

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMPRESSION OF VISION TRANSFORMER BY REDUCTION OF KERNEL COMPLEXITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Self-attention and transformer architectures have become foundational components in modern deep learning. Recent efforts have integrated transformer blocks into compact neural architectures for computer vision, giving rise to various efficient vision transformers. In this work, we introduce Transformer with Kernel Complexity Reduction, or KCR-Transformer, a compact transformer block equipped with differentiable channel selection, guided by a novel and sharp theoretical generalization bound. To reduce the substantial computational cost of the MLP layers, the KCR-Transformer performs channel selection on the outputs of its self-attention layer. Furthermore, we provide a rigorous theoretical analysis establishing a tight generalization bound for networks equipped with KCR-Transformer blocks. Leveraging such strong theoretical results, the channel pruning by KCR-Transformer is conducted in a generalization-aware manner, ensuring that the resulting network retains a provably small generalization error. Our KCR-Transformer is compatible with many popular and compact transformer networks, such as ViT and Swin, and it reduces the FLOPs of the vision transformers while maintaining or even improving the prediction accuracy. In the experiments, we replace all the transformer blocks in the vision transformers with KCR-Transformer blocks, leading to KCR-Transformer networks with different backbones. The resulting KCR-Transformers achieve superior performance on various computer vision tasks, achieving even better performance than the original models with even less FLOPs and parameters. The code of the KCR-Transformer is available at <https://anonymous.4open.science/status/KCR-Transformer>.

1 INTRODUCTION

Vision transformers have demonstrated promising performance on a variety of computer vision tasks (Yuan et al., 2021; Dosovitskiy et al., 2021; Liu et al., 2021a; Zhu et al., 2021; Liang et al., 2021) and multi-modal learning tasks (Liu et al., 2023a; Singh et al., 2022). However, the superior performance of vision transformers comes at the cost of substantial computational overhead (Dosovitskiy et al., 2021; Touvron et al., 2021). To reduce the computational costs of the vision transformers, various model compression methods have been developed, including knowledge distillation (Zhao et al., 2023; Yang et al., 2023), quantization (Li et al., 2022a; Lin et al., 2022; Li et al., 2023; Liu et al., 2021b), neural architecture search (Gong et al., 2022; Su et al., 2022), and pruning (Chen et al., 2021b; Chavan et al., 2022; Zheng et al., 2022; Yu et al., 2022b;a; Rao et al., 2021; Kong et al., 2022; Wang et al., 2022; Bolya et al., 2023; Bonnaerens & Dambre, 2023; Kim et al., 2024). The pruning methods, which typically involve a pruning stage to remove redundant parameters and a fine-tuning stage to recover performance, have been shown to be particularly effective due to the substantial parameter redundancy in ViT models (Chen et al., 2021b; Chavan et al., 2022; Zheng et al., 2022; Yu et al., 2022b;a; Rao et al., 2021; Kong et al., 2022; Wang et al., 2022; Bolya et al., 2023; Bonnaerens & Dambre, 2023; Kim et al., 2024). Despite substantial progress, the conventional model compression methods primarily focus on identifying optimal compression strategies through direct performance-efficiency trade-offs, guided by empirical heuristics rather than principled theoretical foundations.

More recently, inspired by advances in the theoretical understanding of deep neural networks (DNNs) through the lens of kernel methods, such as the Neural Tangent Kernel (NTK) (Jacot et al.,

054, the kernel-based compression method has emerged as a principled alternative. The kernel-
 055 based methods aim to preserve the generalization capability of the compressed model by ensuring
 056 that the compressed model retains the training dynamics, convergence behavior, and inductive bi-
 057 ases of the original network through spectral alignment of the NTK (Wei et al., 2023; Chen et al.,
 058 2021c; Mok et al., 2022; Wang et al., 2023; Rachwan et al., 2022). For instance, NTK-SAP (Wang
 059 et al., 2023) and Early-Lottery (Rachwan et al., 2022) leverage spectral preservation of the NTK
 060 during pruning to maintain the eigenspectrum, thereby preserving the generalization characteristics
 061 of the NTK of the original DNNs. Despite recent progress, a substantial gap persists between theory
 062 and practice in enhancing the generalization capability of compressed DNNs through NTK-based
 063 kernel learning. Existing theoretical frameworks, particularly those grounded in NTK analyses, are
 064 predominantly limited to over-parameterized DNNs (Cao & Gu, 2019; Arora et al., 2019; Ghor-
 065 bani et al., 2021), rendering them unsuited for modern architectures such as vision transformers
 066 with finite-width and diverse network architectures. Moreover, the linearized nature of the NTK
 067 regime inherently fails to model the dynamically evolving kernel characteristic of realistic training
 068 dynamics, thereby limiting its applicability to compressed models utilizing large-scale training for
 069 compelling performance on real-world tasks (Nichani et al., 2022; Damian et al., 2022; Takakura
 070 & Suzuki, 2024). To address this challenge, we first provide a theoretical analysis that establishes
 071 tight generalization upper and lower bounds in Theorem 3.1. Both an upper and lower bound of
 072 the expected loss, referred to as KCR upper and lower bounds, are established based on the training
 073 loss and the kernel complexity (KC) of the kernel gram matrix computed over the training data.
 074 The tightness of the KCR upper and lower bounds is studied in Section 4.6. *In contrast to the cur-
 075 rent NTK-based methods with their feature learning capability limited by the linear region of NTK,
 076 the KC measures the complexity of the dynamically evolving kernel formed by the DNN during the
 077 training process, accommodating the rich feature learning capability of DNNs.* Since the training
 078 loss is usually optimized to a small value by training the DNN, the KCR upper and lower bounds in
 079 Theorem 3.1 can be tight and close to the expected loss if the KC is small. However, the computa-
 080 tion of the KC involves the costly computation of the eigenvalues of a potentially large-scale gram
 081 matrix. To mitigate this issue, we introduce an approximate TNN through the efficient Nyström
 082 method (Kumar et al., 2012), and the KC is reduced by the reduction of the approximate TNN. The
 083 approximate TNN is computed efficiently as a regularization term to the regular cross-entropy train-
 084 ing loss. Since the approximate TNN is separable, it can be optimized by the standard SGD-based
 085 optimization algorithms. Based on the reduction of the KC, we propose a novel vision transformer
 086 termed the Transformer with Kernel Complexity Reduction, or KCR-Transformer. The training of
 087 the KCR-Transformer involves a search stage and a retrain stage. The channel selection in the input/
 088 output features of the MLP in the transformer block of the KCR-Transformer is performed in the
 089 search stage to obtain a compressed network architecture with reduced computation costs. To guar-
 090 antee the generalization capability of the compressed model, the compressed network is retrained
 091 with the approximate TNN as a regularization term to reduce the KC, leading to enhanced prediction
 092 accuracy. It is verified through extensive experiments that the reduction of the approximate TNN
 093 effectively reduces the KC.

Contributions. The contributions of this paper are presented as follows.

First, we present a compact transformer block termed Transformer with Kernel Complexity Reduction,
 094 or KCR-Transformer. By selecting the channels in the input of the MLP layers via channel
 095 pruning, KCR-Transformer blocks effectively reduce the computational costs of the vision trans-
 096 former. KCR-Transformer blocks can be used to replace all the transformer blocks in many popular
 097 vision transformers, rendering compact KCR-Transformer networks with comparable or even better
 098 performance. The effectiveness of KCR-Transformer is evidenced by replacing all the transformer
 099 blocks with KCR-Transformer blocks in popular vision transformers, such as ViT (Dosovitskiy et al.,
 100 2021), and Swin (Liu et al., 2021a), rendering compact models with competitive performance. Ex-
 101 perimental results show that KCR-Transformer not only reduces the parameter size and FLOPs but
 102 also outperforms the original models on tasks including image classification, object detection, in-
 103 stance segmentation, and visual question answering.

Second, we provide a theoretical analysis showing tight generalization upper and lower bounds for
 104 the KCR-Transformer network. With such strong theoretical results in Theorem 3.1, the channel
 105 pruning by KCR-Transformer is performed in a *generalization-aware* manner. That is, the chan-
 106 nel pruning of KCR provably keeps a small generalization error bound for the DNN with KCR-
 107 Transformer blocks, effectively guaranteeing the generalization capability of the DNN after channel

108 pruning. This goal is achieved through the reduction of the KC of the DNN with KCR-Transformer
 109 blocks. Since the KC involves the computation of the eigenvalues of a potentially large gram matrix,
 110 we introduce an approximate truncated nuclear norm (TNN) through the Nyström method (Kumar
 111 et al., 2012), which is computed efficiently as a regularization term to the regular cross-entropy
 112 training loss and separable, so that it can be optimized by the standard SGD-based optimization
 113 algorithms. The reduction of the approximate TNN effectively reduces the KC, leading to the su-
 114 perior prediction accuracy of the compressed vision transformers by KCR-Transformer. Furthermore,
 115 unlike existing NTK-based compression methods constrained by NTK’s linear regime, our KC cap-
 116 tures the complexity of the evolving DNN kernel, enabling its rich feature learning capacity.
 117

118 We note that training KCR-Transformer networks with the KCR regularization is efficient and stable
 119 with respect to the regularization weight, as evidenced in Section D.5 of the appendix. This paper is
 120 organized as follows. The related works in efficient vision transformers and compression of vision
 121 transformers are discussed in Section 2. The formulation of KCR-Transformer with our theoretical
 122 results is detailed in Section 3. The effectiveness of KCR-Transformer is demonstrated in Section 4
 123 for image classification, dense prediction tasks, and multi-modal learning tasks. Throughout this
 124 paper, we use $a \lesssim b$ to denote $a \leq Cb$ if there exists such a positive constant C , and $a = \Theta(b)$
 125 indicates that $a \lesssim b$ and $b \lesssim a$. $[n]$ denotes all the natural numbers between 1 and n inclusively.
 126

127 2 RELATED WORKS

128 2.1 EFFICIENT VISION TRANSFORMERS AND COMPRESSION OF VISION TRANSFORMERS

129 To mitigate the issue of substantial computational overhead of the vision transformers, sparse atten-
 130 tion mechanisms have been introduced to reduce computational demands (Zhu et al., 2021; Yuan
 131 et al., 2021; Papa et al., 2024), while other efforts integrate convolutional operations into the trans-
 132 former architecture (Cai et al., 2023; Mehta & Rastegari, 2022; Yuan et al., 2021; Bravo-Ortiz et al.,
 133 2024). Additional gains in efficiency have been realized through Neural Architecture Search (Chen
 134 et al., 2021a; Gong et al., 2022; Wei et al., 2024) and Knowledge Distillation (Graham et al., 2021;
 135 Radosavovic et al., 2020; Gong et al., 2022; Yang et al., 2024), which aim to maintain accuracy with
 136 reduced computational resources. To further compress vision transformers, pruning techniques have
 137 been extensively explored. Channel pruning aims to eliminate redundant attention heads and chan-
 138 nels (Chen et al., 2021b; Chavan et al., 2022; Zheng et al., 2022; Xu et al., 2024; Ahmed et al., 2025).
 139 Block pruning reduces the depth and width of models by removing entire transformer blocks (Yu
 140 et al., 2022b;a; Liu et al., 2024a). Token pruning techniques improve efficiency by adaptively dis-
 141 carding, merging, or filtering less informative tokens (Rao et al., 2021; Kong et al., 2022; Bolya
 142 et al., 2023; Wang et al., 2022; Liu et al., 2024b; Mao et al., 2025).
 143

144 2.2 RELATED WORKS ABOUT KERNEL METHODS FOR DEEP NEURAL NETWORKS (DNNs)

145 Kernel methods have offered a principled view for analyzing the training dynamics, generalization
 146 properties, and architectural components of DNNs. One of the most prominent lines of work centers
 147 on the neural tangent kernel (NTK) (Jacot et al., 2018). Subsequent studies have extended NTK
 148 theory to better capture realistic scenarios, including finite-width settings (Seleznova & Kutyniok,
 149 2022), deep narrow networks (Lee et al., 2022), and the empirical evolution of the NTK during
 150 training (Fort et al., 2020). Following these, researchers have also studied the limitations of purely
 151 kernel-based theories (Woodworth et al., 2020; Barrett & Dherin, 2021). Recent works have exam-
 152 ined kernel-based interpretations of feature learning and generalization, revealing how hierarchical
 153 or implicit kernel structures emerge within deep models (Montavon et al., 2011; Belkin et al., 2018;
 154 Xiao et al., 2020; Canatar & Pehlevan, 2022; Deng et al., 2022). Building on these theoretical
 155 foundations, recent efforts propose reproducing kernel Hilbert space (RKHS) representations and
 156 operator-theoretic formulations as a basis for deep learning (Hashimoto et al., 2023), and develop
 157 hierarchical kernels tailored for representation learning (Huang et al., 2023). Beyond theoretical
 158 analysis, the study of kernels has also inspired reinterpretations and enhancements of transformer
 159 architectures. Several studies formulate self-attention as a kernel operation (Song et al., 2021; Chen
 160 et al., 2023). Others leverage spectral or integral transforms grounded in kernel theory (Nguyen
 161 et al., 2022; 2023). Positional encoding has also benefited from this perspective, with kernelized
 162 relative embeddings proposed for improved sequence extrapolation (Chi et al., 2022). Efficient at-
 163 tention variant, Performer (Choromanski et al., 2021), exploits kernel approximations to achieve
 164 linear complexity while maintaining expressiveness. Additionally, kernel-based models have been
 165 used to improve calibration in transformers via sparse Gaussian processes (Chen & Li, 2023).
 166

162 **Kernel-Based Model Compression Methods.** Building upon these insights, kernel-based methods,
 163 especially those centered on the NTK, provide a complementary theoretical framework for analyzing
 164 and guiding model compression. The NTK-Comp framework (Gu et al., 2022) investigates pruning
 165 in wide multilayer perceptrons under Gaussian input assumptions and introduces quantization tech-
 166 niques that preserve the NTK spectrum within linear layers. MLP-Fusion (Wei et al., 2023) advances
 167 LLM compression by clustering neurons to jointly approximate functional outputs and NTK simi-
 168 larity. NTK-based metrics have also enabled training-free architecture search (Chen et al., 2021c),
 169 and facilitated early-stage performance prediction in neural architecture search (Mok et al., 2022),
 170 though their predictive power may diminish in regimes dominated by highly non-linear dynamics. In
 171 addition, methods, such as NTK-SAP (Wang et al., 2023) and Early-Lottery (Rachwan et al., 2022),
 172 further highlight the importance of preserving NTK spectral properties during pruning, emphasizing
 173 spectral alignment as critical for maintaining stable training dynamics. Nonetheless, the core
 174 limitation of existing NTK-based compression methods lies in their dependence on static or “lazy”
 175 training regimes, limiting their applicability to models with dynamically evolving representations.
 176

3 FORMULATION

178 In this section, we introduce the KCR-Transformer, a compact transformer block designed to re-
 179 duce the computational overhead of vision transformers through differentiable channel pruning in
 180 the MLP layers. To guide this pruning in a theoretically grounded manner, we present a novel gen-
 181 eralization bound based on the kernel complexity (KC) of the network, and introduce the training
 182 algorithm of the network with KCR-Transformer for minimizing the upper bound.

3.1 CHANNEL SELECTION FOR ATTENTION OUTPUTS

183 The vision transformer blocks usually apply a series of MLP layers to the output of the multi-head
 184 self-attention, which incurs substantial computation costs. To improve the efficiency of the vision
 185 transformer block, we propose pruning the channels in the attention outputs, thereby reducing the
 186 computation cost of the MLP layers, leading to the compact KCR-Transformer. To this end, we
 187 maintain a decision mask $g_i \in \{0, 1\}^D$, where $g_i = 1$ indicates that the i -th channel is selected,
 188 and 0 otherwise. Thus, the informative channels can be selected by multiplying g by each row of
 189 the attention output. To optimize the binary decision mask with gradient descent, we replace g with
 190 Gumbel Softmax weights in the continuous domain, which is computed by $\hat{g}_i = \sigma\left(\frac{\alpha_i + \epsilon_i^{(1)} - \epsilon_i^{(2)}}{\tau}\right)$,
 191 where $\epsilon_i^{(1)}$ and $\epsilon_i^{(2)}$ are Gumbel noise. τ is the temperature. $\alpha \in \mathbb{R}^D$ is the sampling parameter.
 192 We define α as the architecture parameters that can be optimized by gradient descent during the
 193 differentiable search process. By gradually decreasing the temperature τ in the search process,
 194 α_i will be optimized such that g_i will approach 1 or 0. Note that since the MLP layers in vision
 195 transformers have the same input and output dimensions, we multiply the decision mask g with both
 196 the input and output features of the MLP layers. After the search is finished, we apply the gather
 197 operation on the attention outputs from the selected channels. The dimension of the input and output
 198 features of the MLP layers is then changed to $\tilde{D} = \sum_{i=1}^D g_i$.
 199

3.2 GENERALIZATION BOUND BY APPROXIMATE KERNEL COMPLEXITY LOSS AND ITS 200 OPTIMIZATION

201 Given the training data $\{\mathbf{x}_i, y_i\}_{i=1}^n$ where \mathbf{x}_i is the i -th input training feature, $\mathbf{y}_i \in \mathbb{R}^C$ is the
 202 corresponding one-hot vector as the class label of \mathbf{x}_i and C is the number of classes. We denote the
 203 label matrix as $\mathbf{Y} \in \mathbb{R}^{n \times C}$ where the i -th row is \mathbf{y}_i for all $i \in [n]$. Let $\mathbf{F} \in \mathbb{R}^{n \times d}$ be the features
 204 extracted on the entire training data set, where $g(\cdot) \in \mathbb{R}^d$ denotes the mapping function of a DNN,
 205 such as ViT (Dosovitskiy et al., 2021), and d is the output dimension of the DNN before the final
 206 softmax layer for classification. We remark that almost all the DNNs use a linear layer to generate
 207 the output of the network for discriminative learning tasks, so that the mapping function of a DNN
 208 can be formulated as $g(\cdot) = g(\mathcal{W}, \cdot) = F(\mathcal{W}_2, \cdot)\mathcal{W}_1$, where $\mathcal{W}_1 \in \mathbb{R}^{d \times C}$ contains the weights in
 209 the final linear layer of the DNN where d is the hidden dimension, $F(\mathcal{W}_2, \cdot) \in \mathbb{R}^d$ represents the
 210 feature extraction backbone of the network before the final linear layer, and \mathcal{W}_2 are the weights of
 211 the backbone F , with $\mathcal{W} = \{\mathcal{W}_1, \mathcal{W}_2\}$. The DNN is denoted as $\text{NN}_{\mathcal{W}}(\cdot)$. It is noted that such a
 212 formulation does not impose any limitation on the feature backbone F so as to admit a broad class
 213 of DNNs with various architectures for real-world vision discriminative tasks. We define a positive
 214 definite kernel for the DNN as $K(\mathbf{x}, \mathbf{x}') = F(\mathbf{x})^\top F(\mathbf{x}')$, where \mathcal{X} is the input domain of the DNN
 215

and $F(\mathcal{W}, \cdot)$ is abbreviated into $F(\cdot)$. Compared to existing NTK-based methods (Wang et al., 2023; Wei et al., 2023; Gu et al., 2022) where a static NTK is used as the kernel, our kernel K is dynamic with the learned feature backbone F during the training process of the DNN. Let $\mathbf{F}_i = F(\mathcal{W}_2, \mathbf{x}_i)$ be the learned representation for the i -th training data, and $\mathbf{F} \in \mathbb{R}^{n \times d}$ is the matrix of all the learned representations over the training data. Then the gram matrix $\mathbf{K} \in \mathbb{R}^{n \times n}$ of the kernel K over the training data is calculated by $\mathbf{K} = \mathbf{F}\mathbf{F}^\top \in \mathbb{R}^{n \times n}$, and the eigenvalues of $\mathbf{K}_n := \mathbf{K}/n$ are $\widehat{\lambda}_1 \geq \widehat{\lambda}_2 \dots \geq \widehat{\lambda}_{r_0} \geq \widehat{\lambda}_{r_0+1} = \dots = \widehat{\lambda}_n = 0$ with $r_0 = \min\{n, d\}$, since $\text{rank}(\mathbf{K}) \leq r_0$.

Suppose the input feature \mathbf{x} and its class label vector \mathbf{y} follow an unknown joint distribution P , then the expected risk of the DNN is defined as $L_{\mathcal{D}}(\text{NN}_{\mathcal{W}}) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \in P} [\|\text{NN}_{\mathcal{W}}(\mathbf{x}) - \mathbf{y}\|_2^2]$, which also represents the generalization error of the DNN. The following theorem, Theorem 3.1, based on the local complexity of the function class of the DNN feature extraction backbones and rooted in the well-established local Rademacher complexity literature (Bartlett et al., 2005; Koltchinskii, 2006; Mendelson, 2002), gives sharp upper and lower bounds for the generalization error of the DNN. Theorem 3.1 uses the kernel complexity (KC) of the dynamic kernel K over the training data as

$$\text{KC}(\mathbf{K}) := \min_{h \in [0, r_0]} \left(\frac{h}{n} + \sqrt{\frac{1}{n} \sum_{i=h+1}^{r_0} \widehat{\lambda}_i} \right).$$

Theorem 3.1. Let K be the dynamic kernel after a particular optimization epoch by GD or SGD. Then for every $x > 0$, with probability at least $1 - \exp(-x)$, we have

$$\underbrace{\mathbb{E}_{P_n} [\|\text{NN}_{\mathcal{W}}(\mathbf{x}) - \mathbf{y}\|_2^2] - \text{KC}(\mathbf{K}) - \frac{x}{n}}_{\text{KCR Lower Bound}} \lesssim L_{\mathcal{D}}(\text{NN}_{\mathcal{W}}) \lesssim \underbrace{\mathbb{E}_{P_n} [\|\text{NN}_{\mathcal{W}}(\mathbf{x}) - \mathbf{y}\|_2^2] + \text{KC}(\mathbf{K}) + \frac{x}{n}}_{\text{KCR Upper Bound}}, \quad (1)$$

where $\mathbb{E}_{P_n} [\|\text{NN}_{\mathcal{W}}(\mathbf{x}) - \mathbf{y}\|_2^2] = 1/n \cdot \sum_{i=1}^n \|\text{NN}_{\mathcal{W}}(\mathbf{x}_i) - \mathbf{y}_i\|_2^2$ is the empirical loss on the training data.

The proof of this theorem is deferred to Section A of the appendix. The empirical loss $\mathbb{E}_{P_n} [\|\text{NN}_{\mathcal{W}}(\mathbf{x}) - \mathbf{y}\|_2^2]$ is usually optimized to a small value by training the network $\text{NN}_{\mathcal{W}}$, so it can be observed from (1) that the KCR upper and lower bounds for $L_{\mathcal{D}}(\text{NN}_{\mathcal{W}})$ can be tight and close to $L_{\mathcal{D}}(\text{NN}_{\mathcal{W}})$ if $\text{KC}(\mathbf{K})$ is small, guaranteeing the generalization capability of the DNN. To reduce the KC, we introduce the truncated nuclear norm (TNN) of \mathbf{K} denoted as $\|\mathbf{K}\|_r := \sum_{i=r+1}^{r_0} \widehat{\lambda}_i$ where $r \in [0: r_0]$, with $r_0 = \gamma_0 \min\{n, d\}$. γ_0 is to be chosen by cross-validation. It can be verified that a smaller TNN $\|\mathbf{K}\|_r$ leads to a smaller KC, $\text{KC}(\mathbf{K})$. Since the computation of the TNN involves the computation of the eigenvalues of the potentially large-scale gram matrix \mathbf{K} over large-scale training data, we then describe below how to efficiently and effectively approximate the TNN. We first compute the approximate top- r_0 eigenvectors of \mathbf{K}_n , $\tilde{\mathbf{U}}^{(r_0)}$, by the Nyström method (Kumar et al., 2012). Here $\mathbf{A}^{(r)}$ denotes a submatrix of \mathbf{A} formed by its top r columns.

Efficient Computation of the Top- r_0 Eigenvectors of \mathbf{K} . To approximate the top- r_0 eigenvectors, $\mathbf{U}^{(r_0)} \in \mathbb{R}^{n \times r_0}$, of the gram matrix \mathbf{K} using the Nyström method (Kumar et al., 2012), we first sample m landmark points from the training set, indexed by $\mathcal{I} \subset [n]$ with $|\mathcal{I}| = m \ll n$. Let $\mathbf{F}_{\mathcal{I}} \in \mathbb{R}^{m \times d}$ be the features corresponding to the landmark set. We define $\mathbf{C} = \mathbf{F}\mathbf{F}_{\mathcal{I}}^\top \in \mathbb{R}^{n \times m}$ as the cross-covariance matrix and $\mathcal{W} = \mathbf{F}_{\mathcal{I}}\mathbf{F}_{\mathcal{I}}^\top \in \mathbb{R}^{m \times m}$ as the gram matrix on the landmarks. Next, we compute the top- r_0 eigen-decomposition of \mathcal{W} as $\mathcal{W} = \mathbf{Q}\Lambda\mathbf{Q}^\top$, where $\mathbf{Q} \in \mathbb{R}^{m \times r_0}$ contains the top- r_0 eigenvectors and $\Lambda \in \mathbb{R}^{r_0 \times r_0}$ is the diagonal matrix of corresponding eigenvalues. The Nyström approximation of \mathbf{K} is then given by $\tilde{\mathbf{K}} = \mathbf{C}\mathcal{W}^\dagger\mathbf{C}^\top$, and the approximate top- r_0 eigenvectors are computed as $\tilde{\mathbf{U}}^{(r_0)} = \mathbf{C}\mathbf{Q}\Lambda^{-1/2} \in \mathbb{R}^{n \times r_0}$, which serves as an efficient approximation to $\mathbf{U}^{(r_0)}$ with significantly reduced computational cost.

We let $\mathbf{U}_r = \tilde{\mathbf{U}}^{(r)}$, then the sum of the top- r eigenvalues of \mathbf{K}_n is approximated by $\text{tr}(\mathbf{U}_r^\top \mathbf{K}_n \mathbf{U}_r)$. Since $\text{tr}(\mathbf{K}_n) = \sum_{i=1}^n K(\mathbf{x}_i, \mathbf{x}_i) = \sum_{i=1}^n \widehat{\lambda}_i$, and $\text{tr}(\mathbf{U}_r^\top \mathbf{K}_n \mathbf{U}_r) = \sum_{i=1}^n \left(\sum_{s=1}^r \sum_{k=1}^n [\mathbf{U}_r]_{si}^\top [\mathbf{K}_n]_{ik} [\mathbf{U}_r]_{ks} \right)$, we can approximate the $\|\mathbf{K}\|_r$ by $\overline{\|\mathbf{K}\|_r} = \text{tr}(\mathbf{K}_n) - \text{tr}(\mathbf{U}_r^\top \mathbf{K}_n \mathbf{U}_r)$ which is separable. In particular, $\overline{\|\mathbf{K}\|_r} = \sum_{i=1}^n K(\mathbf{x}_i, \mathbf{x}_i) -$

270
 271 $\sum_{i=1}^n \left(\sum_{s=1}^r \sum_{k=1}^n [\mathbf{U}_r]_{si}^\top [\mathbf{K}_n]_{ik} [\mathbf{U}_r]_{ks} \right)$. We remark that $\|\mathbf{K}\|_r$ is ready to be optimized by standard
 272 SGD algorithms because it is separable and expressed as the summation of losses on individual
 273 training data points. The training loss of a neural network with KCR-Transformer blocks has
 274 $\text{KCR}(\mathcal{W}) = \|\mathbf{K}\|_r$, the approximate TNN, as a regularization term. The following functions are
 275 needed for minibatch-based training with SGD, with the subscript j indicating the corresponding
 276 loss on the j -th batch \mathcal{B}_j :

277 $\text{KCR}_j(\mathcal{W}) = \frac{1}{|\mathcal{B}_j|} \sum_{i=1}^{|\mathcal{B}_j|} \left(K(\mathbf{x}_i, \mathbf{x}_i) - \sum_{s=1}^r \sum_{k=1}^n [\mathbf{U}_r]_{si}^\top [\mathbf{K}_n]_{ik} [\mathbf{U}_r]_{ks} \right), \text{CE}_j^{(t)}(\mathcal{W}) = \frac{1}{|\mathcal{B}_j|} \sum_{i=1}^{|\mathcal{B}_j|} H(X_i(\mathcal{W}), Y_i),$
 278
 280 $\mathcal{L}_{\text{train},j}^{(t)}(\mathcal{W}) = \text{CE}_j^{(t)}(\mathcal{W}) + \eta \text{KCR}_j(\mathcal{W}).$ (2)
 282

283 Here $\text{CE}_j^{(t)}$ is the cross-entropy loss on batch \mathcal{B}_j at epoch t . $H(\cdot)$ is the cross-entropy function. η is
 284 the balance factor.

285 3.3 SEARCH AND RETRAINING PROCESSES

287 To obtain a compact vision transformer network with KCR-Transformer, or the KCR-Transformer
 288 network, we optimize both the accuracy of the network and the inference cost (FLOPs) of the net-
 289 work. We follow the standard techniques in neural architecture search (Tan et al., 2019), where
 290 the attention output channels are pruned in the search process, and the pruned network is retrained
 291 in the retraining process. The search process involves channel selection by Gumbel-Softmax and
 292 entropy minimization for architecture search. We optimize the FLOPs of the operations whose
 293 computation cost is decided by the channel selection for attention outputs described in Section 3.1. We
 294 estimate the FLOPs of the MLP after the channel selection on the attention outputs following the
 295 KCR-Transformer. The FLOPs related to a single Transformer block is $\text{cost}_j = l_j \cdot (2\tilde{D}^2 + \tilde{D})$,
 296 where j indexes the KCR-Transformer block. $2\tilde{D}^2 + \tilde{D}$ is the FLOPs of a layer of the MLP after the
 297 channel selection on the attention outputs, and l_j denotes the number of layers in the MLP of the j -th
 298 KCR-Transformer block. The inference cost objective of the network architecture is computed by
 299 $\text{cost} = \sum_{j=1}^M \text{cost}_j$, where M is the number of transformer blocks. The overall loss function for
 300 search on each batch \mathcal{B}_j at epoch t is formulated by $\mathcal{L}_{\text{search},j}^{(t)}(\mathcal{W}, \alpha) = \mathcal{L}_{\text{train},j}^{(t)}(\mathcal{W}) + \lambda \cdot \log \text{cost}(\alpha)$,
 301 where α is the architecture parameter. λ controls the magnitude of the cost term. In the search
 302 phase, the search loss is optimized to perform the two types of channel selection for all the KCR-
 303 Transformer blocks. After the search process, we use the selected channels for the attention outputs
 304 in a searched network and then perform retraining on the searched network using the training loss
 305 (2). Algorithm 1 in Section B of the appendix describes the search and retraining processes.

307 4 EXPERIMENTAL RESULTS

309 We present the implementation details of our experiments in Section 4.1. We evaluate the perfor-
 310 mance of KCR-Transformers for image classification on the ImageNet-1k dataset in Section 4.2. In
 311 Section 4.3, we study the effectiveness of using KCR-Transformer as the feature extraction back-
 312 bone for semantic segmentation and object detection. In Section 4.4, we study the effectiveness of
 313 the KCR-Transformer in reducing the KC of the networks. In Section 4.5, we examine the perfor-
 314 mance of KCR-Transformer as a vision encoder in vision-language models for the visual question
 315 answering tasks. In Section 4.6, we study the expected loss computed and the approximated KCR
 316 upper/lower bounds of the KCR-Transformers. Additional experiment results are presented in Sec-
 317 tion D of the appendix. In Section D.1, we evaluate the transferability of KCR-Transformer on
 318 downstream benchmarks. In Section D.2, we assess KCR-Transformer for self-supervised pretrain-
 319 ing. In Section D.3, we describe the implementation details for instance segmentation. In Sec-
 320 tion D.4, we present the detailed object detection results. In Section D.5, we compare the training
 321 efficiency of KCR-Transformers with their corresponding baseline vision transformers and study the
 322 sensitivity to hyperparameters γ_0 , η , and m . In Section D.6, we analyze the effect of varying λ on
 323 the compression of the vision transformers by KCR. In Section D.7, we compare the inference time
 324 of KCR-Transformers with the competing baseline models. We present Grad-CAM visualizations
 325 results of KCR-Transformers in Section D.8.

324
325

4.1 EXPERIMENT SETTINGS

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

During the architecture search phase, we randomly sample a subset of 100 ImageNet classes (Rus-sakovskiy et al., 2015) for training. The network is optimized using the AdamW optimizer with a cosine learning rate schedule, where the initial learning rate of 0.001 is gradually annealed to 0.0001 over 200 epochs. In each epoch, 70% of the training samples are used for updating the model weights, while the remaining 30% are dedicated to optimizing the architecture parameters of the KCR-Transformer blocks. The temperature τ is initialized at 4.5 and decayed by a factor of 0.95 per epoch. Empirical results indicate that setting $t_{\text{warm}} = 90$ and $\eta = 1$ yields the best performance across all KCR model variants. During the retraining phase, the searched network is trained on the training set of ImageNet-1K using the AdamW optimizer with $\beta_1 = 0.9$ and $\beta_2 = 0.999$. We set $t_{\text{train}} = 300$ as the total number of training epochs, and $t_{\text{warm}} = 90$ for all the experiments. In addition, we search for the optimal values of feature rank r . Let $r = \lceil \gamma_0 \min(n, d) \rceil$, where γ_0 is the rank ratio. We select the value by performing 5-fold cross-validation on 20% of the training data. The value of γ_0 is selected from 0.1 to 0.5 with a step size of 0.05, and $\gamma_0 = 0.2$ is found to be the optimal. Throughout all the experiments, m is set to 50000. λ and η are set to 0.2. As shown in Section D.5 of the appendix, the performance of the KCR-Transformer is stable with respect to different choices of the hyperparameters γ_0, η, m . The hyperparameter λ controls the size of the searched architecture. Section D.6 shows the performance of KCR-Transformers compressed to variant sizes by setting λ to different values. To improve the training efficiency, we compute $\tilde{\mathbf{U}}^{(r_0)}$, that is the approximation of $\mathbf{U}^{(r_0)}$, for every 30 epochs. Additional settings are presented in Section C of the appendix.

345
346

4.2 IMAGE CLASSIFICATION

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

We adopt ViT-S (Dosovitskiy et al., 2021), ViT-B (Dosovitskiy et al., 2021), Swin-T (Liu et al., 2021a), and Swin-B (Liu et al., 2021a) as backbone models. Each transformer block in these architectures is substituted with a KCR-Transformer block. For comparison, we evaluate the performance of KCR-Transformers against vision transformers compressed by the state-of-the-art kernel-based model compression method, NTK-SAP (Wang et al., 2023), and the state-of-the-art pruning method DeepCompress (Ahmed et al., 2025). Table 1 shows that KCR-Transformers consistently exhibit reduced computational costs and improved performance compared to the baseline vision transformers. For instance, KCR-Swin-B achieves a 1.1% gain in top-1 accuracy while reducing the computational cost by 2.8 GFLOPs, highlighting the effectiveness of KCR in enhancing both efficiency and predictive performance. Notably, KCR-EfficientViT-B1 achieves the lowest computational cost among all evaluated models, requiring only 0.44 GFLOPs while even outperforming its uncompressed counterpart by 1.0% and all baselines in the first part of Table 1 (T2T-SPViT) in top-1 accuracy, demonstrating the effectiveness of KCR-Transformers for resource-constrained applications. Moreover, Table 9 in the appendix shows that the performance and efficiency improvements by the KCR-Transformer are achieved with only marginal increases (< 7.8%) in the training time. Table 14 shows that KCR-Transformers exhibit faster inference speed than models compressed by competing baselines.

Model	# Params	FLOPs	Top-1
T2T (Yuan et al., 2021)	6.9 M	1.8 G	76.5
PiT (Heo et al., 2021)	10.6 M	1.4 G	78.1
Mobile-Former (Chen et al., 2021e)	9.4 M	0.2 G	76.7
EViT (Liu et al., 2023b)	12.4 M	0.5 G	77.1
TinyViT (Wu et al., 2022)	5.4 M	1.3 G	79.1
EfficientFormer (Li et al., 2022b)	12.3 M	1.3 G	79.2
VTC-LFC (Wang et al., 2022)	5.0 M	1.3 G	78.0
SPViT (Kong et al., 2022)	4.9 M	1.2 G	77.8
EfficientViT-B1 (Cai et al., 2023)	9.1 M	0.52 G	79.4
MLP-Fusion-EfficientViT-B1 (Wei et al., 2023)	7.9 M	0.48 G	79.1
NTK-SAP-EfficientViT-B1 (Wang et al., 2023)	8.0 M	0.49 G	79.4
DeepCompress-EfficientViT-B1 (Ahmed et al., 2025)	7.9 M	0.46 G	79.2
KCR-EfficientViT-B1	7.8 M	0.44 G	80.4
ViT-S (Dosovitskiy et al., 2021)	22.1 M	4.3 G	81.2
MLP-Fusion-ViT-S (Wei et al., 2023)	19.8 M	4.0 G	81.0
NTK-SAP-ViT-S (Wang et al., 2023)	20.3 M	3.9 G	80.9
DeepCompress ViT-S (Ahmed et al., 2025)	20.0 M	3.9 G	81.1
KCR-ViT-S (Ours)	19.8 M	3.8 G	82.2
ViT-B (Dosovitskiy et al., 2021)	86.5 M	17.6 G	83.7
MLP-Fusion-ViT-B (Wei et al., 2023)	70.2 M	15.3 G	83.5
NTK-SAP-ViT-B (Wang et al., 2023)	71.8 M	15.6 G	83.5
DeepCompress ViT-B (Ahmed et al., 2025)	70.5 M	15.1 G	83.6
KCR-ViT-B (Ours)	69.5 M	14.5 G	84.6
Swin-T (Liu et al., 2021a)	29.0 M	4.5 G	81.3
MLP-Fusion-Swin-T (Wei et al., 2023)	24.8 M	4.1 G	81.0
NTK-SAP-Swin-T (Wang et al., 2023)	25.5 M	4.2 G	81.2
DeepCompress Swin-T (Ahmed et al., 2025)	24.8 M	4.1 G	81.1
KCR-Swin-T (Ours)	24.6 M	3.9 G	82.4
Swin-B (Liu et al., 2021a)	88.0 M	15.4 G	83.5
MLP-Fusion-Swin-B (Wei et al., 2023)	70.8 M	13.3 G	83.2
NTK-SAP-Swin-B (Wang et al., 2023)	72.6 M	13.2 G	83.2
DeepCompress Swin-B (Ahmed et al., 2025)	71.5 M	13.0 G	83.1
KCR-Swin-B (Ours)	70.2 M	12.6 G	84.7

Table 1: Performance comparison on ImageNet-1k.

378 4.3 OBJECT DETECTION AND SEMANTIC SEGMENTATION
379

380 We incorporate the ImageNet pre-trained KCR-Swin-B into the Cascade Mask R-CNN frame-
381 work (Cai & Vasconcelos, 2021) for object detection. All models are evaluated on the MS-COCO
382 dataset (Lin et al., 2014). The implementation details for the experiments are presented in Sec-
383 tion D.4 of the appendix. It is observed in Table 2 that compressing the Swin backbones with
384 KCR consistently improves both box-level and mask-level detection performance within the Cas-
385 cade Mask R-CNN framework. For example, KCR-Swin-B achieves a box mAP of 52.5% and a
386 mask mAP of 45.6%, with improvements of 0.6% and 0.6% over the standard Swin-B baseline. Re-
387 sults with AP at IoU thresholds of 50 and 75 are deferred to Table 8 in Section D.4 of the appendix.
388

389 In addition, we evaluate the performance of KCR for segmentation on the ADE20K (Zhou et al.,
390 2019) using UperNet (Xiao et al., 2018) with our KCR-Swin-B as the feature extraction backbone.
391 We include Swin-B (Liu et al., 2021a) and SETR (Zheng et al., 2021) as baselines for comparisons.
392 We follow the training and evaluation protocol in (Liu et al., 2021a), where both our model and
393 the baselines are trained on the training split and evaluated on the validation split of the dataset.
394 More implementation details for the experiments are presented in Section D.3. As shown in Table 3,
395 UperNet equipped with our KCR-Swin-B backbone achieves the highest validation mIoU of 52.4%,
396 surpassing UperNet with Swin-B by 0.8% and SETR with ViT-L by 2.1%. These performance gains
397 further highlight the effectiveness of the low-rank regularization and kernel complexity reduction
398 introduced by KCR in enhancing the representational capacity of the vision backbone.
399

Framework	Feature Backbone	mAP ^{box}	mAP ^m
Mask R-CNN	Swin-B	51.9	45.0
Mask R-CNN	NTK-SAP-Swin-B	51.5	44.6
Mask R-CNN	KCR-Swin-B (Ours)	52.5	45.6

400 Table 2: Object Detection Results on COCO.
401

Framework	Feature Backbone	Val mIoU
SETR	ViT-L	50.3
UperNet	Swin-B	51.6
UperNet	NTK-SAP-Swin-B	51.3
UperNet	KCR-Swin-B (Ours)	52.4

402 Table 3: Segmentation Results on ADE20K.
403404 4.4 ABLATION STUDY ON THE EFFECTS OF KCR-TRANSFORMER IN REDUCING THE KC
405

406 We conduct an ablation study to
407 examine the effectiveness of KCR-
408 Transformer in reducing the KC
409 across four widely used vision trans-
410 former architectures, including ViT-
411 S, ViT-B, Swin-T, and Swin-B. For
412 each model, we compare the vanilla
413 version against its KCR-Transformer
414 counterpart. As shown in Table 4,
415 the KCR-enhanced models consis-
416 tently exhibit a substantial reduction
417 in KC while simultaneously achiev-
418 ing lower parameter counts, reduced
419 FLOPs, and higher top-1 classifica-
420 tion accuracy on ImageNet-1K. For
421 instance, KCR-ViT-S reduces the KC
422 from 4.12 to 0.65 and improves
423 the top-1 accuracy from 81.2% to
424 82.2% with fewer FLOPs and par-
425 ameters. These improvements demon-
426 strate that our approximate TNN
427 regularization effectively reduces the
428 KC of the vision backbones, leading to improved generalization capability. In contrast, the exist-
429 ing kernel-based compression method NTK-SAP (Wang et al., 2023) is limited by the conventional
430 NTK limit, so it does not improve the top-1 accuracy of the pruned models, while its KC is slightly
431 smaller than that of the original model as a result of pruning. MLP-Fusion-ViT-B (Wei et al., 2023)
432 and DeepCompress ViT-B (Ahmed et al., 2025) also renders compressed models with worse top-1
433 accuracy and slightly reduced KC compared to the original model, due to the compression effect.

Model	# Params	FLOPs	Top-1	KC
EfficientViT-B1 (Cai et al., 2023)	9.1 M	0.52 G	79.4	4.08
MLP-Fusion-EfficientViT-B1 (Wei et al., 2023)	7.9 M	0.48 G	79.1	3.28
NTK-SAP-EfficientViT-B1 (Ahmed et al., 2025)	8.0 M	0.49 G	79.4	3.17
DeepCompress-EfficientViT-B1 (Cai et al., 2023)	7.9 M	0.46 G	79.2	3.68
KCR-EfficientViT-B1 (Cai et al., 2023)	7.8 M	0.44 G	80.4	0.62
ViT-S (Dosovitskiy et al., 2021)	22.1 M	4.3 G	81.2	4.12
MLP-Fusion-ViT-S (Wei et al., 2023)	19.8 M	4.0 G	81.0	3.88
NTK-SAP-ViT-S (Wang et al., 2023)	20.3 M	3.9 G	80.9	3.25
DeepCompress ViT-S (Ahmed et al., 2025)	20.0 M	3.9 G	81.1	3.97
KCR-ViT-S (Ours)	19.8 M	3.8 G	82.2	0.65
ViT-B (Dosovitskiy et al., 2021)	86.5 M	17.6 G	83.7	4.35
MLP-Fusion-ViT-B (Wei et al., 2023)	70.2 M	15.3 G	83.5	3.62
NTK-SAP-ViT-B (Wang et al., 2023)	71.8 M	15.6 G	83.5	3.58
DeepCompress ViT-B (Ahmed et al., 2025)	70.5 M	15.1 G	83.6	3.85
KCR-ViT-B (Ours)	69.5 M	14.5 G	84.6	0.52
Swin-T (Liu et al., 2021a)	29.0 M	4.5 G	81.3	3.42
MLP-Fusion-Swin-T (Wei et al., 2023)	24.8 M	4.1 G	81.0	3.10
NTK-SAP-Swin-T (Wang et al., 2023)	25.5 M	4.2 G	81.2	1.86
DeepCompress Swin-T (Ahmed et al., 2025)	24.8 M	4.1 G	81.1	2.42
KCR-Swin-T (Ours)	24.6 M	3.9 G	82.4	0.44
Swin-B (Liu et al., 2021a)	88.0 M	15.4 G	83.5	3.21
MLP-Fusion-Swin-B (Wei et al., 2023)	70.8 M	13.3 G	83.4	2.60
NTK-SAP-Swin-B (Wang et al., 2023)	72.6 M	13.2 G	83.2	2.42
DeepCompress Swin-B (Ahmed et al., 2025)	71.5 M	13.0 G	83.4	2.68
KCR-Swin-B (Ours)	70.2 M	12.6 G	84.7	0.41

406 Table 4: Ablation Study on the Effects of KCR-Transformer
407 in Reducing the KC.
408

432 **4.5 VISUAL QUESTION ANSWERING (VQA) WITH KCR-TRANSFORMER AS THE VISION
433 ENCODER IN VISION-LANGUAGE MODELS (VLMs)**

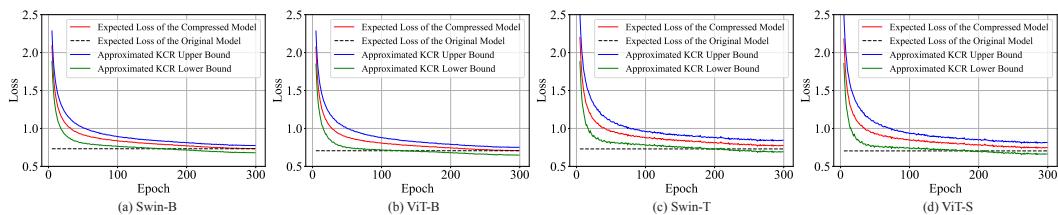
435 We further evaluate the KCR-Transformer in the visual question answering (VQA) task by employing
436 it as the vision encoder within the vision-language model (VLM) framework, FLAVA (Singh
437 et al., 2022). The evaluation is performed on widely used VQA datasets VQAv2 (Goyal et al., 2017)
438 and SNLI-VE (Xie et al., 2019). We replace the vision encoder, ViT-B, in the VLM framework,
439 FLAVA, with our KCR-Transformer during the vision encoder pre-training process. For VQAv2, we
440 follow the settings in FLAVA (Singh et al., 2022) and fine-tune the model using a cross-entropy loss
441 over the top frequent answer candidates. For SNLI-VE, we also follow the settings in FLAVA (Singh
442 et al., 2022) and fine-tune the model using a standard three-way classification loss to distinguish en-
443 tailment, contradiction, and neutrality. The test-dev VQA score for VQAv2 and the test accuracy
444 for SNLI-VE are reported following (Singh et al., 2022). It is observed in Table 5 that FLAVA with
445 KCR-ViT-B consistently outperforms the original FLAVA with ViT-B and the baseline model with
446 ViT-B compressed by NTK-SAP across both benchmarks while maintaining a lower computational
447 cost. For example, FLAVA with KCR-ViT-B achieves a VQAv2 score of 73.26%, outperforming
448 FLAVA with ViT-B by 0.77% and FLAVA with NTK-SAP-ViT-B by 1.18%.

Model	# Params	FLOPs	VQAv2	SNLI-VE
FLAVA (ViT-B) (Dosovitskiy et al., 2021)	86.5 M	17.6 G	72.49	78.89
FLAVA (NTK-SAP-ViT-B) (Wang et al., 2023)	71.8 M	15.6 G	72.08	78.16
FLAVA (KCR-ViT-B)	69.5 M	14.5 G	73.26	79.35

449 Table 5: Performance for VQA on VQAv2 (Goyal et al., 2017) and SNLI-VE (Xie et al., 2019).

450 **4.6 STUDY ON THE TIGHTNESS OF THE KCR UPPER AND LOWER BOUNDS**

451 Figure 1 illustrates the expected loss computed over the training and validation sets of the ImageNet-
452 1K and the approximated KCR upper/lower bounds computed at different training epochs for ViT-S,
453 ViT-B, Swin-T, and Swin-B trained on the ImageNet-1K dataset. We note that the approximated
454 KCR upper/lower bounds are the KCR upper/lower bounds with the KC replaced by the approximate
455 KC, A-KC, which is defined as $A-KC(\mathbf{K}) := \min_{h \in [0, r_0]} \left(\frac{h}{n} + \sqrt{\frac{1}{n} \|\mathbf{K}\|_h} \right)$. Since the approximate
456 TNN $\|\mathbf{K}\|_h$ is expected to be close to the TNN $\|\mathbf{K}\|_h$ for each $h \in [0: r_0]$, the approximate KC
457 A-KC(\mathbf{K}) is also expected to be close to the KC, KC(\mathbf{K}). It can be observed that the approximated
458 KCR upper/lower bounds are tightly correlated to the expected loss, revealing the tightness of the
459 upper/lower bounds for the generalization error of the DNNs with KCR-Transformer blocks.



460 Figure 1: Illustration of the expected loss and the approximated KCR upper/lower bounds over
461 different training epochs for ViT-S, ViT-B, Swin-T, and Swin-B compressed by KCR.

462 **5 CONCLUSION**

463 In this paper, we propose KCR-Transformer, a novel and generalization-aware transformer block
464 equipped with differentiable channel selection for the MLP layers in vision transformers. Guided
465 by a novel and sharp theoretical generalization bound derived from the kernel complexity (KC) of
466 the network, KCR-Transformer enables channel pruning in a theoretically grounded and principled
467 manner. Our method is compatible with a wide range of vision transformer architectures and can
468 be seamlessly integrated to replace standard transformer blocks. Extensive experiments across im-
469 age classification, object detection, and semantic segmentation demonstrate that KCR-Transformer
470 consistently achieves superior performance with fewer FLOPs and parameters, validating its effec-
471 tiveness for building efficient vision transformers.

486 REFERENCES
487

488 Sabbir Ahmed, Abdullah Al Arafat, Deniz Najafi, Akhlak Mahmood, Mamshad Nayem Rizve,
489 Mohaiminul Al Nahian, Ranyang Zhou, Shaahin Angizi, and Adnan Siraj Rakin. Deepcompress-
490 vit: Rethinking model compression to enhance efficiency of vision transformers at the edge. In
491 *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2025, Nashville, TN,*
492 *USA, June 11-15, 2025*, pp. 30147–30156. Computer Vision Foundation / IEEE, 2025.

493 Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
494 optimization and generalization for overparameterized two-layer neural networks. In *Inter-
495 national Conference on Machine Learning (ICML)*, volume 97 of *Machine Learning Research*, pp.
496 322–332. PMLR, 2019.

497 David Barrett and Benoit Dherin. Implicit gradient regularization. In *International Conference on
498 Learning Representations*, 2021.

499 Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local rademacher complexities. *Ann.
500 Statist.*, 33(4):1497–1537, 08 2005.

502 Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to under-
503 stand kernel learning. In *International Conference on Machine Learning*, pp. 541–549. PMLR,
504 2018.

505 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
506 Hoffman. Token merging: Your vit but faster. *ICLR*, 2023.

508 Maxim Bonnaerens and Joni Dambre. Learned thresholds token merging and pruning for vision
509 transformers. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856.

510 Mario Alejandro Bravo-Ortiz, Esteban Mercado-Ruiz, Juan Pablo Villa-Pulgarin, Carlos An-
511 gel Hormaza-Cardona, Sebastian Quiñones-Arredondo, Harold Brayan Arteaga-Arteaga, Simon
512 Orozco-Arias, Oscar Cardona-Morales, and Reinel Tabares-Soto. Cvstego-net: A convolutional
513 vision transformer architecture for spatial image steganalysis. *Journal of Information Security
514 and Applications*, 81:103695, 2024.

516 Han Cai, Chuang Gan, and Song Han. Efficientvit: Enhanced linear attention for high-resolution
517 low-computation visual recognition. In *Proceedings of the IEEE/CVF International Conference
518 on Computer Vision*, 2023.

519 Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: high quality object detection and instance
520 segmentation. *IEEE Trans. Pattern Anal. Mach. Intell.*, 43(5):1483–1498, 2021.

522 Abdulkadir Canatar and Cengiz Pehlevan. A kernel analysis of feature learning in deep neural
523 networks. In *2022 58th Annual Allerton Conference on Communication, Control, and Computing
(Allerton)*, pp. 1–8. IEEE, 2022.

525 Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and
526 deep neural networks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
527 d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances in Neural Information Process-
528 ing Systems (NeurIPS)*, pp. 10835–10845, 2019.

530 Arnav Chavan, Zhiqiang Shen, Zhuang Liu, Zechun Liu, Kwang-Ting Cheng, and Eric P Xing. Vi-
531 sion transformer slimming: Multi-dimension searching in continuous optimization space. In *Pro-
532 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4931–
533 4941, 2022.

534 Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers
535 for visual recognition. In *Proceedings of the IEEE/CVF international conference on computer
536 vision*, pp. 12270–12280, 2021a.

538 Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity
539 in vision transformers: An end-to-end exploration. *Advances in Neural Information Processing
Systems*, 34:19974–19988, 2021b.

540 Wenlong Chen and Yingzhen Li. Calibrating transformers via sparse gaussian processes. *arXiv*
 541 *preprint arXiv:2303.02444*, 2023.

542

543 Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imangenet in four
 544 GPU hours: A theoretically inspired perspective. In *9th International Conference on Learning*
 545 *Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021c.

546

547 Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
 548 transformers. In *2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021,*
 549 *Montreal, QC, Canada, October 10-17, 2021*, pp. 9620–9629. IEEE, 2021d.

550

551 Yingyi Chen, Qinghua Tao, Francesco Tonin, and Johan Suykens. Primal-attention: Self-attention
 552 through asymmetric kernel svd in primal representation. *Advances in Neural Information Pro-*
 553 *cessing Systems*, 36:65088–65101, 2023.

554

555 Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Xiaoyi Dong, Lu Yuan, and Zicheng
 556 Liu. Mobile-former: Bridging mobilenet and transformer. *arXiv preprint arXiv:2108.05895*,
 557 2021e.

558

559 Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and Alexander Rudnicky. Kerple: Kernelized rel-
 560 ative positional embedding for length extrapolation. *Advances in Neural Information Processing*
 561 *Systems*, 35:8386–8399, 2022.

562

563 Krzysztof Marcin Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea
 564 Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
 565 David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with per-
 566 formers. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event,*
 567 *Austria, May 3-7, 2021*. OpenReview.net, 2021.

568

569 Alexandru Damian, Jason D. Lee, and Mahdi Soltanolkotabi. Neural networks can learn representa-
 570 tions with gradient descent. In Po-Ling Loh and Maxim Raginsky (eds.), *Conference on Learning*
 571 *Theory, 2-5 July 2022, London, UK*, volume 178 of *Proceedings of Machine Learning Research*,
 572 pp. 5413–5452. PMLR, 2022.

573

574 Zhijie Deng, Jiaxin Shi, and Jun Zhu. Neuralef: Deconstructing kernels by deep neural networks.
 575 In *International Conference on Machine Learning*, pp. 4976–4992. PMLR, 2022.

576

577 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 578 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
 579 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 580 scale. In *International Conference on Learning Representations*, 2021.

581

582 Stanislav Fort, Leo Scherlis, Surya Ganguli, and Jascha Sohl-Dickstein. Deep learning versus kernel
 583 learning: an empirical study of loss landscape geometry and the time evolution of the neural
 584 tangent kernel. In *Advances in Neural Information Processing Systems*, volume 33, pp. 5850–
 585 5861, 2020.

586

587 Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized two-layers
 588 neural networks in high dimension. *The Annals of Statistics*, 49(2):1029 – 1054, 2021.

589

590 Spyros Gidaris, Andrei Bursuc, Oriane Siméoni, Antonín Vobecký, Nikos Komodakis, Matthieu
 591 Cord, and Patrick Pérez. MOCA: self-supervised representation learning by predicting masked
 592 online codebook assignments. *Trans. Mach. Learn. Res.*, 2024, 2024.

593

594 Chengyue Gong, Dilin Wang, Meng Li, Xinlei Chen, Zhicheng Yan, Yuandong Tian, qiang liu, and
 595 Vikas Chandra. NASvit: Neural architecture search for efficient vision transformers with gradient
 596 conflict aware supernet training. In *International Conference on Learning Representations*, 2022.

597

598 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in
 599 VQA matter: Elevating the role of image understanding in visual question answering. In *2017*
 600 *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,*
 601 *July 21-26, 2017*, pp. 6325–6334. IEEE Computer Society, 2017.

594 Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou,
 595 and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference. In
 596 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12259–12269,
 597 2021.

598

599 Lingyu Gu, Yongqi Du, Yuan Zhang, Di Xie, Shiliang Pu, Robert C. Qiu, and Zhenyu Liao. “loss-
 600 less” compression of deep neural networks: A high-dimensional neural tangent kernel approach.
 601 In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Ad-
 602 vances in Neural Information Processing Systems 35: Annual Conference on Neural Information
 603 Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
 604 2022*, 2022.

605

606 Yuka Hashimoto, Masahiro Ikeda, and Hachem Kadri. Deep learning with kernels through rkhs and
 607 the perron-frobenius operator. *Advances in Neural Information Processing Systems*, 36:50677–
 608 50696, 2023.

609

610 Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon
 611 Oh. Rethinking spatial dimensions of vision transformers. In *Proceedings of the IEEE/CVF
 International Conference on Computer Vision (ICCV)*, 2021.

612

613 Wentao Huang, Houbao Lu, and Haizhang Zhang. Hierarchical kernels in deep kernel learning.
 614 *Journal of Machine Learning Research*, 24(391):1–30, 2023.

615

616 Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and gen-
 617 eralization in neural networks. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
 618 Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), *Advances in Neural Information Pro-
 cessing Systems (NeurIPS)*, pp. 8580–8589, 2018.

619

620 Minchul Kim, Shangqian Gao, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Token fusion: Bridg-
 621 ing the gap between token pruning and token merging. In *Proceedings of the IEEE/CVF Winter
 622 Conference on Applications of Computer Vision*, pp. 1383–1392, 2024.

623

624 Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
 625 and Neil Houlsby. Big transfer (bit): General visual representation learning. In Andrea Vedaldi,
 626 Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), *Computer Vision - ECCV 2020
 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part V*, volume
 627 12350 of *Lecture Notes in Computer Science*, pp. 491–507. Springer, 2020.

628

629 Vladimir Koltchinskii. Local rademacher complexities and oracle inequalities in risk minimization.
 630 *Ann. Statist.*, 34(6):2593–2656, 12 2006.

631

632 Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei Niu, Mengshu Sun, Xuan Shen, Geng
 633 Yuan, Bin Ren, Hao Tang, et al. Spvit: Enabling faster vision transformers via latency-aware soft
 634 token pruning. In *Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,
 635 October 23–27, 2022, Proceedings, Part XI*, pp. 620–640. Springer, 2022.

636

637 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 638 categorization. In *2013 IEEE International Conference on Computer Vision Workshops, ICCV
 Workshops 2013, Sydney, Australia, December 1-8, 2013*, pp. 554–561. IEEE Computer Society,
 639 2013.

640

641 Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling methods for the nyström method.
 642 *J. Mach. Learn. Res.*, 13:981–1006, 2012.

643

644 Jongmin Lee, Joo Young Choi, Ernest K Ryu, and Albert No. Neural tangent kernel analysis of deep
 645 narrow neural networks. In *International Conference on Machine Learning*, pp. 12282–12351.
 646 PMLR, 2022.

647

648 Yanjing Li, Sheng Xu, Baochang Zhang, Xianbin Cao, Peng Gao, and Guodong Guo. Q-vit: Accu-
 649 rate and fully quantized low-bit vision transformer. *Advances in Neural Information Processing
 650 Systems (NeurIPS)*, 35:34451–34463, 2022a.

648 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
 649 and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. *Advances in Neural*
 650 *Information Processing Systems*, 35:12934–12949, 2022b.

651 Zhikai Li, Junrui Xiao, Lianwei Yang, and Qingyi Gu. Repq-vit: Scale reparameterization for post-
 652 training quantization of vision transformers. In *IEEE International Conference on Computer*
 653 *Vision (ICCV)*, pp. 17227–17236, 2023.

654 Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
 655 Image restoration using swin transformer. *ICCV*, 2021.

656 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 657 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 658 *conference on computer vision*, pp. 740–755. Springer, 2014.

659 Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang Zhou. Fq-vit: Post-training quan-
 660 tization for fully quantized vision transformer. In *International Joint Conference on Artificial*
 661 *Intelligence (IJCAI)*, pp. 1173–1179. ijcai.org, 2022.

662 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Alice
 663 Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
 664 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
 665 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*,
 666 2023a.

667 Ji Liu, Dehua Tang, Yuanxian Huang, Li Zhang, Xiaocheng Zeng, Dong Li, Mingjie Lu, Jinzhang
 668 Peng, Yu Wang, Fan Jiang, Lu Tian, and Ashish Sirasao. UPDP: A unified progressive depth
 669 pruner for CNN and vision transformer. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam
 670 Natarajan (eds.), *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-
 671 Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth*
 672 *Symposium on Educational Advances in Artificial Intelligence, EAAI 2024, February 20-27, 2024,
 673 Vancouver, Canada*, pp. 13891–13899. AAAI Press, 2024a.

674 Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan Yuan. Efficientvit:
 675 Memory efficient vision transformer with cascaded group attention. In *Proceedings of the*
 676 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14420–14430, 2023b.

677 Yifei Liu, Mathias Gehrig, Nico Messikommer, Marco Cannici, and Davide Scaramuzza. Revisiting
 678 token pruning for object detection and instance segmentation. In *Proceedings of the IEEE/CVF*
 679 *Winter Conference on Applications of Computer Vision*, pp. 2658–2668, 2024b.

680 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
 681 Guo. Swin transformer: Hierarchical vision transformer using shifted windows. *arXiv preprint*
 682 *arXiv:2103.14030*, 2021a.

683 Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quantiza-
 684 tion for vision transformer. *Advances in Neural Information Processing Systems (NeurIPS)*, 34:
 685 28092–28103, 2021b.

686 Junzhu Mao, Yang Shen, Jinyang Guo, Yazhou Yao, Xiansheng Hua, and Hengtao Shen. Prune and
 687 merge: Efficient token compression for vision transformer with spatial information preserved.
 688 *IEEE Transactions on Multimedia*, 2025.

689 Sachin Mehta and Mohammad Rastegari. Mobilevit: light-weight, general-purpose, and mobile-
 690 friendly vision transformer. *ICLR*, 2022.

691 Shahar Mendelson. Geometric parameters of kernel machines. In Jyrki Kivinen and Robert H.
 692 Sloan (eds.), *Conference on Computational Learning Theory*, volume 2375 of *Lecture Notes in*
 693 *Computer Science*, pp. 29–43. Springer, 2002.

694 Jisoo Mok, Byunggook Na, Ji-Hoon Kim, Dongyo Han, and Sungroh Yoon. Demystifying the
 695 neural tangent kernel from a practical perspective: Can it be trusted for neural architecture search
 696 without training? In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR*
 697 *2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 11851–11860. IEEE, 2022.

702 Grégoire Montavon, Mikio L Braun, and Klaus-Robert Müller. Kernel analysis of deep networks.
 703 *Journal of Machine Learning Research*, 12(9), 2011.
 704

705 Tan Nguyen, Minh Pham, Tam Nguyen, Khai Nguyen, Stanley Osher, and Nhat Ho. Fourierformer:
 706 Transformer meets generalized fourier integral theorem. *Advances in Neural Information Pro-*
 707 *cessing Systems*, 35:29319–29335, 2022.

708 Tan Minh Nguyen, Tam Minh Nguyen, Nhat Ho, Andrea L. Bertozzi, Richard G. Baraniuk, and
 709 Stanley J. Osher. A primal-dual framework for transformers and neural networks. In *The Eleventh*
 710 *International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,*
 711 *2023*. OpenReview.net, 2023.

712 Eshaan Nichani, Yu Bai, and Jason D. Lee. Identifying good directions to escape the NTK regime
 713 and efficiently learn low-degree plus sparse polynomials. In Sanmi Koyejo, S. Mohamed,
 714 A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information*
 715 *Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,*
 716 *NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022.

717 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large num-
 718 ber of classes. In *Sixth Indian Conference on Computer Vision, Graphics & Image Processing,*
 719 *ICVGIP 2008, Bhubaneswar, India, 16-19 December 2008*, pp. 722–729. IEEE Computer Soci-
 720 ety, 2008.

721 Lorenzo Papa, Paolo Russo, Irene Amerini, and Luping Zhou. A survey on efficient vision trans-
 722 formers: algorithms, techniques, and performance benchmarking. *IEEE Transactions on Pattern*
 723 *Analysis and Machine Intelligence*, 2024.

724 Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In *2012*
 725 *IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16-21,*
 726 *2012*, pp. 3498–3505. IEEE Computer Society, 2012.

727 John Rachwan, Daniel Zügner, Bertrand Charpentier, Simon Geisler, Morgane Ayle, and Stephan
 728 Günnemann. Winning the lottery ahead of time: Efficient early network pruning. In Kamalika
 729 Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.),
 730 *International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Mary-*
 731 *land, USA*, volume 162 of *Proceedings of Machine Learning Research*, pp. 18293–18309. PMLR,
 732 2022.

733 Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
 734 network design spaces. In *Proceedings of the IEEE/CVF conference on computer vision and*
 735 *pattern recognition*, 2020.

736 Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamiccvit:
 737 Efficient vision transformers with dynamic token sparsification. *arXiv preprint arXiv:2106.02034*,
 738 2021.

739 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 740 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
 741 recognition challenge. *International journal of computer vision*, 115(3):211–252, 2015.

742 Maria Seleznova and Gitta Kutyniok. Analyzing finite neural networks: Can we trust neural tangent
 743 kernel theory? In *Mathematical and Scientific Machine Learning*, pp. 868–895. PMLR, 2022.

744 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 745 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 746 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 747 2017.

748 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Mar-
 749 cus Rohrbach, and Douwe Kiela. FLAVA: A foundational language and vision alignment model.
 750 In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Or-*
 751 *leans, LA, USA, June 18-24, 2022*, pp. 15617–15629. IEEE, 2022.

756 Kyungwoo Song, Yohan Jung, Dongjun Kim, and Il-Chul Moon. Implicit kernel attention. In
 757 *Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on*
 758 *Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Edu-*
 759 *cational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021*, pp.
 760 9713–9721. AAAI Press, 2021.

761 Xiu Su, Shan You, Jiyang Xie, Mingkai Zheng, Fei Wang, Chen Qian, Changshui Zhang, Xiao-Gang
 762 Wang, and Chang Xu. Vitas: Vision transformer architecture search. In *European Conference*
 763 *on Computer Vision (ECCV)*, volume 13681 of *Lecture Notes in Computer Science*, pp. 139–157.
 764 Springer, 2022.

765 Shokichi Takakura and Taiji Suzuki. Mean-field analysis on two-layer neural networks from a kernel
 766 perspective. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna,*
 767 *Austria, July 21-27, 2024*. OpenReview.net, 2024.

768 Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
 769 Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In *Proceedings of*
 770 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2820–2828, 2019.

771 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 772 Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
 773 *International conference on machine learning*, pp. 10347–10357. PMLR, 2021.

774 Yite Wang, Dawei Li, and Ruoyu Sun. NTK-SAP: improving neural network pruning by aligning
 775 training dynamics. In *The Eleventh International Conference on Learning Representations, ICLR*
 776 *2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.

777 Zhenyu Wang, Hao Luo, Pichao Wang, Feng Ding, Fan Wang, and Hao Li. Vtc-lfc: Vision trans-
 778 former compression with low-frequency components. *Advances in Neural Information Processing*
 779 *Systems*, 35:13974–13988, 2022.

780 Tianxin Wei, Zeming Guo, Yifan Chen, and Jingrui He. Ntk-approximating MLP fusion for efficient
 781 language model fine-tuning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
 782 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine*
 783 *Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of*
 784 *Machine Learning Research*, pp. 36821–36838. PMLR, 2023.

785 Zimian Wei, Peijie Dong, Zheng Hui, Anggeng Li, Lujun Li, Menglong Lu, Hengyue Pan, and
 786 Dongsheng Li. Auto-prox: Training-free vision transformer architecture search via automatic
 787 proxy discovery. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), *Thirty-*
 788 *Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Inno-*
 789 *vative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational*
 790 *Advances in Artificial Intelligence, EAAI 2024, February 20-27, 2024, Vancouver, Canada*, pp.
 791 15814–15822. AAAI Press, 2024.

792 Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
 793 Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
 794 *Conference on Learning Theory*, pp. 3635–3673. PMLR, 2020.

795 Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan.
 796 Tinyvit: Fast pretraining distillation for small vision transformers. In *Computer Vision–ECCV*
 797 *2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXI*,
 798 pp. 68–85. Springer, 2022.

799 Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and general-
 800 ization in deep neural networks. In *International Conference on Machine Learning*, pp. 10462–
 801 10472. PMLR, 2020.

802 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
 803 scene understanding. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss
 804 (eds.), *Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September*
 805 *8-14, 2018, Proceedings, Part V*, volume 11209 of *Lecture Notes in Computer Science*, pp. 432–
 448. Springer, 2018.

810 Ning Xie, Farley Lai, Derek Doran, and Asim Kadav. Visual entailment: A novel task for fine-
 811 grained image understanding. *CoRR*, abs/1901.06706, 2019.

812

813 Kaixin Xu, Zhe Wang, Chunyun Chen, Xue Geng, Jie Lin, Xulei Yang, Min Wu, Xiaoli Li, and Weisi
 814 Lin. Lpvit: Low-power semi-structured pruning for vision transformers. In *European Conference
 815 on Computer Vision*, pp. 269–287. Springer, 2024.

816

817 Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. From knowledge distillation to self-knowledge
 818 distillation: A unified approach with normalized loss and customized soft labels. In *Proceedings
 819 of the IEEE/CVF International Conference on Computer Vision*, pp. 17185–17194, 2023.

820

821 Zhendong Yang, Zhe Li, Ailing Zeng, Zexian Li, Chun Yuan, and Yu Li. Vitkd: Feature-based
 822 knowledge distillation for vision transformers. In *Proceedings of the IEEE/CVF Conference on
 823 Computer Vision and Pattern Recognition*, pp. 1379–1388, 2024.

824

825 Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu, and Li Cui. Width & depth pruning
 826 for vision transformers. In *Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022,
 827 Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The
 828 Twelfth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event,
 829 February 22 - March 1, 2022*, pp. 3143–3151. AAAI Press, 2022a.

830

831 Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao Tan, Sen Yang, Ji Liu, and Zhangyang
 832 Wang. Unified visual transformer compression. *ICLR*, 2022b.

833

834 Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis EH Tay, Jiashi
 835 Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
 836 imagenet. In *Proceedings of the IEEE/CVF international conference on computer vision*, 2021.

837

838 Borui Zhao, Renjie Song, and Jiajun Liang. Cumulative spatial knowledge distillation for vision
 839 transformers. In *IEEE International Conference on Computer Vision (ICCV)*, pp. 6146–6155,
 840 2023.

841

842 Chuanyang Zheng, Kai Zhang, Zhi Yang, Wenming Tan, Jun Xiao, Ye Ren, Shiliang Pu, et al. Savit:
 843 Structure-aware vision transformer pruning via collaborative optimization. *Advances in Neural
 844 Information Processing Systems*, 35:9010–9023, 2022.

845

846 Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei Fu,
 847 Jianfeng Feng, Tao Xiang, Philip H. S. Torr, and Li Zhang. Rethinking semantic segmentation
 848 from a sequence-to-sequence perspective with transformers. In *IEEE Conference on Computer
 849 Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 6881–6890. Computer
 850 Vision Foundation / IEEE, 2021.

851

852 Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
 853 Semantic understanding of scenes through the ADE20K dataset. *Int. J. Comput. Vis.*, 127(3):302–
 854 321, 2019.

855

856 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
 857 Deformable transformers for end-to-end object detection. *ICLR*, 2021.

858

A PROOF OF THEOREM 3.1

858 **Proof of Theorem 3.1.** We consider the dynamic kernel $K(\mathbf{x}, \mathbf{x}') = F(\mathbf{x})^\top F(\mathbf{x}')$ for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$
 859 defined in Section 3.2. Then it follows from (Bartlett et al., 2005, Theorem 3.3) that for every $K > 1$,

$$\begin{aligned} L_{\mathcal{D}}(\text{NN}_{\mathcal{W}}) &\leq \frac{K}{K-1} \mathbb{E}_{P_n} \left[\|\text{NN}_{\mathcal{W}}(\mathbf{x}) - \mathbf{y}\|_2^2 \right] + \Theta(r^*) + \Theta\left(\frac{x}{n}\right), \\ L_{\mathcal{D}}(\text{NN}_{\mathcal{W}}) &\geq \frac{K}{K+1} \mathbb{E}_{P_n} \left[\|\text{NN}_{\mathcal{W}}(\mathbf{x}) - \mathbf{y}\|_2^2 \right] - \Theta(r^*) - \Theta\left(\frac{x}{n}\right), \end{aligned} \quad (3)$$

863 and each inequality in (3) holds with probability at least $1 - \exp(-x)$. K is a positive definite
 864 kernel and the network $\text{NN}_{\mathcal{W}} \in \mathcal{H}_K$ where \mathcal{H}_K denotes the Reproducing Kernel Hilbert Space

(RKHS) associated with K , and we recall that $\text{KC}(\mathbf{K}) = \min_{h \in [0, r_0]} \left(\frac{h}{n} + \sqrt{\frac{1}{n} \sum_{i=h+1}^{r_0} \widehat{\lambda}_i} \right)$ is the kernel complexity. It then follows from (Bartlett et al., 2005, Corollary 6.7) and (3) that

$$\begin{aligned} L_{\mathcal{D}}(\text{NN}_{\mathcal{W}}) &\leq \frac{K}{K-1} \mathbb{E}_{P_n} \left[\|\text{NN}_{\mathcal{W}}(\mathbf{x}) - \mathbf{y}\|_2^2 \right] + \Theta(\text{KC}(\mathbf{K})) + \Theta\left(\frac{x}{n}\right), \\ L_{\mathcal{D}}(\text{NN}_{\mathcal{W}}) &\geq \frac{K}{K+1} \mathbb{E}_{P_n} \left[\|\text{NN}_{\mathcal{W}}(\mathbf{x}) - \mathbf{y}\|_2^2 \right] - \Theta(\text{KC}(\mathbf{K})) - \Theta\left(\frac{x}{n}\right). \end{aligned} \quad (4)$$

Combining (3) and (4) proves (1). \square

B ALGORITHMS

Algorithm 1 describes the search and the retraining process of the KCR-Transformer.

Algorithm 1 Training Algorithm with the Approximate Truncated Nuclear Norm by SGD

Require: Training dataset \mathcal{D} , number of search epochs t_{search} , number of training epochs t_{train} , warm-up epochs t_{warm} , batch size J , learning rates $\eta_{\mathcal{W}}$ and η_{α}

Ensure: Trained weights \mathcal{W} of the network

```

1: Split  $\mathcal{D}$  into  $\mathcal{D}_{\mathcal{W}}$  and  $\mathcal{D}_{\alpha}$ , where 70% of samples ( $\mathcal{D}_{\mathcal{W}}$ ) are used to update model weights  $\mathcal{W}$ , and 30% of
2: Initialize the network weights  $\mathcal{W} = \mathcal{W}(0)$  by random initialization.
3: for  $t \leftarrow 1$  to  $t_{\text{search}}$  do
4:   for  $j \leftarrow 1$  to  $J$  do
5:     Sample mini-batches  $\mathcal{B}_j^{\mathcal{W}} \subset \mathcal{D}_{\mathcal{W}}$ ,  $\mathcal{B}_j^{\alpha} \subset \mathcal{D}_{\alpha}$ .
6:     Perform gradient descent on  $\mathcal{B}_j^{\alpha}$  to update  $\alpha$  by  $\alpha \leftarrow \alpha - \eta_{\alpha} \nabla_{\alpha} \mathcal{L}_{\text{search},j}^{(t)}(\mathcal{W}, \alpha)$ 
7:     Perform gradient descent on  $\mathcal{B}_j^{\mathcal{W}}$  to update  $\mathcal{W}$  by  $\mathcal{W} \leftarrow \mathcal{W} - \eta_{\mathcal{W}} \nabla_{\mathcal{W}} \mathcal{L}_{\text{search},j}^{(t)}(\mathcal{W}, \alpha)$ 
8:   end for
9: end for
10: for  $t \leftarrow 1$  to  $t_{\text{train}}$  do
11:   if  $t \bmod 30 = 0$  then
12:     Update  $\tilde{\mathbf{U}}^{(r_0)}$ , the approximation of  $\mathbf{U}^{(r_0)}$ .
13:   end if
14:   for  $j \leftarrow 1$  to  $J$  do
15:     Sample mini-batch  $\mathcal{B}_j \subset \mathcal{D}_{\mathcal{W}}$ .
16:     if  $t > t_{\text{warm}}$  then
17:       Perform gradient descent on  $\mathcal{B}_j^{\mathcal{W}}$  to update  $\mathcal{W}$  by  $\mathcal{W} \leftarrow \mathcal{W} - \eta_{\mathcal{W}} \nabla_{\mathcal{W}} \mathcal{L}_{\text{train},j}^{(t)}(\mathcal{W})$ 
18:     else
19:       Perform gradient descent on  $\mathcal{B}_j^{\mathcal{W}}$  to update  $\mathcal{W}$  by  $\mathcal{W} \leftarrow \mathcal{W} - \eta_{\mathcal{W}} \nabla_{\mathcal{W}} \text{CE}_j^{(t)}(\mathcal{W})$ 
20:     end if
21:   end for
22: end for
23: return  $\mathcal{W}$ 

```

C IMPLEMENTATION DETAILS

All experiments are conducted on 40GB NVIDIA A100 GPUs with an effective batch size of 512. Following standard practice (Cai et al., 2023), we apply widely adopted data augmentation techniques during training, including random scaling, random horizontal flipping, and random cropping. The weight decay is set to 0.01. The learning rate is linearly increased from 0.0002 to 0.002 over the first five epochs, then gradually annealed back to 0.0002 using a cosine decay schedule over the remaining epochs. Inference is performed using the exponential moving average (EMA) of model weights.

918 **D ADDITIONAL EXPERIMENT RESULTS**919 **D.1 TRANSFER LEARNING CAPABILITY OF THE KCR-TRANSFORMER**

920 We evaluate the transfer learning capability of KCR-ViT-B in comparison to the baseline ViT-B
 921 using three widely adopted benchmarks, including Oxford Flowers-102 (Nilsback & Zisserman,
 922 2008), Oxford-IIIT Pet (Parkhi et al., 2012), and Stanford Cars (Krause et al., 2013). Following the
 923 established transfer learning protocol in (Kolesnikov et al., 2020), both models are first pre-trained
 924 on ImageNet and subsequently fine-tuned on the respective training sets of the target datasets for
 925 50 epochs using the Adam optimizer, with a fixed learning rate of 1×10^{-5} . The experimental
 926 results are presented in Table 6. It is observed that KCR-ViT-B consistently outperforms ViT-B and
 927 NTK-SAP-ViT-B across all three datasets, while requiring fewer FLOPs and model parameters. For
 928 example, KCR-ViT-B achieves a top-1 accuracy of 93.8%, outperforming ViT-B and NTK-SAP-
 929 ViT-B by 1.1% and 1.3%, respectively, on the Cars dataset. The improvements demonstrate the
 930 superior transferability of the features learned by the KCR compressed model across diverse visual
 931 domains.

Model	# Params	FLOPs	ImageNet	Flowers	Pet	Cars
ViT-B (Dosovitskiy et al., 2021)	86.5 M	17.6 G	83.7	97.8	96.0	92.7
NTK-SAP-ViT-B (Wang et al., 2023)	71.8 M	15.6 G	83.5	97.4	95.6	92.5
KCR-ViT-B	69.5 M	14.5 G	84.6	98.2	96.6	93.8

933 Table 6: Top-1 classification accuracy comparison for transfer learning on the Oxford Flowers-
 934 102 (Nilsback & Zisserman, 2008), Oxford-IIIT Pet (Parkhi et al., 2012), and Stanford Cars (Krause
 935 et al., 2013) datasets.

936 **D.2 SELF-SUPERVISED LEARNING WITH KCR-TRANSFORMERS**

937 We further evaluate the effectiveness of KCR-Transformers in the self-supervised learning (SSL)
 938 setting using both MoCoV3 (Chen et al., 2021d) and MOCA (Gidaris et al., 2024). In our exper-
 939 iments, the ViT-B model pre-trained with each SSL method serves as the baseline. We pre-train
 940 ViT-B, NTK-SAP-ViT-B, and our KCR-ViT-B strictly following the training settings described in
 941 the respective papers (Chen et al., 2021d; Gidaris et al., 2024) on the ImageNet1K without using
 942 training labels. The pre-trained models are then subsequently fine-tuned with class labels for down-
 943 stream classification on ImageNet1K following the fine-tuning protocols in (Chen et al., 2021d;
 944 Gidaris et al., 2024). As shown in Table 7, KCR-ViT-B consistently achieves superior performance
 945 over ViT-B and NTK-SAP-ViT-B across both SSL pipelines, while requiring fewer FLOPs and pa-
 946 rameters. For example, under the MOCA (Gidaris et al., 2024) pretraining pipeline, KCR-ViT-B
 947 achieves a top-1 accuracy of 84.4%, outperforming ViT-B and NTK-SAP-ViT-B by 1.0% and 1.2%,
 948 respectively, with reduced computational cost and parameter size. The improvements highlight the
 949 effectiveness of the KCR compression method in enhancing the efficiency and accuracy of the mod-
 950 els pre-trained by SSL methods.

Network	SSL Method	# Params	FLOPs	Top-1
ViT-B (Dosovitskiy et al., 2021)		86.5 M	17.6 G	83.2
NTK-SAP-ViT-B (Wang et al., 2023)	MoCoV3 (Chen et al., 2021d)	71.8 M	15.6 G	82.9
KCR-ViT-B (Ours)		69.5 M	14.5 G	84.1
ViT-B (Dosovitskiy et al., 2021)		86.5 M	17.6 G	83.4
NTK-SAP-ViT-B (Wang et al., 2023)	MOCA (Gidaris et al., 2024)	71.8 M	15.6 G	83.2
KCR-ViT-B (Ours)		69.5 M	14.5 G	84.4

951 Table 7: Top-1 classification accuracy comparison for models pre-trained with the self-supervised
 952 learning (SSL) methods MoCoV3 (Chen et al., 2021d) and MOCA (Gidaris et al., 2024) on Im-
 953 ageNet1K.

954 **D.3 IMPLEMENTATION DETAILS FOR INSTANCE SEGMENTATION**

955 ADE20K has 25000 images in total, with 20000 for training, 2000 for validation, and another 3000
 956 for testing. We adopt UperNet (Xiao et al., 2018) as the segmentation framework with our KCR-

972 Swin-B as the feature extraction backbone. We follow the training and evaluation protocol in (Liu
 973 et al., 2021a), where both our model and the baselines are trained on the training split and evaluated
 974 on the validation split of the dataset. All models are optimized using AdamW for a total of 160000
 975 iterations with a batch size of 16, an initial learning rate of 6×10^{-5} , and a weight decay of 0.01. The
 976 learning rate follows a linear decay schedule after a warm-up phase of 1500 iterations. To enhance
 977 generalization, we employ data augmentation techniques including random horizontal flipping, ran-
 978 dom rescaling with a ratio range of [0.5, 2.0], and random photometric distortions. Stochastic depth
 979 regularization is applied with a drop rate of 0.2. For inference, we use multi-scale testing with scale
 980 factors varying from 0.5 to 1.75.

981 982 D.4 IMPLEMENTATION DETAILS AND ADDITIONAL RESULTS FOR OBJECT DETECTION

983 We incorporate the ImageNet pre-trained KCR-Swin-T and KCR-Swin-B into the Cascade Mask
 984 R-CNN framework (Cai & Vasconcelos, 2021) for object detection. All models are evaluated on the
 985 MS-COCO dataset (Lin et al., 2014), which consists of 117000 training images and 5000 validation
 986 images. We follow the training configuration of (Liu et al., 2021a), where each input image is resized
 987 such that the shorter side falls within [480, 800] pixels while the longer side does not exceed 1333
 988 pixels. Training is performed using the AdamW optimizer with an initial learning rate of 0.0001, a
 989 weight decay of 0.05, and a batch size of 16, for a total of 36 epochs following the $3 \times$ schedule.
 990 In line with (Cai & Vasconcelos, 2021), we report standard COCO metrics, including the box-level
 991 mean Average Precision (mAP^{box}) and mask-level mean Average Precision (mAP^m), as well as AP
 992 at IoU thresholds of 50 and 75.

Detection Framework	Feature Backbone	mAP ^{box}	AP ₅₀ ^b	AP ₇₅ ^b	mAP ^m	AP ₅₀ ^m	AP ₇₅ ^m
Mask R-CNN	Swin-T	50.5	69.3	54.9	43.7	66.6	47.1
Mask R-CNN	Swin-B	51.9	70.9	56.5	45.0	68.4	48.7
Mask R-CNN	KCR-Swin-T (Ours)	50.9	69.7	55.3	44.0	67.1	47.6
Mask R-CNN	KCR-Swin-B (Ours)	52.5	71.4	56.8	45.6	68.9	49.1

993 994 995 996 997 998 999 Table 8: Detailed Object Detection Results on COCO.

1000 1001 It is observed in Table 8 that compressing the Swin backbones with KCR consistently improves
 1002 both box-level and mask-level detection performance within the Cascade Mask R-CNN framework.
 1003 For example, KCR-Swin-T achieves a box mAP of 50.9% and a mask mAP of 44.0%, with im-
 1004 provements of 0.4% and 0.3% over the standard Swin-T baseline. Similarly, KCR-Swin-B achieves
 1005 the highest box mAP of 52.5% and mask mAP of 45.6%, surpassing the Swin-B baseline by 0.6%
 1006 and 0.6%, respectively. These results demonstrate that KCR compression effectively enhances the
 1007 feature expressiveness of vision backbones for object detection, with even less computational costs.
 1008 The consistent improvements across multiple IoU thresholds further validate the robustness and
 1009 generalization capability of vision backbones compressed by KCR.

1010 1011 D.5 TRAINING EFFICIENCY AND SENSITIVITY OF HYPERPARAMETERS γ_0, η, m

1012 1013 In this section, we first compare the training time of the KCR-Transformers with the corresponding
 1014 baseline vision transformers without the KCR regularization. The comparison is performed on one
 1015 NVIDIA A100 40GB GPU with full-precision, and the average training time per epoch is reported.
 1016 It is observed from Table 9 that the KCR regularization only marginally increases the training time
 1017 (< 7.8%) compared to the corresponding baseline vision transformers, while greatly increasing the
 1018 top-1 classification accuracy and reducing the model size of FLOPs. For example, KCR-Swin-B
 1019 achieves a 1.2% top-1 accuracy improvement while reducing the number of parameters from 88.0M
 1020 to 70.2M and FLOPs from 15.4G to 12.6G, with a negligible training overhead of 1.6 minutes per
 1021 epoch, which is only 4.18% of the original training time of Swin-B. In addition, we also report the
 1022 overall search time and re-training time in comparison with the training time of the baseline model.
 1023 It is observed that the search phase only brings marginal training overhead, costing less than 7.2%
 1024 of the baseline model’s training time.

1025 1026 We further study the sensitivity of KCR-Transformer to the key hyperparameters γ_0 , η , and m by
 1027 conducting experiments on the Swin-B backbone with different values of γ_0 , η , and m . When

Model	# Params	FLOPs	Top-1	Training Efficiency (Minutes/Epoch)	Search Time (Hours)	Re-Training Time (Hours)
ViT-S (Dosovitskiy et al., 2021)	22.1 M	4.3 G	81.2	16.8	-	84.0
KCR-ViT-S (Ours)	19.8 M	3.8 G	82.2	18.1	6.03	88.5
ViT-B (Dosovitskiy et al., 2021)	86.5 M	17.6 G	83.7	33.5	-	167.5
KCR-ViT-B (Ours)	69.5 M	14.5 G	84.6	35.2	11.7	173.4
Swin-T (Liu et al., 2021a)	29.0 M	4.5 G	81.3	20.8	-	104.0
KCR-Swin-T (Ours)	24.6 M	3.9 G	82.4	22.1	7.3	108.5
Swin-B (Liu et al., 2021a)	88.0 M	15.4 G	83.5	38.3	-	191.5
KCR-Swin-B (Ours)	70.2 M	12.6 G	84.7	39.9	13.3	197.1

Table 9: Training time comparisons with baseline methods on the training set of ImageNet-1K.

performing the study on one of the hyperparameters, the remaining hyperparameters are set to their corresponding optimal values. The results summarized in Tables 10, 11, and 12. Across all settings, the top-1 accuracy remains stable within an error range of 0.3%, indicating that KCR-Transformer is robust to the choice of these hyperparameters.

γ_0	0.1	0.2	0.3	0.4	0.5
Top-1 (%)	84.6	84.7	84.5	84.7	84.6

Table 10: Sensitivity analysis of KCR-Swin-B to the choices of γ_0 on the ImageNet-1K dataset.

η	0.1	0.2	0.3	0.4	0.5
Top-1 (%)	84.6	84.7	84.7	84.6	84.5

Table 11: Sensitivity analysis of KCR-Swin-B to the choices of η on the ImageNet-1K dataset.

m	25000	50000	75000	100000	200000
Top-1 (%)	84.4	84.7	84.6	84.7	84.7

Table 12: Sensitivity analysis of KCR-Swin-B to the choices of m on the ImageNet-1K dataset.

D.6 KCR-TRANSFORMERS WITH DIFFERENT COMPRESSION RATIOS

In this section, we investigate the performance of KCR-Transformer under different compression ratios by varying the hyperparameter λ in the search loss. Larger values of λ impose stronger penalization on the computational cost, thereby yielding more aggressively compressed architectures. We evaluate four representative settings, $\lambda \in \{0.2, 0.4, 0.6, 0.8\}$, using the Swin-B backbone on the ImageNet-1K dataset. In addition, we compare KCR-Swin-B with Swin-B compressed by NTK-SAP (Wang et al., 2023) of similar sizes. As shown in Table 13, KCR-Transformer consistently outperforms NTK-SAP across all compression levels. Notably, for each comparable model size, KCR-Swin-B achieves significantly higher top-1 accuracy while maintaining lower parameter count and FLOPs. For example, at $\lambda = 0.2$, KCR-Swin-B achieves 84.7% top-1 accuracy with only 12.6 G FLOPs, outperforming NTK-SAP-Swin-B (82.8%, 10.2 G FLOPs) by 1.9% in top-1 accuracy. This trend persists even under more aggressive compression settings, such as $\lambda = 0.8$, where KCR-Swin-B achieves a top-1 accuracy of 82.9%, despite having fewer parameters and FLOPs than its NTK-SAP counterpart.

D.7 INFERENCE TIME COMPARISON

In this section, we further compare the inference latency of the KCR-Transformers against their corresponding baseline vision transformers without the KCR regularization. All measurements are conducted on two NVIDIA A100 40GB GPUs using FP16 precision with a batch size of 128. As shown in Table 14, KCR-Transformer variants consistently achieve lower inference latency compared to their counterparts, while simultaneously improving top-1 classification accuracy and reducing both the parameter count and computational cost (FLOPs). For instance, KCR-Swin-B achieves a 1.2% gain in top-1 accuracy over Swin-B, while reducing the number of parameters from 88.0M

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

Model	λ	# Params (M)	FLOPs (G)	Top-1 (%)
Swin-B	-	88.0	15.4	83.5
NTK-SAP-Swin-B (Wang et al., 2023)	-	72.6	13.2	83.2
KCR-Swin-B	0.2	70.2	12.6	84.7
NTK-SAP-Swin-B (Wang et al., 2023)	-	57.9	10.2	82.8
KCR-Swin-B	0.4	55.4	9.7	84.2
NTK-SAP-Swin-B (Wang et al., 2023)	-	49.3	8.4	82.2
KCR-Swin-B	0.6	46.7	7.8	83.4
NTK-SAP-Swin-B (Wang et al., 2023)	-	40.2	6.3	81.5
KCR-Swin-B	0.8	39.5	6.0	82.9

Table 13: Performance of KCR-Swin-B under different compression ratios. Increasing λ enforces stronger compression, leading to smaller parameter sizes and FLOPs.

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

Table 14: Comparisons with baseline methods on ImageNet-1K validation set (inference time measured on 2× NVIDIA A100 40GB GPU, in the precision of FP16, with a batch size = 128).

1107

1108

Model	# Params	FLOPs	Top-1	Inference Time (ms/img)
EfficientViT-B1 (Cai et al., 2023)	9.1 M	0.52 G	79.4	0.312
MLP-Fusion-EfficientViT-B1 (Wei et al., 2023)	7.9 M	0.48 G	79.1	0.298
NTK-SAP-EfficientViT-B1 (Ahmed et al., 2025)	8.0 M	0.49 G	79.4	0.304
DeepCompress-EfficientViT-B1 (Cai et al., 2023)	7.9 M	0.46 G	79.2	0.285
KCR-EfficientViT-B1 (Cai et al., 2023)	7.8 M	0.44 G	80.4	0.271
ViT-S (Dosovitskiy et al., 2021)	22.1 M	4.3 G	81.2	0.642
MLP-Fusion-ViT-S (Wei et al., 2023)	19.8 M	4.0 G	81.0	0.596
NTK-SAP-ViT-S (Wang et al., 2023)	20.3 M	3.9 G	80.9	0.583
DeepCompress ViT-S (Ahmed et al., 2025)	20.0 M	3.9 G	81.1	0.574
KCR-ViT-S (Ours)	19.8 M	3.8 G	82.2	0.561
ViT-B (Dosovitskiy et al., 2021)	86.5 M	17.6 G	83.7	1.594
MLP-Fusion-ViT-B (Wei et al., 2023)	70.2 M	15.3 G	83.5	1.442
NTK-SAP-ViT-B (Wang et al., 2023)	71.8 M	15.6 G	83.5	1.467
DeepCompress ViT-B (Ahmed et al., 2025)	70.5 M	15.1 G	83.6	1.426
KCR-ViT-B (Ours)	69.5 M	14.5 G	84.6	1.378
Swin-T (Liu et al., 2021a)	29.0 M	4.5 G	81.3	0.673
MLP-Fusion-Swin-T (Wei et al., 2023)	24.8 M	4.1 G	81.0	0.631
NTK-SAP-Swin-T (Wang et al., 2023)	25.5 M	4.2 G	81.2	0.644
DeepCompress Swin-T (Ahmed et al., 2025)	24.8 M	4.1 G	81.1	0.622
KCR-Swin-T (Ours)	24.6 M	3.9 G	82.4	0.598
Swin-B (Liu et al., 2021a)	88.0 M	15.4 G	83.5	1.522
MLP-Fusion-Swin-B (Wei et al., 2023)	70.8 M	13.3 G	83.2	1.384
NTK-SAP-Swin-B (Wang et al., 2023)	72.6 M	13.2 G	83.2	1.369
DeepCompress Swin-B (Ahmed et al., 2025)	71.5 M	13.0 G	83.1	1.357
KCR-Swin-B (Ours)	70.2 M	12.6 G	84.7	1.312

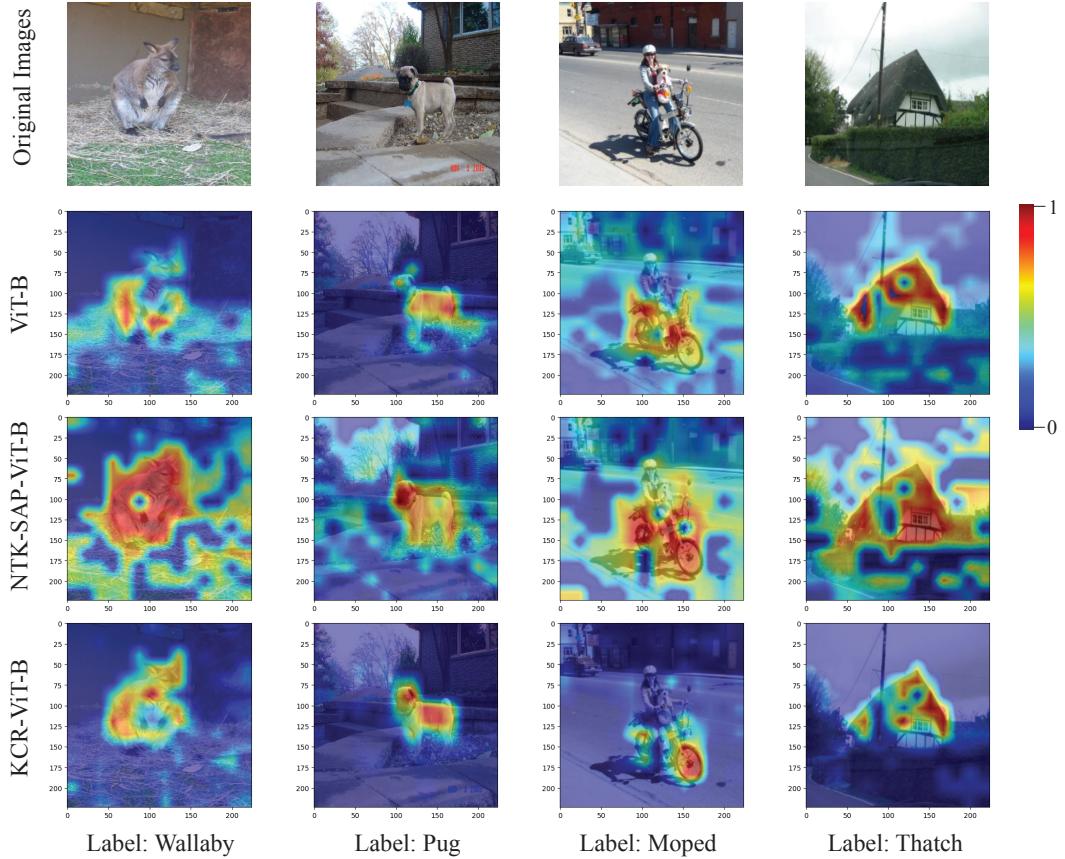
1130

1131

1132

1133

1134 to 70.2M, the FLOPs from 15.4G to 12.6G, and the inference time from 1.522 ms/image to 1.312
 1135 ms/image. These results underscore the practical deployment advantages of KCR regularization,
 1136 which enhances accuracy and efficiency without sacrificing runtime performance.
 1137



1167 Figure 2: Grad-CAM visualization across four ImageNet classes, including wallaby, pug, moped,
 1168 and thatch. The first row illustrates the original images. The second, third, and fourth row illustrates
 1169 the Grad-CAM heatmaps from ViT-B (Dosovitskiy et al., 2021), NTK-SAP-ViT-B (Wang et al.,
 1170 2023), and KCR-ViT-B, respectively.

D.8 VISUALIZATION RESULTS

1178 To qualitatively assess the discriminative capacity and spatial focus of different transformer variants,
 1179 we apply the Grad-CAM technique (Selvaraju et al., 2017) to visualize the class-specific activation
 1180 regions in the input images. We compute the Grad-CAM heatmaps for images from four represen-
 1181 tative ImageNet classes, including wallaby, pug, moped, and thatch, comparing the baseline ViT-B,
 1182 NTK-SAP-ViT-B, and our KCR-ViT-B. Figure 2 illustrates that the proposed KCR-ViT-B con-
 1183 sistently generates activation maps that are more spatially focused on the salient regions of the target
 1184 object, while suppressing irrelevant background signals. In contrast, the attention maps of the ViT-
 1185 B and NTK-SAP-ViT-B tend to exhibit higher activation in non-discriminative areas, such as sky,
 1186 grass, or surrounding clutter, which may introduce unnecessary noise into the prediction process.
 1187 The above observation suggests that the proposed KC regularization not only facilitates compres-
 1188 sion and computational efficiency but also enhances the model’s representation learning capability
 1189 for the classification task by guiding it to attend more selectively to task-relevant features.

1188 D.9 STUDY ON THE IMPACT OF KC
1189

1190 To assess the influence of KC on the performance of the KCR-Transformer, we perform an ablation
1191 study in which models have identical FLOPs and parameter sizes but different KC values. By vary-
1192 ing the balancing weight η of the KCR regularization term in the training loss, the resulting models
1193 achieve different KC levels while maintaining matched model sizes. It is observed in Table 15 that
1194 reducing KC up to a certain range improves classification accuracy, whereas overly aggressive KC
1195 reduction eventually leads to a slight degradation in performance.

1196 Table 15: Impact of KC on the Top-1 Accuracy. The study is performed on KCR-Swin-B. The first
1197 row in the table denotes the baseline uncompressed Swin-B model.
1198

η	KC	Top-1 (%)
-	3.21	83.5
0.01	1.75	83.9
0.05	0.87	84.3
0.2	0.52	84.7
0.4	0.52	84.6
0.6	0.49	84.5
0.8	0.47	84.4
1.0	0.45	84.5
1.5	0.43	84.5
2.0	0.41	84.4
2.5	0.40	84.3

1213 D.10 ABLATION STUDY ON THE KCR REGULARIZATION
1214

1215 To study the effect of the two-stage training procedure independently from the contribution of the
1216 kernel-based regularization, we performed an additional ablation study in which the KCR regular-
1217 ization is disabled by setting $\eta = 0$ while keeping the same two-stage training pipeline for channel
1218 selection. This baseline isolates the impact of the KCR term itself. It is observed in Table 16 that
1219 the two-stage training alone does not lead to an improvement in model performance. In contrast,
1220 incorporating the KCR regularization leads to consistent performance improvements across differ-
1221 ent architectures, which demonstrates that the improvement primarily arises from the kernel-based
1222 regularization, which is aligned with the theoretical analysis in Theorem 3.1. In particular, reducing
1223 the KC through the KCR regularization effectively lowers the upper bound for the generalization
1224 error, leading to better generalization capability and classification accuracy.

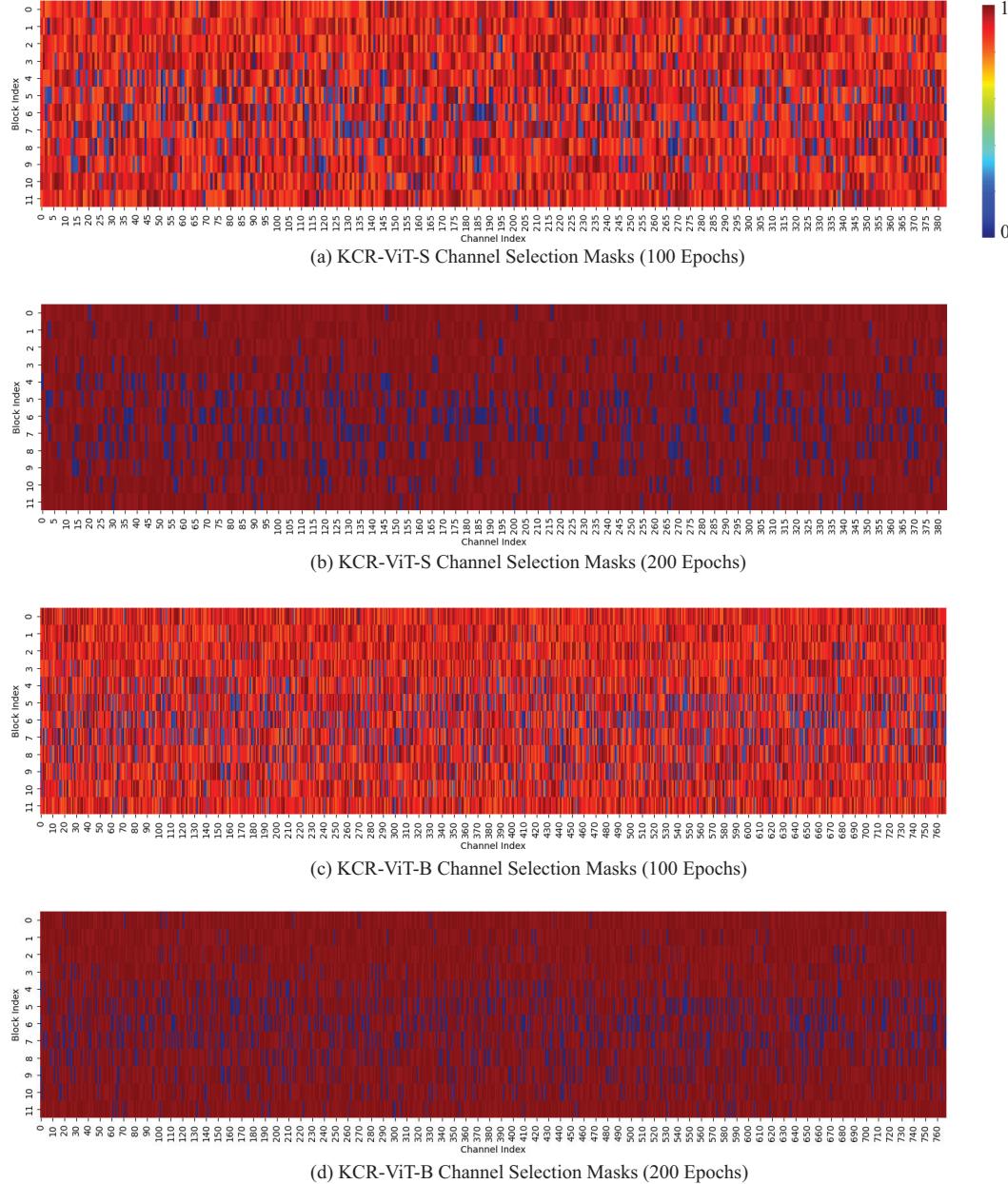
1225 Table 16: Ablation Study on the Impact of KCR Regularization.
1226

Models	Top-1 (%)
ViT-B	83.7
KCR-ViT-B without KCR Regularization	83.3
KCR-ViT-B	84.6
Swin-B	83.5
KCR-Swin-B without KCR Regularization	83.1
KCR-Swin-B	84.7

1236 D.11 VISUALIZATION OF CHANNEL SELECTION MASKS
1237

1238 To further improve the interpretability of the channel selection mechanism by the Gumbel-Softmax
1239 operation, we illustrate the learned channel-selection masks for KCR-ViT-S and KCR-ViT-B in
1240 Figure 3. Each row in the heatmap corresponds to a layer, and each column corresponds to a channel
1241 of that layer. As the Gumbel-Softmax temperature decrease in the search phase, the learned masks
evolve toward near-binary channel-selection masks, with most probabilities pushed close to either

1242
1243
1244
1245
1246



1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 3: Visualization of learned Gumbel-Softmax channel-selection masks for KCR-ViT-S and KCR-ViT-B. Figures (a) and (b) illustrate the channel selection masks for ViT-S after 100 and 200 epochs in the search phase for KCR-ViT-S. Figures (c) and (d) illustrate the channel selection masks for ViT-S after 100 and 200 epochs in the search phase for KCR-ViT-B. The entire search phase takes 200 epochs.

1296 0 or 1 at the end of the search phase. Furthermore, we observe that the shallow layers retain a
1297 larger proportion of channels, whereas the middle layers undergo a more aggressive reduction in the
1298 number of channels preserved.

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349