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Abstract

High-dimensional data must be highly structured to be learnable. Although the
compositional and hierarchical nature of data is often put forward to explain
learnability, quantitative measurements establishing these properties are scarce.
Likewise, accessing the latent variables underlying such a data structure remains
a challenge. Forward-backward experiments in diffusion-based models, where
a datum is noised and then denoised, are a promising tool to achieve these goals.
We predict in simple hierarchical models that in this process, changes in data occur
by correlated chunks, with a length scale that diverges at a noise level where a
phase transition is known to take place. Remarkably, we confirm this prediction
in both text and image datasets using state-of-the-art diffusion models. Our results
suggest that forward-backward experiments are informative on the nature of latent
variables, and that the effect of changing deeper ones is revealed near the transition.

1 Introduction
Generative artificial intelligence (AI) systems have demonstrated remarkable capabilities in synthe-
sizing data across various modalities, including images [1, 2] and text [3–5]. The underlying reasons
behind these achievements remain poorly understood. Indeed, natural data are often high-dimensional
and thus generically intractable due to the curse of dimensionality [6, 7]. Hence, to be learnable,
the distribution of the data must be highly structured. Characterizing this structure is a fundamental
challenge central to any theory of learning. Hierarchical compositionality [8–13] is a candidate
property put forward to rationalize the success of deep architectures. In this view, data can be de-
composed into features organized hierarchically. It is well-established that the grammatical structure
of most languages is approximately context-free and thus hierarchical [14, 15]. To what extent it
is still the case once semantics is included to build generative models of text is unclear [16, 17].
Likewise, pattern theory [18] posits that images have a hierarchical structure. In both cases, obtaining
quantitative evidence characterizing this hierarchy and building tools to determine the associated
latent variables remain a challenge.
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Generative denoising diffusion probabilistic models (DDPMs) offer a new handle to tackle this
challenge, particularly through forward-backward experiments, where a controlled level of noise
is added to a starting image and then removed to generate a new one [19, 20]. For small noises,
low-level features of the image change [19, 20]. Passed a transition point, the class is likely to change
[19, 21, 22], but remarkably it is still composed of some of the low-level features of the original
image [19], as predicted in simple hierarchical models of data structure. However, the empirical
tests in these works were limited to images and did not explore other data modalities. Moreover, the
geometrical structure of the changes occurring in such a process is not known. As we shall discuss
below, these changes reveal the effect of changing latent variables if the data is hierarchical.

In this work, we derive the length scale associated with changes occurring in the forward-backward
protocol, assuming that the data structure is hierarchical and is generated by a probabilistic context-
free grammar. We find that these changes are characterized by a length and a volume scale that are
maximized at the transition: near that point, changes occur in big chunks, characterizing the effect of
changing deep latent variables in the data. We show that these two properties are captured by a certain
correlation function and its integral, called ‘susceptibility’ in the physics literature. Remarkably, these
predictions are verified both in text and image datasets. This result directly supports that a hierarchical
structure is central to both modalities and suggests the forward-backward protocol as a tool to analyze
the effect of changing latent variables of different hierarchical levels in text and images.

2 Background
Diffusion models Denoising diffusion models are generative models designed to sample from a
distribution by reversing a step-by-step noise addition process [20, 23–25]. Let t indicate the time step
in a sequence [0, . . . , T ], q(·) the data distribution we wish to sample from and x0 ∼ q(x0) a sample
drawn from this distribution. Diffusion models consist of: a forward process generating a sequence of
increasingly noised data {xt}1≤t≤T , q(x1, . . . ,xT |x0) =

∏T
t=1 q(xt|xt−1), where at the final time

T , xT corresponds to pure noise; a backward process, which reverts the forward one by gradually
removing noise. This process is typically obtained by learning the backward transition kernels
p(xt−1|xt) using a neural network. Sampling from q(·) is achieved by sampling noise xT ∼ q(xT )
and then applying the learned backward process to obtain a new sample x0 ∼ q(x0). Different
diffusion models correspond to different choices of the forward process, depending on the data space
under consideration (see Yang et al. [26] for a review). We consider two different diffusion processes.

Discrete data For discrete data, x0 consists of a sequence of tokens x0,i, i ∈ [d], each corresponding
to a symbol belonging to a vocabulary V . In this case, we consider diffusion with an absorbing state
by introducing an additional [MASK] symbol [27]. At time step t, each non-masked token either stays
unchanged or transitions to [MASK] with some probability βt. Using a one-hot-encoding representa-
tion of these |V|+ 1 states, the forward transition matrix reads q(xt,i|xt−1,i) = (1− βt)I+ βt1e

T
M ,

where I is the identity matrix, 1 a column vector of all ones and eM the one-hot-encoding vector
of the [MASK] symbol. At the final time T , xT,i = [MASK] for every i ∈ [d]. In the following, we
consider the noise schedule βt = (T − t+ 1)−1 such that q(xt,i=[MASK]|x0) = t/T [27].

Continuous data For continuous data, that is x0 ∈ Rd, we consider the time-discretized Gaus-
sian diffusion introduced in [20]. In this case, the forward transition matrix reads q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI), where N represents the Gaussian probability distribution and the sequence

{βt}1≤t≤T is the variance schedule. At the final time T , xT ∼ N (0, I).

Forward-backward experiments Forward-backward experiments involve inverting the diffusion
process at some intermediate time t ≤ T . Starting from x0, the forward process up to time t produces
a noisy sample xt ∼ q(xt|x0). The backward process produces a new sample x̂0(t) ∼ p(x̂0|xt).

The Random Hierarchy Model (RHM) The RHM is a generative model of hierarchically struc-
tured data introduced by [13]. It belongs to the class of context-free grammars in the field of language
theory [28], and assumes that production rules are random. In its simplest version, it consists of:

• A regular tree graph of depth L and branching factor s.
• A discrete vocabulary V(ℓ) of size v for each level ℓ = 0, 1, . . . , L of the tree.
• A set of production rules defining how each symbol belonging to V(ℓ) can be represented

at the lower level with the symbols of (V(ℓ−1))⊗s. For each element of V(ℓ), there are m
equivalent lower-level representations, which are all distinct and chosen randomly.
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Figure 1: Correlation measures on diffusion samples of the Random Hierarchy Model (RHM).
(a) The average correlation function shows a correlation length that peaks around t∗ ≃ 0.3 T ,
corresponding to the class phase transition. (b) Correspondingly, also the average susceptibility shows
a peak.

A datum of the RHM is generated by choosing a symbol at the root, which corresponds to the class of
the datum, and then using the production rules to generate the lower-level representations (see App. A
for examples). As a result, a string of sL symbols at the leaf nodes is generated. The leaf nodes
correspond to the visible tokens, while the upper-level nodes are latent variables. We define the tree
distance ℓ̃ between two visible tokens as the number of edges between them and their lowest common
ancestor. Their corresponding real space distance r is r = sℓ̃ − 1. Because of the hierarchical
structure generating the data, spatial correlations between the visible tokens are present [29].

Bayes-optimal denoising of the RHM In the RHM, knowing the production rules of its tree
structure, the backward diffusion process can be exactly computed using Belief Propagation (BP)
[30]. For a noisy observation xt of an RHM datum, BP allows sampling directly from the posterior
p(x̂0|xt). This is equivalent to integrating the backward diffusion process starting from xt. Since the
RHM data are sequences of discrete tokens, in what follows we consider diffusion with an absorbing
state for this model. Using BP and a mean-field approximation, Sclocchi et al. [19] showed that the
forward-backward protocol on the RHM undergoes a sharp phase transition for the class at a specific
inversion time t∗ (i.e., noise level) in the limit of large depth L.

3 Correlated Blocks of Tokens Change Near the Transition
Let x0,i denote the i-th input token, i ∈ [sL], and x̂0,i(t) the same token after undergoing a forward-
backward experiment with inversion time t. We seek to compute the correlations between changes in
the tokens as a function of the inversion time t. For each token position i, we introduce a quantity char-
acterizing the dynamics, a spin variable σi(t). It takes the value −1 if after the forward-backward pro-
cess the symbol of x0,i and x̂0,i(t) remains the same, and +1 if the token changed symbol. Using this
definition, we can compute the dynamical correlation function between the changes of tokens at posi-
tions i and j, i.e., Cx0,ij(t)=⟨σi(t)σj(t)⟩−⟨σi(t)⟩⟨σj(t)⟩, where ⟨·⟩ denotes averaging over different
stochastic noisy trajectories. By further averaging over the initial point x0, we define the average
dynamical correlation function as Cij(t)=Cx0,ij(t). Given the correlations, we compute the suscepti-

bility χ(t)=
∑sL

i=1

∑sL

j=1 Cij(t)/
∑sL

i=1 Cii(t), where we normalized by the sum of auto-correlations.
Intuitively, the susceptibility measures the volume of the blocks of tokens that change together.
In App. A, using a mean-field approximation, we estimate the correlation length ξ, which measures
the typical distance over which the correlations between the spin variables σi’s extend. We predict
that ξ diverges at the class transition, indicating that large blocks of tokens change in concert. These
large correlated changes are caused by the modifications of deeper and deeper latent variables near the
transition. At both smaller and larger time or noise levels, the correlation length decays. This behavior
of the dynamical correlation functions implies that the susceptibility also peaks at the transition.
To test our theoretical predictions, in Fig. 1 (a), we present the correlation function C(r, t), corre-
sponding to Cij(t) averaged on all pairs ij such that their real space distance is r, and normalized
by the auto-correlation C(0, t). As the inversion time t increases, we observe a growing correlation
length, which peaks at a critical time t∗ ≈ 0.3 T . Our result demonstrates that the dynamical correla-
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Figure 2: Forward-backward experiments with language diffusion models. (a) Forward-backward
examples for different masking fractions. The words in blue (green) are those that were masked
and changed (did not change), while the words in red changed following the backward process. (b)
Normalized correlations as a function of index distance r = |i− j| for different fractions of masked
tokens. (c) Susceptibility χ(t) as a function of masking fraction. The results are averaged over
NS = 300 textual samples, each consisting of NT = 128 tokens, with NR = 50 noise realizations
for each masking fraction. The susceptibility is given by integrating the normalized correlations over
the domain r ∈ [0, 10].

tions are maximum at that point. Before and beyond t∗, the correlation length decreases, consistently
with our prediction. In Fig. 1 (b), we plot the susceptibility, which peaks at the phase transition.

4 Experiments on Natural Language and Image Data

Language diffusion models We consider Masked Diffusion Language Models (MDLM) [31]
utilizing the GPT2 tokenizer. We perform forward-backward experiments starting from samples from
the WikiText2 dataset. In Fig. 2 (a), we illustrate how an initial sentence changes with different
inversion times t. At small t, only a few isolated words are modified. At intermediate t, we clearly
observe clusters of words changing in a correlated manner. At large t, only a small fraction of
the initial sentence remains unchanged (see App. B for a presentation of the same data in their
larger context). In Fig. 2 (b-c), we quantify these observations by measuring the average correlation
functions and susceptibility2. Strikingly, in line with the phenomenology obtained for the RHM,
we find a growing correlation length as t increases, reaching a maximum of 7÷ 8 tokens at a critical
inversion time t∗ ≈ 0.6T , followed by a subsequent decline. Additionally, the susceptibility peaks
at t∗, establishing the existence of a phase transition for the language modality.

2To avoid finite size effects due to imposing a fixed masking fraction, we integrate the average correlation
function up to the maximal correlation length r ∼ O(10).
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Figure 3: Correlation measures on the variation of CLIP embeddings of images generated with
forward-backward diffusion. (a) The average correlation function displays a system spanning
power-law behavior for t∗ ≈ 0.6 ÷ 0.7 T , corresponding to the class phase transition [19]. (b) In
correspondence with the phase transition, the average susceptibility displays a peak. Data obtained
with 344 starting images and 128 noisy trajectories per image.

Vision diffusion models We extend our analysis to computer vision by considering Improved
Denoising Diffusion Probabilistic Models [32], trained on the ImageNet dataset. To compute the
correlation between changes in the image tokens, we follow recent trends in multimodal LLMs
[33, 34]. Specifically, we divide each image into 7× 7 patches and use the last-layer embeddings
for each patch from a CLIP ViT-B32 [35] to tokenize the image. Let xi denote the embedding of the
i-th patch, where i = (k, l) with k, l ∈ [7]. After the forward-backward process, the variation of each
patch embedding is given by ∆xi(t) = x0,i − x̂0,i(t). We then compute the average correlations
between the norms of these variations: Cij(t) = ⟨∥∆xi(t)∥ ∥∆xj(t)∥⟩ − ⟨∥∆xi(t)∥⟩⟨∥∆xj(t)∥⟩.
The susceptibility is subsequently obtained as χ(t) =

∑
ij Cij(t)/

∑
i Cii(t). In Fig. 3, we present

the average correlation functions and the susceptibility for vision DDPMs, starting from ImageNet
samples. At a critical inversion time t∗ ≈ 0.6÷ 0.7T , we observe a peak in susceptibility, signaling
the class phase transition in these models. This finding highlights the compositional semantic structure
of image data, similar to the phase transitions observed in language diffusion models and the RHM.

5 Conclusion
We used context-free hierarchical models to predict a growing length scale near a phase transition
in diffusion models. This prediction was confirmed through experiments across different natural
data modalities and neural architectures. Our results reveal a remarkable level of universality. This
supports the hypothesis that hierarchical and compositional structures are fundamental, universal
properties underlying natural data as diverse as image and text. Future work can include interpreting
the large chunks of textual change in terms of grammatical structure and context variables, possibly
sharpening these concepts by the data-driven method presently introduced.
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A Random Hierarchy Model
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Figure 4: Example of RHM with L = 2, s = 2, v = 3, m = 3. Left: example of production rules
with vocabularies V(2) = {a, b, c}, V(1) = {d, e, f}, V(0) = {g, h, i}. Right: one possible datum
generated by the production rules, with the hierarchical levels indicated on the right.

A.1 Denoising the RHM with Belief Propagation

A.1.1 Prior at the leaves

Let’s consider a datum x0 of the RHM undergoing masking diffusion. At any time t, the tokens of xt

can have value
xt,i = x0,i, if token i has not yet been masked;
xt,i = [MASK], if token i has already been masked.

(1)

Therefore, given the noisy observation xt, the prior belief ν↑ (x0,i = ã) on the value of the token i
being equal to ã is:

ν↑ (x0,i = ã) = δa,ã if xt,i = a ∈ V(0);

ν↑ (x0,i = ã) = 1/v ∀ã ∈ V(0) if xt,i = [MASK].
(2)

A.1.2 BP iteration

The prior beliefs on the values of the leaves correspond to the initialization of the upward messages
at the leaves level ℓ = 0 for the BP algorithm: ν(0)↑ (xi). Given the messages of an s-patch, e.g.,

{ν(ℓ)↑ (xi)}i=1,...,s, having a common parent node y in the tree, the upward message in the upper
level is computed as:

ν̃
(ℓ+1)
↑ (y) =

∑
x1,...,xs∈V(ℓ)⊗s

ψ(ℓ+1) (y, x1, . . . , xs)

s∏
i=1

ν
(ℓ)
↑ (xi) , (3)

ν
(ℓ+1)
↑ (y) =

ν̃
(ℓ+1)
↑ (y)∑

y′∈V(ℓ+1) ν̃
(ℓ+1)
↑ (y′)

, (4)

where the factor ψ(ℓ+1) (y, x1, . . . , xs) reads

ψ(ℓ+1)(y, x1, ..., xs) =

{
1, if y → (x1, ..., xs) is a rule at layer (ℓ+ 1) → ℓ

0, otherwise.

After iterating this upward process until the root node, BP computes the downward messages (we
consider the prior belief on the value of the root node to be uniform over the symbols of V(L)):

ν̃
(ℓ)
↓ (x1) =

∑
x2,...,xs∈V(ℓ)⊗(s−1)

y∈V(ℓ+1)

ψ(ℓ+1)(y, x1, ..., xs) ν
(ℓ+1)
↓ (y)

s∏
i=2

νℓ↑(xi) (5)

8



ν
(ℓ)
↓ (x) =

ν̃
(ℓ)
↓ (x)∑

x′∈V(ℓ) ν̃
(ℓ)
↓ (x′)

. (6)

At the end of the upward-downward iteration, BP gives the marginal probabilities for the starting
value of each node X(ℓ)

i of the tree, given the noisy observation xt:

p(X
(ℓ)
i = a|xt) ∝ ν↑(X

(ℓ)
i = a) ν↓(X

(ℓ)
i = a), a ∈ V(ℓ). (7)

Similarly, sampling from the posterior probabilities given by BP is done by sampling from the root
and updating the marginal probabilities every time a new node is sampled [30].

A.1.3 Mean-field analysis of BP

The algorithm can be analyzed theoretically with a mean-field-like simplification. Instead of consid-
ering the prior beliefs explained in A.1.1, we introduce a noise-to-signal ratio ϵ and modify the prior
as follows

ν↑ (x0,i = a) = 1− ϵ+ ϵ/v if x0,i = a;

ν↑ (x0,i = ã) = ϵ/v if x0,i ̸= ã.
(8)

The role of ϵ is decreasing the prior belief on the correct value of a node. Using this approximation,
Sclocchi et al. [19] computed the average upward message, where the average is performed over the
possible choices of the RHM rules. The result is the average probability of reconstructing the starting
value of a latent node at a given layer ℓ, pℓ:

pℓ+1 = F (pℓ), (9)

where p0 = 1− ϵ+ ϵ/v and F (p) =
ps+ m−1

vs−1 (1−ps)

ps+mv−1
vs−1 (1−ps)

. The fixed point of this iteration map turns out

to accurately describe the behavior of BP as a denoiser for the RHM [19]. In particular, in the regime
where a phase transition of the reconstruction of the root node exists, there are three fixed points: two
attractive ones, corresponding to p = 1/v and p = 1, and a repulsive one, i.e., the non-trivial solution
of p∗ = F (p∗).

A.2 Dynamical correlation length

Correlated changes in input tokens at a given distance happen when a common ancestor latent variable
is modified. Thus, we can estimate the typical distance over which token changes are correlated by
computing the number of layers ℓ̃ after which the probability of reconstructing the latent variables
pℓ̃ converges to the two trivial fixed points p = 1 and p = 1/v. This corresponds to the number of
layers required to escape the repulsive fixed point p = p∗ ∈ ( 1v , 1).

Let us recall the iteration map for the probability pℓ+1 of reconstructing the latent variables at level
ℓ+ 1,

pℓ+1 =
psℓ +

m−1
vs−1 (1− psℓ)

psℓ +
mv−1
vs−1 (1− psℓ)

= F (pℓ). (10)

We can linearize it around the fixed point p∗ and iterate for ℓ layers,

∆pℓ+1 =

dF (p)

dp

∣∣∣∣∣
p∗

ℓ

∆p0, (11)

where ∆pℓ = pℓ − p∗. Since p∗ is repulsive, we have that dF (p)
dp

∣∣
p∗ > 1 and we use the shorthand

notation F ′
∗ = dF (p)

dp

∣∣
p∗ . We want to compute the depth ℓ̃ at which:
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F ′
∗
ℓ̃ |∆p0| = O(1), (12)

since p∗ and 1−p∗ are quantities of order O(1) with respect to |∆p0| → 0. In terms of the corruption
noise ϵ = 1−p

1+1/v , we have

F ′
∗
ℓ̃ |∆ϵ0| = O(1). (13)

Hence,

ℓ̃ ∼ − log |∆ϵ0|
logF ′

∗
= − log |ϵ0 − ϵ∗|

logF ′
∗

. (14)

From the depth ℓ̃, we can compute the correlation length in input space as

ξ = sℓ̃ ∼ |ϵ0 − ϵ∗|−
log s

log F ′
∗ , (15)

that diverges at the critical point:

lim
ϵ→ϵ∗

ξ = +∞. (16)

B Language Diffusion

B.1 Setup

Here, we briefly describe the particular realization of discrete diffusion used in the MDLM setting,
which is detailed in [31].

MDLMs are a form of discrete diffusion model tailored for language generation. Unlike autoregres-
sive (AR) models, MDLMs generate text by gradually unmasking tokens, allowing for non-sequential
generation. This process is governed by a forward masking and reverse unmasking process, parame-
terized using a Rao-Blackwellized objective to improve performance.

Forward Process: The forward process is defined by progressively noising a clean input sequence
x using a categorical distribution:

q(zt|x) = Cat(zt;αtx+ (1− αt)m), (17)
where zt is the latent variable at time t, representing the noisy version of the input sequence, x is the
original, clean sequence of tokens, Cat(·; ·) is a categorical distribution over the possible states, αt is
the noise schedule function, strictly decreasing from 1 to 0 as t increases, and m is a one-hot vector
representing the special masked token. At each time step, a fraction of the data transitions into the
masked state.

Reverse Process and Rao-Blackwellization: The reverse diffusion process reconstructs the original
data from noisy observations. It is parameterized using a neural network approximation xθ(zt, t),
which predicts clean tokens from noisy inputs:

pθ(zs|zt) =
{

Cat(zs; zt), if zt ̸= m,

Cat
(
zs;

(1−αs)m+(αs−αt)xθ(zt,t)
1−αt

)
, if zt = m.

(18)

where zs is the latent variable at a prior time step s (with s < t), xθ(zt, t) is a neural network
approximation of x given the noisy observation zt at time t, and pθ(·|·) is the model distribution
approximating the true reverse process.

The training objective is a negative evidence lower bound (NELBO), expressed as:

Ldiffusion =

T∑
i=1

Eq

[
αt(i) − αs(i)

1− αt(i)
log⟨xθ(zt(i)), x⟩

]
, (19)
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where T is the number of diffusion steps, αt(i), αs(i) is the noise schedules evaluated at time steps t(i)
and s(i), respectively, Eq is the expectation over the forward process defined by q, and ⟨xθ(zt(i)), x⟩
is the dot product between the neural network output xθ(zt(i)) and the original input x.

Continuous-Time Likelihood Bounds: To achieve a tighter approximation to the ELBO, the
discrete objective is extended to continuous time as:

L∞NELBO = Eq

∫ 1

0

α′
t

1− αt
log⟨xθ(zt, t), x⟩ dt. (20)

where α′
t is the time derivative of the noise schedule αt. The integral evaluates the objective over

continuous time, providing a tighter bound on the likelihood. This formulation is invariant to the
specific functional form of the noise schedule αt, highlighting the robustness of the MDLM approach.

Connection to Masked Language Models: MDLMs leverage a masked diffusion approach where
the training objective is a weighted average of classical masked language modeling (MLM) losses:

L∞NELBO = Eq

∫ 1

0

α′
t

1− αt

∑
ℓ

log⟨xℓθ(zt), xℓ⟩ dt, (21)

where xℓ: The ℓ-th token in the original sequence, xℓθ(zt): The neural network’s prediction for the ℓ-th
token given the noisy sequence zt. The summation runs over all tokens in the sequence, effectively
establishing a connection between MDLMs and BERT-style encoders while equipping them with
generative capabilities.

We employ the MDLM proposed in [31] to conduct the forward-backward experiments described in
Sec. 4, by first drawing random texts of a fixed token length from the WikiText2 database, masking
a fixed fraction of the tokens t, and then performing the backward diffusion process by using the
masked sequence as the initial point for the MDLM model.

B.2 Examples of Text Samples for the Forward-Backward Experiments

Below, we provide examples of texts generated by the forward-backward process using MDLM
seeded from WikiText2 examples for different masking fractions. Selected samples were shown
in the main text in Fig. 2 (a). We dub the text results after the forward-backward process as U-turn
samples. As can be seen by the color coding, correlated blocks of words change together along the
denoising process, as described in Sec. 3, and the semantic meaning of the paragraphs themselves
change along the phase transition. In blue we denote masked tokens that have changed their value
after the backward process, while in green masked tokens that have returned to their initial value.
Red indicates the changes in the final texts. It can be seen that for small masking fractions such
as t = 0.1T , most of the tokens do not change after masking, while the amount of changed tokens
far exceeds the unchanged ones near the phase transition at t = 0.5T , hinting at the long-range
correlations emerging.
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Masking fraction = 0.9 

Highlighted Original Text: 

The third day, September 3, the situation worsened. The weather was hot 
and ammunition, food and supplies were nearly completely exhausted . Since 
the previous afternoon, North Korean mortar barrages had alternated with 
infantry assaults against the perimeter. Survivors later estimated there 
were about twenty separate infantry attacks repulsed. Two North Korean 
machine guns still swept the perimeter whenever anyone showed himself . 
Dead and dying US troops were in almost every fox hole. Mortar fragments 
destroyed the radio and this ended all communication with other US units. 
Artillery fire and air strikes requested by Schmitt never came. Some North 
Koreans worked their way close to the perimeter and threw grenades 

Highlighted U-Turn Text: 

information on maps of the actual burial population size. The number is 
probably around 30,000, we were almost completely encroached into the 
population as there were to 100 barr is we excavated the site on against 
the walls, it is estimated there were at around 30,000 and another holding 
room for perhaps 10,000 . It also seems highly unlikely, as with Dead Drop 
sites generally, that the only evidence for the storage of the firearm 
from the drop was more wood pieces. The other medieval site which required 
constant fire and perhaps continual storage is the firearm, one of which 
we were aware of having been stored during the same time period

Masking fraction = 0.7 

Highlighted Original Text: 

The third day, September 3, the situation worsened. The weather was hot 
and ammunition, food and supplies were nearly completely exhausted . Since 
the previous afternoon, North Korean mortar barrages had alternated with 
infantry assaults against the perimeter. Survivors later estimated there 
were about twenty separate infantry attacks repulsed. Two North Korean 
machine guns still swept the perimeter whenever anyone showed himself. 
Dead and dying US troops were in almost every fox hole. Mortar fragments 
destroyed the radio and this ended all communication with other US units. 
Artillery fire and air strikes requested by Schmitt never came. Some North 
Koreans worked their way close to the perimeter and threw grenades 

Highlighted U-Turn Text: 

 increased. On September 3, the situation was under control. Despite tons 
of ammunition , air train orders were almost completely violated. On the 
previous day, North Americans, farm crews and miners were heard rebelling 
against the perimeter. Survivors were estimated to be about twenty dead 
from attacks convulsing and starvation, as machine guns still swept the 
perimeter whenever ever they could. Dead - end US troops were in almost 
every fox hole for about twenty minutes; the radio and newspapers were all 
frequently with news of general effects, crying out for particular strikes 
or on the loading of vehicles. Some North Americans reported blocking way 
to fill the perimeter, and others

Masking fraction = 0.5 

Highlighted Original Text: 

The third day, September 3, the situation worsened. The weather was hot 
and ammunition, food and supplies were nearly completely exhausted. Since 
the previous afternoon, North Korean mortar barrages had alternated with 
infantry assaults against the perimeter. Survivors later estimated there 
were about twenty separate infantry attacks repulsed. Two North Korean 
machine guns still swept the perimeter whenever anyone showed himself. 
Dead and dying US troops were in almost every fox hole. Mortar fragments 
destroyed the radio and this ended all communication with other US units. 
Artillery fire and air strikes requested by Schmitt never came. Some North 
Koreans worked their way close to the perimeter and threw grenades 

Highlighted U-Turn Text: 

The next morning, March 3, the situation changed. The border was secure, 
ammunition, food and everybody were nearly completely met. On the previous 
afternoon, North Korean artillery barrister repulseated an infantry attack 
within the perimeter. Survivors later said there were about twenty 
separate infantry attacks repulseated. Two North Korean machine guns 
shells had the ground where anyone showed himself. Dead and wounded US 
troops were in wounded positions. At the time, fragments of mortar shells 
eliminated any communication of communication with other US troops. 
Exceptional fire and submunitions by Schmitt never came. The North Koreans 
worked their way up to the ground and threw bottles
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Masking fraction = 0.3 

Highlighted Original Text: 

The third day, September 3, the situation worsened. The weather was hot 
and ammunition, food and supplies were nearly completely exhausted. Since 
the previous afternoon, North Korean mortar barrages had alternated with 
infantry assaults against the perimeter. Survivors later estimated there 
were about twenty separate infantry attacks repulsed. Two North Korean 
machine guns still swept the perimeter whenever anyone showed himself. 
Dead and dying US troops were in almost every fox hole. Mortar fragments 
destroyed the radio and this ended all communication with other US units. 
Artillery fire and air strikes requested by Schmitt never came. Some North 
Koreans worked their way close to the perimeter and threw grenades 

Highlighted U-Turn Text: 

 third! On the 3rd the situation worsened. The perimeter was thick and 
ammunition, food and fuel were nearly completely exhausted. By the late 
afternoon, North Korean mortar barrages still cooperated with infantry 
assaults against the perimeter for, later hours there were about 10 
separate infantry attacks repulsed. Two North Korean machine guns still 
swept the perimeter without anyone but himself. Dead and dying US troops 
were in practically every man hole. Mortar fragments destroyed all radio 
and this ended all communication with other US units. Artillery fire or 
air support requested by Schmitt still came. Some North Koreans worked to 
bring them to the perimeter. The whites

Masking fraction = 0.1 

Highlighted Original Text: 

The third day, September 3, the situation worsened. The weather was hot 
and ammunition, food and supplies were nearly completely exhausted. Since 
the previous afternoon, North Korean mortar barrages had alternated with 
infantry assaults against the perimeter. Survivors later estimated there 
were about twenty separate infantry attacks repulsed. Two North Korean 
machine guns still swept the perimeter whenever anyone showed himself. 
Dead and dying US troops were in almost every fox hole. Mortar fragments 
destroyed the radio and this ended all communication with other US units. 
Artillery fire and air strikes requested by Schmitt never came. Some North 
Koreans worked their way close to the perimeter and threw grenades 

Highlighted U-Turn Text: 

The third day, September 3, the situation worsened. The weather was hot 
and ammunition, tanks and supplies were nearly completely exhausted. Since 
the early afternoon, North Korean artillery barrages had alternated with 
infantry assaults against the perimeter. Survivors later estimated there 
were about twenty separate infantry attacks repulsed. Two North Korean 
machine guns still swept the perimeter whenever anyone showed himself. 
Dead and dying US troops were in almost every fox hole. Mortar fragments 
destroyed the radio and this ended all communication with other US units. 
Artillery fire and air strikes requested by Schmitt never stopped. Some 
North Koreans worked their way close to the perimeter and threw grenades 

C Image Diffusion

For image diffusion, we use the publicly available models from Improved Denoising Diffusion
Probabilistic Models [32], trained on the ImageNet dataset at resolution 256 × 256. We use the
class-unconditional model to ensure a class phase transition at an intermediate diffusion time. To
tokenize the images in a semantically meaningful manner, we use the last-layer embeddings from
a CLIP ViT-B32 [35] encoder. This procedure crops the images to the size 224 × 224, which get
tokenized in 7× 7 patches, each of dimension 32× 32. The embeddings at the last layer of the CLIP
encoder have dimension 768.

In Figure 5, we provide some examples of images generated with the forward-backward protocol. In
red, we highlight the patches whose CLIP embeddings show a statistically significant change with
respect to the starting image (t = 0).
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t = 0 t = 0.6 T t = 0.7 T

Figure 5: Examples of images generated at different inversion times t. The grid indicates the
patches represented inside the CLIP vision encoder. For inversion time t > 0, the red patches indicate
the token embeddings that have a variation magnitude larger than a fixed threshold. These patches of
variation appear in domains of growing size.
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