
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING HIDDEN CASCADES VIA CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The spreading dynamics in social networks are often studied under the assump-
tion that individuals’ statuses, whether informed or infected, are fully observable.
However, in many real-world situations, such statuses remain unobservable, which
is crucial for determining an individual’s potential to further spread the infection.
While final statuses are hidden, intermediate indicators such as symptoms of infec-
tion are observable and provide useful representations of the underlying diffusion
process. We propose a partial observability-aware Machine Learning framework
to learn the characteristics of the spreading model. We term the method Distribu-
tion Classification, which utilizes the power of classifiers to infer the underlying
transmission dynamics. Through extensive benchmarking against Approximate
Bayesian Computation and GNN-based baselines, our framework consistently
outperforms these state-of-the-art methods, delivering accurate parameter estimates
across diverse diffusion settings while scaling efficiently to large networks. We
validate the method on synthetic networks and extend the study to a real-world
insider trading network, demonstrating its effectiveness in analyzing spreading
phenomena where direct observation of individual statuses is not possible.

1 INTRODUCTION

Understanding the dynamics of spreading in networks is often challenging due to the absence of a
comprehensive view of the connections between individuals involved in transmission. However, in
today’s increasingly digital environment, where user interactions, transactions, and communications
are routinely logged and stored across platforms, reconstructing the transmission network is becoming
more feasible (Zhou et al., 2017). The data may be noisy or incomplete, but the availability of large-
scale digital traces offers a valuable foundation for inferring transmission pathways. Learning
the transmission dynamics of contagion, whether in the context of disease, insider trading, or
information spread, can be achieved by the network approach. It requires that the network structure
is a meaningful substrate for the underlying transmission pathways (Dutta et al., 2018). When this
condition is satisfied, diverse spreading phenomena can in theory be analyzed within a common
analytical framework, enabling consistent modeling across different domains.

Traditional studies often assume full observability of individuals’ transmission statuses, but in
practice, such visibility is rarely available (Zhou et al., 2017; Pouget-Abadie & Horel, 2015; Newman,
2023; Wilinski & Lokhov, 2021). For example, during the COVID-19 pandemic, infection chains
were frequently untraceable due to asymptomatic cases, misleading symptoms, and unreliable rapid
tests. Similarly, in financial markets, the spread of private information through social connections
is typically unobservable, making it difficult to identify who holds privileged information. In such
scenarios, it remains unclear whether individuals were the carriers (either through being informed
or infected) or when the transmission occurred. The absence of temporal and status information
makes conventional Maximum Likelihood Estimation (MLE) methods unsuitable Gomez-Rodriguez
et al. (2012). While recent research has started to address partially observed data Ramezani et al.
(2023), existing methods fail to account for both hidden infection states and indirect symptom-based
observations; in this work, we address this challenge, referred to as the Hidden Cascade (HC) problem.

Our method addresses the question of hidden or unreliable node status using symptom-based indirect
observations in the context of cascades, and as such is a generalization of missing node status, as the
nodes may exhibit false positive or false negative symptoms, not just missing observations. Hidden
cascades are also related to cascade reconstruction from partial observations, a problem that has been
widely studied. Existing approaches typically assume a one-sided observation model, where infected

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

nodes may be partially observed but uninfected nodes are never observed as infected. In contrast,
we propose a two-sided observation model that also accounts for false positives, which makes the
reconstruction task more challenging and highlights the novelty of our approach.

Figure 1: Illustration of Hidden Cascades (HCs).

Figure 1 illustrates the HCs, where the source of propagation is shown as a black node. In each
cascade event, links between nodes are randomly activated with a propagation probabilities pi, which
represents the likelihood of propagation. We first assume a uniform propagation probability p across
all nodes, and this assumption is subsequently relaxed in Appendix C.1. We classify transmission
links between nodes into three types: (1) successful transmissions (blue), where the target node
is successfully infected by the source; (2) failed transmissions (red), where the source attempts
transmission but the target does not receive it; and (3) non-transmissions (black), where the source
node is not a carrier. The upper semicircle of each node indicates its status: blue represents an infected
(carrier) node, while white denotes an non-carrier node. In HCs, the true status of individuals, such
as whether they are carriers or not, is unobservable. Instead, observations are limited to symptoms,
which are driven by the symptom probability q, applicable across both information and infection
cascades. For tractability, our framework considers a uniform q across all nodes, since allowing it to
vary would substantially increase the complexity of estimation without contributing to the central
focus of our study Gutmann et al. (2018). Positive symptoms, shown as green lower semicircles, are
indicators that a node might be a carrier, but this cannot be confirmed with certainty. In information
cascades, symptoms reflect behaviors influenced by the possible reception of information. For
example, an investor connected to company insiders who makes a profitable trade before a public
announcement, may exhibit behavior consistent with prior access to private information, although
this is not definitive proof. A node can also be a carrier without displaying symptoms, referred to
as an asymptomatic case (for example, node 8). On the other hand, symptoms may also be false
positives, where a node shows signs that appear to indicate carrier status but are unrelated (as in
node 2). Anti-symptoms, or negative symptoms, represented by red lower semicircles, may also
occur. These suggest that a node is unlikely to be a carrier, though again not with certainty. Examples
include an agent making a loss-making trade before a public announcement, suggesting they were
likely not privately informed, or a person showing test results that contradict the usual disease profile.
There is also a non-symptomatic state, where the individual shows no symptoms related to being
a carrier. The overall transmission in the HCs is governed by two probabilities: the propagation
probability p and the symptom probability q.

The framework proposed in this paper is motivated by the principle of distribution matching, a
technique that has been successfully applied across a variety of domains. Distribution matching
enables synthetic data generation by preserving the statistical or receptive field properties of the
original data, supporting tasks such as dataset condensation Hinton et al. (2015); Zhao & Bilen
(2023) and graph condensation Liu et al. (2022). While distribution matching has demonstrated its
versatility across various applications, this research introduces a novel framework termed Distribution
Classification (DC). The proposed approach infers the underlying parameters of a spreading model
ψ(θ) by classifying summary statistics, which serve as a holistic representation of the distributions
from which the features are drawn. Rather than directly estimating the parameters, DC employs an
adversarial strategy where a classifier is trained to be maximally uncertain in distinguishing between
summary statistics generated from the ground truth parameter setting and those from sampled
configurations, using this induced confusion as a mechanism for parameter inference.

The main contributions of this paper are multifold. 1) Problem Formulation of Hidden Cascades (HC):
We introduce the Hidden Cascade problem, where individual infection statuses are unobservable and
only indirect, noisy symptoms are available. This formulation generalizes classical cascade models

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

by incorporating partial and uncertain observations—an unexplored setting in network and machine
learning literature. 2) Classifier-Based Inference via Distribution Classification: We propose a novel
framework called Distribution Classification, which casts the inference of transmission parameters
as a classification task. By training multiple entity-specific classifiers to distinguish between real
and simulated data distributions, the method enables likelihood-free parameter recovery in complex,
partially observed networks. 3) Comprehensive Experimental Validation: We evaluate the proposed
approach on both synthetic networks (tree and loopy topologies) and a real-world insider trading
network. The results demonstrate the robustness of the method in recovering transmission parameters
under varying connectivity and noise conditions.

The paper is organized as follows: Section 2 introduces the concept of spreading processes in both
epidemiological and financial contexts, along with relevant terminology and the overall framework.
Section 3.1 describes the proposed methodology in detail. Section 3.2 describes the experimental
setup used to evaluate the approach. In Section 4, we validate the proposed method using Monte
Carlo simulations on synthetic data and discuss the results. Section 5 focuses on a real-world insiders
network, presenting the learned company-specific parameters and corresponding analysis. Finally,
Section 6 concludes the paper by summarizing the key findings. All experiments were conducted on
a high-performance computing cluster using CPU nodes equipped with two Intel Xeon Gold 6230
“Cascade Lake” processors (2 × 20 cores at 2.1 GHz) and 192 GiB of RAM per node.

2 RELATED WORK

Epidemic Spread. The study of epidemic spread has long been a prominent area of scientific inquiry
and remains highly active to this day. One of the earliest and most notable contributions dates
back to the 19th century, when John Snow investigated the spread of cholera in London, laying the
foundation for modern epidemiology Snow (2023). Since then, extensive research has been dedicated
to understanding how infectious diseases propagate through populations. In recent years, the spread
of COVID-19 has been modeled probabilistically to capture its transmission dynamics Kucharski et al.
(2020); Bherwani et al. (2021); Saxena et al. (2021). These models have supported vaccine and drug
development and guided public health interventions. Classical models such as the susceptible-infected
(SI) and susceptible-infected-recovered (SIR) frameworks Dutta et al. (2018) have been widely used
to simulate and analyze such dynamics.

Information Spread. Beyond biological contagions, similar spreading processes appear in other
domains, including social and financial networks. For instance, in financial settings, investors often
share valuable non-public information with close contacts to enable profitable trades. Recent studies
have used topological clustering and graph neural networks to identify individuals likely to receive
such illicit information Goel et al. (2024); Baltakys et al. (2023), confirming the presence of hidden
influence paths within these networks. These parallels between epidemiological and informational
spreading highlight the broader utility of contagion modeling across domains.

Existing methods. A key challenge across both domains is reconstructing the underlying transmission
pathways from limited observations. Maximum Likelihood Estimation (MLE) methods rely on fully
observable timestamped data Gomez-Rodriguez et al. (2012), being unsuitable when only the final
carrier statuses are known. To address it, prior work has explored inference strategies based on
Message Passing methods, particularly the dynamic message passing (DMP) framework Lokhov
(2016); Lokhov & Saad (2017); Wilinski & Lokhov (2021; 2024). While DMP performs well in
sparse, tree-like networks, its accuracy diminishes in dense, loopy graphs, such as those found
in financial networks, where short cycles violate its assumptions. Moreover, in many real-world
settings, we observe only the final symptoms at the end of a time window, without access to the full
temporal trajectory or the hidden infection state, defining the Hidden Cascade (HC) problem. These
limitations have motivated us to develop the Hidden Cascade inference framework, which seeks to
infer transmission dynamics from partial or noisy final observations. In such settings, observations
may be indirect and uncertain, yet many existing approaches still assume full observability and
certainty in carrier statuses. This mismatch restricts their applicability in real-world contexts, where
observations are inherently partial and noisy.

In developing a framework for learning spreading processes through likelihood-free inference, we
were inspired by the work of Gutmann et al. (2018), which introduced a likelihood-free inference
framework based on classification. Methodologically, their framework differs from ours, particularly

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

because spreading processes on graphs require the use of distribution matching. While spreading
processes have previously been inferred in a likelihood-free manner, the approaches used differ
from the principles we adopt in this paper. Dutta et al. (2018) employed an approximate Bayesian
computation method to simultaneously learn the parameters of the spreading process and identify
the initially infected node. More recently, Wang & Onnela (2024) developed a Bayesian inference
approach for estimating the parameters of a partially observed contagious process. Deep learning
methods have also been explored; for example, Murphy et al. (2021) used deep Graph Neural
Networks (GNN) to forecast the evolution of contagion dynamics.

3 PROPOSED METHOD

3.1 DISTRIBUTION CLASSIFICATION

We introduce a classification-based framework to infer the parameters governing spreading processes
in complex systems. Rather than relying on global network statistics, we define an entity-level
distribution, which captures individual behavior over time. These behaviors are shaped by a general
spreading model ψ(θ), where contagion propagates across a system based on a set of governing
parameters θ. This approach aims to match the distribution of features extracted from real spreading
data with those generated under simulated parameter settings. The core idea is to train a classifier
that distinguishes between real and simulated data at the entity level based on their feature repre-
sentations. The simulation parameters are iteratively adjusted to minimize the classifier’s ability to
distinguish between the two sources of data. Thus, the inference problem becomes one of Distribution
Classification problem, with classification accuracy serving as a statistical discrepancy measure.

Let Direal = {(xij , yi)}nj=1 and Di,(θ)sim = {(x̃ij , yi)}nj=1 denote the datasets of real and simulated
feature vectors for entity i, respectively, where θ ∈ Θ represents the parameters of the spreading
model ψ, n is the number of feature vectors, and yi ∈ (0, 1) is the label. The real and simulated
feature vectors are labeled as 1 and 0, respectively. The entity-specific classification accuracy is
then defined as the measure of how effectively a classification model distinguishes between real and
simulated feature vectors for entity i:

CAi(θ) = E(xi,yi)∼Di,(θ) [1(f iΦ(xi) = yi)],

where f iΦ is a classifier trained specifically for entity i. The global classification accuracy, which
determines whether to accept the proposed parameters θ by measuring the overall discrepancy
between real and simulated distributions, is obtained by averaging across all entities. The optimal
parameters θ∗ are estimated by minimizing the average classification accuracy, ensuring that real and
simulated data are indistinguishable. By defining our framework in terms of a general spreading
process ψ(θ) and a flexible classifier fΦ, our method accommodates various models of disease
transmission, financial contagion, and social influence, making it broadly applicable to multiple
domains. The inference process relies on three key components: the feature vectors associated with
each entity, the optimized hyperparameters Φ for their respective classifiers, and the optimizer O,
which efficiently updates the model parameters θ during training.

3.2 EXPERIMENTAL SETUP

3.2.1 MODELING HIDDEN CASCADES WITH THE INDEPENDENT CASCADE MODEL

In our setting, the underlying process generates the spread of infections or information over a network,
resulting in cascades, where nodes become infected or informed. A cascade refers to the sequence
of events across the network, capturing which entities become infectious and when. In this paper,
however, the carrier statuses are latent and not directly observed. Instead, we observe indirect and
noisy symptom signals emitted by the nodes, forming Hidden Cascades. These symptoms serve
as indirect evidence: infected entities are likely to exhibit positive symptoms, while non-infected
entities may still show symptoms spuriously, introducing ambiguity into the observed data. In this
paper, the term infected is used broadly to refer both to epidemiological contagion and to the spread
of information.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To model the true (but unobserved) spreading dynamics underlying these hidden cascades, we adopt
the Independent Cascade (IC) model1. Let G = (V,E) represent the network, where V is the set of
entities (nodes) and E is the set of connections (edges). Each entity can either be a carrier (infected)
or a non-carrier (not infected). At each time step t, an infected entity i has a single chance to infect a
neighboring entity j at time t + 1, with a global propagation probability p. If this attempt fails, j
cannot be infected by i again. Each entity may be infected at most once, and the cascade proceeds
until no further infections are possible. Cascades are initiated from fixed seed sets (see Appendix A).

To simulate hidden cascades from the underlying infection processes, we introduce a probabilistic
observation model based on symptom generation. Instead of directly observing the binary infection
states of nodes, we observe noisy symptoms associated with each node. Each node v ∈ V exhibits a
symptom variable zv ∈ {−1, 0,+1}, where +1 denotes a positive symptom, −1 a negative symptom,
and 0 indicates the absence of symptoms. The observed symptom zv is generated according to a
conditional distribution based on the true (latent) infection state av ∈ {0, 1}, where av = 1 indicates
infection and av = 0 otherwise.

Formally, the symptom distribution is defined as:

• For infected nodes2 (yv = 1):
P (zv = +1 | av = 1) = q, P (zv = 0 | av = 1) = 1− q.

• For non-infected nodes3 (yv = 0):
P (zv = +1 | av = 0) = b1, P (zv = −1 | av = 0) = b2, P (zv = 0 | av = 0) =
1− (b1 + b2) =: b0.

As a result, the simulated data comprises symptom vectors instead of infection labels, introducing
noise and ambiguity akin to real-world observations (see Appendix A for details).

3.2.2 FEATURE GENERATION FROM NOISY SYMPTOM OBSERVATIONS

Our goal is to construct robust node-level features from noisy, symptom-based observations of
hidden cascades. For a given parameter set θ, we simulate N independent cascades. In each cascade
j ∈ {1, . . . , N}, node i emits a symptom observation z(j)i ∈ {−1, 0,+1}.
For each node, we compute the empirical distribution of its symptom values across N cascades.
Specifically, we define:

fk =
1

N

N∑
j=1

I(z(j)i = k), for k ∈ {−1, 0,+1}.

This yields three features per node: the fractions of positive, negative, and absent symptoms.

Unlike standard cascade models, hidden cascades lack explicit infection labels. Relying on raw
cascade-level symptoms as direct learning targets is unreliable due to two major sources of noise:

Stochastic Cascade Dynamics. Infection events are governed by the probabilistic IC process,
making each cascade realization inherently stochastic. A single cascade may not reflect the true
influenceability of a node, especially for peripheral nodes rarely reached by the information.

Exogenous Stochastic Events. Nodes may emit false positives or anti-symptoms due to unrelated
external processes. These exogenous signals introduce further noise that is not explained by the
underlying spreading model.

To mitigate these issues, we aggregate symptoms across multiple cascade realizations, suppressing
the impact of outlier behaviors and isolating persistent signal patterns.

To further model uncertainty in the diffusion process, we employ a Monte Carlo-based approach.
For each node, we simulate N independent cascades and compute symptom-based summary statis-
tics. This procedure is repeated M times, producing M feature vectors per node. These samples

1The proposed method is agnostic to the specific model used to generate cascades. For our experiments, we
adopt the Independent Cascade model.

2The probability of negative symptoms conditioned on infection is zero.
3We refer to this as Baseline Model.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

collectively capture the distributional structure induced by the propagation and observation models,
offering a compact yet expressive encoding of the node’s diffusion behavior. Further implementation
details, including pseudocode, are provided in Appendix D (Algorithm 1).

3.2.3 MODEL PARAMETER OPTIMIZATION

Due to the nature of our objective function, which is evaluated through Monte Carlo simulations,
an analytical gradient is not available. The function is non-differentiable, making gradient-based
optimization methods unsuitable. Consequently, we employ Powell’s conjugate direction method,
a derivative-free optimization algorithm that sequentially refines a set of search directions through
one-dimensional minimizations Powell (1964). Rather than seeking a strict minimum directly, this
method monitors changes in both the objective function (CA) and the parameter updates, using two
tolerances: function tolerance ftol and parameter tolerance xtol. Convergence is achieved when
the improvement in the objective function between successive iterations falls below ftol, and the
maximum change in any parameter is less than xtol. Powell’s method iteratively updates the search
directions in the parameter space until these stopping criteria are met, ensuring stable and robust
convergence. The learning procedure for optimal parameters with the associated algorithms is detailed
in Appendix D (see Algorithm 2).

3.2.4 HYPERPARAMETER SELECTION FOR CLASSIFIER

While the goal is to train the model to exhibit maximum uncertainty in classification, it is equally
important to ensure optimal performance. Hyperparameter optimization is essential to achieve the best
settings for each classifier, balancing model accuracy with robustness under uncertainty. This ensures
that the model not only captures data variability effectively but also performs efficiently in learning
the propagation probabilities. In our approach, we train a separate classifier for each entity. Since
the feature vectors depend on the transmission parameters θ, every time a new θ is drawn from the
parameter space Θ, the feature vectors change—requiring the classifier to retune its hyperparameters.
However, performing hyperparameter tuning at every iteration would be computationally expensive.
To address this, we adopt the following strategy: hyperparameter tuning is performed only at the
iteration where Powell’s optimization converges. At this stage, for each entity, the classifier is
fine-tuned using the feature vectors derived from the converged θ. If the resulting classifier achieves
higher classification accuracy than before, Powell’s optimization is restarted using the previously
converged θ as the new initial guess. The classifier tuning algorithm is provided in Appendix D
(see Algorithm 3). The hyperparameter search space used for all selected classifiers is provided in
Appendix E.

4 MONTE CARLO EXPERIMENTS

4.1 EVALUATION ON SYNTHETIC GRAPHS

We evaluated our method on two network structures: a balanced tree graph and a Barabási–Albert
graph with k = 24 (see Figure 3a and 3b in Appendix F). Initially, only one entity (the seed) is the
infected at time t = 0, acting as the carrier that begins transmitting to its neighboring entities over
subsequent time points. We tested multiple classifiers, including Decision Tree, K-Nearest Neighbors
(KNN), Logistic Regression, Naive Bayes, Random Forest, Stochastic Gradient Descent (SGD), and
Support Vector Machine (SVM). In addition to the summary statistics discussed in Section 3.2.2,
which are considered an optimal feature set, we extend this set by including the mean, variance,
entropy, and the changes in the number of positive, negative, and no-symptom cases between earlier
and later time intervals, thereby capturing temporal variation in symptom occurrence. This extension
aimed to capture temporal variations in symptom progression. From Table 1, it can be confirmed that
the SVM classifier, with its optimal hyperparameter setting, outperforms the other classifiers, and that
the optimal feature set more effectively captures the underlying spreading model’s parameters; hence,
we fix both the classifier and the summary statistic for all subsequent experiments. To compare the
distribution of actual and simulated data under the learned parameters, we split nodes by distance
from the seed and by degree. Figure 2 shows that the symptom distribution in the simulated cascades

4k = 2 leads to a graph with a high density of connections and the presence of loops, as each new node
connects to only a few existing nodes, rapidly creating densely interconnected structures.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

closely matches that of the real data. Nodes closer to the seed and those with higher degree tend to
exhibit more positive symptoms, capturing key structural effects observed in real cascades.

Table 1: Comparison of classifier performance across summary statistics in tree and loopy graph
structures. Both setups use propagation probability p = 0.3, symptom probability q = 0.7.

Graph Type Classifier Reduced Summary Statistic Extended Summary Statistic

p̂ q̂ MSE CA p̂ q̂ MSE CA

Tree

Decision Tree 0.26 ± 0.07 0.74 ± 0.08 6.16× 10−3 0.49 0.26 ± 0.03 0.71 ± 0.09 5.24× 10−3 0.48
KNN 0.28 ± 0.05 0.77 ± 0.10 7.61× 10−3 0.49 0.22 ± 0.14 0.39 ± 0.35 1.09× 10−1 0.48
Logistic Regression 0.95 ± 0.03 0.94 ± 0.11 2.43× 10−1 0.43 0.21 ± 0.09 0.68 ± 0.04 8.37× 10−3 0.46
Naive Bayes 0.30 ± 0.03 0.72 ± 0.04 1.10× 10−3 0.47 0.25 ± 0.09 0.58 ± 0.27 4.17× 10−2 0.49
Random Forest 0.24 ± 0.08 0.73 ± 0.03 4.99× 10−3 0.48 0.30 ± 0.02 0.71 ± 0.06 1.74× 10−3 0.48
SGD 0.27 ± 0.04 0.70 ± 0.04 1.67× 10−3 0.47 0.29 ± 0.18 0.64 ± 0.09 1.79× 10−2 0.47
SVM 0.31 ± 0.01 0.67 ± 0.03 1.04× 10−3 0.43 0.28 ± 0.03 0.73 ± 0.02 1.18× 10−3 0.43

Loopy

Decision Tree 0.30 ± 0.02 0.73 ± 0.09 3.86× 10−3 0.51 0.26 ± 0.09 0.68 ± 0.02 4.21× 10−3 0.58
KNN 0.22 ± 0.11 0.46 ± 0.33 8.00× 10−2 0.67 0.28 ± 0.04 0.69 ± 0.06 2.25× 10−3 0.48
Logistic Regression 0.47 ± 0.15 0.38 ± 0.00 7.46× 10−2 0.43 0.28 ± 0.01 0.73 ± 0.10 4.46× 10−3 0.46
Naive Bayes 0.22 ± 0.11 0.47 ± 0.33 8.01× 10−2 0.67 0.18 ± 0.11 0.34 ± 0.33 1.20× 10−1 0.78
Random Forest 0.25 ± 0.09 0.63 ± 0.31 4.45× 10−2 0.61 0.24 ± 0.13 0.70 ± 0.02 7.67× 10−3 0.57
SGD 0.17 ± 0.10 0.52 ± 0.39 8.93× 10−2 0.75 0.27 ± 0.03 0.75 ± 0.10 6.03× 10−3 0.48
SVM 0.30 ± 0.00 0.69 ± 0.0047 4.36× 10−5 0.42 0.30 ± 0.07 0.70 ± 0.02 1.93× 10−4 0.43

Figure 2: Distribution of positive symptoms in a loopy graph, organized by both distance from
the seed node and node connectivity. Two key observations can be made. Influence of Distance
from the Seed Node: Nodes closer to the seed entity (i.e., within the 1-hop neighborhood) have
a higher likelihood of being infected. This is evident when moving from left to right in the figure,
where nodes are arranged in increasing order of distance. The distribution becomes increasingly
skewed as the distance increases, indicating a decline in the proportion of positive symptoms. Effect
of Connectivity: Nodes with higher connectivity (i.e., more neighbors) have a higher chance of
infection. This is observable when comparing nodes from top to bottom in the figure, where the
first-row nodes have more neighbors than those in the second row. The simulated distributions,
generated using the inferred parameters, closely match the actual data, confirming that the model
captures key structural effects in the spreading process.

4.2 EVALUATION ON EMPIRICAL SOCIAL GRAPH (INSIDERS NETWORK)

The proposed method is subsequently validated using the insiders’ network, which is described in
detail in Section 5.1. In this setup, rather than generating ground truth parameters θ from transaction
data, we fix the ground truth parameters a priori. The objective is to evaluate the model’s effectiveness
in a larger, more complex network with a greater number of entities. Unlike previous setups, this
experiment involves multiple seed entities. The spreading process begins from each seed entity
sequentially, with an incremental time offset. Specifically, the first seed entity initiates spreading at
time t, the second at time t+ 1, and so on. As shown in Figure 3c in Appendix F, the nodes marked
in red represent these seed entities, which are distributed across different regions of the network to
ensure extensive spread.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 BENCHMARKING, ROBUSTNESS AND EFFICIENCY ANALYSIS

First, we benchmarked our method against four alternative approaches in Appendix B: i) the approach
proposed by Gutmann et al. (2018) and three Graph Neural Network Architectures. Our distribution-
matching approach consistently achieved lower errors and more stable parameter recovery. To
evaluate the framework’s performance and efficiency, we conducted several robustness checks in
Appendix C. First, we relax the assumption of a uniform propagation probability p and examine
robustness under node-specific propagation probabilities. The results, reported in Appendix C.1,
show that our method remains effective. Second, in Appendix C.2, we evaluate performance under
both the Independent Cascade and Threshold models, and again our approach proves effective. Third,
in Appendix C.3 we tested robustness across diverse network topologies, including tree, loopy, and
empirical insider trading networks, while varying the spreading model parameters p and q over
the set {0.1, 0.3, 0.5, 0.7, 0.9}, learning the corresponding estimates p̂ and q̂ for each combination,
and observed consistent accuracy and parameter recovery across all settings. Finally, to analyze
computational efficiency, in Appendix C.4 we evaluated scalability on synthetic BA graphs, and find
that runtime grows sublinearly to slightly superlinearly with network size. These results demonstrate
that our framework generalizes well, scales efficiently, and remains robust across different settings,
diffusion models and network topologies.

5 EMPIRICAL ANALYSIS

To validate the proposed method beyond synthetic data and known ground truth i.e. model’s pa-
rameters, we conduct an extensive empirical analysis using real-world empirical data on (partially)
observable social links between directors, classified as insiders and their transactions across all
securities, even those outside insider trading regulations. We hypothesize that information can begin
spreading privately through a company’s board’s social links before an official announcement, with
further propagation halting once the information becomes public. The dataset comprises transaction
records from 28 companies, including details of their respective board members and investors and all
of their transactions 5. For each company announcement, we define the Pre-Announcement Period as
the four days preceding the disclosure. For simplicity, we refer to this as the announcement period.
Our primary objective is to evaluate whether information transmission, as inferred by the method, is
significantly higher during the announcement periods compared to the Non-Announcement periods,
which include all other trading days. This would align with our hypothesis regarding the private
dissemination of forthcoming information prior to its public disclosure. This section describes the
empirical dataset, the process of extracting feature vectors for ground truth comparison, and discusses
the results of the findings.

5.1 INSIDERS’ DATA

Individuals who trade in a specific stock are referred to as agents, and the network formed through
their social connections is the insiders network. This network includes agents who serve as board
members of one or more companies. These individuals are believed to possess valuable insider
information regarding the future direction of stock prices Goel et al. (2024). Those who trade
based on such information reportedly achieve substantial returns—approximately 35% over a 21-day
period Ahern (2017). In our empirical analysis, we assume that information disseminates within this
network prior to the release of public company announcements, triggering a cascade of opportunistic
trading. When insider information becomes available, agents are assumed to act on it by executing
profitable buy or sell trades. The hypothesis is that information may begin to spread from a company’s
board through social links prior to a public announcement. To analyze this hypothesis, we utilize a
unique and comprehensive dataset compiled from multiple sources. i) Insider network data in Finland:
Being an insider in the same company establishes a social link among all members. Overlapping
board memberships consequently form a large, interconnected social network. ii) Board member
information and insider trading disclosures: Mandatory disclosure notifications by insiders enable us
to identify partial trading patterns. iii) Pseudonymized trading data: A unique and extensive dataset
containing detailed trading records of all investors across all securities listed on the Helsinki Stock
Exchange. iv) Company announcement data: Information regarding the timing and nature of public
company disclosures (See Tables 11 and 12 in Appendix G for descriptive statistics).

5We have an agreement with Euroclear Finland that grants us access rights to the data.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 RESULTS

In the context of the insider trading network, each spreading cascade corresponds to an information
cascade that precedes a public announcement. For a company issuing n public announcements, this
results in n independent information cascades. Within each cascade, the participating entities are
investors, and their observable symptoms are defined based on trading outcomes: a positive symptom
indicates a profitable trade, a negative symptom denotes a loss, and the absence of a symptom
represents no trading activity. These outcomes collectively form a trade matrix, which captures
investor behavior across cascades in a structured format. The goal is to infer the spreading model’s
parameters: p and q. Prior to inference, it is necessary to extract the ground truth feature vectors from
the trade data. Algorithm 4 in Appendix D details the procedure used to construct the feature set FGT.
All subsequent experiments adhere to the setup described in Appendix A. For each company, the p
and q probabilities are estimated separately for the announcement and non-announcement periods.

Table 14 (see Appendix G) presents the average inferred parameters (p̂ and q̂) across a set of
companies, comparing the announcement and non-announcement periods. The non-announcement
window is intended to serve as a baseline, under the assumption that information transmission within
insider networks should be minimal in the absence of public news. If investors made their decisions
completely independently, the parameters p and q during these periods should be close to zero.
However, the data reveals a different story. Both p̂n and q̂n are frequently non-zero and, in several
cases, considerably high. This is because the baseline model does not account for investors’ collective
responses to exogenous factors, such as macroeconomic news and market volatility. These factors
can largely explain the observed co-occurrences in their trading activity and trigger synchronized
trades across the stock market Baltakiene et al. (2021). As a consequence, the parameter estimates p̂
are expected to be positive even outside of the announcement periods, serving as a useful comparative
reference for evaluating parameter estimates between announcement and non-announcement periods.

A consistent pattern emerges: propagation probabilities tend to be even higher during announcement
periods. For most companies, p̂a > p̂n, likely linked to the dissemination of private information. For
example, Company 3 shows a p-ratio of 1.86, while Company 1 has a ratio of 2.09, highlighting the
heightened flow of information in these windows. There are notable exceptions. Companies such
as Company 26, Company 27, and Company 28 display lower p̂ values in announcement periods
than in non-announcement periods. These anomalies may reflect scenarios where insiders acted in
advance of the announcement, or where market-moving information emerged from other sources.
Alternatively, they may be due to company-specific factors such as internal trading restrictions or
more cautious trading behavior during high-scrutiny periods. The results consistently indicates higher
propagation probabilities in announcement periods, reinforcing the view that these windows are
associated with greater information flow.

6 CONCLUSION

We introduce a model-agnostic, classification-driven framework for inferring parameters of spread-
ing processes from noisy, symptom-based observations. By framing inference as a distribution
classification problem, we estimate parameters such that simulated and observed data become indis-
tinguishable to the classifier. The framework flexibly supports diverse spreading models and classifier
architectures, enabling broad applicability. Empirically, the method consistently recovers diffusion
parameters across varying values of p and q on synthetic as well as real graphs, demonstrating
robustness to different underlying spreading dynamics. On the empirical insider trading network with
transaction-level data, the method infers firm-level information spreading dynamics. In particular, the
estimated spreading information probability values (p) are consistently higher during announcement
periods for most firms, suggesting that insiders spread tips about forthcoming announcements prior
to their official publication. Beyond methodological contributions, the framework yields domain-
specific insights. In finance, it helps supervisory authorities prioritize market surveillance and target
regulations toward specific companies and in epidemic modeling, for instance, estimating city-level p
and q allows identification of transmission hubs and prioritization of containment efforts. The ability
to operate without full infection labels, yet recover interpretable parameters, makes this approach
well suited for real-world scenarios where observation is indirect and noisy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kenneth Ahern. Information networks: Evidence from illegal insider trading tips. Journal of
Financial Economics, 125, 05 2017. doi: 10.1016/j.jfineco.2017.03.009.

Margarita Baltakiene, Juho Kanniainen, and Kestutis Baltakys. Identification of information networks
in stock markets. Journal of Economic Dynamics and Control, 131:104217, 2021.

Kestutis Baltakys, Margarita Baltakiene, Negar Heidari, Alexandros Iosifidis, and Juho Kanniainen.
Predicting the trading behavior of socially connected investors: Graph neural network approach
with implications to market surveillance. Expert Systems with Applications, 228:120285, 2023.

Hemant Bherwani, Saima Anjum, Suman Kumar, Sneha Gautam, Ankit Gupta, Himanshu Kumbhare,
Avneesh Anshul, and Rakesh Kumar. Understanding covid-19 transmission through bayesian
probabilistic modeling and gis-based voronoi approach: a policy perspective. Environment,
Development and Sustainability, 23:5846–5864, 2021.

Ritabrata Dutta, Antonietta Mira, and Jukka-Pekka Onnela. Bayesian inference of spreading processes
on networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 474(2215):20180129, July 2018. ISSN 1471-2946. doi: 10.1098/rspa.2018.0129. URL
http://dx.doi.org/10.1098/rspa.2018.0129.

Anubha Goel, Henri Hansen, and Juho Kanniainen. Topological identification of agent status in
information contagions: Application to financial markets. arXiv preprint arXiv:2410.21104, 2024.

Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks of diffusion and
influence. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(4):1–37, 2012.

Mark Granovetter. Threshold models of collective behavior. American journal of sociology, 83(6):
1420–1443, 1978.

Michael U Gutmann, Ritabrata Dutta, Samuel Kaski, and Jukka Corander. Likelihood-free inference
via classification. Statistics and Computing, 28:411–425, 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, John Edmunds, Sebastian Funk,
Rosalind M Eggo, Fiona Sun, Mark Jit, James D Munday, et al. Early dynamics of transmission
and control of covid-19: a mathematical modelling study. The lancet infectious diseases, 20(5):
553–558, 2020.

Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. Graph condensation via receptive field
distribution matching. arXiv preprint arXiv:2206.13697, 2022.

Andrey Y Lokhov. Reconstructing parameters of spreading models from partial observations.
Advances in Neural Information Processing Systems, 29, 2016.

Andrey Y Lokhov and David Saad. Optimal deployment of resources for maximizing impact in
spreading processes. Proceedings of the National Academy of Sciences, 114(39):E8138–E8146,
2017.

Charles Murphy, Edward Laurence, and Antoine Allard. Deep learning of contagion dynamics on
complex networks. Nature Communications, 12(1):4720, 2021.

MEJ Newman. Message passing methods on complex networks. Proceedings of the Royal Society A,
479(2270):20220774, 2023.

Jean Pouget-Abadie and Thibaut Horel. Inferring graphs from cascades: A sparse recovery framework.
In International conference on machine learning, pp. 977–986. PMLR, 2015.

Michael JD Powell. An efficient method for finding the minimum of a function of several variables
without calculating derivatives. The computer journal, 7(2):155–162, 1964.

10

http://dx.doi.org/10.1098/rspa.2018.0129
https://arxiv.org/abs/1503.02531

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Maryam Ramezani, Aryan Ahadinia, Amirmohammad Ziaei Bideh, and Hamid R Rabiee. Joint
inference of diffusion and structure in partially observed social networks using coupled matrix
factorization. ACM Transactions on Knowledge Discovery from Data, 17(9):1–28, 2023.

Shrikant Saxena, Shivang Khare, Sujata Pal, and Vidushi Agarwal. Analyzing the spread of infectious
disease using a probabilistic model. In 2021 IEEE International Conference on Communications
Workshops (ICC Workshops), pp. 1–6. IEEE, 2021.

John Snow. On the mode of communication of cholera. In British Politics and the Environment in the
Long Nineteenth Century, pp. 149–154. Routledge, 2023.

Maxwell H Wang and Jukka-Pekka Onnela. Flexible bayesian inference on partially observed
epidemics. Journal of Complex Networks, 12(2):cnae017, 2024.

Mateusz Wilinski and Andrey Lokhov. Prediction-centric learning of independent cascade dynamics
from partial observations. In International Conference on Machine Learning, pp. 11182–11192.
PMLR, 2021.

Mateusz Wilinski and Andrey Y Lokhov. Learning of networked spreading models from noisy and
incomplete data. Physical Review E, 110(5):054302, 2024.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6514–6523, 2023.

Yadong Zhou, Beibei Zhang, Xiaoxiao Sun, Qinghua Zheng, and Ting Liu. Analyzing and mod-
eling dynamics of information diffusion in microblogging social network. Journal of Network
and Computer Applications, 86:92–102, 2017. ISSN 1084-8045. doi: https://doi.org/10.1016/
j.jnca.2016.09.011. URL https://www.sciencedirect.com/science/article/
pii/S1084804516302168.

11

https://www.sciencedirect.com/science/article/pii/S1084804516302168
https://www.sciencedirect.com/science/article/pii/S1084804516302168

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A EXPERIMENT SETUP

1. Graph: Let G = (V,E) be a directed graph, where V represents the set of entities, and E
denotes the set of directed edges representing connections between them. The total number
of entities, denoted by N , is equal to the number of nodes in the graph.

2. Parameters to be inferred: The spreading process within the network is governed by two
critical parameters. The first, the propagation probability (p), is assigned to each directed
edge, representing the likelihood that an entity will disseminate infection or information to
others within the network. The second, the symptom probability (q), quantifies the chance
that an entity will exhibit a positive symptom after receiving it.

3. Baseline Model: In the Monte Carlo experiments, the baseline symptom behavior for non-
infected entities is defined by a fixed probability vector b = [bi]

2
i=0 = {0.5, 0.25, 0.25}, rep-

resenting the probabilities of showing no symptom, a positive symptom, and a negative symp-
tom, respectively. In the empirical experiment, we define baseline symptom distributions
for each investor based on their trading activity during periods with no company-specific
information. Let nx denote the total number of trading days in the non-announcement
window for company x. For each investor i, we compute the baseline symptom vector:

bi =
{
bi0, b

i
1, b

i
2

}
=

{
n0i
nx
,
n+i
nx

,
n−i
nx

}
,

where n0i , n+i , and n−i correspond to the number of no-trade days, profitable trade days, and
loss-making trade days, respectively, for investor i during the non-announcement period.

4. Independent Cascade (IC) Model: Entities that have received information or have been
infected are considered to be in an infected state. To generate an independent cascade (IC)
model with a single seed entity, we follow the procedure below to obtain a list of infected
entities:

(a) Initialize the seed entities.
(b) Define the state of each entity as not infected.
(c) Set the state for the seed entities (the initial set of infected entities) as infected.
(d) Mark all the edges (transmission links) as ”not yet tried.” This means that these edges

have not been used for propagation.
(e) To generate the independent cascade model, we define a set of infected entities, which

are the newly infected entities in each iteration (for the first iteration, the seed entities
are infected). While the set of infected entities is non-empty, we perform the following
steps:
i. For every entity in the set of infected entities, we observe all the 1-hop neighbors

with an outward edge. These are the entities that are directly connected to the
infected entities.

ii. If the edge state is ”not yet tried,” a random number r is generated in the range
[0, 1]. The neighboring entity is set as infected if the edge weight P is greater than
r, and the edge state is then updated to ”tried.” This indicates that the edge has been
used for propagation and cannot be utilized again.

iii. Finally, we update the set of infected entities by replacing the initial set with the
set of entities infected in this iteration. We continue this process until the set of
infected entities is empty.

In the end, we obtain the state of each entity as either infected or not infected.

5. Assignment of symptoms: When an entity is infected, we assume that it will exhibit a
positive symptom. However, randomness is introduced into this process—when considering
an insider network, an informed investor will either decide to use the information to trade
profitably or choose not to trade at all, but never engage in a non-profitable trade. On the
other hand, if an entity is not infected, symptoms are determined based on a predefined
baseline model.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B BENCHMARKING AGAINST ALTERNATIVE MODELS

We benchmark our framework against the method proposed in Gutmann et al. (2018), which uses
Approximate Bayesian Computation (ABC) for likelihood-free inference. A key feature of this
approach is that the discrepancy function is defined independently of the internal cascade dynamics,
making it applicable in settings with limited temporal information. To ensure a fair comparison, we
implemented Gutmann et al. (2018) under the same experimental conditions as our framework. The
results in Table 2 demonstrate that Gutmann et al. (2018) performs poorly in this setting, with the
estimated propagation probabilities (p̂) and symptom probabilities (q̂) exhibiting substantial variance
and notable deviations from the ground-truth values. The issue is particularly pronounced in Loopy
graphs, where the Mean Squared Error (MSE) reaches 2.56 × 10−1, underscoring the method’s
sensitivity to noisy observations. In contrast, our framework consistently yields parameter estimates
close to the true values and achieves markedly lower MSE across both Tree and Loopy structures
(see Table 7 and 8).

Table 2: Performance of the method in Gutmann et al. (2018) under the IC model with symptom
probability q = 0.7. Results are shown for Tree and Loopy network topologies. Here, p denotes the
true propagation probability, and p̂, q̂ are the estimated parameters.

Tree Loopy

p p̂ q̂ MSE CA p̂ q̂ MSE CA

0.1 0.33 ± 0.141 0.46 ± 0.299 9.11 × 10−2 0.35 0.28 ± 0.128 0.58 ± 0.214 5.23 × 10−2 0.37
0.3 0.25 ± 0.027 0.43 ± 0.224 5.55 × 10−2 0.38 0.29 ± 0.092 0.53 ± 0.221 4.18 × 10−2 0.38
0.5 0.73 ± 0.129 0.69 ± 0.006 3.27 × 10−2 0.40 0.71 ± 0.107 0.69 ± 0.022 2.65 × 10−2 0.42
0.7 0.63 ± 0.097 0.70 ± 0.006 5.38 × 10−3 0.36 0.42 ± 0.365 0.51 ± 0.345 1.42 × 10−1 0.59
0.9 0.62 ± 0.230 0.63 ± 0.197 8.57 × 10−2 0.46 0.41 ± 0.356 0.45 ± 0.318 2.56 × 10−1 0.64

We additionally benchmark our model with several well-known Graph Neural Network (GNN)
variants, including Graph Attention Network(GAT), alongside Graph Convolutional Network(GCN)-
based architectures, and report the best results. While GNN-based approaches offer considerable
modeling flexibility, their effective deployment involves non-trivial design choices such as selecting
the appropriate GNN variant, tuning embedding dimensions, and determining network depth. These
steps are computationally demanding and require substantial amounts of data for training.

For comparison, we implemented a two-layer GAT, two-layer GCN and four-layer GCN and evaluated
it under the same experimental setting. The model is trained over the grid [0, 1] with a step size of 0.1
for both p and q, and its architecture can be expressed as:

The GCN and GAT architectures used in our experiments are summarized in the Table 3. Each model
maps node features x to the estimated propagation and symptom probabilities [p̂, q̂].

Table 3: Comparison of Graph Neural Network Architectures.

Architecture Layers Activation Pooling Output

2-layer GAT GAT → GAT ReLU GlobalMeanPool Sigmoid
2-layer GCN GCN → GCN ReLU GlobalMeanPool Sigmoid
4-layer GCN GCN → GCN → GCN → GCN ReLU GlobalMeanPool Sigmoid

Across all variants, the GNN-based models underperformed relative to our distribution-matching
(DC) approach, particularly for Loopy graphs, where high standard deviation and elevated mean
squared error (MSE) were observed. In contrast, our framework delivers robust parameter estimates
without requiring supervised training, making it significantly more practical for data-scarce scenarios.
Detailed numerical results are reported in Table 4.

These observations justify our methodological choice: while GNNs present an interesting alternative,
the additional complexity and training requirements did not yield improved performance in our exper-
imental setting. Our distribution-matching framework aligns the feature distributions of observed and
simulated data, eliminating the need for large labeled datasets while maintaining reliable performance.
Exploring advanced GNN architectures and training strategies remains a promising avenue for future
research.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Comparison of parameter estimation across multiple models (GAT, GCN, and GCN 4-layer)
for Tree and Loopy graphs under the IC model (q = 0.7 fixed). Each cell shows mean ± standard
deviation over 5 samples, and MSE is reported in scientific notation.

Tree Loopy

p p̂ q̂ MSE p̂ q̂ MSE

2-layer GAT

0.1 0.20 ± 0.020 0.67 ± 0.035 6.69 × 10−3 0.13 ± 0.006 0.44 ± 0.087 3.81 × 10−2

0.3 0.28 ± 0.042 0.73 ± 0.039 2.40 × 10−3 0.32 ± 0.011 0.62 ± 0.025 3.58 × 10−3

0.5 0.47 ± 0.042 0.81 ± 0.025 8.22 × 10−3 0.51 ± 0.028 0.65 ± 0.004 1.54 × 10−3

0.7 0.72 ± 0.012 0.84 ± 0.070 1.29 × 10−2 0.68 ± 0.023 0.67 ± 0.004 1.03 × 10−3

0.9 0.91 ± 0.008 0.73 ± 0.005 4.16 × 10−4 0.89 ± 0.006 0.65 ± 0.010 1.14 × 10−3

2-layer GCN

0.1 0.17 ± 0.034 0.59 ± 0.094 1.36 × 10−2 0.08 ± 0.006 0.67 ± 0.040 1.50 × 10−3

0.3 0.33 ± 0.055 0.70 ± 0.057 3.56 × 10−3 0.29 ± 0.007 0.70 ± 0.014 1.56 × 10−4

0.5 0.50 ± 0.048 0.73 ± 0.047 2.78 × 10−3 0.49 ± 0.007 0.70 ± 0.009 1.09 × 10−4

0.7 0.71 ± 0.012 0.72 ± 0.034 9.16 × 10−4 0.66 ± 0.011 0.70 ± 0.011 1.04 × 10−3

0.9 0.91 ± 0.009 0.68 ± 0.013 4.96 × 10−4 0.90 ± 0.005 0.69 ± 0.004 9.50 × 10−5

4-layer GCN

0.1 0.17 ± 0.045 0.41 ± 0.104 4.98 × 10−2 0.06 ± 0.002 0.75 ± 0.063 3.93 × 10−3

0.3 0.23 ± 0.016 0.82 ± 0.025 9.81 × 10−3 0.29 ± 0.013 0.66 ± 0.011 1.20 × 10−3

0.5 0.45 ± 0.046 0.75 ± 0.062 5.62 × 10−3 0.45 ± 0.034 0.69 ± 0.011 1.96 × 10−3

0.7 0.67 ± 0.007 0.72 ± 0.027 9.96 × 10−4 0.71 ± 0.059 0.69 ± 0.006 1.82 × 10−3

0.9 0.89 ± 0.012 0.74 ± 0.006 1.07 × 10−3 0.91 ± 0.004 0.69 ± 0.008 1.47 × 10−4

C ROBUSTNESS AND EFFICIENCY ANALYSIS

C.1 NODE-SPECIFIC PROPAGATION PROBABILITIES

We conducted robustness experiments by sampling p ∼ U(0, 1) with fixed q and further compared
our framework against a two-layer GCN model that outputs node-specific p. Table 5 summarizes
the results across three propagation probability ranges: (0, 1), (0, 0.5), and (0.5, 1), with actual p
uniformly distributed in each range. The GCN performs reasonably well for p ∈ (0, 0.5) but its
accuracy deteriorates sharply for higher propagation values, failing almost entirely when p ∈ (0.5, 1).
In contrast, DC maintains stable accuracy and low error across all ranges, demonstrating robustness
under both low and high propagation probabilities. The slightly lower accuracy and higher MSE
observed for DC in the (0, 1) case are expected, as this setting spans the full propagation range and
is inherently more challenging than the narrower intervals. The number of assignments was kept
consistent across all settings. These findings reveal a key limitation of GCN-based models in handling
heterogeneous propagation dynamics, whereas the proposed distribution-matching approach remains
effective across regimes. Nevertheless, due to the stochastic nature of diffusion processes, perfectly
estimating node-specific p or q values is not feasible.

Table 5: Performance of DC vs. GCN models (q = 0.7) under different propagation probability
ranges. Metrics: MSE, Acc@0.1, Acc@0.2. Acc@0.1 measures the proportion of nodes whose
predicted parameter lies within±0.1 of the true value (similarly for Acc@0.2). Each GCN experiment
uses 1000 assignments with an 80-10-10 split.

Range of p and p̂ Model MSE Acc@0.1 Acc@0.2

(0, 1) GCN 0.1444 0.20 0.39
DC 0.1401 0.25 0.47

(0, 0.5) GCN 0.0328 0.39 0.69
DC 0.0362 0.41 0.69

(0.5, 1) GCN 0.5274 0.01 0.06
DC 0.0362 0.41 0.69

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C.2 ROBUSTNESS TO DIFFUSION MODEL VARIATIONS

Although our main experiments focused on the IC model, the proposed learning framework is
model-agnostic and can be applied with any diffusion process, provided the propagation dynamics
are specified. To illustrate this, we additionally evaluated our method under the Linear Threshold
model Granovetter (1978). The results under LT closely mirror those obtained for IC, yielding
comparable parameter recovery and predictive performance (see Table 6). These findings confirm
that our approach remains robust across different diffusion mechanisms, while exploration of further
models is left for future work.

Table 6: Evaluation under the LT model with symptom probability q = 0.7. Here, pthr denotes the
activation threshold (fraction of neighbors required for activation), and p̂thr is its estimated value.

Tree Loopy

pthr p̂thr q̂ MSE CA p̂thr q̂ MSE CA

0.1 0.18 ± 0.007 0.78 ± 0.015 1.38 × 10−2 0.43 0.19 ± 0.064 0.69 ± 0.057 3.66 × 10−3 0.43
0.3 0.27 ± 0.035 0.61 ± 0.010 9.99 × 10−3 0.43 0.30 ± 0.127 0.71 ± 0.078 1.25 × 10−5 0.43
0.5 0.57 ± 0.028 0.70 ± 0.002 6.32 × 10−3 0.42 0.60 ± 0.064 0.73 ± 0.037 4.85 × 10−3 0.42
0.7 0.68 ± 0.026 0.70 ± 0.004 1.44 × 10−3 0.43 0.79 ± 0.057 0.70 ± 0.000 4.05 × 10−3 0.42
0.9 0.88 ± 0.039 0.70 ± 0.002 1.15 × 10−3 0.43 0.86 ± 0.007 0.74 ± 0.000 1.81 × 10−3 0.42

C.3 ROBUSTNESS TO NETWORK TOPOLOGY

To further examine the stability of our approach, we conducted simulation experiments on synthetic
and empirical networks with known ground truth (Tables 7, 8, and 9). These experiments systemati-
cally varied the propagation probability p and the symptom probability q, and were carried out on
three distinct graph structures: tree, loopy, and empirical topologies. Importantly, these evaluations
focus exclusively on the structural properties of the networks, independent of investor behavior or
transaction data.

Table 7: Robustness Check for Tree Across Multiple Values of p and q

q (0.1)

p̂ q̂ MSE CA

0.1 0.13 ± 0.040 0.10 ± 0.000 1.20 × 10−3 0.43
0.3 0.29 ± 0.020 0.12 ± 0.020 7.03 × 10−4 0.43

p 0.5 0.46 ± 0.060 0.10 ± 0.000 2.22 × 10−3 0.43
0.7 0.70 ± 0.005 0.10 ± 0.000 1.62 × 10−5 0.43
0.9 0.90 ± 0.004 0.10 ± 0.009 6.44 × 10−5 0.43

q (0.3)

p̂ q̂ MSE CA

0.15 ± 0.030 0.36 ± 0.140 1.17 × 10−2 0.43
0.28 ± 0.030 0.31 ± 0.020 7.62 × 10−4 0.43
0.49 ± 0.007 0.29 ± 0.020 2.94 × 10−4 0.43
0.70 ± 0.004 0.30 ± 0.005 3.64 × 10−5 0.43
0.90 ± 0.000 0.30 ± 0.000 5.14 × 10−6 0.43

q (0.5)

p̂ q̂ MSE CA

0.1 0.12 ± 0.023 0.54 ± 0.069 3.11 × 10−3 0.43
0.3 0.29 ± 0.030 0.51 ± 0.036 1.05 × 10−3 0.43

p 0.5 0.44 ± 0.044 0.57 ± 0.112 9.64 × 10−3 0.44
0.7 0.68 ± 0.040 0.55 ± 0.112 6.67 × 10−3 0.44
0.9 0.90 ± 0.006 0.50 ± 0.000 7.73 × 10−6 0.43

q (0.7)

p̂ q̂ MSE CA

0.14 ± 0.058 0.68 ± 0.051 3.37 × 10−3 0.43
0.29 ± 0.055 0.74 ± 0.096 5.58 × 10−3 0.43
0.49 ± 0.016 0.69 ± 0.024 3.70 × 10−4 0.43
0.69 ± 0.019 0.73 ± 0.055 1.76 × 10−3 0.43
0.88 ± 0.030 0.74 ± 0.077 3.10 × 10−3 0.47

q (0.9)

p̂ q̂ MSE CA

0.1 0.12 ± 0.040 0.73 ± 0.080 1.71 × 10−2 0.43
0.3 0.30 ± 0.010 0.90 ± 0.010 9.44 × 10−5 0.43

p 0.5 0.51 ± 0.020 0.90 ± 0.070 2.08 × 10−3 0.43
0.7 0.68 ± 0.030 0.92 ± 0.040 1.18 × 10−3 0.49
0.9 0.95 ± 0.050 0.84 ± 0.080 7.45 × 10−3 0.74

C.4 COMPUTATIONAL EFFICIENCY AND SCALABILITY

The proposed framework is highly parallelizable, as agent-level classification tasks are independent,
allowing efficient utilization of computational resources. Scalability was evaluated through synthetic
experiments on Barabási–Albert (BA) graphs of varying sizes (up to 10,000 nodes, parameter m = 2).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Robustness Check for Loopy Graph Across Multiple Values of p and q

q (0.1)

p̂ q̂ MSE CA

0.1 0.10 ± 0.005 0.10 ± 0.004 1.98 × 10−5 0.43
p 0.3 0.30 ± 0.000 0.10 ± 0.005 1.24 × 10−5 0.43

0.5 0.50 ± 0.004 0.10 ± 0.000 1.23 × 10−5 0.44
0.7 0.70 ± 0.005 0.10 ± 0.000 2.05 × 10−5 0.43
0.9 0.90 ± 0.005 0.10 ± 0.000 3.06 × 10−5 0.43

q (0.3)

p̂ q̂ MSE CA

0.11 ± 0.017 0.28 ± 0.019 4.30 × 10−4 0.43
0.30 ± 0.009 0.31 ± 0.005 4.79 × 10−5 0.43
0.50 ± 0.006 0.30 ± 0.000 1.40 × 10−5 0.43
0.70 ± 0.000 0.30 ± 0.000 3.45 × 10−6 0.43
0.89 ± 0.014 0.30 ± 0.000 6.73 × 10−5 0.43

q (0.5)

p̂ q̂ MSE CA

0.1 0.09 ± 0.015 0.53 ± 0.052 1.78 × 10−3 0.43
0.3 0.30 ± 0.005 0.50 ± 0.017 1.44 × 10−4 0.48

p 0.5 0.50 ± 0.006 0.50 ± 0.000 9.17 × 10−6 0.43
0.7 0.70 ± 0.000 0.50 ± 0.000 6.93 × 10−6 0.43
0.9 0.90 ± 0.005 0.50 ± 0.000 1.33 × 10−5 0.43

q (0.7)

p̂ q̂ MSE CA

0.11 ± 0.023 0.70 ± 0.057 1.69 × 10−3 0.43
0.30 ± 0.000 0.70 ± 0.010 7.91 × 10−5 0.42
0.50 ± 0.000 0.70 ± 0.000 4.06 × 10−6 0.43
0.70 ± 0.000 0.70 ± 0.000 2.37 × 10−6 0.43
0.90 ± 0.007 0.70 ± 0.000 2.27 × 10−5 0.43

q (0.9)

p̂ q̂ MSE CA

0.1 0.11 ± 0.021 0.84 ± 0.109 6.74 × 10−3 0.44
0.3 0.31 ± 0.005 0.87 ± 0.025 9.10 × 10−4 0.43

p 0.5 0.50 ± 0.000 0.90 ± 0.000 2.76 × 10−7 0.43
0.7 0.70 ± 0.000 0.90 ± 0.000 1.35 × 10−6 0.43
0.9 0.91 ± 0.008 0.90 ± 0.000 4.50 × 10−5 0.43

Table 9: Robustness Check of Empirical Insiders Graph Across Multiple Values of p and q

q (0.1)

p̂ q̂ MSE CA

0.1 0.10 ± 0.009 0.10 ± 0.005 7.43 × 10−5 1.62 × 10−2

0.3 0.37 ± 0.027 0.10 ± 0.009 2.66 × 10−3 1.07 × 10−2

p 0.5 0.54 ± 0.024 0.10 ± 0.005 8.67 × 10−4 6.04 × 10−3

0.7 0.71 ± 0.007 0.10 ± 0.008 1.07 × 10−4 4.83 × 10−3

0.9 0.89 ± 0.022 0.10 ± 0.005 2.21 × 10−4 4.75 × 10−3

q (0.3)

p̂ q̂ MSE CA

0.11 ± 0.012 0.30 ± 0.009 1.35 × 10−4 1.66 × 10−2

0.38 ± 0.041 0.30 ± 0.010 3.74 × 10−3 1.16 × 10−2

0.55 ± 0.059 0.30 ± 0.007 2.69 × 10−3 6.96 × 10−3

0.72 ± 0.027 0.30 ± 0.008 5.98 × 10−4 6.45 × 10−3

0.91 ± 0.025 0.30 ± 0.011 3.45 × 10−4 5.88 × 10−3

q (0.5)

p̂ q̂ MSE CA

0.1 0.11 ± 0.013 0.49 ± 0.008 1.16 × 10−4 1.68 × 10−2

0.3 0.36 ± 0.033 0.50 ± 0.004 2.43 × 10−3 1.18 × 10−2

p 0.5 0.56 ± 0.036 0.50 ± 0.005 2.36 × 10−3 7.89 × 10−3

0.7 0.75 ± 0.019 0.50 ± 0.011 1.34 × 10−3 7.08 × 10−3

0.9 0.91 ± 0.036 0.50 ± 0.000 6.06 × 10−4 6.57 × 10−3

q (0.7)

p̂ q̂ MSE CA

0.11 ± 0.004 0.69 ± 0.016 2.80 × 10−4 1.67 × 10−2

0.37 ± 0.019 0.69 ± 0.005 2.53 × 10−3 1.18 × 10−2

0.53 ± 0.021 0.70 ± 0.007 7.28 × 10−4 7.12 × 10−3

0.72 ± 0.027 0.70 ± 0.015 5.41 × 10−4 6.71 × 10−3

0.91 ± 0.046 0.70 ± 0.005 8.15 × 10−4 6.34 × 10−3

q (0.9)

p̂ q̂ MSE CA

0.1 0.11 ± 0.005 0.90 ± 0.011 7.49 × 10−5 1.65 × 10−2

0.3 0.33 ± 0.013 0.90 ± 0.008 5.44 × 10−4 1.06 × 10−2

p 0.5 0.51 ± 0.004 0.90 ± 0.005 6.42 × 10−5 5.89 × 10−3

0.7 0.72 ± 0.019 0.91 ± 0.005 5.01 × 10−4 5.44 × 10−3

0.9 0.91 ± 0.022 0.91 ± 0.005 2.74 × 10−4 4.70 × 10−3

As shown in Table 10, DC exhibits sublinear to slightly superlinear growth, with empirical complexity
approximately T (n) ≈ k × n0.5−0.65. For a 10,000-node BA graph, the average runtime was
approximately 1,279 s under parallel execution. By comparison, the GCN baseline required over 6,200
s for a 1,000-node graph and is projected to exceed 122,000 s for 10,000 nodes, making it impractical
for large-scale scenarios. These results highlight that DC scales efficiently to large networks while
substantially reducing computational cost compared to deep learning–based alternatives.

Table 10: Comparison of execution time (in seconds) between our method DC and the GCN baseline
on tree-structured networks, using a MacBook M1 Pro with parallel execution on 10 CPU cores.

Network Size DC (Avg ± Std) GCN (Avg ± Std)

100 89.9± 3.2 169.2± 2.5
1000 289.6± 11.8 6299.9± 275.0
10000 1279.0± 47.7 ∼ 122,000 (estimated)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D ALGORITHMS

Algorithm 1 outlines the process of constructing feature vectors for both synthetic graphs and empiri-
cal graphs (when the ground truth is known). The procedure for feature extraction using real ground
truth on empirical data is described separately in Algorithm 4. Algorithm 2 and Algorithm 3 detail
the optimization process: the former iteratively updates transmission and symptom probabilities until
convergence to the underlying ground truth, while the latter fine-tunes the classifier’s hyperparameters
based on the generated feature vectors.

Algorithm 1 Extract Feature Vector

1: Input: θ: Observed parameters, θ̂: Initial parameters
2: Input: label ∈ {0, 1} indicates observed (0) and simulated(1) data
3: Output: {feature vectorm}Mm=1: Set of M labeled feature vectors

4: function GENERATEFEATUREVECTOR(label, θ, θ̂)
5: for each feature vector m = 1 to M do ▷ M : Number of feature vectors
6: for each simulation n = 1 to N do ▷ N : Number of cascades
7: if label == 1 then
8: Simulate spreading cascade with θ̂
9: else

10: Simulate spreading cascade with θ
11: end if
12: Extract symptom vector sn ∈ RE ▷ E: Number of entities
13: end for
14: Stack {sn}Nn=1 horizontally to form matrix Sm ∈ RE×N

15: Extract summary statistics fm ∈ RE×d from Sm
16: feature vectorm ← append(fm, label) ∈ RE×(d+1)

17: end for
18: return {feature vectorm}Mm=1
19: end function

Algorithm 2 Learning Optimal Spreading Model’s Parameters θ∗

1: Output: θ̂pre opt: Optimal TP

2: FGT ← GENERATEFEATUREVECTOR(label(0), θ) ▷ Ground truth features
3: while θ̂ not converged do
4: Fpred ← GENERATEFEATUREVECTOR(label(1), θ̂) ▷ Predicted features
5: for each entity v ∈ V do
6: accuracy[v]← f

(v)
classifier(FGT[v],Fpred[v]) ▷ Entity-specific classifier

7: end for
8: θ̂ ← OPTIMIZER(θ̂,

∑
v∈V accuracy[v])

9: end while
10: return θ̂pre opt ← θ̂

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 3 Entity-Specific Classifier Tuning

1: Input: FGT: Ground truth features, Foptpred: Predicted features generated using θ̂pre opt

2: Output: θ̂opt: Optimal TP with tuned entity-specific classifiers

3: for each entity v ∈ V do
4: ψv ← FINDHYPERPARAM(f (v)classifier(FGT[v],Fpred[v])) ▷ Tune classifier hyperparameters
5: end for

6: Repeat lines 4–10 of Algorithm 2, replacing each f (v)classifier with f (v)classifier,ψv

7: return θ̂opt ← θ̂

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 4 Extract Empirical Feature Vectors

1: Input: C = {c1, c2, . . . , c28} ▷ Set of companies
2: Input: is pre announcement mode ▷ Flag indicating analysis mode
3: Output: F train

GT ,F test
GT ▷ Training and testing feature vectors

4: function EXTRACTEMPIRICALGROUNDTRUTHFEATUREVECTORS
5: Initialize F train

GT ,F test
GT ← ∅

6: for each company ci ∈ C do
7: Initialize trade matrix Ti ← ∅
8: if is pre announcement mode then
9: Ti ← Ai, ∆← 1 ▷ Announcement days and 1-day return

10: else
11: Ti ← non-announcement trade days, ∆← 5 ▷ Regular days and 5-day return
12: end if
13: for each trade day t ∈ Ti do
14: Initialize vector vt ← [] ▷ Vector for all investors at time t
15: for each investor u ∈ Ui do
16: if is pre announcement mode then
17: p̄u ← mean price of trades on the last trade day in the 4-day pre-ann window
18: else
19: p̄u ← mean price of u’s transactions on t
20: end if
21: if pu is defined then
22: p+∆

t ← market price ∆ days after t

23: vt ← vt ∪
{

+1, if pu < p+∆
t

−1, otherwise ▷ Profitability encoding

24: else
25: vt ← vt ∪ {0} ▷ No trade found
26: end if
27: end for
28: Stack vt as new column in Ti

29: end for
30: Let n = |Ti|, n1 ← ⌊0.6 · n⌋
31: Initialize F train

GT,i,F test
GT,i ← ∅

32: for each bootstrap sample j of m columns from Ti do
33: Extract submatrix T

(j)
i

34: for each investor u (row) in T
(j)
i do

35: Compute summary fu (mean, std, positive ratio, etc.)
36: if j is from first n1 columns then
37: Add (fu, label(0)) to F train

GT,i
38: else
39: Add (fu, label(0)) to F test

GT,i
40: end if
41: end for
42: end for
43: F train

GT ← F train
GT ∪ F train

GT,i
44: F test

GT ← F test
GT ∪ F test

GT,i
45: end for
46: return F train

GT ,F test
GT

47: end function

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E HYPERPARAMETER SEARCH SPACE

We conduct a grid search over the following hyperparameter spaces for each classifier:

• Support Vector Machine (SVM): C ∈ {1, 10, 100, 1000}, kernel ∈ {linear, rbf, poly},
γ ∈ {0.01, 0.1, 1}

• Random Forest (RF): n estimators ∈ {100, 200}, max depth ∈ {None, 10, 20},
min samples split ∈ {2, 5}

• Naive Bayes (NB): var smoothing ∈ {10−9, 10−8, 10−7, 10−6}
• Stochastic Gradient Descent (SGD): loss ∈ {hinge, log}, penalty ∈ {ℓ2, elasticnet},
α ∈ {10−4, 10−3}

• Decision Tree (DT): criterion ∈ {gini, entropy}, max depth ∈ {None, 10, 20},
min samples split ∈ {2, 5}

• k-Nearest Neighbors (KNN): n neighbors ∈ {5, 10}, weights ∈ {uniform, distance},
algorithm ∈ {auto, ball tree}

• Logistic Regression (LR): penalty ∈ {ℓ2}, C ∈ {0.01, 0.1, 1}, solver ∈ {liblinear},
max iter ∈ {100, 200}

F NETWORK STRUCTURES

(a) Balanced Tree (Synthetic) (b) Loopy Graph (Synthetic) (c) Insiders Network (Empirical)

Figure 3: Network topologies used for evaluating the proposed framework. (a) A balanced tree graph
with 198 edges, used to simulate a hierarchical spread process. (b) A loopy synthetic graph with
398 edges, capturing richer connectivity and feedback loops. (c) An empirical network derived from
insider trading data, comprising 32,925 edges and 1,661 investor nodes. In (a) and (b), a single seed
node is marked in dark green; node size and color reflect distance from the seed (closer nodes appear
larger and darker). In (c), multiple seed nodes are present and highlighted in red.

G DESCRIPTIVE STATISTICS AND RESULTS ON EMPIRICAL ANALYSIS

Table 11 provides a summary of investor transaction activity across all companies. Panel A presents
aggregate company-level statistics, while Panels B and C focus on transactions during the pre-
announcement and non-announcement periods, respectively.

Table 12 presents the number of investors (Inv) and transaction records associated with each company.
It includes the number of transactions (Trans) during the pre-announcement period (Pre-Ann), the
non-announcement period (Non-Ann), and the total number of transactions. Transactions occurring on
the exact day of the announcement are excluded from both periods, which means the sum of Pre-Ann
and Non-Ann transactions may be less than the total count. The average baseline trade probabilities
of all investors associated with each company are presented in Table 13. These baseline trading
behaviors reflect investor activity outside the pre-announcement period. Table 14 presents the inferred
p̂ and q̂ during the announcement and non-announcement periods, along with their corresponding
ratios.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Descriptive statistic of Insiders data

Mean Min Q1 Median Q3 Max Standard Deviation

Panel: A Complete dataset

Number of investors 298.96 115 219.25 282.5 366.5 595 112.96
Number of board members 14.5 4 9.75 12.5 18.25 46 8.56
Number of trades 5130.57 899 2689 4730.5 6220.5 12548 2953.98
Number of announcements 233.36 90 165.5 197 288 526 109.99

Panel: B Pre-Announcement Period (Pre-Ann)

Investors in Pre-Announcement Period 179.57 57 140 163.5 236 345 69.88
Trades in Pre-Announcement Period 1582.61 289 932.25 1626.5 1975.5 3125 812.50

Panel: C Non-Announcement Period (Non-Ann)

Investors in Non-Announcement Period 234.96 82 155.5 230.5 284.5 497 101.48
Trades in Non-Announcement Period 2809.71 489 1398 2296 3925.75 8056 1866.03

Table 12: Descriptive statistics with each company

Company Full period Pre-Ann Non-Ann

Inv Seed Trans Ann Trans Inv Trans Inv

Amer Sports 198 18 2742 291 973 119 1415 134
Cargotec 265 15 12548 244 2948 175 8056 180
Comptel 115 10 899 121 299 68 489 82
Elisa 284 20 2465 189 816 163 1347 206
F-Secure 124 8 1245 95 289 57 839 98
Fortum 398 18 4921 184 1888 258 2274 283
Huhtamäki 234 10 3443 159 1023 143 1868 196
Kemira 312 19 6120 187 1499 157 3979 289
Kesko 243 5 4033 413 1663 164 1642 180
Kone 281 13 9767 167 3047 145 5817 225
Konecranes 196 17 2511 319 912 104 1157 154
Metsa 223 11 4292 254 1632 143 2088 167
Metso 360 7 6104 419 2484 247 2369 277
Neste 409 19 5285 161 1536 230 3236 337
Nokia 595 46 9994 180 2238 345 6084 497
Nokian Renkaat 314 10 4123 93 977 187 2318 262
Nordea 463 24 5529 198 1717 268 3211 403
Outotec 176 8 2530 122 723 87 1467 149
Rautaruukki 320 12 4540 287 1621 239 2077 239
Sampo 458 26 6522 287 1649 250 3908 403
Sanoma 308 4 7250 213 2259 187 4403 238
Stockmann 217 4 2197 169 885 131 951 156
Stora Enso 197 23 1826 386 791 154 675 110
Tieto 220 10 2785 526 939 150 1226 134
UPM-Kymmene 473 15 8962 196 3125 300 4233 354
Uponor 272 13 5952 90 1776 127 3448 236
Wärtsilä 330 12 9697 366 2955 195 5339 264
YIT 386 9 5374 218 1649 235 2756 326

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 13: Baseline trade probabilities by company

Company b̄1 b̄2 b̄0

Company 1 3.35 × 10−3 3.65 × 10−3 9.93 × 10−1

Company 2 5.22 × 10−3 5.13 × 10−3 9.90 × 10−1

Company 3 4.26 × 10−3 4.91 × 10−3 9.91 × 10−1

Company 4 3.93 × 10−3 3.34 × 10−3 9.93 × 10−1

Company 5 4.59 × 10−3 4.88 × 10−3 9.90 × 10−1

Company 6 4.18 × 10−3 4.37 × 10−3 9.91 × 10−1

Company 7 6.77 × 10−3 6.08 × 10−3 9.87 × 10−1

Company 8 4.68 × 10−3 4.84 × 10−3 9.90 × 10−1

Company 9 4.77 × 10−3 5.16 × 10−3 9.90 × 10−1

Company 10 3.84 × 10−3 4.22 × 10−3 9.92 × 10−1

Company 11 3.67 × 10−3 4.22 × 10−3 9.92 × 10−1

Company 12 3.42 × 10−3 3.22 × 10−3 9.93 × 10−1

Company 13 5.31 × 10−3 7.07 × 10−3 9.88 × 10−1

Company 14 5.11 × 10−3 3.75 × 10−3 9.91 × 10−1

Company 15 3.75 × 10−3 3.80 × 10−3 9.92 × 10−1

Company 16 2.96 × 10−3 3.89 × 10−3 9.93 × 10−1

Company 17 3.22 × 10−3 3.69 × 10−3 9.93 × 10−1

Company 18 4.02 × 10−3 4.57 × 10−3 9.91 × 10−1

Company 19 3.97 × 10−3 5.97 × 10−3 9.90 × 10−1

Company 20 4.46 × 10−3 5.79 × 10−3 9.90 × 10−1

Company 21 3.99 × 10−3 4.50 × 10−3 9.91 × 10−1

Company 22 5.09 × 10−3 5.48 × 10−3 9.89 × 10−1

Company 23 6.02 × 10−3 5.46 × 10−3 9.88 × 10−1

Company 24 4.85 × 10−3 4.31 × 10−3 9.90 × 10−1

Company 25 4.28 × 10−3 3.78 × 10−3 9.92 × 10−1

Company 26 3.70 × 10−3 3.49 × 10−3 9.93 × 10−1

Company 27 3.50 × 10−3 3.17 × 10−3 9.93 × 10−1

Company 28 7.24 × 10−3 8.62 × 10−3 9.84 × 10−1

Table 14: Inferred transmission probablities of Insiders network

Company Pre-Announcement Period Non-Announcement Period Ratio

p̂a q̂a CAa p̂n q̂n CAn p̂a/p̂n q̂a/q̂n

Company 1 0.39 0.12 2.22 × 10−2% 0.18 0.02 1.19 × 10−2% 2.09 6.30
Company 2 0.59 0.03 2.93 × 10−2% 0.30 0.01 1.41 × 10−2% 1.97 2.07
Company 3 0.60 0.04 2.57 × 10−2% 0.32 0.02 1.89 × 10−2% 1.86 1.69
Company 4 0.53 0.03 3.30 × 10−2% 0.29 0.06 1.41 × 10−2% 1.81 0.53
Company 5 0.40 0.06 1.85 × 10−2% 0.23 0.05 1.21 × 10−2% 1.74 1.08
Company 6 0.50 0.03 2.04 × 10−2% 0.31 0.02 1.72 × 10−2% 1.63 1.60
Company 7 0.57 0.03 2.21 × 10−2% 0.36 0.04 2.58 × 10−2% 1.61 0.66
Company 8 0.52 0.03 2.64 × 10−2% 0.35 0.06 2.67 × 10−2% 1.48 0.45
Company 9 0.57 0.02 1.96 × 10−2% 0.38 0.03 2.32 × 10−2% 1.47 0.73
Company 10 0.47 0.04 2.71 × 10−2% 0.36 0.03 1.64 × 10−2% 1.30 1.14
Company 11 0.35 0.09 2.00 × 10−2% 0.28 0.05 1.52 × 10−2% 1.26 1.79
Company 12 0.36 0.03 1.94 × 10−2% 0.29 0.01 1.76 × 10−2% 1.23 2.08
Company 13 0.58 0.05 3.56 × 10−2% 0.48 0.02 3.15 × 10−2% 1.22 2.63
Company 14 0.55 0.04 1.91 × 10−2% 0.46 0.02 1.59 × 10−2% 1.22 2.57
Company 15 0.49 0.02 1.66 × 10−2% 0.41 0.02 2.20 × 10−2% 1.19 1.37
Company 16 0.35 0.06 2.20 × 10−2% 0.31 0.04 1.48 × 10−2% 1.13 1.40
Company 17 0.36 0.04 2.75 × 10−2% 0.33 0.01 1.28 × 10−2% 1.07 2.73
Company 18 0.42 0.05 9.61 × 10−3% 0.40 0.06 2.30 × 10−2% 1.07 0.76
Company 19 0.36 0.07 2.33 × 10−2% 0.35 0.03 2.07 × 10−2% 1.04 2.62
Company 20 0.48 0.03 2.44 × 10−2% 0.48 0.02 2.49 × 10−2% 1.01 1.69
Company 21 0.41 0.03 1.87 × 10−2% 0.41 0.01 1.57 × 10−2% 1.00 2.32
Company 22 0.44 0.04 3.49 × 10−2% 0.45 0.01 1.85 × 10−2% 0.99 2.80
Company 23 0.42 0.06 4.04 × 10−2% 0.44 0.01 1.92 × 10−2% 0.95 4.06
Company 24 0.42 0.03 1.66 × 10−2% 0.45 0.05 2.01 × 10−2% 0.94 0.55
Company 25 0.41 0.03 2.64 × 10−2% 0.44 0.01 1.86 × 10−2% 0.93 2.34
Company 26 0.34 0.04 2.38 × 10−2% 0.38 0.01 1.71 × 10−2% 0.89 3.04
Company 27 0.45 0.09 2.48 × 10−2% 0.66 0.01 1.76 × 10−2% 0.68 7.90
Company 28 0.34 0.04 3.34 × 10−2% 0.52 0.03 4.69 × 10−2% 0.65 1.17

22

	Introduction
	Related Work
	Proposed Method
	Distribution Classification
	Experimental Setup
	Modeling Hidden Cascades with the Independent Cascade Model
	Feature Generation from Noisy Symptom Observations
	Model Parameter Optimization
	Hyperparameter Selection for Classifier

	Monte Carlo experiments
	Evaluation on Synthetic Graphs
	Evaluation on Empirical Social Graph (Insiders Network)
	Benchmarking, Robustness and Efficiency analysis

	Empirical Analysis
	Insiders' Data
	Results

	Conclusion
	Experiment Setup
	Benchmarking Against Alternative Models
	Robustness and Efficiency Analysis
	Node-Specific Propagation Probabilities
	Robustness to Diffusion Model Variations
	Robustness to Network Topology
	Computational Efficiency and Scalability

	Algorithms
	Hyperparameter Search Space
	Network Structures
	Descriptive statistics and Results on Empirical Analysis

