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UrbanCLIP: Learning LLM-Enhanced Urban Region Profiling
from the Web
Anonymous Author(s)

ABSTRACT
Urban region profiling from web-sourced data is of utmost impor-
tance for urban planning and sustainable development. We are
witnessing a rising trend of LLMs for various fields, especially
dealing with multi-modal data research such as vision-language
learning, where the text modality serves as a supplement informa-
tion for the image. Since textual modality has never been intro-
duced into modality combinations in urban region profiling, we
aim to answer two fundamental questions in this paper: i) Can
textual modality enhance urban region profiling? ii) and if so, in what
ways and with regard to which aspects? To answer the questions,
we leverage the power of Large Language Models (LLMs) and in-
troduce the first-ever LLM-enhanced framework that integrates
the knowledge of textual modality into urban imagery profiling,
named LLM-enhanced Urban Region Profiling with Contrastive
Language-Image Pretraining (UrbanCLIP). Specifically, it first gen-
erates a detailed textual description for each satellite image by an
open-source Image-to-Text LLM. Then, the model is trained on the
image-text pairs, seamlessly unifying natural language supervision
for urban visual representation learning, jointly with contrastive
loss and language modeling loss. Results on predicting three ur-
ban indicators in four major Chinese metropolises demonstrate its
superior performance, with an average improvement of 6.1% on
𝑅2 compared to the state-of-the-art methods. The source code is
available at https://anonymous.4open.science/r/UrbanCLIP. The
image-language dataset will be released upon paper notification.

1 INTRODUCTION
The rapid pace of urbanization has led to more than half of the
global population, totaling 4.4 billion inhabitants [7, 65]. Urban re-
gion profiling, a pervasive and enduring theme within the domains
of web mining and knowledge discovery, is the process of repre-
senting and summarizing key features and attributes of urban areas
in a lower-dimensional space. By harnessing diverse web-sourced
data, such as satellite [13, 22, 23, 28, 79, 86] and street-view imagery
[48, 53, 79], this process delivers a comprehensive understanding
of urban spaces, spanning the realms of social, economic, and envi-
ronmental aspects. In this way, urban region profiling empowers
decision-makers with critical insights and related web systems into
urban planning, sustainable development, and policy formulation.

Scholars and policymakers traditionally rely on manual surveys
to gather urban statistics. However, such methods inherently face
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Figure 1: Illustration of different frameworks. Compared
with previous works, we present the first attempt to leverage
the power of LLMs for urban imagery profiling.

limitations in balancing high spatial resolution and real-time up-
dates due to their prohibitive costs [57, 75, 86]. In contrast, data
originating from web platforms boasts consistent updates and easy
accessibility, especially high-resolution urban surfaces extracted
from Baidu Map or Google Map [48, 53, 82], serving as the founda-
tion for machine learning models to achieve a cost-friendly, high-
quality, and timely understanding of urban indicators [9, 48, 78].
Upon revisiting the existing literature, we classify web-based urban
region profiling into two categories, as shown in Figure 1:

a) Task-specific supervised learning acquires urban region
representations through supervised training using data sources (e.g.,
satellite imagery) specific to particular tasks, including poverty lev-
els [4, 5, 23, 30, 63, 86], crop yields [54, 56, 66, 77, 85, 87], population,
land cover [26, 76] and commercial activeness [25, 53]. However,
the task-specific nature of supervised learning, which requires con-
siderable labeled data, may impede the model’s generalizability,
potentially compromising its overall robustness and efficacy.

b) Self-supervised learning, extending beyond satellite im-
agery, integrates diverse auxiliary spatial modalities to generate
comprehensive feature representations. These representations boast
wide applicability, readily generalizing across numerous urban in-
dicator tasks, as delineated in Figure 1(c). Typically, [6, 32, 53, 82]
integrate the information of Point-of-Interests (POIs) to capture
human-inhabited areas and associated activities. Similarly, a series
of studies consider aspects like mobility [32] and human trajectory
data to enhance urban region profiling [48, 84]. Nevertheless, these
approaches often lack sufficient explanatory significance, such as
explaining in language that can easily be understood by humans.

During the past year, there has been a notable upsurge in the use
of LLMs across various fields [1, 10, 34, 72]. The success is attributed
to their remarkable proficiency in language understanding and the
extensive knowledge they acquire during pre-training. Particularly,
LLMs play a pivotal role in advancing multimodal learning, where
textual data complements other modalities. As an example, the
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integration of rich textual information has proven beneficial in tasks
like image captioning [64, 71, 89] and video question-answering
[61, 68, 83]. However, the incorporation of the textual modality in
conjunction with urban imagery is a relatively unexplored area.
Inspired by the significant achievements of LLMs in general fields,
we embark on the exploration of two fundamental questions – Q1:
Can the inclusion of textual data serve as a powerful complement to
satellite imagery for more effective urban region profiling? Q2: and
if so, in what ways and with regard to which specific aspects?

To answer the aforementioned questions, we integrate the tex-
tual modality into urban imagery profiling for the first time, lead-
ing to a novel framework, named LLM-enhanced Urban Region
Profiling with Contrastive Language-Image Pretraining, termed
as UrbanCLIP. At first, we generate a detailed description by a
well-trained LLM (LLaMA-Adapter V2 [17]) for each satellite image.
Then, the high-quality image-text pairs are fed into UrbanCLIP
with an encoder-decoder architecture. It encodes satellite images to
latent representation by a visual encoder (vision transformer [16])
and decodes texts with a causal masking transformer decoder. We
further design a decoupled decoder mechanism, where unimodal
textual representations from the first half of decoder layers would
cascade the rest of decoder layers, cross-attending to the image en-
coder for multimodal representations. Moreover, a contrastive loss
is applied between unimodal image and text embeddings, while lan-
guage modeling loss on the multimodal decoder outputs is utilized
for natural language profiling of urban regions with detailed granu-
larity. The text-incorporated visual representations can support the
prediction of various urban indicators from different urban regions.
Overall, the main contributions of our work are summarized as:

• Powered by LLM, UrbanCLIP is the first-ever framework that
integrates the knowledge of text modality into urban region pro-
filing. We show that such comprehensive textual data generated
by pre-trained image-to-text LLM is a critical supplement to
urban region representations.

• UrbanCLIP infuses textual knowledge into visual representations
through deep modality interaction jointly with contrastive loss
and language modeling loss, via a contrastive learning-based
encoder-decoder architecture, which subsumes model capacities
from both contrastive models and generative models.

• Extensive experiments on four cities and three urban indicators
demonstrate the effectiveness of UranCLIP. Further analyses
are conducted to show the transferability and interpretability
of the proposed model. We further develop a novel web-based
application enabled by the proposed model to offer insights about
urban planning, with an interactive and dynamic experience.

2 PRELIMINARIES
2.1 Formulation
Definition 1 (Urban Region)We follow prior studies [53, 82] to
partition an area of interest (e.g., a city) evenly into 𝐿 urban regions.
Definition 2 (Satellite Image) Based on the real-time monitoring
of the Earth’s surface by satellites, satellite imagery offers a com-
prehensive view of the structural characteristics of a given region.
Each input satellite image w.r.t. an urban region 𝑔 can be denoted
as 𝐼𝑔 ∈ R𝐻×𝑊 ×3, where 𝐻 and𝑊 are length and width.

Definition 3 (Location Description) The description text 𝑇𝑔 for
an urban region 𝑔 contains several individual sentences. Such text
can be generated manually or using image captioning tools. E.g.,
by leveraging the well-trained LLM’s profound understanding of
general-purpose knowledge [27, 47, 80, 92], we can generate the
summary text of a given region, especially including its spatial
context (e.g., POIs) that significantly reflects its land function [17].
Definition 4 (Urban Indicator) Urban indicators gauge the urban
region’s standing on the socioeconomic spectrum and the environ-
mental perspective. The 𝐾 indicators on a set of 𝐿 urban regions are
denoted as Y ∈ R𝐿×𝐾 . In this paper, we use population (#citizens),
GDP (million Chinese Yuan), and carbon emission (ton) as social,
economic, and environmental ground-truth indicators, respectively.
Problem Statement (LLM-Enhanced Urban Region Profiling)
Given the above setting, we aim to learn a function F to map the
satellite imagery, its text description, and other available data (e.g.,
POIs, road networks) to a representation vector 𝒆𝑔 = F

(
𝐼𝑔,𝑇𝑔

)
. The

representations can be further utilized to infer urban indicators
Y ∈ R𝐿×𝐾 for an arbitrary set of regions.

2.2 Related Work
2.2.1 Urban Imagery Profiling. Learning urban region profiling
from the web data has been a long-standing research topic in web
mining. Current efforts can be broadly classified into two types:

- Task-specific supervised learning. This line of research learns
prediction models from task-specific data sources. For example,
using light intensity as supervision data, Yeh et al. [86] employ a
pre-trained CNN model to predict asset levels in Africa. Similar
methodologies have been applied in forecasting economic indica-
tors in studies like [25, 28, 62]. Additionally, certain investigations
estimate house prices by leveraging learned visual features from
both satellite and street-view images, as seen in [40].

- Self-supervised learning (SSL) with spatial modality. This re-
search strand mostly focuses on combining urban imagery and
spatial modality for urban region profiling. They typically resort
to Tobler’s First Law of Geography [58], known as “Everything is
related to everything else, but near things are more related than
distant things”, to distill the visual representations of urban im-
agery, via different designs of similarity metrics [31, 79] or loss
forms [8, 36, 82]. Some studies, such as [82], incorporate POI data
in a contrastive-learning framework, aiming to ensure that satellite
images associated with similar POI distributions exhibit a closer
relationship in visual latent space. Furthermore, [53] introduces an
urban knowledge graph and infuses such semantic embedding into
visual representation learning of satellite imagery via contrastive
learning. Technically speaking, SSL-based methods outperform
task-specific supervised learning in terms of generalization.

Compared with SSL with spatial modality, UrbanCLIP introduces
the textual modality as complementary information for urban re-
gion profiling with the first shot. leading to a more comprehensive,
generalizable, and interpretable urban region representation.

2.2.2 Large Language Model. LLM are renowned for their ability
to attain comprehensive language understanding the generation,
which stem from their training on massive datasets and billions of
parameters. Inspired by their impressive performance, there is a
rising trend of incorporating LLMs in various fields, such as ChatBot
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[2, 67, 72], coding [10, 19, 50], and even time series forecasting
[35, 93]. However, the potential of LLMs remains largely untapped
in the field of urban computing, including our region profiling task.
2.2.3 Vision-Language Pre-Training (VLP). VLP aims for effective
vision-language alignment with frozen unimodal models from the
vision and natural language communities. CLIP [64] is proposed as
a vision foundation model based on image-text contrastive learning
rationale. In certain approaches, the image encoder is frozen to
extract visual features, as exemplified by the frozen object detector
[90] or the pre-trained image encoder for CLIP used in LiT [91]. In
contrast, some methods freeze the language model to leverage the
knowledge from LLMs for vision-to-language generation tasks. To
align visual features with the fixed text space, Frozen [74] fine-tunes
an image encoder whose outputs are fed as soft prompts for LLMs.
Flamingo [14] pre-trains a cross-attention layer added into the LLM
to inject visual features. Moreover, BLIP-2 [44] takes full advantage
of both frozen image encoders and frozen LLMs for various vision-
language tasks. Leveraging the VLP scheme, we align generated
text with satellite images to produce interpretable and admirable
representations for urban regions.

3 METHODOLOGY
As illustrated in Figure 2, the overall framework of UrbanCLIP is
composed of two key phases with two optional settings.
• Phase 1: In this language-image pre-training phase, we first gen-

erate a detailed location description via LLaMA-Adaptor V2 (an
image-to-text foundationmodel) for the satellite imagery crawled
from Baidu Map, thus forming a set of high-quality image-text
pairs. The image and text are then fed into two unimodal en-
coders separately. Lastly, a multimodal interaction module is
designed to align the representation of the two modalities in
the latent space, with an elaborately designed cross-attention
mechanism and contrastive learning objective.

• Phase 2: In the urban indicator prediction phase, we utilize a
frozen unimodal image encoder for downstream tasks, by simply
fine-tuning outermost multi-layer perceptrons (MLPs) with a
few trainable parameters. Furthermore, we offer two optional
choices, which are a flexible infusion of other spatial modalities
and prompt-guided urban indicator prediction.

The population is 
[MASK]

The GDP is
[MASK] 

The carbon 
emission is [MASK] 

(b) Phase 2: Urban Indicator Prediction(a) Phase 1: Language-Image Pre-training

Unimodal 
Image Encoder

Population GDP Carbon

…

Contrastive

Contrastive

Unimodal 
Text Encoder

Unimodal 
Image Encoder

MLP

Predictor 
(MLP)

Unimodal 
Encoders

(c) Option 1: Additional Data Alignment

MLP

(d) Option 2: Prompt-guided Tasks 

Predictor 
(MLP)

Frozen

Tuning

Text Refinement

LLaMA-
Adapter V2

Text Generation

Linear Projection

…

0 *L 3 2 1…

Unimodal Image Encoder

Patchify

[CLS]
Linear Projection

0 * 1 2 3 J…

Unimodal Text Encoder

[CLS]

The region contains forest

Tokenize

Contrastive Loss 
ℒ஼௢௡

Multimodal 
Interaction Module

Query Key / Value

Language 
Modeling 
Loss ℒ௅ெ

… …

Pooler operation

Figure 2: Overall framework of the proposed UrbanCLIP.

3.1 Text Generation and Refinement
TextGeneration. For each satellite image, we adopt LLaMA-Adaptor
V2, an image-to-text foundation model, to generate a detailed lo-
cation description as illustrated in Figure 3(a). It takes a satellite
image and an elaborately designed instruction as input and out-
puts a detailed text that describes the spatial information of the
image. Through empirical experiments based on different language
instructions, we find that a more detailed prompt, especially includ-
ing a specific focus such as urban infrastructure, can trigger a more
powerful capability of LLM to generate a high-quality summary.

Figure 3: Text generation and refinement.

Text Refinement. As shown in the example of Figure 3(b), the
generated description contains unfactual or vague information,
and a thorough refinement, particularly the rule-based removal
or rewriting, is conducted. As a result, a concise and high-quality
summary retains the essential details about the satellite image,
including its infrastructure, greenery, activity, etc.

3.2 Single-modality Representation Learning
Visual Representation Learning. For an urban region 𝑔 with its
satellite imagery 𝐼𝑔 , we first split it into a sequence of patches 𝐼𝑝 (the
default patch size is 16×16), which are then linearly embedded into
a dense vector: 𝒆𝐼𝑝 = W𝑝 𝐼

⊤
𝑝 + 𝑏𝑝 , where W𝑝 and 𝑏𝑝 are learnable

parameters. The learnable positional embeddings E are further
added to provide information about the relative position of each
patch: 𝒆𝐼

𝐸
= 𝒆𝐼𝑝 + E. Then, 𝒆𝐼

𝑃𝐸
is sent to the layers of the self-

attention module to integrate the sequence information:(
Q𝐼 ,K𝐼 ,V𝐼

)⊤
= 𝒆𝐼𝑃𝐸

(
W𝑄 ,W𝐾 ,W𝑉

)⊤ (1)

where W𝑄 ,W𝐾 , and W𝑉 ∈ R𝑑×𝑑 are learnable matrices. The
single-head and multi-head self attention (MSA) are defined as:

𝒆𝐼(𝑖 ) = Softmax
(
Q𝐼K𝐼

⊤
/
√
𝑑

)
V𝐼 ,

𝒆𝐼𝑀𝑆𝐴 = Concat(𝒆𝐼(1) , 𝒆
𝐼
(2) , ..., 𝒆

𝐼
(#ℎ𝑒𝑎𝑑 ) )W𝑂 ,

(2)

where W𝑂 is a learnable weight matrix, and Concat(·) denotes
the concatenation function. After residual connection and layer
normalization, the latent visual representation can be obtained as:

𝒆𝐼 = LayerNorm
(
𝒆𝐼𝐸 +MSA

(
𝒆𝐼𝐸

))
. (3)

It is noteworthy that the input satellite image patch sequence
incorporates a learnable image [CLS] token at first to obtain dy-
namic interaction representation between patches. However, unlike
traditional paradigms, this token does not guide learning through

3
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task label information. Inspired by [41], we have implemented task-
specific temporary pooling (abbreviated as pooler) to customize
visual representation for distinct pre-training tasks while sharing
the previous backbone encoder. The pooler serves as a task-specific
self-attention layer, which acts as a natural task adapter. Specifically,
we employ the overall sequence as the query attention pooler for
the subsequent fine-grained cross-modality interaction task, and
the [CLS] token as the query attention pooler for the subsequent
coarse-grained cross-modality alignment task.
Textual Representation Learning. For an urban region 𝑔, a high-
quality text summary 𝑇𝑔 is generated from LLMs through text gen-
eration and refinement. Similar to the prior visual representation,
it is desirable to encode this summary into a latent textual repre-
sentation. Normally, BERT-style [37] models with encoder-only
architecture can be generalized to capture latent textual represen-
tations through denoising with token masks. However, such tradi-
tional bidirectional attention may encounter low-rank issues [15],
potentially weakening the model’s expressive capacity and yielding
limited generative capabilities. As this is incompatible with the
intended pre-training task, we choose a decoder-only architecture
for the text encoding module. The primary distinction in this ap-
proach is that the foundational textual representation is acquired
via causally masked multi-head self-attention:

𝒆𝑇 = LayerNorm
(
𝒆𝑇𝐸 +M-MSA

(
𝒆𝑇𝐸

))
. (4)

where M-MSA means masked multi-head self attention operation,
and 𝒆𝑇

𝐸
is the token representation of added location information.

Noted that we also add a learnable text [CLS] token to obtain
the overall dynamic interaction information of the summary.

3.3 Cross-modality Representation Learning
Modality Alignment Task. While more visual tokens can help
multi-modal understanding tasks, visual embeddings of image [CLS]
tokens as global representations are beneficial for visual recognition
and alignment tasks [88]. We therefore first focus on the alignment
task of visual and textual modalities. Specifically, for the underlying
visual representation learning sequence, we obtain a new sequence
representation through self-attention and pooling operation:

𝒆𝐼
𝑝𝑜𝑜𝑙

= Pooling(Softmax(𝒆𝐼𝑞𝑬 𝐼
⊤

𝑘
) · 𝑬 𝐼𝑣) (5)

where 𝑬 𝐼
𝑘
equals 𝑬 𝐼𝑣 represents the sequence of visual representa-

tions before transform, and 𝒆𝐼𝑞 represents global visual embedding
of [CLS] image token to be queried. For Pooling, we select the
Mean-Pooling to detect the global information.

Contrastive learning has demonstrated its superiority. Inspired
by that, we propose an Image-text contrastive loss LCon, which is
inspired by the fact that both LLM-enhanced semantic representa-
tion (i.e., text embedding) and visual representation (i.e., satellite
imagery representation) of the same urban region should be as
close to one another as possible. It can maximize the agreement of
representations learned across different modalities while capturing
different relationships. Thus, the two unimodal encoders are jointly
optimized by contrasting the image-text pairs against others in the

sampled batch of𝑚 samples:
L𝐶𝑜𝑛 = LImage →Text

𝐶𝑜𝑛
+ LText→ Image

𝐶𝑜𝑛

= − log
exp

(
sim

(
𝒆𝐼
𝑝𝑜𝑜𝑙

, 𝒆𝑇
))

∑𝑚
𝑖=1 exp

(
sim

(
𝒆𝐼
𝑝𝑜𝑜𝑙

, 𝒆𝑇
𝑖

)) − log
exp

(
sim

(
𝒆𝑇 , 𝒆𝐼

𝑝𝑜𝑜𝑙

))
∑𝑚

𝑖=1 exp
(
sim

(
𝒆𝑇 , 𝒆𝐼

𝑝𝑜𝑜𝑙𝑖

)) ,
where sim(·) is inner product; LImage→Text

𝑐𝑜𝑛 and LText→ Image
𝑐𝑜𝑛 are

image-to-text and text-to-image contrastive losses, repsectively.
Modality Interaction Task. Unlike the previous studies where
cross-modality interaction is shallow (e.g., via dot product-based
similarity) [48, 53], UrbanCLIP emphasizes the deep inter-modal
interaction learning through layers for a contextualized feature
sequence. Motivated by [38, 88], Transformer-based decoder archi-
tecture are then leveraged to fuse unimodal visual and textual rep-
resentations together as multimodal representations. Specifically,
UrbanCLIP employs multimodal decoder layers to effectively learn
joint image-text representations, by leveraging unimodal textual en-
coder outputs and employing cross-attention mechanisms towards
image encoder outputs. The key difference between multimodal
cross-attention here and unimodal MSA is that cross-attention uses
the visual modality as a query and the textual modality as key
and value. Here, visual representations are obtained via pooler
operations.

Besides, to generate a natural language-based description for
comprehensive urban region profiling, we introduce language mod-
eling loss LLM that enables the model to predict the next tokenized
texts autoregressively with detailed granularity. Hence, the multi-
modal decoder would learn to maximize the conditional likelihood
of the paired text T via the autoregressive factorization mechanism:

LLM = −
𝐿∑︁
𝑙=1

log 𝑃𝜃 (𝑇𝑙 | 𝑇<𝑙 , 𝐼 ) , (6)

3.4 Urban Indicator Prediction
Pre-training Stage. UrbanCLIP enables both unimodal text and
multimodal representations to be generated simultaneously. To
achieve this, both image-text contrastive loss LCon and language
modeling lossLLM are applied, weminimize the following objective
function for model learning during pre-training stage:

LTotal = 𝜆Con · LCon + 𝜆LM · LLM, (7)
where 𝜆Con and 𝜆LM are loss weighting hyperparameters.

An additional notable benefit of the loss design lies in its train-
ing efficiency [88]. The decoupled autoregressive decoder enables
high-efficiency computation of two training losses. Unidirectional
language models, trained with causal masking on complete texts,
allow the decoder to generate outputs for both contrastive and
generative training objectives in a single forward propagation. In
contrast, the bidirectional approach requires two passes [46], which
is more time-consuming. As for UrbanCLIP, most computation is
shared between the two losses. We provide a detailed complexity
analysis in Appendix 6.2.
Predict Stage. Through optimizing the loss function in Eq. 7, we
can obtain the final text-enhanced visual representations 𝒆𝑔 based
on the frozen image encoder. Consequently, given any satellite
image 𝐼𝑔 , we can use a simple yet effective Predictor MLP to predict
the urban indicators as Y𝑔 = MLP

(
I𝑔
)
.
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3.5 Discussion
3.5.1 Additional Data Alignment and Integration. In reality, other
spatial modalities such as POIs [6, 32, 52, 82] and trajectories [48, 84]
may be available which can contribute to urban region profiling.
Considering this, we improve the flexibility of UrbanCLIP from the
following two aspects: i) better alignment among diverse modali-
ties. As illustrated in Figure 2(c), multimodality contrastive learning
shows great capability in learning joint representations, by maxi-
mizing the agreement between semantically aligned examples (i.e.,
positive sample) across modalities while minimizing the agreement
between non-aligned ones. For more modalities, an example of a
positive sample could be the combination of a satellite image, a text
description, the majority of POI categories as parks, and the road
network of a given area. ii) better interaction with existing modali-
ties. An intuitive way is adopting cross-attention mechanisms in
UrbanCLIP. For instance, each modality engages in attention with
every other modality, creating pairwise interactions. In summary,
UrbanCLIP supports a flexible infusion with other modalities as a
plug-and-play integration for better urban region profiling.
3.5.2 Prompt-guided Downstream Tasks. Prompting was proposed
initially in natural language processing domain, and it refers to
the generation of task-relevant instructions to obtain the desired
output from a pre-trained model [33, 52]. Hence, a simple, task-
specific prompt can be designed manually as one option to boost
the downstream prediction performance of UrbanCLIP. As illus-
trated in Figure 2(d), for the carbon emission prediction task, a
simple prompt can be designed during fine-tuning as “The car-
bon emission is [MASK]”, guiding the model to concentrate on the
environment-related spatial information for visual representation
learning. [MASK] token serves as an indication that our textual en-
coder should predict the next token in an autoregressive generation
manner. Furthermore, motivated by recent prompt learning-based
studies, language instructions could be learned by training discrete
[18, 33] or continuous [42, 49] vectors, consequently steering the
performance of downstream urban indicators prediction.

4 EXPERIMENTS
In this section, we conduct extensive experiments to investigate
the following Research Questions (RQ):
• RQ1: Can UrbanCLIP outperform prior approaches and general-

ize well to various urban indicator tasks?
• RQ2: How does each component (e.g., textual modality, text

refinement, training objectives) contribute to UrbanCLIP?
• RQ3: How is the transferability of UrbanCLIP across cities?
• RQ4: How do we envision the practicality of UrbanCLIP?

4.1 Experimental Setup
4.1.1 Datasets. The datasets used in this paper include satellite
imagery, textual description, and three urban indicators for four
representative cities in China: Beijing, Shanghai, Guangzhou, and
Shenzhen. The satellite images obtained from Baidu Map API have
a fixed size of 256×256with a spatial resolution of around 13 meters
per pixel, which leads to an area of approximately 1 𝑘𝑚2. The tex-
tual information for each satellite image is generated from LLaMA-
Adapter V2 [17], which has the most detailed and high-quality text
generation compared with other up-to-date open-source Image-
to-Text foundation models [3, 20, 43–45, 51, 69, 70] via empirical

Table 1: Dataset statistics.

Dataset Coverage #Satellite
Image

#Location
DescriptionBottom-left Top-right

Beijing 39.75°N, 116.03°E 40.15°N, 116.79°E 4,592 20,642
Shanghai 30.98°N, 121.10°E 31.51°N, 121.80°E 5,244 23,455
Guangzhou 22.94°N, 113.10°E 23.40°N, 113.68°E 3,402 15,539
Shenzhen 22.45°N, 113.75°E 22.84°N, 114.62°E 4,324 18,113

experiment. There exists a one-to-many relationship between im-
ages and associated texts. We filter out low-quality descriptions
and then adopt a random selection to choose one high-quality sum-
mary text that matches each satellite image. The overall statistics of
satellite imagery and textual description can be seen in Table 1. As
for urban indicator data, we collect population from WorldPop [81]
as a social indicator, GDP from [59] as an economic indicator and
carbon emission from ODIAC [60] as the environmental indicator.
All urban indicators per grid cell are aligned with corresponding
satellite imagery and converted into a logarithmic scale. In this
paper, we randomly partition the dataset into 60% for training, 20%
for validation, and 20% for test.
4.1.2 Baselines. We compare UrbanCLIP with the following base-
lines in the field of urban imagery-based socioeconomic prediction:
• Autoencoder [39]. A neural network architecture that acquires

representations from unlabeled satellite images as input, with
the training objective of minimizing the reconstruction error.

• PCA [73]. Principal Component Analysis (PCA) is utilized to
transform original satellite imagery into extended vectors and
compute the first 10 principal components for each image.

• ResNet-18 [24]. It is a well-established deep learning model
pre-trained on ImageNet. It directly transfers a model trained on
natural imagery to satellite imagery.

• Tile2Vec [31]. An unsupervised model that employs a triplet
loss to learn the visual representations, with the goal of mini-
mizing the similarity of proximate satellite image pairs, while
maximizing the dissimilarity of distant pairs.

• READ [22]. Representation Extraction over an Arbitrary District
(READ) is a semi-supervised model that leverages limited labeled
data and transfer learning methods on a partially-labeled dataset
to extract robust and lightweight satellite image representations,
utilizing a teacher-student network with pre-trained models.

• PGSimCLR [82]. A satellite image representation method for its
competitive performance in socioeconomic prediction, leverag-
ing SimCLR [11] to encourage similar representations for grids
with analogous facility distribution and geo-adjacency.

4.1.3 Metrics and Implementation. To assess the prediction perfor-
mance, we adopt three commonly used evaluation metrics: coeffi-
cient of determination (𝑅2), rooted mean squared error (RMSE), and
mean absolute error (MAE) [30, 82]. Higher 𝑅2, and lower RMSE,
MAE means better performance. As for the default implementa-
tion of UrbanCLIP, Vision Transformer (ViT) [16] and the first half
of transformer decoder are applied to convert the satellite image
and location description into their unimodal representations, re-
spectively; and the rest of transformer decoder can be used for
multimodal interaction to generate image-text representations. The
parameter initialization follows the setting from [12, 29]. Adam
optimizer is chosen to minimize the training loss during parameter
learning. A grid search on hyperparameters is conducted, where
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Table 2: Urban indicators prediction results in four datasets. The best results are in bold, and the second-best results are
underlined. The last row indicates the relative improvement in percentage.

Dataset Beijing Shanghai

Model Carbon Population GDP Carbon Population GDP
𝑅2 RMSE MAE 𝑅2 RMSE MAE 𝑅2 RMSE MAE 𝑅2 RMSE MAE 𝑅2 RMSE MAE 𝑅2 RMSE MAE

Autoencoder 0.099 0.936 0.621 0.094 0.988 0.712 0.115 1.603 0.858 0.119 0.968 0.617 0.101 0.967 0.800 0.077 1.782 0.900
PCA 0.124 0.921 0.598 0.109 0.968 0.700 0.102 1.696 0.882 0.123 0.952 0.588 0.131 0.958 0.802 0.103 1.702 0.890

ResNet-18 0.393 0.599 0.411 0.202 0.858 0.680 0.203 1.280 0.758 0.451 0.512 0.460 0.233 0.852 0.692 0.217 1.297 0.777
Tile2Vec 0.599 0.512 0.468 0.204 0.813 0.635 0.182 1.356 0.792 0.572 0.462 0.390 0.249 0.801 0.620 0.169 1.380 0.806
READ 0.284 0.678 0.545 0.301 0.813 0.632 0.208 1.281 0.759 0.399 0.588 0.527 0.322 0.801 0.600 0.229 1.296 0.773

PG-SimCLR 0.613 0.489 0.360 0.362 0.799 0.599 0.317 1.114 0.688 0.597 0.442 0.356 0.410 0.790 0.584 0.319 1.181 0.725
UrbanCLIP 0.662 0.327 0.302 0.407 0.788 0.589 0.319 1.102 0.684 0.652 0.331 0.300 0.429 0.778 0.578 0.320 1.119 0.702
Improvement 8.11% 33.22% 16.00% 12.35% 1.39% 1.69% 0.73% 1.04% 0.62% 9.28% 25.12% 15.73% 4.59% 1.54% 1.06% 0.38% 5.28% 3.06%

Dataset Guangzhou Shenzhen

Model Carbon Population GDP Carbon Population GDP
𝑅2 RMSE MAE 𝑅2 RMSE MAE 𝑅2 RMSE MAE 𝑅2 RMSE MAE 𝑅2 RMSE MAE 𝑅2 RMSE MAE

Autoencoder 0.068 0.992 0.736 0.163 0.991 0.833 0.122 1.753 0.887 0.099 0.970 0.704 0.122 0.989 0.817 0.093 1.901 0.899
PCA 0.087 0.989 0.688 0.179 0.989 0.812 0.134 1.693 0.862 0.133 0.956 0.677 0.134 0.977 0.810 0.087 1.902 0.899

ResNet-18 0.388 0.500 0.513 0.244 0.883 0.711 0.215 1.290 0.791 0.409 0.556 0.503 0.250 0.880 0.701 0.165 1.398 0.844
Tile2Vec 0.482 0.499 0.501 0.269 0.855 0.683 0.173 1.346 0.799 0.466 0.501 0.486 0.289 0.841 0.649 0.123 1.500 0.881
READ 0.353 0.589 0.589 0.301 0.849 0.633 0.200 1.289 0.766 0.378 0.600 0.551 0.301 0.811 0.631 0.186 1.356 0.823

PG-SimCLR 0.503 0.401 0.401 0.370 0.823 0.603 0.309 1.109 0.702 0.523 0.412 0.417 0.386 0.791 0.610 0.290 1.172 0.741
UrbanCLIP 0.587 0.390 0.389 0.388 0.801 0.602 0.309 1.109 0.700 0.597 0.373 0.387 0.391 0.791 0.602 0.293 1.153 0.734
Improvement 16.77% 2.65% 3.02% 4.89% 2.70% 0.10% 0.10% 0.04% 0.37% 14.12% 9.58% 7.27% 1.48% 0.04% 1.39% 0.86% 1.65% 0.96%

search ranges for learning rate and batch size are set as {2𝑒−6, 2𝑒−5,
2𝑒−4, 2𝑒−3, 2𝑒−2} and {4, 8, 16, 32, 64}, respectively.

4.2 RQ1: Performance Comparison
We empirically evaluate the performance of different models on
the four datasets. The experimental results are shown in Table 2,
from which we can obtain the following findings:

i) UrbanCLIP consistently achieves the best performance
across all the datasets. It outperforms the best baseline, PG-
SimCLR, by 7.06%, 4.75%, 7.25% and 5.49% in terms of 𝑅2 for Beijing,
Shanghai, Guangzhou and Shenzhen, respectively. Besides, the av-
erage performance gain of UrbanCLIP on RMSE and MAE are 7.02%
and 4.27%, respectively. The results further prove the effectiveness
of introducing the text modality into the urban region profiling.

ii) UrbanCLIP achieves promising results across all three urban in-
dicators, with carbon emission being the best, followed by population,
and GDP ranking last. The average 𝑅2 improvement percentages for
carbon emission, population and GDP prediction are 12.07%, 5.83%
and 0.52%, respectively. A better performance in environmental
indicators may come from the text-enhanced nature of UrbanCLIP,
since the location summary containing key POIs such as parks can
help indicate whether the corresponding region is environmen-
tally friendly but cannot deduce the wealth class around that area.
This insight inspires future work to leverage non-spatial informa-
tion (such as economic-related time series) to enhance economic
indicators’ prediction performance.

iii) Existing satellite imagery-based prediction approaches still lack
the capability to profile urban regions comprehensively. Taking the
spatial correlations of regions into account, PG-SimCLR [82] (the
best baseline model) and Tile2Vec [31] achieve competitive results
among most prediction tasks compared to other baselines, which in-
dicates that extra knowledge is beneficial for visual representation
learning. Nevertheless, these methods may not capture crucial se-
mantics in satellite imagery, such as significant POIs, where textual
information can enhance understanding.

4.3 RQ2: Ablation Studies
Next, we conduct ablation studies to investigate the effectiveness
of different components in UrbanCLIP, including the generation
and refinement of textual information, cross-modality interaction,
and training objectives. The results on 𝑅2 are depicted in Figure 4.

4.3.1 Effectiveness of Textual Modality. The core idea of UrbanCLIP
is the introduction of textual modality for urban region profiling.
Thus, it is natural to ask for the effectiveness of textual information.
To this end, we compare UrbanCLIP with a standard ViT-based
model [16], termed as UrbanViT, which has the same setting as
the unimodal visual encoder of UrbanCLIP. The extracted visual
representations without textual enhancement would be used to
predict three urban indicators.

Figure 4: Results of Ablation Study on 𝑅2 Metric.
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Figure 5: 𝑅2 heatmap for the transferability test between UrbanCLIP and PG-SimCLR, on 3 urban indicators across 4 datasets.

From Figure 4, the absence of supplementary textual informa-
tion (i.e., UrbanViT) results in significant performance deterioration,
demonstrating the importance of textual modality for achieving a
comprehensive visual representation. UrbanViT slightly outper-
forms ResNet-18 [24], which mainly comes from the powerful
capability of ViT to capture global dependencies and contextual
understanding in images [16, 21].

4.3.2 Effectiveness of Refined Text. Before feeding the text input
into UrbanCLIP, we refine the generated satellite imagery summary
for more robust model performance. To validate the effectiveness
of this process, we report the performance of using raw generated
summary (i.e., UrbanCLIP w/o refined text) for comparison.

Figure 4 clearly shows that UrbanCLIP consistently outperforms
this variant across all cities and indicators, though the magnitude of
the difference varies. Such result indicates that more relevant and
noise-free textual information may align better with image features,
leading to a more coherent and meaningful visual representation.

4.3.3 Effectiveness of Knowledge Infusion. UrbanCLIP introduces
contrastive learning-based cross-modality interaction coupled with
image-text contrastive loss. To validate the efficacy of our approach
in infusing textual knowledge, we introduce a direct image-image
contrastive loss, denoted as Text-SimCLR, which is similar to PG-
SimCLR [82] (the best baseline). In particular, Text-SimCLR calcu-
lates textual embedding similarity for positive region pairs, and
mandates that the associated satellite images of these pairs be prox-
imate in the visual latent space.

Figure 4 shows the performance comparison between Urban-
CLIP and Text-SimCLR over different datasets. The substantial
performance gaps observed between these two models suggest that
relying solely on the conventional image view-based contrastive
loss fails to accomplish effective knowledge infusion. In particular,
directly capturing the semantic knowledge inherent in location
summaries as a similarity metric, yields a relatively weak self-
supervision signal for visual representation learning. In contrast,
our proposed cross-modality interaction mechanism, grounded in
text-image contrastive learning, more effectively incorporates text-
enhanced information within the multimodal representation space.
In summary, the results highlight the efficacy of our proposed tex-
tual knowledge infusion, with potential applications extending to
other research areas involving satellite imagery.

4.3.4 Effectiveness of Loss Design. We further investigate the ef-
fects of the two losses, i.e., image-text contrastive loss and language
modeling loss. As depicted in Figure 4, we assess the performance
of UrbanCLIP in urban indicator prediction concerning contrastive-
only and generative-only scenarios (denoted as UrbanCLIP w/o

L𝐿𝑀 and w/o L𝐶𝑜𝑛 , respectively) across four datasets. The find-
ings reveal that, when compared to UrbanCLIP utilizing both losses,
both single-loss variants exhibit relatively inferior 𝑅2 performance.
Furthermore, UrbanCLIP exclusively employing language model-
ing loss outperforms the counterpart with only contrastive loss.
This observation implies that the generative objective contributes
to refining text representations, thereby augmenting text compre-
hension for multimodal fusion with visual representations [88].
In essence, combining both losses fosters the acquisition of more
semantically rich visual representations of satellite images.

4.4 RQ3: Transferability Study
We then focus on the transferability of UrbanCLIP, by investigating
its performance on unseen regions (not included in training).

4.4.1 Performance Across Cities. We conduct experiments of Ur-
banCLIP and PG-SimCLR on metropolises in China with different
geological and demographic characteristics: 1) Beijing, located in
the northern part of China as the capital, is densely populated and
characterized by a mix of traditional architecture and modern facil-
ities; 2) Shanghai, situated on the eastern coast, serves as a global
financial center known for its cosmopolitan atmosphere and iconic
skyline; 3) Guangzhou, positioned in southern China, is a major
trading and manufacturing center and has an intricate network of
waterways; 4) Shenzhen has the almost same location distribution
as Guangzhou, but it has transformed into a bustling metropolis
characterized by technology parks and industrial zones.

As shown in Figure 5, UrbanCLIP performs better than PG-
SimCLR on 36 source-target pairs across three urban indicators.
UrbanCLIP achieves an average 𝑅2 of around 0.411, while that of
PG-SimCLR is 0.365. Specifically, UrbanCLIP has higher 𝑅2 val-
ues for respective urban indicators (carbon emission, population,
and GDP) as 0.588, 0.384, and 0.261, but those of PG-SimCLR are
only 0.543, 0.338, and 0.215. Such results indicate the stable trans-
ferability of our proposed UrbanCLIP in urban regions, although
the chosen cities have the aforementioned differences in terms of
geological and demographic characteristics.

The good transferability of our proposed UrbanCLIP may be
attributed to our cross-modality mutual information maximization
paradigm, through effective alignment and information preserva-
tion across visual representations and spatial semantics-enhanced
textual representations. UrbanCLIP can better extract the inclusive
functional semantics hidden behind satellite imagery, especially
in urban scenarios involving spatial distribution shifts. Hence, al-
though explicit differences exist among different cities, UrbanCLIP
has the potential to address inaccuracies in the unseen satellite
imagery of urban regions.
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Figure 6: Case study of most similar satellite imagery match-
ing between Beijing and other three cities through text-
enhanced visual representations by UrbanCLIP.

4.4.2 Similarity Analysis Across Cities. To better validate the trans-
ferability and explainability of UrbanCLIP across diverse urban
regions, we compute the similarity between text-enhanced visual
representations of satellite imagery. In particular, for a given satel-
lite image from a source city, we compute the cosine similarity of
visual representations among all others from different target cities.
We assess whether there are commonalities in terms of urban indi-
cators and description texts generated by UrbanCLIP. We further
investigate the capability of generated text to guide associated
image representations to focus on similar spatial information.

As illustrated by Figure 6, a randomly chosen satellite image
in Beijing corresponds to three satellite images from other cities
(Shanghai, Guangzhou, and Shenzhen) with the highest similarities
(0.72, 0.75, and 0.72, respectively) in text-enhanced visual repre-
sentations. In terms of urban indicators of regions corresponding
to these satellite images, we can see that they are very close to
each other. This phenomenon suggests that UrbanCLIP can capture
similar spatial characteristics and distributions among comparable
regions, thereby contributing to effective urban region profiling.

Furthermore, the location summary especially identifies the sig-
nificant spatial attributes of the urban region. Infusing such key
knowledge into the visual representation leads to a more compre-
hensive representation. For instance, the summary of the Beijing
example can pinpoint the presence of roadways, green areas, and
residential spaces, aligning with mentions in the summaries of the
other three examples with the highest similarity. These findings
support the notion that UrbanCLIP exhibits robust transferability
and explainability across diverse urban regions.

4.5 RQ4: Practicality
We finally envision and develop a novel web-based application
called Urban Insights, which is an LLM-Integrated Urban Indica-
tor System built on the Mapbox platform [55]. It displays urban
landscapes in satellite projection, offering an interactive user expe-
rience. As shown in Figure 7, users can easily navigate the map by
zooming in and out, searching for special locations, and switching

Figure 7: User interface of our Urban Insights System. It pro-
vides an interactive Mapbox-based platform [81] for urban
region query (e.g., showing image captions and POI queries)
and profiling (i.e., calculating the urban indicators like car-
bon emission, population, and GDP.

between different areas. Overlaid on this imagery are target grid
areas, which will furnish users with detailed metrics, including car-
bon emissions, population, and GDP once clicked. Complementing
the visual data, the system also features a descriptive image caption-
ing module, which provides an easy-to-read text for understanding
the spatial attributes of the selected grid, making it simpler for
users to comprehend the spatial characteristics of the chosen grid.
In addition, the system also supports popular POI query features
within a region to better understand region functions. In summary,
the Urban Insights System has great potential to provide users with
a comprehensive and enriched view of varied urban landscapes and
their prominent indicators, translating intricate urban data into a
more accessible and intuitive visual representation. More details
will be released upon paper notification to obey anonymity.

5 CONCLUSION AND FUTUREWORK
Profiling urban areas in terms of social, economic, and environmen-
tal metrics is critical for urban planning and sustainable develop-
ment. This paper investigates whether and how the text modality
benefits urban region profiling. To answer the question, we propose
UrbanCLIP, the first-ever framework that integrates textual modal-
ity into urban imagery profiling. Powered by LLM, UrbanCLIP first
generates a high-quality text description for an urban image. Then
the text-image pairs are fed into the proposed model that seamlessly
unifies natural language supervision for urban visual representa-
tion learning. Extensive experiments demonstrate the effectiveness
of incorporating the textual modality.

We aspire that this work motivates future research of urban
region profiling on the following areas: 1) Investigating efficient
and effective methods for integrating urban multimodal data and
facilitating prompt-enhanced learning; 2) Exploring the automatic,
high-quality text generation and refinement using more up-to-date
LLMs; 3) Identifying more potentially beneficial downstream tasks,
encouraging other researchers to explore diverse use cases.
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6 APPENDIX
6.1 Image-to-Text Foundation Models
We provide a brief introduction of the Image-to-Text foundation
models that we used for text generation:
• BLIP. A VLP framework that leverages noisy web data for boot-

strapping captions; it involves a captioner generating synthetic
captions and a filter to eliminate noisy ones.

• Emu. A multimodal foundation model trained with a unified
objective, either classifying the next text token or regressing the
next visual embedding in the multimodal sequence.

• ImageBind-LLM. A multimodal instruction model that unifies
various modalities such as images and video into a single frame-
work by aligning ImageBind’s visual encoder with an LLM using
a learnable bind network.

• PandaGPT. A unified approach that can handle multimodal
inputs, allowing natural composition of their semantics by com-
bining multimodal encoders from ImageBind and LLMs from
Vicuna.

• OpenFlamingo. An open-source multimodal framework that
is capable of handling diverse visual language tasks through
autoregressive vision-language modeling.

• mPLUG. A VLP model with an efficient vision-language archi-
tecture, equipped with innovative cross-modal skip-connections.

• LLaVA. An instruction tuning-based model that utilizes multi-
modal language-image data derived from GPT4.

6.2 Complexity Analysis
We use the following notations:𝑚1 represents the number of vi-
sual tokens of ViT, 𝑑 is the dimension of the representation, 𝐿
denotes the number of layers in the transformer (assuming unifor-
mity across ViT, textual transformer, and multimodal transformer),
and𝑚2 stands for the sequence length of textual tokens. For the
visual encoder, the complexity of ViT is O(𝐿(𝑚2

1𝑑 +𝑚1𝑑2)) and
that of attentional pooling is O(𝑚2

1𝑑). The textual encoder has an
embedding lookup complexity of O(𝑚2𝑑) and transformers with
O(𝐿(𝑚2

2𝑑+𝑚2𝑑2)). The multimodal interaction involves cross atten-
tion with a complexity of O(𝐿𝑚1𝑚2𝑑). The final complexity, when
summing up, is O(𝐿(𝑚2

1 +𝑚
2
2)𝑑 +𝑚

2
1𝑑 + 𝐿𝑚1𝑚2𝑑), which for large

values of𝑚1𝑛 and𝑚2 approximates to O(𝐿(𝑚2
1𝑑 +𝑚2

2𝑑)). Besides,
LLM pre-training is excluded from UrbanCLIP backbone training,
and text generation and refinement remain at the preprocessing
phase, thus indicating the feasibility of UrbanCLIP in practice.
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