
Automatic Unsupervised Outlier Model Selection

Yue Zhao
Carnegie Mellon University

zhaoy@cmu.edu

Ryan A. Rossi
Adobe Research

ryrossi@adobe.com

Leman Akoglu
Carnegie Mellon University
lakoglu@andrew.cmu.edu

Abstract

Given an unsupervised outlier detection task on a new dataset, how can we au-
tomatically select a good outlier detection algorithm and its hyperparameter(s)
(collectively called a model)? In this work, we tackle the unsupervised outlier
model selection (UOMS) problem, and propose METAOD, a principled, data-driven
approach to UOMS based on meta-learning. The UOMS problem is notoriously
challenging, as compared to model selection for classification and clustering, since
(i) model evaluation is infeasible due to the lack of hold-out data with labels,
and (ii) model comparison is infeasible due to the lack of a universal objective
function. METAOD capitalizes on the performances of a large body of detection
models on historical outlier detection benchmark datasets, and carries over this
prior experience to automatically select an effective model to be employed on a new
dataset without any labels, model evaluations or model comparisons. To capture
task similarity within our meta-learning framework, we introduce specialized meta-
features that quantify outlying characteristics of a dataset. Extensive experiments
show that selecting a model by METAOD significantly outperforms no model
selection (e.g. always using the same popular model or the ensemble of many) as
well as other meta-learning techniques that we tailored for UOMS. Moreover upon
(meta-)training, METAOD is extremely efficient at test time; selecting from a large
pool of 300+ models takes less than 1 second for a new task. We open-source1

METAOD and our meta-learning database for practical use and to foster further
research on the UOMS problem.

1 Introduction

The lack of a universal learning model that performs well on all problem instances is well recognized
[53]. Therefore, effort has been directed toward building a toolbox of various models and algorithms,
which has given rise to the problem of algorithm selection and hyperparameter tuning (i.e., model
selection). The same problem applies to outlier detection (OD); a long list of detectors has been
developed in the last decades [2], with no universal “winners” [8].

In supervised learning, model selection can be done via performance evaluation of each trained model
on labeled hold-out data. In contrast, unsupervised OD does not have access to any labels, nor is there
a universal objective function that could guide model selection (cf. clustering where a loss function
enables model comparison). Unsupervised model selection for OD is challenging exactly because
both model evaluation and comparison are not feasible—which renders any trial-and-error techniques
like grid search or iterative strategies like Bayesian hyperparameter optimization [57] inapplicable.
Consequently, there has been no principled work on unsupervised outlier model selection—rather,
the choice of a model for a new task (or dataset) remains “a black art”. A typical approach is to use
popular OD algorithms, like LOF [6] and iForest [31] (often with default hyperparameters) which are
shown to be competitive on average on many benchmark datasets. However, as noted earlier, none of

1Code available at URL: https://github.com/yzhao062/UOMS

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/yzhao062/UOMS


these methods can universally outperform others on all tasks [8]. We argue that model selection is
exactly how one can “break the performance ceiling” for OD.

In this work, we tackle the unsupervised outlier model selection (UOMS) problem systematically. To
that end, we introduce (to the best of our knowledge) the first UOMS approach that selects an effective
model to be employed on a new detection task without any model evaluation (using labels) or model
comparison (via loss criteria). Our proposed method, called METAOD, is based on meta-learning,
and stands on the prior performances of a large collection of existing detection models on an extensive
corpora of historical outlier detection benchmark datasets. In a nutshell, the idea is to estimate a
candidate model’s performance on the new task (with no labels) based on its prior performance on
similar historical tasks. We remark that METAOD is strictly a model selection technique – that
picks one model (a detector and its associated hyperparameter(s)) from a pool of (existing) candidate
models – and not yet-another outlier detection algorithm itself.

In leveraging meta-learning, we establish a connection between the UOMS problem and the cold-start
problem in collaborative filtering (CF), where the new task in UOMS is akin to a new user in CF
(with no available evaluations, hence cold-start) and the model space is analogous to the item-set.
Differently, OD necessitates the identification of a single best model (i.e., top-1 rank), whereas CF
typically operates in a top-k setting. In CF, future recommendations can be improved based on user
feedback which is not applicable to OD. Moreover, METAOD requires the effective learning of task
similarities based on characteristic dataset features (namely, meta-features) that capture the outlying
properties within a dataset, whereas user features (location, age, etc.) in CF may be readily available.

In summary, the key contributions of this work include the following:

• First Approach to Unsupervised Outlier Model Selection: We propose METAOD, (to our
knowledge) the first effort on unsupervised model selection for OD tasks. Notably, given a new
dataset (i.e., at test time), it does not rely on any ground-truth labels for model evaluation or any
loss or heuristic criterion for model comparison. METAOD stands on meta-learning in principle,
and historical collections of outlier models and benchmark datasets in practice.

• Problem Formulation: We establish a correspondence between UOMS and CF under cold-start,
where the new task “better likes” a model that performs better on similar historical tasks.

• Specialized Meta-features: We design novel meta-features to capture the outlying characteristics
in a dataset toward effectively quantifying task similarity specifically among OD tasks.

• Effectiveness and Efficiency: Through extensive experiments on two benchmark testbeds that we
have constructed, we show that selecting a model by METAOD for each given task significantly
outperforms always using a popular model like iForest, as well as other possible meta-learning
approaches that we tailored for UOMS. Moreover, METAOD incurs negligible run-time overhead
(<1 second) at test time.

• Open-source Platform: We open-source1 METAOD and our meta-learning database for the
community to use it for UOMS in practice, and to extend it with new datasets and models. We
expect the growth of the database would make meta-learning based approaches, like METAOD,
more powerful and also help foster further research on this new direction to an important problem.

2 Related Work

2.1 Model Selection for Outlier Detection (OD)

Most outlier mining work have focused on developing new, better methods for detection on different
types of data [2]. In comparison, there are only a few work on the outlier model selection problem
–which detector and hyperparameter(s) to use on a new task– all of which require some labeled data.
Recent work include AutoOD [29] that focuses on automatic neural architecture search, however, it
is limited to deep autoencoder based detection, and more importantly it relies on hold-out labeled
data for evaluation. Similarly, PyODDS [30] and TODS [25] both require ground truth labels.

To our knowledge, there is no existing work on the general unsupervised outlier model selection
(UOMS) problem, which is considerably more challenging, as (1) model evaluation is infeasible due
to the lack of any ground truth labels, and (2) model comparison of different heterogeneous detectors
is infeasible due to the lack of a universal OD loss function.

2



We note that some OD methods do have a loss function; e.g. auto-encoders [9, 63] aim to minimize
reconstruction error for modeling the inliers, and one-class classification (OCSVM [38], SVDD [46],
etc.) aims to maximize margin to the origin or minimize the radius of a data-enclosing hyperball.
There is also work on model selection for one-class models [7, 54], however, those are limited to
this specific family of methods and do not apply in the general case. Our proposed METAOD is not
limited to one specific model family, but can select among any (heterogeneous) set of detectors.

2.2 Model Selection in ML, AutoML, Meta-Learning

Model selection refers to the process of algorithm selection and/or hyperparameter optimization (HO).
With the advent of complex (e.g. deep) models, HO in high dimensions has become impractical
to be human-powered [59]. As such, automating ML pipelines has seen a surge of attention [18].
Meta-learning has been a key contributor to the AutoML effort [41, 49, 58].

Supervised Model Selection: Most existing work focus on the supervised setting, and use hold-out
data with labels. Randomized [3], bandit-based [27], and Bayesian optimization (BO) techniques
[40] are various state-of-the-art (SOTA) approaches to HO. Specifically sequential model-based BO
[19, 22] evaluates hold-out performance at various initial hyperparameter configurations (HC), where
a (smooth) surrogate function is fit to the resulting 〈HC, performance〉 pairs, which is then used to
strategically query other HCs, e.g., via hyper-gradient based search [15]. Meta-learning has also been
employed [13, 52], e.g., to find promising initialization for (i.e. warm-starting) BO [14, 51].

Note that all of these approaches rely on multiple model evaluations (i.e., performance queries) for
various HCs, and hence cannot be applied to the unsupervised outlier model selection problem.

Unsupervised Model Selection: Unsupervised ML tasks (e.g., clustering) poses additional chal-
lenges for model selection [12, 47]. Nonetheless, those exhibit established objective criteria that
enable model comparison, unlike OD. For example, BO methods still apply where the surrogate can
be trained on 〈HC, objective value〉 pairs, for which meta-learning can provide favorable priors.

Task-independent meta-learning [1], that simply identifies the globally best model on historical tasks,
applies to the unsupervised setting and hence OD. This can be refined by identifying the best model
on not all, but similar tasks, where task similarity is measured in the meta-feature space via clustering
[23] or nearest neighbors [33]. This type of similarity-based recommendations points to a connection
between algorithm selection and collaborative filtering (CF), first recognized by Stern et al. [44].
The most related to UOMS is CF under cold start, where evaluations are not-available (in our case,
infeasible) for a new user (in our case, task). There have been a number of work using meta-learning
for the cold-start recommendation problem [4, 26, 50], and vice versa, using CF solutions for ML
algorithm selection [32, 56]. We tailor these to UOMS and compare to METAOD in the experiments.

3 Unsupervised Outlier Model Selection via Meta-learning

3.1 Problem Statement

We consider the model selection problem for unsupervised outlier detection, which we refer to as
UOMS (unsupervised outlier model selection) hereafter. Given a new dataset, without any labels,
the problem is to select both (i) a detector/algorithm and (ii) its associated hyperparameter(s) (HP).
The former is a discrete choice, given the finite set of existing detection algorithms. The latter is
continuous, and hence induces infinitely many candidate models.

Under certain assumptions, such as performance changing smoothly in the HP space, a HP configura-
tion can be selected iteratively based on evaluations on several other carefully-chosen configurations.
Importantly however, OD is not amenable for such iterative search over models—evaluations are
not possible due to the lack of labels and absence of a universal objective criterion. The selection
of a model, therefore, is to be done without building or evaluating any model on the new dataset.
Given this constraint, we discretize the HP space for each candidate detector to make the search
space tractable, which induces a finite pool of models denoted M = {M1, . . . ,Mm}. Each model
M ∈M can be seen as a {detector, configuration} pair, where the configuration depicts
a specific set of values for the detector’s HP(s). (See Appendix A for details.) Then, the UOMS
problem is stated as follows:

3



Problem 1 (Unsupervised Outlier Model Selection (UOMS)) Given a new input dataset (i.e., de-
tection task) Dtest = (Xtest) without any labels, Select a model M ∈M to employ on Xtest.

3.2 Proposed METAOD

In this work we consider the UOMS problem and propose a meta-learning based solution, leveraging
past experience on historical detection tasks. As such, our METAOD relies on

• a collection of historical outlier detection datasets Dtrain = {D1, . . . ,Dn}, namely, a meta-train
database with ground truth labels, i.e., {Di = (Xi,yi)}ni=1, and

• the historical performances of the pool of candidate models, M, on the meta-train datasets. We
denote by P ∈ Rn×m the performance matrix, where Pij corresponds to the j-th model Mj’s
performance2 on the i-th meta-train dataset Di.

Note that model performance can be evaluated on the historical meta-train datasets as they contain
ground truth labels, which however is not the case for any newcoming task at test time.

Our METAOD consists of two-phases: offline (meta-)training of the meta-learner on Dtrain, and
online prediction that enables unsupervised model selection at test time for Dtest. Arguably, the
running time of the offline phase is not critical. In contrast, model selection for a newcoming task
should incur small run-time overhead, as it precedes the actual building of the selected OD model.
Fig. 1 summarizes the process and the major components of METAOD, where we highlight the
components transferred from offline (meta-learning) to online stage (model selection) in blue. We
also provide the detailed steps of METAOD in pseudo-code, for both meta-training (offline) and
model selection (online), in Appendix D Algo. 1.

3.2.1 (Meta-)Training (Offline)

In principle, meta-learning carries over prior experience on a set of historical tasks to “do better” on
a new task. Such improvement can be unlocked only if the new task resembles and thus can build
on at least some of the historical tasks (such as learning ice-skating given prior experience with
roller-blading), rather than representing completely unrelated phenomena. This entails defining an
effective way to capture task similarity between an input task and the historical tasks at hand.

In machine learning, similarity between meta-train and test datasets are quantified through character-
istic features of a dataset, also known as meta-features. Those typically capture statistical properties
of the data distributions. (See survey [49] for various types of meta-features.)

To capture prior experience, METAOD first constructs the performance matrix P by running/building
and evaluating all the m models in our defined model space M on all the n meta-train datasets
Dtrain.3 To capture task similarity, it then extracts a set of d meta-features from each meta-train
dataset, denoted by M = ψ({X1, . . . ,Xn}) ∈ Rn×d where ψ(·) depicts the feature extraction
module. We defer the details on the meta-feature specifics to §3.3.

At this stage, it is easy to recognize the connection between the UOMS and the collaborative filtering
(CF) under cold start problems. Simply put, meta-train datasets are akin to existing users in CF that
have prior evaluations on a set of models that are akin to the item-set in CF. The test task is akin to
a newcoming user with no prior evaluations (and in our case, no possible future evaluation either),
which however exhibits some pre-defined features.

Capitalizing on this connection, we take a matrix factorization based approach where P is approxi-
mated by the dot product of what-we-call dataset matrix U ∈ Rn×k and model matrix V ∈ Rm×k.
The intent is to capture the inherent dataset-to-model affinity via the dot product similarity in the
k-dimensional latent space, such that Pij ≈ UiVj

T where matrix subscript denotes the row.

What loss criterion is suitable for the factorization? In CF the typical goal is top-k item recommenda-
tion. In METAOD, we aim to select the model with the best performance on a task which demands
top-1 optimization. Therefore, we discard least squares and instead optimize the rank-based (row- or

2Area under the precision-recall curve (Average Precision or AP); can be substituted with any other measure.
3Note that this step takes considerable compute-time, which however amortizes to “do better” for future

tasks. To this effect, we open-source our trained meta-learner to be readily deployed.

4



dataset-wise) discounted cumulative gain (DCG) [21],

max
U,V

n∑
i=1

DCGi(Pi,UiV
T ) . (1)

The factorization is solved via alternating optimization, where initialization plays an important role
for such non-convex problems. We find that initializing U, denoted U(0), based on meta-features
facilitates stable training, potentially by hinting at inherent similarities among datasets as compared
to random initialization. Specifically, an embedding function φ(·) is used to set U(0) := φ(M) for
φ : Rd 7→ Rk, k < d. Details on objective criteria and optimization are deferred to §3.4.

By construction, matrix factorization is transductive. On the other hand, we would need Utest to be
able to estimate performances of the model set M on a new dataset Xtest. To this end, one can learn
an (inductive) multi-output regression model that maps the meta-features onto the latent features.
We simplify by learning a regression function f : Rk 7→ Rk that maps the (lower dimensional)
embedding features φ(M) (which are also used to initialize U) onto the final optimized U. Note
that this requires an inductive embedding function φ(·) to be applicable to newcoming datasets. In
implementation, we use PCA for φ(·) and a random forest regressor for f(·) although METAOD is
flexible to accommodate any others provided they are inductive.

Remark: METAOD improves over the existing methods that use CF in machine learning model
selection (see §2.2) in two aspects. First, METAOD builds specialized landmarker features tai-
lored for capturing outlying characteristics of a dataset, while the existing ML model selection
mainly uses generic statistical features (see §3.3). Second, METAOD uses a customized (back-
propagatable/smooth) rank-based loss in CF for more effective top-1 optimization (see §3.4), while
existing approaches mainly leverage mean squared loss (MSE).

3.2.2 Prediction for Unsupervised Model Selection (Online)

Meta-training stage yields the estimated functions ψ(·), φ(·), and f(·) as well as the model matrix
V ∈ Rm×k, which we save for test time (See Fig. 1). Given a new dataset Xtest for OD, METAOD
first computes the corresponding meta-features as Mtest := ψ(Xtest) ∈ Rd. Those are then embedded
via φ(Mtest) ∈ Rk, which are regressed to obtain the latent features, i.e., Utest := f(φ(Mtest)) ∈ Rk.
Model set performances are predicted as Ptest := UtestV

T ∈ Rm. Finally, the model with the largest
predicted performance is outputted as the selected model, that is,

argmax
j
〈 f(φ(ψ(Xtest))),Vj 〉 . (2)

Remark: Notice that model selection by Eq. (2) for a newcoming dataset is solely based on its
meta-features and other pre-trained components from meta-learning. It does not rely on ground-truth
labels or any OD model evaluations, therefore, METAOD provides unsupervised outlier model
selection. Further, it does not require choosing or tuning any values at test time, and hence is fully
automatic. In terms of computation, test-time embedding by φ (PCA) and regression by f (regression
trees) take near-constant time given the small number of meta-features, embedding dimensions, and
trees of fixed depth. Moreover, we use meta-features with computational complexity linear in the
dataset size as we describe next.

3.3 Meta-Features for Outlier Detection

A key part of METAOD is the extraction of meta-features that capture the important characteristics
of an arbitrary dataset. Existing outlier detection models have different methodological designs
(e.g., density, distance, angle, etc. based) and different assumptions around the topology of outliers
(e.g., global, local, clustered). As a result, we expect different models to perform differently
depending on the input dataset and the nature of outliers it exhibits—hence no “winner”. In our
meta-learning approach, the goal is to identify the datasets in the meta-train database that exhibit
similar characteristics to a given test dataset, and focus on models that do well on those similar
datasets. This is akin to recommending to a new user those items liked by similar users.

To this end, we extract meta-features that can be organized into two categories: (1) statistical features,
and (2) landmarker features. Broadly speaking, the former captures statistical properties of the
underlying data distributions; e.g., min, max, variance, skewness, covariance, etc. of the features and

5



𝐌
(𝑛 × 𝑑)

𝜙
𝐔

(𝑛 × 𝑘)

𝐕
(𝑚 × 𝑘)𝓝(𝟎, 𝟏)

𝓓train
datasets

𝐗test
𝐌test
(1 × 𝑑)

𝐏
(𝑛 ×𝑚)

𝜙

𝐎𝐩𝐭𝐢𝐦𝐢𝐳𝐞
𝐃𝐂𝐆(𝐏,𝐔𝐕𝑇)

𝐔(0)

(𝑛 × 𝑘)

𝑓

𝑓 𝐔𝐭𝐞𝐬𝐭
(1 × 𝑘)

𝜓

(Offline) Meta-Learner Training

𝜓

(Online) Model Selection

initialize

𝐏test ≔ 𝐔𝑡𝑒𝑠𝑡𝐕
𝑇

(1 × 𝑚)(inductive)

regression

meta-feature 

extraction
embedding

meta-feature 

extraction

initialize

𝓜
models

(inductive)

Figure 1: METAOD
overview; components
that transfer from offline
(meta-learning) to online
(model selection) phase
shown in blue; namely,
meta-feature extractors
(ψ), embedding model
(φ), regressor f , dataset
matrix U, and model
matrix V. For the online
phase, the input dataset
Xtest and the predicted
model performance Ptest
are denoted in yellow.

feature combinations. (See Appendix B Table 3 for the complete list.) These kinds of meta-features
have been commonly used in the AutoML literature [5].

The optimal set of meta-features has been shown to be application-dependent [49]. Therefore,
perhaps more important are the landmarker features, which are problem-specific, and aim to capture
the outlying characteristics of a dataset. The idea is to apply a few of the fast, easy-to-construct OD
models on a dataset and extract features from (i) the structure of the estimated OD model, and (ii)
its output outlier scores. For the OD-specific landmarkers, we use four OD algorithms: iForest [31],
HBOS [17], LODA [34], and PCA [20] (reconstruction error as outlier score). We choose the four
OD algorithms due to their efficiency and diversity (as a group). First, they are all fast algorithms and
able to handle large, high-dimensional datasets [2]. This makes the meta-feature generation efficient
and practical in the real world. Second, these four OD algorithms as a group show decent diversity
(i.e., internal detection mechanism) to capture rich outlying characteristics. Consider iForest as an
example. It creates a set of what-is-called extremely randomized trees that define the model structure,
from which we extract structural features such as average horizontal and vertical tree imbalance. As
another example, LODA builds on random-projection histograms from which we extract features
such as entropy. In addition, based on the list of outlier scores from these models, we compute
features such as dispersion, max consecutive gap in the sorted order, etc. We elaborate on the details
of the landmarker features in Appendix B.2.

3.4 Meta-Learning Objective and Training

3.4.1 Rank-based Criterion

A typical loss criterion for matrix factorization is the mean squared error (MSE), a.k.a. the Frobenius
norm of the error matrix P−UVT . While having nice properties from an optimization perspective,
MSE does not (at least directly) concern with the ranking quality. In contrast, our goal is to rank
the models for each dataset row-wise, as model selection concerns with picking the best possible
model to employ. Therefore, we use a rank-based criterion called DCG from the information retrieval
literature [21]. For a given ranking, DCG is given as

DCG =
∑
r

brel_r − 1

log2(r + 1)
(3)

where rel_r depicts the true relevance of the item ranked at the r-th position and b is a scalar (typically
set to 2). In our setting, we use the performance of a model to reflect its true relevance to a dataset.
As such, DCG for dataset i is re-written as

DCGi =
m∑
j=1

bPij − 1

log2(1 +
∑m
k=1 1[P̂ij ≤ P̂ik])

(4)

where P̂ij = 〈Ui,Vj〉 is the predicted performance that dictates the ranking order. Intuitively,
ranking high-performing models at the top leads to higher DCG, and a larger b increases the emphasis
on the quality of models at the higher rank positions.

6



A challenge with DCG is that it is not differentiable, unlike MSE, as it involves ranking/sorting.
Specifically, the sum term in the denominator of Eq. (4) uses the (nonsmooth) indicator function to
obtain the position of model j as ranked by the estimated performances. We circumvent this challenge
by replacing the indicator function by the (smooth) sigmoid approximation [16] as follows.

DCGi ≈ sDCGi =
m∑
j=1

bPij − 1

log2(1 +
∑m
k=1 σ(P̂ik − P̂ij))

(5)

3.4.2 Initialization & Alternating Optimization

Overall we optimize the smoothed criterion, sDCG, over all meta-train datasets Dtrain = {Di}ni=1 as

min
U,V

L = −
n∑
i=1

sDCGi(Pi,UiV
T ) , (6)

by alternatingly solving for U as we fix V (and vice versa) by gradient descent. We initialize U by
leveraging the meta-features, which are embedded to a space with the same size as U. By capturing
the latent similarities among the datasets, such an initialization not only accelerates convergence [62]
but also facilitates convergence to a better local optimum. V is initialized from a unit Normal.

As we aim to maximize the total dataset-wise DCG, we make a pass over meta-train datasets one by
one at each epoch. For brevity, we give the gradients for Ui and Vj in Eq.s (7) and (8), respectively.

∂L

∂Ui
= ln (2)

m∑
j=1

 bPij − 1

βij ln
2 (βij)

∑
k 6=j

σ(wijk)(1− σ(wijk))(Vk −Vj)

 (7)

∂L

∂Vj
= − ln (2)

m∑
j=1

 bPij − 1

βij ln
2 (βij)

∑
k 6=j

σ(wijk)(1− σ(wijk))Ui

 (8)

where wijk = 〈Ui, (Vk −Vj)〉 and βij =
3
2 +

∑
k 6=j σ(w

i
jk); see derivations in Appendix C.

4 Experiments

4.1 Experiment Setting

Model Set and Evaluation. We pair 8 SOTA OD algorithms and their corresponding hyperpa-
rameters to compose a model set M with 302 unique models. (See Appendix A Table 2 for the
complete list.) We evaluate METAOD and the baselines on 2 testbeds introduced below, resp. with
100 and 62 datasets, via cross-validation where datasets are split into meta-train/test in each fold.
For each testbed, we first generate the performance matrix P, by evaluating the models from M
against the benchmark datasets in the testbed. For randomized detectors (random-split trees/random
projections/etc.), we run five independent trials and record the average performance. For consistency,
all models are built using the PyOD library [61] on an Intel i7-9700 @3.00 GHz, 64GB RAM, 8-core
workstation. We compare two methods statistically, using the pairwise Wilcoxon signed rank test on
performances across datasets (significance level p < 0.05).

Testbed Setup. Meta-learning works well if a new task can leverage prior knowledge; e.g., mastering
motorcycle can benefit from bike riding experience. As such, METAOD relies on the assumption that
a newcoming test dataset shares similarity with some meta-train datasets. We create two testbeds
with different train/test dataset similarity, to systematically study the effect of task similarity.

1. Proof-of-Concept (POC) testbed contains 100 datasets that form clusters of similar datasets,
where 5 different detection tasks (“siblings”) are created from each one of 20 “mothersets”.

2. Stress Testing (ST) testbed consists of 62 independent datasets from 3 different public-domain
OD dataset repositories , which exhibit relatively lower similarity to one another.

We refer to Appendix E for the complete list of datasets and details on testbed generation. Fig. 2
illustrates the differences between POC and ST testbeds, where the meta-features of their constituting

7



Figure 2: 2-D embedding of datasets in (left) POC and (right)
ST. POC exhibits higher task similarity, wherein “siblings”
(marked by same color) form clusters. ST contains indepen-
dent datasets with no apparent clusters.

datasets are embedded to 2-D by t-SNE [48]. By construction, POC consists of clusters and hence
exhibits higher task/dataset similarity as compared to ST.

Baselines. Being the first work for UOMS, METAOD does not have immediate competing baselines.
Therefore we employ simple ideas and tailor some existing methods for comparison. We also create
2 variations of METAOD (marked with †) for ablation analysis.

In Appendix F we give detailed descriptions of all 10 baselines. Briefly, they are organized as
follows: (i) no model selection always employs the same popular model, namely (1) LOF [6] or (2)
iForest [31], or the ensemble of all the models called (3) Mega Ensemble (ME); (ii) simple meta-
learners include (4) Global Best (GB) that selects the model with the largest avg. performance across
meta-train datasets, (5) ISAC [23] and (6) ARGOSMART (AS) [33]; and (iii) optimization-based
meta-learners include (7) Supervised Surrogates (SS) [55] and (8) ALORS [32].

Variants of METAOD are (9) †METAOD_C where performance and meta-feature matrices are con-
catenated as C = [P,M] ∈ Rn×(m+d), before factorization, C ≈ UVT . Given a test dataset, zero-
concatenated meta-features are projected and reconstructed as [P̂test; M̂test] := [0 . . . 0;Mnew]VVT ;
and (10) †METAOD_F where U is fixed at φ(M) after the embedding step and only V is optimized.

Additionally, we report Empirical Upper Bound (EUB) (only) for POC, as the performance of the
best model on a dataset’s 4 “siblings”; this (valuable) information is not available in practice–hence
“upper bound”. For ST with lower task similarity, we include Random Selection (RS) as baseline.

4.2 POC Testbed Results

Testbed Setting. POC testbed is built to simulate the scenario where there are similar meta-train
tasks to a given test task. We use the benchmark datasets4 by Emmott et al. [11], who created
“childsets” from 20 independent “mothersets” by sampling. Consequently, the childsets generated
from the same motherset using the same generation properties (e.g., the frequency of anomalies) can
be deemed as “siblings” with large similarity. We build the POC testbed by using 5 siblings from
each motherset, resulting in 100 datasets. We split them into 5 folds for cross-validation, each test
fold containing 20 independent childsets without siblings.

123456789101112

0.1382ME
0.1282LOF
0.1524GB
0.1658ISAC
0.1728ALORS
0.1536IForest 0.1966 MetaOD_F

0.1943 AS
0.1980 MetaOD_C
0.1970 SS
0.2035 MetaOD
0.2051 EUB

Figure 3: Comparison of avg. rank
(lower is better) of methods w.r.t. per-
formance across datasets in POC. Mean
AP across datasets (higher is better)
shown on lines. METAOD is the top-
performing meta-learner, and compara-
ble to EUB.

Results. In Fig. 3, we observe that METAOD is superior to all baseline methods w.r.t. the average
rank and mean average precision (MAP), and performs comparably to the Empirical Upper
Bound (EUB). Table 1 (left) shows that METAOD is the only meta-learner that is not significantly
different from both EUB (MAP=0.2051) and the 4-th best model (0.2185). Moreover, METAOD is
significantly better than the baselines that do not employ any model selection (LOF (0.1282), iForest
(0.1536), and ME (0.1382)), as well as all the other meta-learners including GB (0.1524), ISAC
(0.1658) and ALORS (0.1728). For the full POC evaluation, see Appendix G.1.

Averaging all models (ME) does not lead to good performance as one may expect. As shown in
Fig. 3, ME is the worst baseline by average rank in the POC testbed. Using a single detector, e.g.,

4https://ir.library.oregonstate.edu/concern/datasets/47429f155

8

https://ir.library.oregonstate.edu/concern/datasets/47429f155


Ours Baseline p-value
MetaOD EUB 0.0522
MetaOD 4-th Best 0.0929

MetaOD LOF 0.0013
MetaOD iForest 0.0090
MetaOD ME 0.0004
MetaOD GB 0.0051
MetaOD ISAC 0.0019
MetaOD AS 0.2959
MetaOD SS 0.7938
MetaOD ALORS 0.0025
MetaOD MetaOD_C 0.6874
MetaOD MetaOD_F 0.1165

Ours Baseline p-value
MetaOD 58-th Best 0.0517
MetaOD RS 0.0001

MetaOD LOF 0.0001
MetaOD iForest 0.1129
MetaOD ME 0.0001
MetaOD GB 0.0030
MetaOD ISAC 0.0006
MetaOD AS 0.0009
MetaOD SS 0.0190
MetaOD ALORS 0.0001
MetaOD MetaOD_C 0.0001
MetaOD MetaOD_F 0.0001

Table 1: Pairwise statistical test results
between METAOD and baselines by
Wilcoxon signed rank test. Statisti-
cally better method shown in bold (both
marked bold if no significance). In (left)
POC, METAOD is the only meta-learner
with no diff. from both EUB and the 4-
th best model. In (right) ST, METAOD
is the only meta-learner with no statisti-
cal diff. from the 58-th best model. It is
statistically better than all except iForest.

iForest, is significantly better. This is mainly because some models perform poorly on any given
dataset, and ensembling all the models indiscriminately draws overall performance down. Using
selective ensembles [36] could be beneficial, however, ensembles of many models are expensive to
build in practice. In contrast, METAOD is fast at test time and selects without building any models.

Meta-learners perform significantly better than methods without model selection. In particular,
four meta-learners (METAOD, SS, METAOD_C, METAOD_F) significantly outperform single outlier
detection methods (LOF and iForest) as well as the Mega Ensemble (ME) that averages all the models.
METAOD respectively has 58.74%, 32.48%, and 47.25% higher MAP over LOF, iForest, and ME.
These results signify the benefits of model selection.

Optimization-based meta learners generally perform better than simple meta learners. Top-3
meta learners by average rank (METAOD, SS, and METAOD_C) are all optimization-based and
significantly outperform simple meta-learners like ISAC as shown in Fig. 3. Simple meta-learners
weigh meta-features equally for task similarity, whereas others learn which meta-features matter (e.g.,
regression on meta-features), leading to better results. We find that METAOD respectively achieves
33.53%, 22.74%, and 4.73% higher MAP than simple meta-learners including GB, ISAC, and AS.

4.3 ST Testbed Results

Testbed Setting. When meta-train datasets lack similarity to the test dataset, it is hard to capitalize on
prior experience. In the extreme case, meta-learning may not perform better than no-model-selection
baselines, e.g., a single detector. To investigate the impact of the train/test similarity on meta-learning
performance, we build the ST testbed that consists of 62 public-domain datasets from 3 different
repositories (See Appendix E Table 4) with relatively low similarity as shown in Fig. 2. For evaluation
on ST, we use leave-one-out cross validation; each time using 61 datasets as meta-train.

123456789101112

0.1946MetaOD_C
0.2594MetaOD_F
0.2582RS
0.2154LOF
0.2981ALORS
0.2689ME 0.2704 AS

0.2892 ISAC
0.2814 SS
0.3137 GB
0.3197 iForest
0.3382 MetaOD

Figure 4: Comparison of avg. rank
(lower is better) of methods w.r.t. per-
formance across datasets in ST. Mean
AP (higher is better) shown on lines.
METAOD outperforms all baselines.

Results. For the ST testbed, METAOD still outperforms all baseline methods w.r.t. average
rank and MAP as shown in Fig. 4. Table 1 (right) shows that METAOD (0.3382) could select,
from a pool of 302, the model that is as good as the 58-th best model (top 20%) per dataset
(0.3513) in this challenging testbed. The comparable model changes from the 4-th best per dataset
in POC to 58-th best in ST, which is expected due to the lower task similarity to leverage in
ST. Notably, all other baselines are worse than the 80-th best model with statistical significance.
Moreover, METAOD is significantly better than all baselines except iForest. Note that METAOD also
significantly outperforms RS, showing that it is able to exploit the meta-train database despite limited
task similarity and not simply resorting to random picking. These results suggest that METAOD is a
good choice under various extent of similarity among train/test datasets. We refer to Appendix
G.2 for detailed ST results on individual ST datasets.

Training stability affects performance for optimization-based methods. Notably, several
optimization-based meta-learners, such as ALORS and METAOD_C, do not perform well for ST.
We find that the training process of matrix factorization is not stable when latent similarities are

9



weak. In METAOD, we employ two strategies that help stabilize the training. First, we leverage
meta-feature based (rather than random) initialization. Second, we use cyclical learning rates that
help escape saddle points for better local optima [43]. Consequently, METAOD (0.3382) significantly
outperforms ALORS (0.2981) and METAOD_C (0.1946) with 13.45% and 73.79% higher MAP.

Global methods outperform local methods under limited task similarity. In ST, datasets are less
similar and simple meta-learners that leverage task similarity locally often perform poorly. For
example, AS selects the model based on the 1-NN, and is likely to fail if the most similar meta-train
task is still quite dissimilar to the current task. Notably, the global meta-learner GB outperforms AS
and ISAC. Note the opposite ordering among these methods in POC as shown in Fig. 3. In short,
effectiveness of simple meta-learners tends to be sensitive to the train/test dataset similarity,
which makes them hard to use in general. In contrast, METAOD performs well in both settings.

4.4 Runtime Analysis

Empowered by meta-training, METAOD (meta-feature generation and model selection) takes less
than 1 second on most test datasets, as shown in Fig. 5, where it incurs negligible overhead relative to
building/training the selected outlier model (≈10% on avg.). Fig. 6 corroborates the statement by
showing the comparison on the 10 largest datasets in POC.

0 1 2 3 4 5 6 7 8 9 0% 20% 40% 60% 80% 100% 120% 140%

Figure 5: METAOD running time at test time in sec.s (left), and percentage of time relative to building
the selected model (right). Notice that it is fast, and incurs negligible computational overhead.

abalone gas imgseg letter magic particle skin wave wine yearp
0

5

10

15

20

25

30

Se
co

nd
s

(MetaOD) meta-feature generation
(MetaOD) model selection w/ meta-feature
time for training the selected model

Figure 6: Time for METAOD vs. train-
ing of the selected model (on 10 largest
datasets in POC). METAOD incurs only
negligible overhead (diff. shown w/ black
arrows).

Notably, meta-feature extraction may be trivially parallelized whereas the model selection is even
faster, e.g., using SUOD [60], effectively taking constant time (See §3.2.2).

5 Conclusion

We addressed the unsupervised outlier model selection (UOMS) problem without relying on any
labels, model evaluations or comparisons for the first time. Our proposed METAOD is a meta-learner,
and builds on an extensive pool of historical outlier detection datasets and models. Given a new task,
it selects a model based on the past performances of models on similar historical tasks. To effectively
capture task similarity, we designed novel problem-specific meta-features. Importantly, METAOD is
(i) fully automatic, requiring no supervision at test time, and (ii) lightweight, incurring relatively
small selection time overhead prior to outlier model building. Extensive experiments on two large
testbeds showed that METAOD significantly improves detection performance over always using some
of the most popular outlier models as well as several other meta-learners tailored for UOMS.

We open-source1 METAOD and our meta-learning database for use in practice. We expect meta-
learning to become more powerful as the meta-train database grows. Therefore, we also share all our
code and testbeds with the community to stimulate further advances in automating UOMS. Future
work can address UOMS in the continuous hyperparameter space, leverage self-aware learning [28]
and conformal prediction [39] to estimate the confidence in selection, and explore the potential bias
and fairness issues in OD model selection [10, 42].

10



References
[1] S. M. Abdulrahman, P. Brazdil, J. N. van Rijn, and J. Vanschoren. Speeding up algorithm

selection using average ranking and active testing by introducing runtime. Mach. Learn.,
107(1):79–108, 2018.

[2] C. C. Aggarwal. Outlier Analysis. Springer, 2013.

[3] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. J. Mach. Learn.
Res., 13:281–305, 2012.

[4] H. Bharadhwaj. Meta-learning for user cold-start recommendation. In IJCNN, pages 1–8. IEEE,
2019.

[5] B. Bilalli, A. Abelló Gamazo, and T. Aluja Banet. On the predictive power of meta-features in
OpenML. International Journal of Applied Mathematics and Computer Science, 27(4):697–712,
2017.

[6] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying density-based local
outliers. In SIGMOD Conference, pages 93–104. ACM, 2000. SIGMOD Record 29(2), June
2000.

[7] E. Burnaev, P. Erofeev, and D. Smolyakov. Model selection for anomaly detection. In ICMV,
volume 9875 of SPIE Proceedings, page 987525. SPIE, 2015.

[8] G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenková, E. Schubert, I. Assent,
and M. E. Houle. On the evaluation of unsupervised outlier detection: measures, datasets, and
an empirical study. Data Min. Knowl. Discov., 30(4):891–927, 2016.

[9] J. Chen, S. Sathe, C. C. Aggarwal, and D. S. Turaga. Outlier detection with autoencoder
ensembles. In SDM, pages 90–98. SIAM, 2017.

[10] I. Davidson and S. S. Ravi. A framework for determining the fairness of outlier detection. In
G. D. Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugarín, and J. Lang, editors,
ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-8 September 2020,
Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference
on Prestigious Applications of Artificial Intelligence (PAIS 2020), volume 325 of Frontiers in
Artificial Intelligence and Applications, pages 2465–2472. IOS Press, 2020.

[11] A. Emmott, S. Das, T. G. Dietterich, A. Fern, and W.-K. Wong. Anomaly detection meta-analysis
benchmarks. 2016.

[12] X. Fan, Y. Yue, P. Sarkar, and Y. X. R. Wang. A unified framework for tuning hyperparameters
in clustering problems. CoRR, abs/1910.08018, 2019.

[13] M. Feurer, B. Letham, and E. Bakshy. Scalable meta-learning for bayesian optimization. CoRR,
abs/1802.02219, 2018.

[14] M. Feurer, J. T. Springenberg, and F. Hutter. Initializing bayesian hyperparameter optimization
via meta-learning. In AAAI, pages 1128–1135. AAAI Press, 2015.

[15] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil. Forward and reverse gradient-based
hyperparameter optimization. In ICML, volume 70 of Proceedings of Machine Learning
Research, pages 1165–1173. PMLR, 2017.

[16] J. Fréry, A. Habrard, M. Sebban, O. Caelen, and L. He-Guelton. Efficient top rank optimization
with gradient boosting for supervised anomaly detection. In ECML/PKDD, volume 10534,
pages 20–35, 2017.

[17] M. Goldstein and A. Dengel. Histogram-based outlier score (hbos): A fast unsupervised
anomaly detection algorithm. KI-2012: Poster and Demo Track, pages 59–63, 2012.

[18] X. He, K. Zhao, and X. Chu. Automl: A survey of the state-of-the-art. Knowl. Based Syst.,
212:106622, 2021.

11



[19] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In C. A. C. Coello, editor, LION, volume 6683 of Lecture Notes in
Computer Science, pages 507–523. Springer, 2011.

[20] T. Idé and H. Kashima. Eigenspace-based anomaly detection in computer systems. In W. Kim,
R. Kohavi, J. Gehrke, and W. DuMouchel, editors, KDD, pages 440–449. ACM, 2004.

[21] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[22] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box
functions. J. Global Optimization, 13(4):455–492, 1998.

[23] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. Isac - instance-specific algorithm
configuration. In ECAI, volume 215 of Frontiers in Artificial Intelligence and Applications,
pages 751–756. IOS Press, 2010.

[24] H.-P. Kriegel, M. Schubert, and A. Zimek. Angle-based outlier detection in high-dimensional
data. In Y. Li, B. Liu, and S. Sarawagi, editors, KDD, pages 444–452. ACM, 2008.

[25] K. Lai, D. Zha, G. Wang, J. Xu, Y. Zhao, D. Kumar, Y. Chen, P. Zumkhawaka, M. Wan,
D. Martinez, and X. Hu. TODS: an automated time series outlier detection system. In
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on
Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 16060–16062. AAAI Press, 2021.

[26] H. Lee, J. Im, S. Jang, H. Cho, and S. Chung. MeLU: Meta-learned user preference estimator
for cold-start recommendation. In KDD, pages 1073–1082. ACM, 2019.

[27] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res., 18:185:1–185:52,
2017.

[28] L. Li, M. L. Littman, T. J. Walsh, and A. L. Strehl. Knows what it knows: a framework for
self-aware learning. Mach. Learn., 82(3):399–443, 2011.

[29] Y. Li, Z. Chen, D. Zha, K. Zhou, H. Jin, H. Chen, and X. Hu. Autood: Neural architecture
search for outlier detection. In 37th IEEE International Conference on Data Engineering, ICDE
2021, Chania, Greece, April 19-22, 2021, pages 2117–2122. IEEE, 2021.

[30] Y. Li, D. Zha, P. K. Venugopal, N. Zou, and X. Hu. Pyodds: An end-to-end outlier detection
system with automated machine learning. In A. E. F. Seghrouchni, G. Sukthankar, T. Liu, and
M. van Steen, editors, Companion of The 2020 Web Conference 2020, Taipei, Taiwan, April
20-24, 2020, pages 153–157. ACM / IW3C2, 2020.

[31] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In ICDM, pages 413–422. IEEE
Computer Society, 2008.

[32] M. Misir and M. Sebag. Alors: An algorithm recommender system. Artif. Intell., 244:291–314,
2017.

[33] M. Nikolic, F. Maric, and P. Janicic. Simple algorithm portfolio for sat. Artif. Intell. Rev.,
40(4):457–465, 2013.

[34] T. Pevný. Loda: Lightweight on-line detector of anomalies. Mach. Learn., 102(2):275–304,
2016.

[35] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large
data sets. In W. Chen, J. F. Naughton, and P. A. Bernstein, editors, SIGMOD Conference, pages
427–438. ACM, 2000. SIGMOD Record 29(2), June 2000.

[36] S. Rayana and L. Akoglu. Less is more: Building selective anomaly ensembles. ACM Trans.
Knowl. Discov. Data, 10(4):42:1–42:33, 2016.

12



[37] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the
support of a high-dimensional distribution. Neural Computation, 13(7):1443–1471, July 2001.

[38] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C. Platt. Support vector
method for novelty detection. In NIPS, pages 582–588. The MIT Press, 1999.

[39] G. Shafer and V. Vovk. A tutorial on conformal prediction. J. Mach. Learn. Res., 9:371–421,
2008.

[40] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of
the loop: A review of bayesian optimization. Proc. IEEE, 104(1):148–175, 2016.

[41] R. E. Shawi, M. Maher, and S. Sakr. Automated machine learning: State-of-the-art and open
challenges. CoRR, abs/1906.02287, 2019.

[42] S. Shekhar, N. Shah, and L. Akoglu. Fairod: Fairness-aware outlier detection. In M. Fourcade,
B. Kuipers, S. Lazar, and D. K. Mulligan, editors, AIES ’21: AAAI/ACM Conference on AI,
Ethics, and Society, Virtual Event, USA, May 19-21, 2021, pages 210–220. ACM, 2021.

[43] L. N. Smith. Cyclical learning rates for training neural networks. In WACV, pages 464–472.
IEEE Computer Society, 2017.

[44] D. H. Stern, H. Samulowitz, R. Herbrich, T. Graepel, L. Pulina, and A. Tacchella. Collaborative
expert portfolio management. In AAAI. AAAI Press, 2010.

[45] J. Tang, Z. Chen, A. W. Fu, and D. W. Cheung. Enhancing effectiveness of outlier detections
for low density patterns. In PAKDD, volume 2336 of Lecture Notes in Computer Science, pages
535–548, 2002.

[46] D. M. J. Tax and R. P. W. Duin. Support vector data description. Mach. Learn., 54(1):45–66,
2004.

[47] S. Vaithyanathan and B. Dom. Generalized model selection for unsupervised learning in high
dimensions. In NIPS, pages 970–976. The MIT Press, 1999.

[48] L. van der Maaten and G. Hinton. Visualizing high-dimensional data using t-sne. J. of Mach.
Lear. Res., 9:2579–2605, 2008.

[49] J. Vanschoren. Meta-learning. In Automated Machine Learning, pages 35–61. Springer, 2019.

[50] M. Vartak, A. Thiagarajan, C. Miranda, J. Bratman, and H. Larochelle. A meta-learning
perspective on cold-start recommendations for items. In NeurIPS, pages 6904–6914, 2017.

[51] M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Learning hyperparameter optimization
initializations. In DSAA, pages 1–10. IEEE, 2015.

[52] M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Scalable gaussian process-based transfer
surrogates for hyperparameter optimization. Mach. Learn., 107(1):43–78, 2018.

[53] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Trans.
Evolutionary Computation, 1(1):67–82, 1997.

[54] Y. Xiao, H. Wang, L. Zhang, and W. Xu. Two methods of selecting gaussian kernel parameters
for one-class SVM and their application to fault detection. Knowl. Based Syst., 59:75–84, 2014.

[55] L. Xu, F. Hutter, J. Shen, H. H. Hoos, and K. Leyton-Brown. Satzilla2012: Improved algorithm
selection based on cost-sensitive classification models. Proceedings of SAT Challenge, pages
57–58, 2012.

[56] C. Yang, Y. Akimoto, D. W. Kim, and M. Udell. OBOE: collaborative filtering for AutoML
model selection. In KDD, pages 1173–1183. ACM, 2019.

[57] L. Yang and A. Shami. On hyperparameter optimization of machine learning algorithms: Theory
and practice. Neurocomputing, 415:295–316, 2020.

13



[58] Q. Yao, M. Wang, H. J. Escalante, I. Guyon, Y. Hu, Y. Li, W. Tu, Q. Yang, and Y. Yu.
Taking human out of learning applications: A survey on automated machine learning. CoRR,
abs/1810.13306, 2018.

[59] T. Yu and H. Zhu. Hyper-parameter optimization: A review of algorithms and applications.
CoRR, abs/2003.05689, 2020.

[60] Y. Zhao, X. Hu, C. Cheng, C. Wang, C. Wan, W. Wang, J. Yang, H. Bai, Z. Li, C. Xiao, Y. Wang,
Z. Qiao, J. Sun, and L. Akoglu. SUOD: Accelerating large-scale unsupervised heterogeneous
outlier detection. Proceedings of Machine Learning and Systems, 2021.

[61] Y. Zhao, Z. Nasrullah, and Z. Li. PyOD: A python toolbox for scalable outlier detection. J.
Mach. Learn. Res., 20:96:1–96:7, 2019.

[62] Z. Zheng, J. Yang, and Y. Zhu. Initialization enhancer for non-negative matrix factorization.
Eng. Appl. Artif. Intell., 20(1):101–110, 2007.

[63] C. Zhou and R. C. Paffenroth. Anomaly detection with robust deep autoencoders. In KDD,
pages 665–674. ACM, 2017.

14


