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Abstract

Despite tremendous improvements in natural
language generation, summarization models
still suffer from the unfaithfulness issue. Pre-
vious work evaluates faithfulness either using
models trained on the other tasks or in-domain
synthetic data, or prompting a large model
such as ChatGPT. This paper proposes to do
zero-shot faithfulness evaluation simply with a
moderately-sized foundation language model.
We introduce a new metric FFLM, which is
a combination of probability changes based
on the intuition that prefixing a piece of text
that is consistent with the output will increase
the probability of predicting the output. Ex-
periments show that FFLM performs compet-
itively with or even outperforms ChatGPT on
both inconsistency detection and faithfulness
rating with 24x fewer parameters. FFLM also
achieves improvements over other strong base-
lines.

1 Introduction

Faithfulness evaluation for text summarization
aims at measuring if the information in a sum-
mary is fully covered by and consistent with the
source document 1. Although automatic text sum-
marization has achieved remarkable improvements
with pre-trained language models (Zhang et al.,
2020; Lewis et al., 2020; Liu et al., 2021, 2022a;
Zhang et al., 2023) in recent years, especially in the
aspect of fluency and informativeness. However,
these neural models tend to generate unfaithful
summaries. An effective faithfulness evaluation
metric not only helps for implementing summariza-
tion systems in real applications but also plays a
key role in developing more faithful summarization
models, such as by data filtering (Matsumaru et al.,

∗ The corresponding author.
1We use the words “faithfulness”, “consistency” and

“(without) hallucination” interchangeably. Extrinsic hallucina-
tions that are correct to the world knowledge are regarded as
unfaithfulness in this work.

2020) or doing post-hoc corrections (Chaudhury
et al., 2022).

Most previous work for faithfulness evaluation
either takes advantage of models trained on re-
lated tasks for zero-shot evaluation (Goodrich et al.,
2019; Falke et al., 2019; Wang et al., 2020), or
does weakly-supervised evaluation with synthetic
in-domain data (Kryściński et al., 2020). The for-
mer requires transferring out-of-box models to the
summarization domain (Mishra et al., 2021), which
lacks guarantees on the models’ performance and
suffers from error propagation (Ji et al., 2023). The
latter one shows poor generalization ability (La-
ban et al., 2022) as a result of the limited synthetic
rules that couldn’t cover various kinds of halluci-
nations. Recently, as ChatGPT (OpenAI, 2022)
has shown amazing generation abilities on various
tasks, researchers attempt to do human-like evalu-
ation by designing prompts to query the model in
the zero-shot manner (Luo et al., 2023). However,
such strong language models are still sensitive to
nuances, showing unstable performance with dif-
ferent wording of prompts (Gao et al., 2023; Chen
et al., 2023).

Considering the above weaknesses, we think that
an ideal faithfulness evaluation metric for sum-
marization should be independent of other tasks
and dataset-specific expertise, be able to general-
ize among different benchmarks and robust for the
same document-summary pair. Zhou et al. (2023)
concludes that instruction tuning is just to teach
the model to produce high-quality output while al-
most all of the knowledge has been learned during
pre-training for large language models. Based on
their findings, we wonder: can we get rid of the
popular prompting approaches and calculate the
faithfulness score simply with a foundation lan-
guage model, which meets the above expectations?

In this work, we propose a metric named FFLM
for zero-shot faithfulness evaluation with a founda-
tion language model. The intuition behind FFLM



is that the generation probability of a piece of text
will increase when prefixing another piece of con-
sistent text. Following this intuition, we classify
different kinds of probability changes into changes
with prior probability and changes with conditional
probability. The former contains a comparison be-
tween the vanilla sequence-to-sequence probabili-
ties of the summary given document and uncondi-
tional probabilities of the summary, and a similar
comparison by changing the position of the docu-
ment and the summary. The latter calculates the
vanilla sequence-to-sequence probability with an-
other conditional probability by adding a piece of
prefix text. Similar intuition has been considered in
previous works (She et al., 2023; Son et al., 2022).
The major differences are that their metrics were
carried out on models fine-tuned by summariza-
tion data and they only consider a single kind of
probability changes. Our FFLM is based on the
foundation language model, and we hypothesize
that these different probability changes capture dif-
ferent hallucinations (see Sec. 4.4) which should
be considered as a whole.

On top of these three components of probability
changes, we introduce a feasible design of FFLM
by re-weighting each token and each component
to get the final faithfulness score. We did experi-
ments in both the inconsistency detection setting
and the faithfulness rating setting for summariza-
tion evaluation. The results show the favorable
performance of our FFLM across different settings
and datasets 2. Our contributions are as follows:

• We propose to do zero-shot faithfulness
evaluation based on a foundation language
model(Sec. 4.6).

• We introduce a comprehensive evaluation
metric FFLM by calculating the probability
changes of the desired output in different
ways(Sec. 2) and verify the rationality of our
metric design(Sec.4.3).

• Experiments on different evaluation settings
show that FFLM based on LLaMa with only
7 billion parameters can achieve competitive
performances or even outperforms ChatGPT
among different datasets(Sec 4.1 and 4.2).

2The code and dataset for this paper are available at https:
//github.com/JiaQiSJTU/FaithEval-FFLM.

2 Approach

Given a source document X = {x1, ..., xn} and
the corresponding summary Y = {y1, ..., ym}, the
goal of this work is to design a metric FFLM mea-
suring the faithfulness of Y based on the founda-
tion model LM(·). We adopt LM(·) under the
teacher-forcing strategy, which can provide a se-
quence of generation probabilities p of a given text
with or without other conditional inputs. We first
introduce three probability changes for faithfulness
measurements and then propose a feasible design
of our comprehensive metric FFLM. Scores pro-
posed by She et al. (2023) and Son et al. (2022) are
in Appendix A.

2.1 Faithfulness Measurements via
Probability Changes

The intuition is that the generation probability of
a piece of text will increase when providing more
related and consistent information. On the contrary,
the generation probability will drop when condi-
tioned on inconsistent information. Accordingly,
we considered three different probability changes
in two categories as follows.

Changes with Prior Probability: The prior
probability of Y can be estimated by the foundation
model LM(·):

plmY = LM(Y ) = {plmyi }|
m
i=1 (1)

and the sequence-to-sequence probability of Y
given X is:

ps2sY = LM(Y |X) = {ps2syi }|
m
i=1 (2)

If Y is a faithful summary, the sequence-to-
sequence probability ps2sY should be larger than the
prior probability plmY as more information consis-
tent to Y is given by conditioning on X . Therefore,
a faithfulness measurement can be defined as:

∆prior
pY

=
1

m

∑m

i=1
ps2syi − p

lm
yi (3)

From another point of view, we expect that the
generation of Y highly relies on X , instead of para-
metric knowledge stored in LM which is a main
resource of hallucinations (Ji et al., 2023).

Similarly, a faithful Y can support the contents
in X . Thus, the differences between the sequence-
to-sequence probability of X given Y and the prior

https://github.com/JiaQiSJTU/FaithEval-FFLM
https://github.com/JiaQiSJTU/FaithEval-FFLM


probability of X is another reasonable measure-
ment:

plmX = LM(X) = {plmxi
}|ni=1

ps2sX = LM(X|Y ) = {ps2sxi
}|ni=1

∆prior
pX

=
1

n

∑n

i=1
ps2sxi
− plmxi

(4)

Changes with Conditional Probability: In-
stead of comparing sequence-to-sequence gener-
ation probabilities with prior probabilities, another
way is to add more information P besides the in-
put document X , leading to an influence on the
generation probability of Y . Following She et al.
(2023), we simply set P = Y . In this way, if Y
is inconsistent with X , prefixing P will cause in-
formation contradictions in the input and decrease
the probability of Y compared to a consistent one.
Mathematically, the third measurement is:

pprefY = LM(Y |P,X) = {pprefyi }|
m
i=1

∆cond
pY

=
1

m

∑m

i=1
ps2syi − p

pref
yi

(5)

We didn’t consider X and Y reversely here. The
main reason is that inputting the sequence [P =
X,Y,X] to LM(·) is much more costly and may
exceed the max sequence length of most models
since X is much longer than Y , i.e., n� m.

2.2 A Feasible Design of FFLM
Goyal et al. (2022) found that high-loss tokens
generally correspond to unfaithful contents during
training a summarization model. Inspired by this
finding and the success of the loss truncation train-
ing algorithms (Kang and Hashimoto, 2020), we
think that more attention should be paid to such
high-loss (or low-probability) tokens when calcu-
lating the faithfulness scores. So, instead of simply
averaging the probability changes to get the final
score for an (X, Y) pair, we adopt two operations.
First, we take the logarithm of the probabilities be-
fore subtraction, which will magnify changes on
the low-probability tokens. Second, we re-weight
each token based on ps2sY and ps2sX correspondingly.
We get:

∆prior
Y =

1

m

∑m

i=1
ep

s2s
yi (log ps2syi − log plmyi )

∆prior
X =

1

n

∑n

i=1
ep

s2s
xi (log ps2sxi

− log plmxi
)

∆cond
Y =

1

m

∑m

i=1
ep

s2s
yi (log ps2syi − log pprefyi )

(6)

Finally, FFLM is a combination of these metrics:

FFLM = α∆prior
Y + β∆prior

X + δ∆cond
Y (7)

where α, β, and δ are weighting parameters in the
range of 0 to 1 and α + β + δ = 1. These three
weights can be tuned on a validation set, or set
manually as hyper-parameters.

3 Experiment Setup

We present two evaluation settings considered by
previous work for faithfulness evaluation first, with
the implementation details of FFLM for them later.

3.1 Inconsistency Detection

Inconsistency detection regards the faithfulness
evaluation as a binary classification problem. In
other words, human annotators or automatic met-
rics only need to recognize whether the summary
is faithful to the document or not.

Datasets: The SUMMAC Benchmark (Laban
et al., 2022) is a benchmark consisting of six
summarization evaluation datasets, including Co-
GenSumm Falke et al. (2019), SummEval (Fabbri
et al., 2021), FRANK (Pagnoni et al., 2021), Poly-
tope (Huang et al., 2020), FactCC (Kryściński et al.,
2020) and XSumfaith (Maynez et al., 2020). It stan-
dardized these datasets by changing their original
labels into a binary label and split each dataset into
a validation set and a test set. Most of the original
datasets are labeled by three or more annotators,
except Polytope and FactCC.

Evaluation Metric: Balanced accuracy (Broder-
sen et al., 2010) is adopted as the primary evalua-
tion metric, which requires binary labels for com-
putation. For approaches with continuous scores, a
threshold can be selected via the validation set.

Baselines: We borrowed the baselines from
Laban et al. (2022)’s work, including linguistic
feature-based metrics NER-Overlap (Laban et al.,
2021) and DAE (Goyal and Durrett, 2020), NLI-
based metric MNLI-doc (Kryściński et al., 2020)
and SUMMACZS (Laban et al., 2022), QA-based
metrics FEQA (Durmus et al., 2020) and QuestE-
val (Scialom et al., 2021), prompting with Chat-
GPT (OpenAI, 2022) 3, and two weakly-supervised
baselines FactCC-CLS (Kryściński et al., 2020)

3As Chen et al. (2023) shows that faithfulness evaluation
is less reasoning-intensive and chain-of-though (Wei et al.,
2023) prompting even hurts performances, we only compared
with ChatGPT using a vanilla prompt.



Setting Dataset Val Test Source

Inconsistency
Detection

(SUMMAC
Benchmark)

CoGenSum 1281 400 C
SummEval 850 850 C

FRANK 671 1575 C+X
Polytope 634 634 C
FactCC 931 503 C

XSumFaith 1250 1250 C

Faithfulness
Rating

FRANKCNN - 1250 C
QAGSCNN - 235 C
SummEval - 1600 C

FRANKXSUM - 996 X
QAGSXSUM - 239 X

Table 1: Statistics of the datasets. “C” and “X”
are short for CNN/DM (Nallapati et al., 2016) and
XSum (Narayan et al., 2018) respectively.

and SUMMACCONV (Laban et al., 2022). Be-
sides, we implemented the language modeling-
based metric BARTScore (Yuan et al., 2021)
and metrics based on probability changes include
CoP (She et al., 2023) and HaRiM (Son et al.,
2022). These three metrics were suggested to use
the CNN/DM (Nallapati et al., 2016) fine-tuned
BART model 4 for calculation. We also improved
the latter two metrics with our proposal by calcu-
lating with a foundation language model, LLaMa,
for comparisons.

3.2 Faithfulness Rating

Faithfulness rating defines the evaluation as a Lik-
ert scale coring problem. Annotators or metrics
score each summary according to its faithfulness.
Generally, the higher, the more faithful.

Datasets: Following Son et al. (2022), we exper-
imented on five different datasets: FRANKCNN
and FRANKXSUM from Pagnoni et al. (2021),
QAGSCNN and QAGSXSum from Wang et al.
(2020), and SummEval (Fabbri et al., 2021). For
the first four datasets, human judgments were orig-
inally done on the sentence level. The faithfulness
rating of the whole summary is collected by doing
majority voting on each summary sentence among
annotators and averaging among sentences. Sum-
mEval contains human scores in the range of 1 to
5 in the aspect of consistency. More details are in
Table 1.

Evaluation Metrics: Pearson(γ), Spearman(ρ),
and Kendall(τ ) correlation coefficients are used to
measure the alignments between faithfulness rat-
ings annotated by annotators and automatic metrics.
The correlations are the higher the better. We con-
sider the summary-level correlations for all datasets.
Besides, system-level correlations are calculated

4https://huggingface.co/facebook/
bart-large-cnn

on SummEval which contains annotations for 16
extractive or abstractive summarization models.

Baselines: Rouge-2 F1 (Lin, 2004), Me-
teor (Banerjee and Lavie, 2005), BLEU (Papineni
et al., 2002) and BERTScore F1 (Zhang et al.,
2019a) are widely-accepted summarization eval-
uation metrics. We report their best results in Son
et al. (2022) by calculating between the summary
and the source document. QAGS (Wang et al.,
2020) is another QA-based metric. Others are the
same as the ones for inconsistency detection.

3.3 Implementation Details

We implemented FFLM with the foundation lan-
guage model LLaMa (Touvron et al., 2023). It con-
tains models with different sizes, where LLaMa7b
is selected for our main experiments. We add
"TL;DR" between the conditional sequence and
the target sequence. The weights in Eq. 7 are de-
termined in {0.0, 0.1, ..., 1.0} according to the per-
formance on the corresponding validation set for
inconsistency detection. For faithfulness rating, we
set α, β, δ as 0.25, 0.25, 0.5 respectively, with the
intuition that the former two are from the same cat-
egory as introduced in Sec. 2.1. Our experiments
are done on a single RTX 3090.

4 Results and Analysis

This section includes the main results for incon-
sistency detection and faithfulness rating, together
with an ablation study, an analysis of error types,
and comparisons of different model sizes of our
FFLM. We also discussed our metric and the
prompting approach with or without instruction
tuning under the same model size.

4.1 Performance on Inconsistency Detection

The results on inconsistency detection are in Ta-
ble 2. Our proposed metric FFLM achieves state-
of-the-art performance on 3 datasets including Co-
GenSum, SummEval, and FRANK, and outper-
forms ChatGPT on 5 out of 6 datasets from the
SUMMAC benchmark except XSumFaith.

Both Polytope and FactCC are only labeled by a
single annotator. As a result, their labels may not
be as convincing as the other datasets. Although
QuestEval, the best QA-based metric, achieves the
top-1 accuracy on Polytope, it performs mediocrely
on the rest. The weakly-supervised baselines
FactCCCLS and SummaCConv are trained with
synthetic data constructed with human expertise

https://huggingface.co/facebook/bart-large-cnn
https://huggingface.co/facebook/bart-large-cnn


Metric CoGenSum SummEval FRANK Polytope FactCC XSumFaith
NER Overlap 53.0 56.8 60.9 52.0 55.0 63.3
MNLI-doc 57.6 66.6 63.6 61.0 61.3 57.5
FactCCCLS 63.1 60.1 59.4 61.0 75.9 57.6
DAE 63.4 70.3 61.7 62.8 75.9 50.8
FEQA 61.0 53.8 69.9 57.8 53.6 56.0
QuestEval 62.6 72.5 82.1 70.3 66.6 62.1
SummaCZS 70.4 78.7 79.0 62.0 83.8 58.4
SummaCConv 64.7 81.7 81.6 62.7 89.5 66.4
BARTScore 62.5 66.7 80.2 57.3 68.4 56.9
CoPBART 65.3 63.9 77.7 60.0 69.0 61.5
HaRiMBART 58.9 76.6 81.8 55.8 67.3 56.2
ChatGPT 63.3 76.5 80.9 56.9 74.7 64.7
CoPLLaMa 65.4 83.6 83.1 55.4 78.6 54.1
HaRiMLLaMa 57.1 80.0 83.4 58.8 69.8 53.4
FFLM 71.8 84.4 83.9 61.5 77.3 58.9

Table 2: Balanced accuracy(%) on the SUMMAC benchmark. The best result for each dataset is in bold. Scores
of FFLM better than other metrics based on the foundation model are underlined.

FRANKCNN QAGSCNN SummEval FRANKXSUM QAGSXSUM
Metric γ ρ τ γ ρ τ γ ρ τ γ ρ τ γ ρ τ
Rouge-2 33.1 32.7 24.9 47.5 42.7 31.5 24.7 25.2 19.5 1.2 3.3 2.7 10.7 9.1 6.9
Meteor 23.0 22.9 17.4 27.7 32.4 23.4 14.3 12.2 11.2 -0.5 0.5 0.4 -1.5 -7.1 -5.2
BLEU 9.3 20.2 15.3 18.0 33.7 24.5 11.7 7.3 9.1 -4.2 -4.6 -3.8 4.7 -18.6 -13.9
BERTScore 51.4 46.4 35.8 55.6 49.3 36.5 29.2 29.5 23.0 15.7 13.7 11.1 -4.8 -5.4 -4.0
FactCCCLS 49.2 43.8 37.6 - - - 32.0 34.0 - 7.2 7.2 7.1 - - -
FEQA -1.8 -1.0 -0.8 - - - - - - 2.6 0.8 0.6 - - -
QAGS 31.4 26.7 20.6 46.6 38.2 27.4 17.7 12.7 - -2.2 -0.7 -0.6 21.7 20.3 15.3
QuestEval - - - 49.2 44.5 - 37.0 33.9 - - - - 7.0 9.6 -
DAE 44.0 44.7 34.2 - - - 20.0 27.0 - 5.8 11.3 9.2 - - -
BARTScore 56.1 53.0 41.3 67.3 61.3 47.0 24.9 26.2 19.7 17.4 16.8 13.7 8.0 9.7 7.2
CoPBART 56.1 51.0 39.4 73.0 65.3 53.2 23.6 22.6 18.0 22.8 20.8 17.0 26.6 25.3 20.7
HaRiMBART 61.0 53.9 42.1 67.4 58.2 47.1 42.7 37.6 29.8 14.8 13.9 11.4 15.8 16.0 13.1
ChatGPT 50.0 46.0 - - - - 49.0 35.0 - 34.0 27.0 - - - -
CoPLLaMa 59.7 54.5 42.6 74.3 67.6 54.8 55.1 46.4 37.0 24.6 23.1 18.8 19.0 18.1 14.7
HaRiMLLaMa 56.9 51.9 40.3 68.6 60.0 48.2 56.1 45.5 36.4 18.6 16.7 13.6 9.1 10.0 8.2
FFLM 62.2 56.0 43.7 72.3 65.3 53.0 56.3 46.9 37.4 27.0 25.3 20.6 28.3 27.1 22.2

Table 3: Summary-level correlations(%) on the faithfulness rating datasets.

that may have certain similarities with the FactCC
dataset. Therefore, FactCCCLS shows strong per-
formance on the FactCC dataset while relatively
weak on the others including datasets in Table 3,
the same as the findings in Laban et al. (2022).
Also, that’s why SummaCConv shows around 12%
significant improvements over our FFLM.

Concentrating on the metrics based on proba-
bility changes, zero-shot metrics CoPBART and
HaRiMBART perform not badly compared with
previous SOTA SummaCZS, showing the poten-
tial of using probability changes for faithfulness
evaluation. After introducing the foundation lan-
guage model, their performances don’t drop in
most cases, indicating that fine-tuning with in-
domain data is not necessary. However, the leading
performance between these two metrics is unsta-
ble among datasets. HaRiMLLaMa outperforms
CoPLLaMa on FRANK and Polytope, while on the
rest datasets, the opposite is true. FFLM, as a com-
prehensive metric, successfully achieves improve-
ments over both of them on 5 out of 6 datasets.

4.2 Performance on Faithfulness Rating

Summary-level results are in Table 3. The results
of ChatGPT borrowed from Luo et al. (2023) show
its inconsistency improvements among datasets: It
doesn’t exceed previous baselines on FRANKCNN,
performs similarly on SummEval, and achieves
conspicuous gains on FRANKXSUM. Besides,
similar to the above analysis for comparisons
among probability change-based metrics, our
FFLM induces performance gains on 4 out of 5
datasets over CoPLLaMa and HaRiMLLaMa, espe-
cially on datasets sourced from XSum. Unfor-
tunately, FFLM still lags behind ChatGPT with
175 billion parameters on FRANKXSUM, showing
ChatGPT’s strong ability on dealing with highly
abstractive summaries. This is also in line with
ChatGPT’s favorable performance on XSumFaith
in Table 2. After all, FFLM achieves the best scores
on FRANKCNN, SummEval, and QAGSXSUM,
and performs competitively on the other datasets.

We also report the system-level results on Sum-
mEval in Table 5. FFLM performs similarly to
ChatGPT according to the Spearman correlation.



FRANKCNN QAGSCNN SummEval FRANKXSUM QAGSXSUM
Metric γ ρ τ γ ρ τ γ ρ τ γ ρ τ γ ρ τ
FFLM 62.2 56.0 43.7 72.3 65.3 53.0 56.3 46.9 37.4 27.0 25.3 20.6 28.3 27.1 22.2
Ablations on the metric components
∆prior

Y 32.0 26.4 20.1 11.9 7.5 5.7 24.9 20.5 16.1 20.0 19.2 15.6 20.9 21.3 17.4
∆prior

X 34.4 36.0 27.4 27.7 28.1 21.8 23.7 26.3 20.7 10.2 11.2 9.2 4.8 3.2 2.6
∆cond

Y 59.9 54.6 42.7 74.3 67.9 55.2 54.8 46.3 36.9 24.7 23.3 19.0 19.4 18.0 14.7
∆prior

Y , ∆prior
X 34.7 29.2 22.3 17.7 13.0 9.9 28.3 23.6 18.6 20.4 19.7 16.0 20.7 21.3 17.4

∆prior
Y , ∆cond

Y 61.0 54.2 42.3 68.1 60.2 48.4 54.4 45.1 36.0 28.3 26.5 21.6 29.4 28.6 23.4
∆prior

X , ∆cond
Y 60.3 54.7 42.6 73.9 66.5 54.0 54.7 46.6 37.1 24.7 23.2 18.9 19.8 18.3 14.9

Ablations on the metric designs
- w/o w 61.2 54.8 42.7 68.4 60.1 48.6 54.3 45.4 36.3 26.9 25.0 20.4 26.4 26.00 21.3
- w/o log 57.5 52.3 40.5 69.2 60.3 48.5 56.9 45.9 36.7 19.7 17.5 14.3 11.5 12.2 10.0
- w/o w and log 56.3 51.3 39.6 66.5 57.6 46.4 54.4 45.0 36.0 18.8 16.6 13.5 11.0 12.4 10.2
Ablations on the combination weights (α, β, δ)
same 60.9 54.0 42.1 67.5 58.6 47.1 54.1 44.9 35.8 28.3 26.4 21.5 29.2 28.7 23.5

Table 4: Ablations of FFLM on faithfulness rating. The highest scores are in bold.

Metric γ ρ τ
Rouge-2 50.0 59.9 68.8
Meteor 46.7 51.3 62.1
BLEU 45.0 28.7 62.1
BERTScore 68.3 68.0 86.8
BARTScore 30.1 25.9 18.3
CoPBART 19.9 35.9 25.0
HaRiMBART 75.9 61.2 45.0
ChatGPT - 83.3 -
CoPLLaMa 88.3 81.8 63.3
HaRiMLLaMa 89.9 84.4 66.7
FFLM 90.4 83.2 65.0

Table 5: System-level correlations between metrics and
human ratings on the SummEval dataset.

HaRiMLLaMa achieves a bit higher Spearman and
Kendall correlation than FFLM, while FFLM per-
forms better on Pearson correlation showing bet-
ter linear correlation with human scores. More-
over, FFLM is more robust than HaRiMLLaMa on
different evaluation settings considering the poor
summary-level performance of HaRiMLLaMa es-
pecially for FRANKXSUM and QAGSXSUM in
Table 3. Another observation is that although CoP
and HaRiM backed on BART perform closely with
them backed on LLaMa on the summary-level eval-
uation, they perform poorly on the system-level
evaluation. This can be attributed to the fact that
metrics based on CNN/DM fine-tuned BART have
inductive bias (Son et al., 2022). They tend to
prefer summaries generated by abstractive models,
while extractive models are generally more faithful.
Meanwhile, metrics based on the foundation lan-
guage model don’t show this bias, leading to the
best results for ranking summarization systems.

To recap, our FFLM generalizes well among
different task settings and different datasets, show-
ing favorable performance over the baselines. It is
backed on LLaMa with only 7 billion parameters
and performs competitively with or even outper-
forms ChatGPT with 175 billion parameters, which

is much more efficient for faithfulness evaluation.

4.3 Ablation Study on Metric Designs

We carried out ablation studies of FFLM on faith-
fulness rating in Table 4. The ablation results on
inconsistency detection are in Appendix B.

Ablations on the metric components: We test
different combinations of the three probability
changes. The results show that ∆cond

Y is the most
powerful component of FFLM. Its combination
with ∆prior

Y ranks first among ablations on both
FRANKXSUM and QAGSXSUM. Together with
∆prior

X , our metric FFLM shows over 5% increases
in Spearman correlation on QAGSCNN, 1.8% on
FRANKCNN and SummEval, without much loss
on the other two datasets, records more robust re-
sults. Moreover, combining different probability
changes induces performance gains in most cases,
reflecting the necessity of designing a comprehen-
sive metric(More in Sec 4.4).

Ablations on the metric designs: We use w
and log to annotate the token-level weights and the
logarithm operation introduced in Sec 2.2. Both
operations contribute to the final FFLM, where log
is more effective for datasets sourced from XSum
and w for the others.

Ablations on the combination weights: For
the faithfulness rating task where we empirically
set the weights α, β and δ as 0.25, 0.25 and 0.5,
we compared it with the equaling weights, i.e.,
α = β = δ = 1

3 . FFLM performs relatively better.

4.4 Analysis on Error Types

By taking a look at the correlations between pairs
of the metric components in Figure 6, we can see
that the correlations vary among different datasets.
None of the pairs show a high degree of correla-
tion, indicating that these components may capture



FRANKCNN QAGSCNN SummEval FRANKXSUM QAGSXSUM
Metric γ ρ τ γ ρ τ γ ρ τ γ ρ τ γ ρ τ

∆prior
Y , ∆prior

X 44.7 46.2 32.0 32.5 35.8 23.8 29.5 34.4 23.7 28.3 31.1 20.9 28.0 24.9 17.0
∆prior

Y , ∆cond
Y 26.5 19.9 12.9 14.7 2.3 1.2 20.1 15.6 10.1 23.4 20.1 13.4 -6.2 -2.4 -1.5

∆prior
X , ∆cond

Y 47.2 49.9 34.6 35.2 41.2 28.0 36.5 40.6 27.9 38.7 38.3 25.9 -0.4 3.8 2.5

Table 6: Correlations between pairs of the metric components on faithfulness rating.
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Figure 1: Spearman correlation(%) of different error
types on FRANKCNN and FRANKXSUM. Highest
correlations for each ∆ is highlighted with red boxes.

unfaithfulness from different aspects.
To figure out if different probability changes cor-

relate well with different error types in the gen-
erated summaries, we take advantage of labels
in the FRANKCNN and FRANKXSUM datasets.
Pagnoni et al. (2021) divides the factual errors in
the generated summaries into three groups. Seman-
tic frame errors(Sem) include errors on the predi-
cate, entities, and additional information about the
circumstance. Discourse errors(Disc) consist of
coreference errors and discourse link errors. Con-
tent verifiability errors(CVer) are closely related
to extrinsic hallucinations (Ji et al., 2023), contain-
ing the out-of-article error and grammatical error.
We randomly picked 50 error cases and 10 error
cases for each error type from FRANKCNN and
FRANKXSUM respectively, and mixed them with
the rest faithful summaries. Spearman correlations
averaged over 10 times are in Fig. 1.

We observed that ∆cond
Y captures different errors

best, which is accord with the ablation results in Ta-
ble 4. Comparing among the scores for each ∆ hor-
izontally, we can see that the probability changes
with prior probability is good at CVer errors on both
datasets, and ∆cond

Y at Sem errors or Disc errors.
The differences among datasets reflect their dif-
ferent characteristics (Pagnoni et al., 2021). Sum-
maries in FRANKCNN are made up of multiple
sentences, resulting in more diverse and challeng-
ing situations for Disc errors than FRANKXSUM
with single-sentence summaries. Thus, ∆cond

Y in-
creases dramatically from 14.2% on FRANKCNN
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Figure 2: Spearman correlation(%) of FFLM with dif-
ferent model sizes on faithfulness rating datasets.

to 41.7% on FRANKXSUM for Disc.
FFLM made further improvements over ∆cond

Y

on both Sem and CVer, showing that combining
different probability changes is reasonable and ef-
fective in most cases except Discs.

4.5 Performance on Different Model Sizes

To test FFLM’s performance on different models
sizes, we select LLaMa with 3 billion(3B), 7 bil-
lion(7B) and 13 billion(13B) parameters 5 that are
trained on the same data volume with 1 trillion
tokens and draw the diagram in Fig. 2 for faith-
fulness rating datasets. The scores consistently
increase from LLaMa-3B to LLaMa-7B across the
five datasets, while the improvements are not con-
sistent for LLaMa-13B. Given a certain amount
of data, increasing the number of parameters can
enhance the model’s language modeling ability and
be helpful to faithfulness evaluation. On the other
hand, when the model size keeps scaling up, more
unexpected biases in the pre-training corpus may
be memorized and will hurt the performance. This
has also been pointed out by Ranaldi et al. (2023)
and Nadeem et al. (2021).

In this way, we think that using larger foundation
models may not be the best choice for faithfulness
evaluation on summarization, which is also closely
related to the research on investigating the optimal

5The corresponding checkpoints from hugging face are
openlm-research/open_llama_3b, decapoda-research/llama-
7b-hf, and decapoda-research/llama-13b-hf.



FRANKCNN QAGSCNN SummEval FRANKXSUM QAGSXSUM
Metric γ ρ τ γ ρ τ γ ρ τ γ ρ τ γ ρ τ
Prompting Approach
LLaMa-7B -1.3 -0.2 -0.2 2.4 2.0 1.9 9.5 11.5 10.9 3.0 3.0 3.0 -6.9 -7.0 -6.9
Vicuna-7B 17.6 17.4 15.5 18.9 19.8 17.7 13.1 11.9 11.1 7.0 5.5 5.1 10.2 8.4 8.0
Alpaca-7B 5.4 6.8 6.2 10.2 9.3 8.7 3.0 6.5 5.6 3.8 3.4 3.4 2.3 1.4 1.4
Our Approach
LLaMa-7B 62.2 56.0 43.7 72.3 65.3 53.0 56.3 46.9 37.4 27.0 25.3 20.6 28.3 27.1 22.2
Vicuna-7B 62.7 56.7 44.3 73.1 67.2 54.6 55.3 47.2 37.7 25.8 23.9 19.4 23.5 22.5 12.8
Alpaca-7B 61.4 55.3 43.2 71.4 66.0 52.6 55.8 47.1 37.6 26.2 24.6 20.0 24.2 25.4 20.7

Table 7: Comparisons with prompting and instruction-tuning techniques under the same model size. The highest
correlations are in bold in each column and are underlined among each kind of approach.

model size and dataset size for training foundation
language models (Hoffmann et al., 2022).

4.6 Comparisons with Prompting and
Instruction-tuning

We compare our metric with prompting and
instruction-tuning techniques under the same
model size in Table 7 for faithfulness rating. Here,
LLaMa-7B is the vanilla foundation language
model. Vicuna-7B (Chiang et al., 2023) and
Alpaca-7B (Taori et al., 2023) are initialized from
LLaMa-7B and instruction-tuned with data col-
lected in different ways. We present the maximum
scores for each dataset among different prompts de-
signed by previous works (Chen et al., 2023; Gao
et al., 2023; Luo et al., 2023). The detailed prompts
for each evaluation task are listed in Appendix C.

First, we observe that using models containing 7
billion parameters, FFLM outperforms the prompt-
ing approach across different models and datasets.
The prompting results here lag behind the perfor-
mance of ChatGPT dramatically. This leads to
the conclusion that the effectiveness of prompting
approaches relies highly on much larger models,
while our metric FFLM can be a cheaper alternative
with smaller models. Second, instruction tuning is
important for improving the prompting approach,
while is not necessary for our FFLM. It enhances
the models’ understanding ability on instruction
templates in the prompts by further tuning with
relatively small datasets. However, such manually
collected datasets may contain unconscious bias
and hurt FFLM’s performance.

5 Related Work

5.1 Faithfulness Evaluation for
Summarization

Faithfulness evaluation metrics can be classified
into zero-shot ones and weakly-supervised ones.

Zero-shot evaluation metrics mainly take advan-
tage of the models trained with related natural lan-

guage tasks. Goodrich et al. (2019) adopted in-
formation extraction tools to extract the fact tu-
ples from both the source document and the sum-
mary. Tuple mismatches reflect the hallucina-
tions. The intuition behind question-answering-
based metrics (Wang et al., 2020; Durmus et al.,
2020; Scialom et al., 2021) is that identical an-
swers should be generated when asking the same
question to a summary and the corresponding doc-
ument respectively. Natural language inference
also shares commonalities with faithfulness eval-
uation in the way that information in a consistent
summary should be entirely entailed by the source
document (Falke et al., 2019; Mishra et al., 2021;
Laban et al., 2022). However, all of these metrics
highly rely on the domain-transfer ability of out-of-
box models and suffer from error propagation.

Instead, weakly-supervised approaches choose
to train classifiers by constructing synthetic in-
domain data with heuristics by experts. Differ-
ent kinds of inconsistency errors are simulated
by perturbing the reference document-summary
pairs (Kryściński et al., 2020; Utama et al., 2022;
Yin et al., 2021). The limited heuristic makes it
hard to cover all kinds of errors and shows poor
generalization ability among datasets (Laban et al.,
2022).

As language modeling-based metrics (Egan
et al., 2022; Liu et al., 2022b) receive more atten-
tion, another small group of work for faithfulness
evaluation computes probability changes with mod-
els fine-tuned on summarization datasets (She et al.,
2023; Son et al., 2022; Xie et al., 2021), showing a
biased preference for abstractive summaries. Based
on this line of work, we propose FFLM based on
the foundation language model. Our zero-shot met-
ric doesn’t require further training with in-domain
or synthetic data and shows a strong generalization
ability.



5.2 Evaluation with Large Language Models

With orders of magnitude more parameters and ex-
tensive training on large-scale data, large language
models (LLMs) (Brown et al., 2020; Touvron et al.,
2023) have exhibited surprising abilities that may
not be observed in previous small language models.
The strong capability in language comprehension
naturally spurs research in exploring LLMs as bet-
ter automatic evaluators for various text generation
systems (Wang et al., 2023).

There are also some attempts of faithfulness
evaluation by prompting large models (Luo et al.,
2023) with different templates and strategies, such
as adding detailed definitions (Gao et al., 2023)
and chain-of-thought (Chen et al., 2023). None of
these strategies achieve consistent improvements
over the original prompt. Besides, neural models
are sensitive to the choices of words (Chen et al.,
2023), resulting in unstable performances(See Ap-
pendix D).

Our FFLM takes advantage of the strong capa-
bility of LLMs for faithfulness evaluation in a dif-
ferent way and shows competitive performance re-
quiring a much smaller number of parameters than
the well-known ChatGPT (OpenAI, 2022).

6 Conclusion

This paper focuses on zero-shot faithfulness eval-
uation for summarization and introduces a novel
evaluation metric FFLM which is simply based on
the foundation language model. Experiments on
both the inconsistency detection benchmark and
faithfulness rating datasets show the strong general-
ization ability of FFLM across various task settings
and different datasets. It also shows favorable per-
formance over strong baselines including ChatGPT.
Using our proposed metric for more fine-grained
consistency detection and designing more faithful
summarization systems are future directions.

Limitations

The main idea of this work is to do faithfulness
evaluation based on a foundation language model
by a combination of different probability changes.
FFLM is just a feasible but not perfect metric de-
sign. Although it makes improvements over each
∆ on almost all of the datasets in Table 4, it failed
on the errors related to discourse errors on the
FRANKCNN and FRANKXSUM dataset accord-
ing to Fig. 1. Designing better aggregation metrics

based on specific analysis of different error types
will be considered in the future.

Besides, in this work, our FFLM only calculates
a single score for the whole summary without pin-
pointing the exact erroneous words or the specific
error type. Considering the success of CoP (She
et al., 2023) on token-level inconsistency detec-
tion and detailed inconsistency category evaluation,
we hypothesize that our metric FFLM can be also
used for these evaluation scenarios by adjusting
the aggregation weights or combining it with the
prompting approach.

Moreover, we limit our scope to faithfulness eval-
uation for text summarization in this paper because
the definition of faithfulness evaluation for other
generation tasks has some non-trivial differences.
For example, the chit-chat utterances in dialogue
generation (Dziri et al., 2022) are supposed to be
acceptable under the evaluation for faithfulness, in-
stead of being regarded as extrinsic hallucinations.
The evaluation for sentence paraphrasing (Zhang
et al., 2019b) should be bi-directional, i.e., the first
sentence has to be consistent with the second one,
and vice versa. We consider transferring FFLM
with adjustment on the other tasks as future work.
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A Preliminaries

CoP proposed by (She et al., 2023) is calculated
based on ∆cond

pY
. Although they only showed ∆cond

pY
in their paper, they took the logarithm of probabil-
ities during implementation without analysis and
explanations. Overall, CoP is:

CoP =
1

m

∑m

i=1
log ps2syi − log pprefyi (8)

HaRiM proposed by (Son et al., 2022) is derived
from ∆prior

pY :

HaRiM =
1

m

∑m

i=1
(1−ps2syi )[1−(ps2syi −p

prior
yi )]

(9)
Our FFLM is different from HaRiM in three ways:
First, we propose to do faithfulness evaluation with
foundation language models while they suggested
to evaluate with models fine-tuned on summariza-
tion data. Second, HaRiM only considers one of
the changes with prior probability, i.e., ∆prior

pY . Our
metric not only adds a back constraint of P (X|Y )
additionally to HaRiM, but also considers the prob-
ability changes with conditional probability. Third,
Specifically for the formula, the intuition of adding
weights behind HaRiM and our FFLM are dif-
ferent regardless of the function-form variations.
HaRiM’s weight (1 − ps2syi ) was originally intro-
duced to adjust the loss scale for training better
neural machine translation models by Miao et al.
(2021). FFLM adopted the weight ep

s2s
yi and the

logarithm to pay more attention to low-probability
tokens which generally correspond to unfaithful
contents according to (Goyal et al., 2022).

Xie et al. (2021) introduced another similar
metric CoCo which is also based on probability
changes. Instead of using the prior probability of
Y in ∆prior

pY , they condition Y on the masked doc-
ument X ′ by removing Y -related information. The
masking strategy is hard to design since locating
the Y -related information is uneasy. Their compli-
cated operation also largely slows down the infer-
ence speed.

We compared these three metrics backed on
BART for faithfulness ranting in Table 8. Since
CoCo’s performances vary a lot with different
masking strategies and none of them completely
outperform the other two metrics on a single
dataset, we didn’t compare with it thoroughly in
our work.

B Analysis on Inconsistency Detection

Ablation studies of FFLM for inconsistency detec-
tion are in Table 9. Fig. 3 illustrates the perfor-
mances of FFLM on variable sizes of the founda-
tion language model. Results with the prompting
approach and comparison to the instruction-tuning
technique are in Table 10.
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Figure 3: Spearman correlation(%) of FFLM with dif-
ferent model sizes on inconsistency detection datasets.

The observations for inconsistency detection are
in line with those for faithfulness ranting. An-
other finding is that the gap between prompting
approaches and FFLM under this setup is much
smaller than that under the faithfulness rating setup.
This indicates that inconsistency detection is easier
than faithfulness rating with less number of an-
swer choices when doing faithfulness evaluation
by prompting large models.

C A Collection of Prompts

The prompts we collected are in Table 11. We
made tiny changes to some of the prompts to en-
hance their probability of generating an acceptable
answer, such as adding a hint like "Marks:" and
moving the answer choices to the end of the prompt.
We recognize the faithfulness score by analyzing
the generations with simple rules. If there isn’t
an acceptable answer, we regard the summary as
unfaithful, i.e., “No” for inconsistency detection
and “1” for faithfulness rating.

D Performance of Different Prompts

We show the performances of different prompts
with Vicuna-7B for inconsistency detection in Ta-
ble 12 and for faithfulness rating in Table 13. The
performance with different prompts for the same
task varies a lot. And some prompts used in previ-
ous works with ChatGPT failed with smaller mod-
els, showing the high-level language understanding



FRANKCNN QAGSCNN SummEval FRANKXSUM QAGSXSUM
Metric γ ρ τ γ ρ τ γ ρ τ γ ρ τ γ ρ τ
CoP 56.1 51.0 39.4 73.0 65.3 53.2 23.6 22.6 18.0 22.8 20.8 17.0 26.6 25.3 20.7
HaRiM 61.0 53.9 42.1 67.4 58.2 47.1 42.7 37.6 29.8 14.8 13.9 11.4 15.8 16.0 13.1
CoCotoken 55.9 50.1 39.0 64.7 53.1 42.6 41.3 36.8 29.1 8.0 6.8 5.6 21.4 22.8 18.7
CoCospan 56.9 50.3 39.1 66.4 56.0 45.0 39.5 35.3 27.9 12.7 11.8 9.6 25.3 26.1 21.4
CoCosent 60.9 54.1 42.2 71.7 62.0 50.2 39.4 35.0 27.6 16.3 15.8 12.9 16.5 14.9 12.2
CoCodoc 59.9 54.0 42.1 71.6 61.9 50.2 39.1 34.8 27.5 18.5 17.2 14.1 22.1 21.5 17.6

Table 8: Correlations(%) of comparisons among CoP, HaRiM, and CoCo with BART for faithfulness rating. The
highest scores are in bold.

Metric CoGenSum SummEval FRANK Polytope FactCC XSumFaith
FFLM 71.8 83.9 84.4 61.5 77.3 58.9
Ablations on the metric components
∆prior

Y 52.2 64.6 76.2 54.8 55.8 60.5
∆prior

X 49.5 67.9 73.4 62.0 55.4 58.6
∆cond

Y 64.4 82.9 83.1 56.8 79.0 53.5
∆prior

Y , ∆prior
X 54.7 65.6 77.4 62.0 55.0 58.9

∆prior
Y , ∆cond

Y 70.5 83.5 84.4 56.8 77.3 59.8
∆prior

X , ∆cond
Y 64.4 83.5 83.6 61.5 78.6 58.6

Ablations on the metric design
- w/o w 69.5 83.3 83.5 66.7 77.4 57.8
- w/o log 68.7 78.5 83.5 60.9 74.2 58.1
- w/o w and log 65.3 80.9 83.1 64.1 75.2 56.6

Table 9: Ablations of FFLM for inconsistency detection. The highest scores are in bold.

Metric CoGenSum SummEval FRANK Polytope FactCC XSumFaith
Prompting Approach
LLaMa-7b 54.3 50.0 53.6 53.7 51.7 51.7
Vicuna-7b 56.9 58.1 69.2 54.6 69.0 55.5
Alpaca-7b 57.8 50.0 57.5 52.6 58.8 51.1
Our Approach
LLaMa-7b 71.8 83.9 84.4 61.5 77.3 58.9
Vicuna-7b 68.6 83.2 83.8 58.3 77.2 58.9
Alpaca-7b 65.2 85.0 83.9 59.1 78.5 60.7

Table 10: Comparisons with prompting and instruction-tuning techniques under the same model size for inconsis-
tency detection. The highest scores are in bold in each column and are underlined among each kind of approach.

and generation ability requirements for prompting
large language models.



Citation Prompt
Inconsistency Detection

Chen et al. (2023)

{Document}
Q: Can the following statement be inferred from
the above document? Yes or No?
{Summary}
A:

Gao et al. (2023)

Is the sentence supported by the article?
Article: {Document}
Sentence: {Summary}
Answer "Yes" or "No":

Luo et al. (2023)

Decide if the following summary is consistent with
the corresponding article.
Article: {Document}
Summary: {Summary}
Answer (yes or no):

Faithfulness Rating

Gao et al. (2023)

Evaluate the quality of summaries written for a
news article. Rate each summary on consistency.
You should rate on a scale from 1 (worst) to 5
(best).
Article: {Document}
Summary: {Summary}
Marks:

Luo et al. (2023)

Score the following summary given the
corresponding article with respect to consistency
from 1 to 10. Note that consistency measures how
much information included in the summary is
present in the source article. 10 points indicate the
summary contains only statements that are entailed
by the source document.
Summary: {Summary}
Source Article: {Document}
Marks:

Table 11: A collection of prompts.“{}” marks place-
holders for corresponding contents.

Dataset Chen et al. (2023) Gao et al. (2023) Luo et al. (2023)
CoGenSum 56.9 49.8 49.4
SummEval 58.1 50.2 54.5
FRANK 69.2 46.9 57.8
Polytope 54.6 51.0 52.8
FactCC 69.0 51.7 53.8
XSumFaith 52.2 49.6 55.5

Table 12: Balanced accuracy(%) of Vicuna-7B with dif-
ferent prompts for inconsistency detection. The highest
accuracy on each dataset is in bold.

Dataset Gao et al. (2023) Luo et al. (2023)
FRANKCNN 17.4 -5.0
QAGSCNN 19.8 4.6
SummEval 11.9 -0.9
FRANKXSUM 5.5 -3.6
QAGSXSUM 8.4 -3.3

Table 13: Spearman correlation(%) of Vicuna-7B with
different prompts for faithfulness rating. The highest
correlation on each dataset is in bold.


