. on Machine Learning (ICML), 2018.

Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fréchet audio distance: A
reference-free metric for evaluating music enhancement algorithms. In Proc. Interspeech, 2019.

Jaehyeon Kim, Keon Lee, Seungjun Chung, and Jaewoong Cho. CLam-TTS: Improving neural
codec language model for zero-shot text-to-speech. In Proc. Int. Conf. on Learning Representa-
tions (ICLR), 2024.

Yuma Koizumi, Heiga Zen, Shigeki Karita, Yifan Ding, Kohei Yatabe, Nobuyuki Morioka, Michiel
Bacchiani, Yu Zhang, Wei Han, and Ankur Bapna. LibriTTS-R: A restored multi-speaker text-to-
speech corpus. In Proc. Interspeech, 2023.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. HiFi-GAN: Generative adversarial networks for
efficient and high fidelity speech synthesis. Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Kundan Kumar, Rithesh Kumar, Thibault De Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo,
Alexandre De Brebisson, Yoshua Bengio, and Aaron C Courville. MelGAN: Generative adver-
sarial networks for conditional waveform synthesis. Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. High-
fidelity audio compression with improved RVQGAN. Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proc. Int. Conf. on
Learning Representations (ICLR), 2018.

Gabriel Mittag, Babak Naderi, Assmaa Chehadi, and Sebastian Möller. NISQA: A deep cnn-self-
attention model for multidimensional speech quality prediction with crowdsourced datasets. In
Proc. Interspeech, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gautham J Mysore. Can we automatically transform speech recorded on common consumer devices
in real-world environments into professional production quality speech?—a dataset, insights, and
challenges. IEEE Signal Processing Letters, 2014.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In Proc. Int. Conf. on Machine
Learning (ICML), 2023.

Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter, Stylianos Ioannis Mimilakis, and Rachel Bittner.
The MUSDB18 corpus for music separation, 2017.

Xu Tan, Tao Qin, Frank Soong, and Tie-Yan Liu. A survey on neural speech synthesis. arXiv
preprint arXiv:2106.15561, 2021.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu, et al. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
Neural Information Processing Systems (NeurIPS), 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2017.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing
Liu, Huaming Wang, Jinyu Li, et al. Neural codec language models are zero-shot text to speech
synthesizers. arXiv preprint arXiv:2301.02111, 2023.

Haibin Wu, Xuanjun Chen, Yi-Cheng Lin, Kai-wei Chang, Ho-Lam Chung, Alexander H Liu, and
Hung-yi Lee. Towards audio language modeling–an overview. arXiv preprint arXiv:2402.13236,
2024.

Dongchao Yang, Jinchuan Tian, Xu Tan, Rongjie Huang, Songxiang Liu, Haohan Guo, Xuankai
Chang, Jiatong Shi, Sheng Zhao, Jiang Bian, Zhou Zhao, Xixin Wu, and Helen M. Meng. Uni-
Audio: Towards universal audio generation with large language models. In Proc. Int. Conf. on
Machine Learning (ICML), 2024.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
stream: An end-to-end neural audio codec. IEEE/ACM Trans. on Audio, Speech, and Language
Processing (T-ASLP), 2021.

Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. SpeechTokenizer: Unified
speech tokenizer for speech large language models. In Int. Conf. on Learning Representations
(ICLR), 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A CHOOSING A GOOD P(q) FOR LM CODEBOOK LEVEL DROPOUT

1 2 3 4 5 6 7 8 9 10 11 12
levels

0.04

0.05

0.06

0.07

0.08

WER ()
w/ CL drop (90% full)
w/ CL drop (75% full)
w/ CL drop (50% full)
w/ CL drop (Uniform)
w/ CL drop (q prop)
w/o CL drop

1 2 3 4 5 6 7 8 9 10 11 12
levels

3.0

3.2

3.4

3.6

3.8

4.0

4.2
NISQA ()

1 2 3 4 5 6 7 8 9 10 11 12
levels

0.675

0.700

0.725

0.750

0.775

0.800

Speaker Similarity ()

Figure 4: Effects of using different dropout distributions, i.e., P(q), for LM codebook level dropout.
The curves of ‘w/ CL drop’ settings are the closer to those of ‘w/o CL drop’ the better.

For LM codebook level dropout (i.e., CL drop) to be effective in determining the optimal level count,
its performance profile w.r.t. the level count should trend as closely as possible to that resulting from
training LMs without CL drop at every possible number of levels. Here, we find that the choice
of dropout distribution P(q), which determines the fraction of training steps allocated to each level
count, to be critical. We experiment with a total of 5 different P(q)’s detailed below:

• Uniform: P(q) := 1
Q ; ∀q ∈ {1, . . . , Q}, i.e., every level count gets equal attention.

• q-proportional (or q-prop): P(q) := q
Z(Q) ; ∀q ∈ {1, . . . , Q}, where the normalization constant

Z(Q) :=
∑Q

q′=1 q
′, i.e., the fraction for each level count q is proportional to q.

• 50% full: P(q) := 0.5 for q = Q, and P(q) := 1−0.5
Q−1 ; ∀q ∈ {1, . . . , Q− 1}, i.e., the full level

count Q gets 50% of the steps, and all the lower level counts share the remaining 50% uniformly.
• 75% full: P(q) := 0.75 for q = Q, and P(q) := 1−0.75

Q−1 ; ∀q ∈ {1, . . . , Q− 1}, which is similar
to 50% full but focuses more on the full level count Q.

• 90% full: P(q) := 0.9 for q = Q, and P(q) := 1−0.9
Q−1 ; ∀q ∈ {1, . . . , Q − 1}, which puts even

more focus on q = Q than 75% full.

The performance profiles resulting from these P(q)’s are shown in Fig. 4. The NISQA (which
evalutes audio quality) and speaker similarity profiles suggest that 90% full is the best choice among
the five P(q)’s. Other choices all peak at relatively lower level counts, and Uniform, which is the
most straightforward option, appears to be the worst of the five.

The reasons behind why allocating only 10% to lower level counts leads to metrics that track most
closely those from training separate LMs for each level count are left for further investigation. Our
intuition is that, training with Q levels already includes modeling all the lower levels, and hence the
LM only needs a small number of steps to adapt to the scenarios where the finer-grained information
in higher levels is absent.

14

	Introduction
	Related Work
	Technical Background
	Method
	Codes with non-overlapping receptive fields (Framewise codec encoder)
	LM Codebook level dropout (CL drop)
	Navigating other key codec hyperparameters

	Experimental Setup
	Results and Discussion
	Conclusion and Future Work
	Choosing A Good P(q) for LM Codebook Level Dropout

