KNOWLEDGE EXCHANGE WITH CONFIDENCE: COST-EFFECTIVE LLM INTEGRATION FOR RELIABLE AND EFFICIENT VISUAL QUESTION ANSWERING

Anonymous authors

000

001

002

004

006

012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

033

034

035

037

038

040

041

042

043

044

045

046 047

048

051

052

Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have improved the accuracy of visual question answering (VQA) systems. However, directly applying LLMs to VOA still presents several challenges: (a) suboptimal performance when handling questions from specialized domains, (b) higher computational costs and slower inference speed due to large model sizes, and (c) the absence of a systematic approach to precisely quantify the uncertainty of LLM responses, raising concerns about their reliability in high-stakes tasks. To address these issues, we propose an UNcertainty-aware LLM-Integrated VQA model (Uni-VQA). This model facilitates knowledge exchange between the LLM and a calibrated task specific model (i.e., TS-VQA), guided by reliable confidence scores, resulting in improved VQA accuracy, reliability and inference speed. Our framework strategically leverages these confidence scores to manage the interaction between the LLM and TS-VQA: the specialized questions are answered by the TS-VQA model, while general knowledge questions are handled by the LLM. For questions requiring both specialized and general knowledge, the TS-VQA provides candidate answers, which the LLM then combines with its internal knowledge to generate a more accurate response. Extensive experiments on VQA datasets demonstrate the theoretically justified advantages of Uni-VQA over using the LLM or TS-VQA alone.

1 Introduction

Recent advances in Large Language Models (LLMs) have opened new opportunities to enhance Visual Question Answering (VQA) performance by leveraging the rich general knowledge these models acquire through large-scale pre-training. LLMs consistently achieve higher accuracy on VQA tasks compared to traditional task-specific VQA models (TS-VQA), which are smaller models trained specifically for visual question answering. However, fully relying on LLMs for VQA faces critical practical challenges that limit their real-world deployment.

The primary challenge is computational efficiency. LLMs typically require billions of parameters, resulting in prohibitive computational overhead, high financial costs, and significant inference latency. These limitations become critical in time-sensitive applications (Ding et al., 2025) and resource-constrained environments. Moreover, recent studies show that multi-purpose LLMs can be orders of magnitude more expensive to operate than task-specific models during inference. Environmental concerns add another layer of complexity, as large-scale models contribute substantially to carbon emissions and energy consumption (Strubell et al., 2020; Bommasani et al., 2021; Weidinger et al., 2022; Wu et al., 2022). Additionally, relying on third-party LLMs introduces recurring costs, and potential data privacy risks.

However, this computational burden may be unnecessary for many questions. Not all visual questions require the full power of massive language models – smaller TS-VQA models can effectively handle simpler queries while consuming significantly less computational resources. Furthermore, TS-VQA models trained on domain-specific data can sometimes provide more accurate answers than LLMs in specialized areas where the LLMs lack sufficient knowledge. Most importantly, our empirical analysis reveals that LLMs and TS-VQA models possess complementary strengths: even when TS-VQA models are uncertain about their final answers, they often generate valuable candidate answers that, when shared with LLMs, substantially improve LLM performance (as shown in

Figure 1: Comparison of TS-VQA (VisualBERT), an LLM (Mistral-7B), and our hybrid Uni-VQA (73% delegation) in average latency, carbon emissions¹, accuracy, and ECE (Expected Calibration Error) on COCO-QA. (*ECE measures the gap between confidence and accuracy of the model; lower ECE is better.)

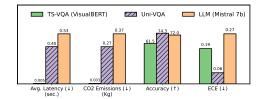


Fig. 2a). This suggests an opportunity for a collaborative approach rather than simply choosing between the two model types.

Building on this observation, we propose a hybrid framework that enables strategic collaboration between TS-VQA models and LLMs. The key insight is to use the TS-VQA model's confidence scores to determine not only when to consult the LLM, but also when and how to transfer specialized knowledge from the TS-VQA model to enhance LLM reasoning. To realize this vision, we introduce Uni-VQA (UNcertainty-aware LLM integrated VQA), a novel hybrid framework that intelligently combines TS-VQA models with LLMs through confidence-based collaboration. However, standard VQA models trained with cross-entropy loss tend to be overconfident and poorly calibrated, as illustrated in Fig. 2b. They often produce incorrect answers with high confidence scores, meaning these scores cannot reliably indicate when the model is actually correct – rendering them untrustworthy for decision-making. To address this critical issue, we develop a calibration technique that ensures confidence scores accurately reflect the likelihood of correctness, as shown in Fig. 2c, enabling reliable confidence-based integration within our hybrid framework.

With properly calibrated confidence scores, Uni-VQA framework operates through a three-tiered knowledge exchange mechanism based on confidence levels. For highly specialized questions where the TS-VQA model exhibits high confidence (meaning answer is very likely to be correct), the system provides answers directly without consulting the LLM, leveraging the model's domain expertise efficiently. For questions requiring broad general knowledge, where the calibrated TS-VQA model shows low confidence, the framework delegates entirely to the LLM. Most importantly, for questions requiring both specialized and general knowledge – where the TS-VQA model has partial knowledge but remains uncertain – our framework enables a novel form of collaboration. The TS-VQA model transfers its specialized knowledge by providing dynamically selected candidate answers to the LLM, which the LLM then incorporates with its general knowledge to produce more accurate responses. This collaborative approach leverages the complementary strengths of both model types.

The overall framework during the inference is illustrated in Figure 2d. By selectively delegating questions that require general knowledge to the LLM, our framework significantly reduces overall computation and inference costs, while achieving higher accuracy, compared to using the LLM alone, as shown in fig. 1. Experimental results across multiple VQA datasets show that Uni-VQA outperforms both the LLM and TS-VQA used in isolation, while dramatically reducing computational overhead. Our contributions are summarized as follows:

- We develop a calibration technique for TS-VQA models that provide reliable confidence estimates
 essential for effective confidence-based hybrid integration.
- We introduce UNcertainty-aware LLM integrated VQA model (Uni-VQA) that enables cost-effective knowledge exchange between LLMs and calibrated TS-VQA models, improving both accuracy and efficiency through strategic collaboration.
- We provide a theoretical analysis to justify the calibration benefits of our diverse ensemble, and demonstrate substantial improvements in both accuracy and efficiency across multiple TS-VQA models and VQA datasets.

2 RELATED WORK

Visual Question Answering. To tackle the complex VQA problem, various methodologies have been developed (Schwenk et al., 2022; Lin et al., 2022; Gao et al., 2022; Qian et al., 2022). To enhance the understanding of the context present in the VQA text, attention-based mechanisms have been used (Gao et al., 2019; Lu et al., 2018; Yu et al., 2019). Pre-training has also been leveraged, where models are first pre-trained using unlabeled data and then fine-tuned in the downstream VQA tasks (Shen et al., 2021; Alayrac et al., 2022; Zeng et al., 2023; Bao et al., 2022; Wang et al., 2023)

¹Carbon emissions of models are estimated using https://github.com/mlco2/codecarbon.

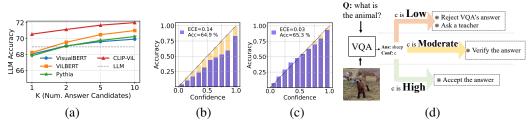


Figure 2: (a) Effectiveness of incorporation of candidate answer of four TS-VQA models on the performance of Mistral-7B, demonstrating improved accuracy as more knowledge is shared with the LLM. (b) and (c) present reliability diagrams of a baseline and calibrated TS-VQAs (VisualBERT), respectively, showing how model confidence aligns with actual accuracy (orange bars represent a perfect calibration). (d) General workflow of Uni-VQA during inference, illustrating how confidence levels determine whether to use the VQA model directly, consult and LLM, or rely entirely on the LLM.

Large Language Model based VQA. Due to pre-training and reasoning capabilities of LLMs, these models provide an implicit knowledge source for the VQA tasks. Yang et al. (2022) use image captions to provide visual context to GPT-3 as an implicit knowledge base for knowledge based VQA task. Yu et al. (2023) propose a framework that prompts LLMs with complementary answer candidates and answer-aware examples to enhance OK-VQA performance. However, these LLM based VQA models are inadequate for building reliable, efficient, and cost-effective VQA due to their total reliance on LLMs to address all the questions. The knowledge exchange between the LLM and the TS-VQA is not properly guided, which may lead to sub-optimal performance.

Calibration in VQA. Whitehead et al. (2022) introduced the concept of reliability in VQA, treating it as a selective prediction task. They propose incorporating an additional selection mechanism to determine whether the model should provide an answer or abstain, based on an estimated confidence score. Training the selector component requires an additional held-out labeled dataset. To avoid this, Dancette et al. (2023) propose a training strategy, which enables training both the VQA model and selector on the same dataset, by obtaining pseudo-labels for training the selector in a distributed manner. While these methods enhance the model prediction reliability by abstaining answers with low confidence, they do not address the issue of poor-calibration and overconfidence phenomenon stemming from memorization effect. Also, abstaining when confidence is low limits their use in real-world applications where we always expect an answer.

3 METHODOLOGY

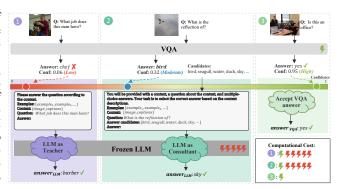
Assume $\mathcal{D}_N = \{(\mathbf{v}_n, \mathbf{q}_n, \mathbf{a}_n)\}_{n=1}^N$ is a dataset consisting of N instances, where each instance comprises an image \mathbf{v}_n , a question \mathbf{q}_n , and an answer \mathbf{a}_n . We establish $\mathcal{X} \equiv \mathcal{V} \times \mathcal{Q}$ as the input space, with $\mathbf{x}_n = (\mathbf{v}_n, \mathbf{q}_n)$ representing an input data point. Additional concepts utilized in the paper are elaborated in the Appendix.

3.1 OVERVIEW OF THE FRAMEWORK

Figure 3 illustrates the overview of the proposed Uni-VQA framework. During the training phase, we first train a well-calibrated TS-VQA model employing a diverse ensemble based approach. This calibration step is crucial because reliable confidence scores enable effective integration between the TS-VQA and LLM components during inference. The inference phase, operates through a confidence-guided process: Initially, the calibrated TS-VQA model generates an initial answer along with its associated confidence score c. Based on this confidence score, the framework routes the query to one of three distinct scenarios defined by confidence thresholds l and u. 1) when the TS-VQA exhibits high confidence ($c \ge u$), the TS-VQA answer is accepted directly without LLM's involvement, leveraging the model's domain-specific expertise efficiently. 2) When confidence is low (c < l, typically for questions requiring broad general knowledge beyond TS-VQA's specialization.), the question is fully delegated to the LLM without answer candidates, which we refer to as the **LLM as Teacher** scenario. 3) For moderate confidence levels ($l \le c < u$), where TS-VQA has partial knowledge but remains uncertain, answer candidates of TS-VQA are dynamically selected and provided to the LLM in what we call the **LLM as Consultant** scenario, enabling a collaborative reasoning where the LLM integrates these specialized insights with its own general knowledge.

This confidence-guided delegation mechanism strategically leverages the complementary strengths of both model types. It utilizes the TS-VQA's domain-specific expertise with low computational cost

Figure 3: General overview of Uni-VQA framework at inference time. LLM serves different roles depending on the VQA's confidence. (a) If VQA model is least confident, the LLM serves as a teacher and provides the answer to question, (b) If VQA model is confused among multiple candidate answers, the LLM serves as a consultant and helps to select answer from candidate models. If VQA model is highly confident, Uni-VQA directly answers without LLM involvement.



for high-confidence questions, harnesses the LLM's broad reasoning capabilities for challenging general knowledge queries, and facilitates knowledge exchange through candidate answers when both specialized and general knowledge are needed to improve predictive performance.

3.2 RELIABLE VQA VIA MODEL CALIBRATION

In our Uni-VQA framework, the integration of LLM and TS-VQA models depends critically on the TS-VQA model's confidence estimates. For optimal integration, these confidence estimates must reliably indicate answer correctness, *i.e.*, low confidence should signal incorrect answers, while high confidence should signal correct ones. This requires well-calibrated TS-VQA models where confidence estimates accurately align with actual accuracies. However, standard VQA models trained with cross-entropy loss suffer from overconfidence (fig. 2b), consistently expressing higher confidence than their actual accuracies.

Diverse Ensemble Strategy. To address the calibration problem, we propose a Diverse Ensemble (DE) strategy that creates multiple complementary TS-VQA models, each specializing on different aspects of the data distribution. Deep ensembles are shown to effectively improve model accuracy and calibration (Wilson & Izmailov, 2020; Lakshminarayanan et al., 2017; Wood et al., 2023; Sapkota et al., 2024), particularly when diversity is enforced among base learners. Our approach leverages Distributionally Robust Optimization (DRO) (Duchi & Namkoong, 2019) to train an ensemble of E diverse TS-VQA models that naturally complement each other.

The key insight is to train each ensemble member to focus on a different data distribution, where some models become experts on easier samples while others specialize on harder samples. We achieve this through a weighted loss function:

ss function:

$$\mathcal{L}_{DRO}(\Theta) = \sum_{n=1}^{N} \mathbf{w}_n l(\mathbf{x}_n, \Theta)$$
(1)

where \mathbf{w}_n determines the emphasis on each training instance \mathbf{x}_n . The weight vector \mathbf{w} is dynamically computed during training based on sample difficulty and a hyperparameter λ that controls the divergence from uniform weighting.

By varying the hyperparameter λ across ensemble members, we create models with different specializations. When λ is small, the weighting scheme emphasizes challenging samples, producing a model that tends to be cautious (lower confidence) since it has learned to handle difficult cases. When λ is large, the weighting approaches uniform distribution, creating a model that captures general patterns and tends to be more confident on typical samples. We train three models with small, moderate, and large λ values, creating complementary expertise across the difficulty spectrum.

The ensemble prediction combines these diverse perspectives by averaging the logits: $f_{DE}(\mathbf{x}) = \frac{1}{E} \sum_{e=1}^{E} f_e(\mathbf{x})$, where $f_e(\mathbf{x})$ represents the logits from the e-th ensemble member. This combination naturally produces well-calibrated confidence scores because the cautious models (trained on hard samples) temper the overconfidence of models trained on easier samples, while confident predictions from easy-sample experts are validated across the ensemble.

As demonstrated in Figures 10 and 11 in the appendix appendix G.3, our diverse ensemble significantly improves calibration by assigning appropriately lower confidence to incorrect answers while maintaining high confidence for correct responses, making the confidence scores a reliable indicator for our delegation mechanism.

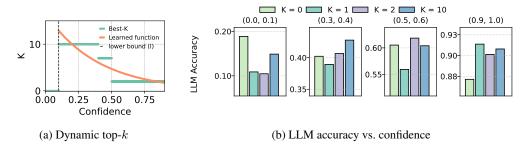


Figure 4: (a) Learned mapping: confidence to k. (b) Accuracy for $k \in \{0, 1, 2, 10\}$ across confidence bins.

3.3 CONFIDENCE GUIDED KNOWLEDGE EXCHANGE

Calibrated TS-VQA confidence scores are critical in selectively delegating challenging questions along with answer candidates to the LLM, not only improving the overall predictive performance but also enabling efficient inference of easier questions by the TS-VQA model. Additionally, the effectiveness of these candidate answers varies significantly across different confidence intervals.

Motivated by this observation, we hypothesize that within different confidences, the number of answer candidates from which the LLM can benefit if presented by those varies. Specifically, for an effective combination of LLM and VQA by answer-candidate augmentation, fewer answer-candidates are needed at high confidences of TS-VQA, while more candidates become beneficial as the confidences decrease. At lowest confidences, providing large number of answer candidates is impractical, making it more effective for the LLM to answer the questions without relying on any answer candidates. To validate this hypothesize we compare the LLM's predictive accuracy within each confidence interval of the TS-VQA for varying number of answer candidates in top-0, top-1, top-2, and top-10 along with LLM's performance without answer candidates. As fig. 4b suggests, in higher confidence intervals, LLMs performance is higher when fewer answer candidates are presented. As confidence interval decreases, LLMs performance is enhanced when more answer candidates are included. In the lowest confidence intervals, the LLM's performance with answer candidates drops as compared to when no answer candidate is presented.

To that end, we propose a dynamic approach for effective answer candidate selection, informed by the TS-VQA's answer confidence. Considering $c_i = \max f_{\Theta}(\mathbf{x}_i)$ as the confidence of the predicted answer \hat{a}_i . We define l, as threshold for delegating to LLM with no answer candidates, and u as thresholds for using TS-VQA for question answering. Specifically, if $c_i \geq u$, then the answer predicted by the TS-VQA model i.e. \hat{a}_i is accepted, and if $c_i < l$, answering is delegated to LLM, without any answer candidates included in the prompt. For $u \geq c_i \geq l$, answering is delegated to LLM provided with $K(c_i) \geq 1$ answer-candidate where K is determined by:

$$K(c_i) \approx \lceil M e^{-W(\frac{c_i - l}{u - l})} \rceil,$$
 (2)

where $0 \ge l, u \le 1$, and learnable parameters M, W are determined based on a validation set and $\lceil x \rceil$ is the rounding operation that converts the fractional value into the closest integer. Figure 4a presents the learned top-k answer candidate selection for Calibrated CLIP-ViL.

3.4 ACCELERATING INFERENCE WITH KNOWLEDGE DISTILLATION

To further reduce the inference cost, we propose to leverage knowledge distillation to transfer the predictive accuracy and calibration of the diverse ensemble (DE) into a single TS-VQA model with the same architecture as the individual ensemble components. Instead of learning from target labels using cross-entropy loss, the distilled model minimizes the Kullback-Leibler divergence between its output distribution and the diverse ensemble's output logits distribution. This approach effectively preserves both accuracy and calibration with theoretical guarantees Allen-Zhu & Li; Hebbalaguppe et al. (2024) while eliminating the additional computational burden of ensembling. Our experiments show that the distilled model maintains comparable ECE and accuracy (within 0.4%) while reducing latency up to 60%. Further details and numerical results are provided in Appendix G.9.

4 THEORETICAL ANALYSIS

In this section, we theoretically demonstrate that the proposed Uni-VQA technique effectively delegates a greater number of incorrect predictions, that would otherwise be confidently wrong. We

show this in two steps. First, we demonstrate how the diverse ensemble technique improves calibration. In the second step, we show that with better calibration, more incorrect samples are shifted into the low-confidence regions, allowing them to be effectively delegated to the LLM for correction. Complete proofs for the theoretical results are provided in Appendix D.

Diverse ensemble improves the ECE. In this section, we showcase the lemma demonstrating how diverse ensemble techniques improve the model calibration (i.e., ECE) compared to an Expected Risk Minimization (ERM)-based model. Specifically, in the following lemma, we show that the DE loss will be an upperbound on the regularized cross-entropy loss where the regularizer is the negative entropy of the predictive distribution $\hat{p} = f_{\theta}(\mathbf{x})$

Lemma 4.1 Consider $\mathcal{L}_{DE}(\theta)$ being the diverse ensemble loss and $\mathcal{L}^e_{CE}(\theta)$ being the cross entropy loss for the subnetwork e, and $\hat{p}^e = f^e_{\theta}(\mathbf{x})$ being the prediction distribution of the base subnetwork e. Then, we have:

 $\mathcal{L}_{DE}(\theta) \ge \frac{1}{C} \sum_{e=1}^{|E|} \left[\mathcal{L}_{CE}^{e}(\theta) - \lambda_e \mathcal{H}^{e}[\hat{p}] \right]$ (3)

where |E| is the total number of subnetworks used in our ensemble, C is the normalization constant of DRO weights, λ_e is the DRO hyperparameter controlling the balance between CE loss and predictive entropy, and $\mathcal{H}^e[\hat{p}]$ being the entropy of the \hat{p} .

Remark. The Lemma indicates that minimizing the DE loss leads to: (a) minimization of the cross-entropy loss, and (b) an increase in the entropy of the predictive distribution \hat{p} . Increasing the entropy of the predictive distribution can avoid overconfident predictions produced by the DNN network, thereby improving the calibration. As a result our approach will reduce the likelihood of errors in the high confidence region, ensuring that the incorrect predictions remain in the low confidence regions. These low-confidence questions are then delegated to the LLM, that provides the final answer with the support of the dynamically selected candidate answers from the TS-VQA.

Diverse ensemble maximizes incorrect sample delegation. Because of the improved calibration achieved through the diverse ensemble technique, our approach shifts more incorrect samples into the low confidence region compared to the ERM-based approach. This is because, ERM tends to produce overconfident prediction for most of the samples, causing many wrongly answered samples to fall in the

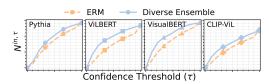


Figure 5: Empirical evidence illustrating $N_{\text{DE}}^{in,\tau} \geq N_{\text{ERM}}^{in,\tau}$, across four VQA architectures.

high-confidence region (as shown empirically in Figure 10). In contrast, diverse ensemble lowers confidence levels, leading to a higher number of samples in the low-confidence region.

Theorem 4.2 Let N_{DE}^{τ} and N_{ERM}^{τ} being total number of samples belonging to the low confidence region $\mathcal{R}: \{\hat{p} \in [0,...,\tau]\}$ with τ being the threshold defining the low-confidence region. Then, for the region \mathcal{R} , the following holds true $N_{DE}^{in,\tau} \geq N_{ERM}^{in,\tau}$ (4)

where $N_{\rm DE}^{in,\tau}, N_{\rm ERM}^{in,\tau}$ are # of incorrect samples from DRO and ERM, respectively in region \mathcal{R} .

Remark. By leveraging the DE-framework, we ensure that the incorrect samples are more likely to be in the low-confidence region, as empirically illustrated in fig. 5. It maximizes the LLM's ability to correct these incorrect answers. In contrast, the ERM-based approach frequently assigns high confidence scores to incorrect samples due to overfitting. As a result, the delegation threshold must be set very high to pass these samples to the LLM for correction. This leads to either suboptimal accuracy if threshold is not high enough, or sub-optimal efficiency if the threshold is set too high, requiring more frequent delegation to the LLM.

5 EXPERIMENTS

We evaluated the performance of our Uni-VQA framework on multiple existing VQA architectures and report comparative quantitative results on the VQA-v2 (Antol et al., 2015) and COCOQA (Ren et al., 2015) test splits, and conduct extensive ablation studies to justify the effectiveness of various proposed components. This includes effectiveness of (i) diverse ensemble-based VQA, (ii) answer-candidate augmented LLM prompting, and (iii) dynamic answer-candidate selection approach. Due to limited space, we have included more experimental results in the appendix G.9.

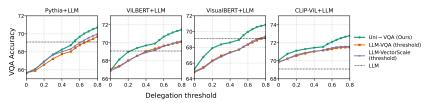


Figure 6: Performance comparison of the proposed, against LLM-VQA, and LLM-VectorScale (threshold) models, with respect to the delegation threshold. Accuracy at zero delegation is accuracy of TS-VQA model.

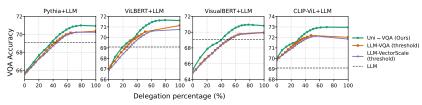


Figure 7: Performance comparison of the proposed, against LLM-VQA, and LLM-VectorScale (threshold) models with fixed top-10 answer candidates, with respect to the delegation percentage.

Baselines. We have considered five baselines. This include (a) Pretrained-LLM, (b) TS-VQA, (c) VectorScale-based post-hoc calibrated VQA, referred as VectorScale Guo et al. (2017), (d) hybrid LLM-VQA confidence threshold based delegation, referred as LLM-VQA, and (e) VQA models with our novel calibration technique denoted as Calibrated. LLM-VectorScale refers to integration of LLM with the VectorScale calibrated VQA. Specifically, in terms of VQA models, we consider five TS-VQA models: Pythia Jiang et al. (2018), CLIP-ViL Shen et al. (2021), ViLBERT Lu et al. (2019), VisualBERT Li et al. (2019), and BEiT-3 Wang et al. (2023). Pythia Jiang et al. (2018) is a bottom-up top-down model, which leverages the up-down attention mechanism Anderson et al. (2018), and combines the representations of question and image by element-wise multiplication. CLIP-ViL Shen et al. (2021) uses the Movie-MCAN architecture Nguyen et al. (2020) with the visual encoder of the CLIP Radford et al. (2021) pre-training model. ViLBERT Lu et al. (2019) and VisualBERT Li et al. (2019) are pre-training-based transformer architectures with attention mechanisms. BEiT-3 is an state-of-the-art general-purpose vision-language model trained through masked-data modeling. For LLM-based models, we have employed frozen *Mistral-7B* Jiang et al. (2023), and LLaVA-1.5 13B Liu et al. (2023) as a VLM.

Dataset and evaluation metrics. We use VQA-v2 (Antol et al., 2015) and COCOQA (Ren et al., 2015) data sets. See appendix F.1 for more details. We utilize three metrics for evaluation: (1) VQA accuracy (ACC) to illustrate predictive performance, (2) Expected Calibration Error (ECE) which measures the difference between model confidence and actual accuracy (lower is better, with 0 indicating a perfect calibration, and is used to assess the reliability, (3) the proportion of questions assigned to LLM (LLM-Deleg %) as a proxy for computational expense and inference time, reflecting the extra cost incurred by LLM, and (4) Average latency of inference (Latency) measured in seconds. For complete implementation details refer to Appendix F.3.

5.1 Comparison Results

Figure 6 compares our approach with the baselines for various delegation thresholds. With the delegation threshold of 0, none of the questions is delegated to the LLM whereas, as threshold increases, more questions with lower confidence scores are delegated to the LLM. LLM-only indicates the baseline result when we directly answer all questions using LLM. There are two key observations that can be inferred from the Figure 6. First, delegating low-confidence samples to the LLM improves performance across all baselines, including our Uni-VQA. This improvement can be attributed to the LLM's ability to handle challenging questions that the TS-VQA models struggle with. Second, due to its superior calibration, coupled with the uncertainty-sensitive dynamic delegation technique, our Uni-VQA delegates more incorrect samples to the LLM, achieving better overall performance compared to other baselines. This highlights the importance of calibration enhancement and dynamic delegation in hybrid VQA models.

Figure 7 compares our Uni-VQA with baselines in terms of the VQA accuracy against the LLM-delegation percentage. First, our approach achieves the highest maximum accuracy than the baselines. At any given fixed delegation percentage, it also obtains a higher accuracy than the baselines. It's worth to note that, our model can match the accuracy of baselines with a lower delegation percentage, which implies a lower inference-time and computational overhead. For example, in Visu-

Table 1: Performance comparison of Uni-VQA with TS-VQA models and LLM across four architectures.

				VQA-v2				COCOQA	
	Model	ACC↑	ECE↓	LLM-Deleg(%)↓	Latency↓	ACC↑	ECE↓	LLM-Deleg(%)↓	Latency↓
LLM-	only (Mistral-7B)	69.09	0.31	100	0.534	72.03	0.27	100	0.534
	Standard VQA	65.67	0.14	-	0.003	68.62	0.16	-	0.001
Pythia	VectorScale	65.59	0.09	-	0.003	68.88	0.10	-	0.001
- 3	Calibrated (Ours)	66.15	0.06	-	0.009	68.64	0.02	-	0.009
	Uni-VQA (Ours)	71.00	0.05	78.77	0.115	74.78	0.06	64.84	0.342
	Standard VQA	69.95	0.18	-	0.023	70.38	0.15	-	0.016
CLIP-ViL	VectorScale	69.81	0.15	-	0.031	70.41	0.11	-	0.017
CL11 111	Calibrated (Ours)	70.05	0.08	-	0.096	69.94	0.02	-	0.048
	Uni-VQA (Ours)	72.98	0.07	69.86	0.322	74.95	0.06	64.89	0.314
	Standard VQA	66.98	0.19	-	0.009	69.23	0.20	-	0.004
Vilbert	VectorScale	66.87	0.14	-	0.011	69.04	0.17	-	0.007
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Calibrated (Ours)	66.90	0.05	-	0.027	70.59	0.02	-	0.012
	Uni-VQA (Ours)	71.65	0.07	79.06	0.397	75.63	0.05	67.19	0.347
	Standard VQA	64.92	0.14	-	0.009	65.28	0.19	-	0.003
VisualBERT	VectorScale	64.83	0.14	-	0.010	64.40	0.18	-	0.003
V104411212141	Calibrated (Ours)	65.26	0.03	-	0.027	67.38	0.01	-	0.009
	Uni-VQA (Ours)	70.95	0.08	77.87	0.392	74.34	0.06	73.46	0.382
	Standard VQA	73.19	0.14	-	0.009	72.29	0.18	-	0.009
BEiT-3	VectorScale	73.62	0.14	-	0.009	72.16	0.16	-	0.009
22.1-0	Calibrated (Ours)	73.25	0.04	-	0.027	71.94	0.02	-	0.027
	Uni-VQA (Ours)	74.33	0.07	35.91	0.181	76.01	0.02	57.82	0.291

alBERT, Uni-VQA achieves the same 68.3% VQA accuracy as LLM-VectorScale but with 11.67% lower LLM delegation. Table 1 further demonstrates the effectiveness of our Uni-VQA with regard to different VQA models against the competitive baselines. The Table mainly demonstrates two key phenomenon. First, our calibration technique, **Calibrated** (Ours), improves the calibration performance i.e., ECE without compromising the accuracy. Second, due to the enhanced calibration, the presence of overconfident wrong predictions are effectively minimized in the highest confidence regions. As a result, the uncertainty-aware dynamic delegation ensures that easier questions—those in the high-confidence bins of the calibrated TS-VQA model—are confidently answered without further delegation to the LLM, provided their confidence surpasses the dynamic threshold. Consequently, the hybrid model achieves higher accuracy with reduced reliance on the LLM, underscoring the importance of calibration enhancement and the Uni-VQA approach.

Table 2: LLM-Delegation percentage comparison between proposed Uni-VQA against the LLM-VQA and LLM-VectorScale (threshold) baselines, to match the maximum accuracy achieved by baselines on VQA-v2.

		LL	M-Deleg(%)↓		LLI	M-Deleg(%)↓
Model	ACC	LLM-VQA (1	hresh.) Uni-VQA	ACC	LLM-VectorSo	cale (thresh.)Ini-VQA
Pythia	70.07	64.38	50.06 (-14.32%)	70.07	66.11	50.06 (-16.05%)
CLIP-ViL	71.51	35.5	24.4 (-11.1%)	71.6	40.56	27.56 (-13.0%)
ViLBERT	70.25	51.03	41.06 (-9.97%)	70.42	60.86	41.06 (-19.8%)
VisualBERT	69.75	64.01	47.51 (-16.5%)	69.88	66.79	49.18 (-17.61%)
BEiT-3	73.71	10.16	9.06 (-1.1%)	73.62	26.23	6.71 (-19.52%)

Our experiments reveal a trade-off between accuracy and the delegation percentage to the LLM. Adjusting the delegation threshold allows control over how often the LLM is used. Lowering the threshold reduces the reliance on the LLM and computational costs, but results in smaller gains in accuracy. This flexibility enables adaptation based on resource constraints and performance requirements, making the hybrid approach versatile for practical applications.

5.2 ABLATION STUDIES

We analyze LLM/VLM inference costs of our Uni-VQA in terms of the delegation percentage versus model accuracy. Additional ablation studies are provided in Appendix G.

LLM Inference Cost Analysis. We study the effectiveness of our technique in terms of LLM computation and inference cost. Table 3 shows the fraction of samples delegated by our Uni-VQA model in order to obtain the same accuracy (i.e., 69.09%) as that of the LLM-Only model where 100% samples have been answered by the LLM. As shown, with a much less delegated samples to LLM, we achieve a competitive accuracy. For example, using Vilbert VQA backbone, our Uni-VQA achieves an accuracy of 69.09% (matching LLM-only accuracy) with only 19.4% delegation to the LLM. This means, for most of the samples we can leverage cheap computational VQA model whereas, we can delegate only limited amount of low-confident samples to LLM for the correction. Hence, we can maintain high predictive accuracy while being more efficient on LLM inference cost as well as computation cost by significantly reducing the reliance.

While our Uni-VQA shows significant accuracy gains across all backbones in VQA-v2, the improvement in BEiT-3 model is limited. This can be attributed to the fact that the BEiT-3 model already demonstrates a strong performance compared to the LLM. In such cases where the TS-VQA is already highly competent, accuracy gain from LLM delegation is naturally smaller.

Table 3: Delegation percentage for Uni-VQA models to match LLM-Only accuracy.

Table 4: LLaVA	Delegation	across	models,	to	match	the
LLaVA accuracy (78.35%).					

	Target ACC-	L	LM-Deleg	(%)
	Target ACC	Pythia	ViLBERT	VisualBERT
VQA-v2	69.09	38.81	19.4	40.39
COCOQA	72.03	17.14	8.06	12.13

Model		LLM-Deleg (%)	1
Model	LLM-VQA	LLM-VectorScale	Uni-VQA(Ours)
CLIP-ViL	80.3	73.8	65.4
Vilbert	94.0	87.4	82.7
VisualBERT	93.2	89.9	84.6
Pythia	89.7	85.9	84.3

Table 2 shows the percentage of delegated questions of our technique baselined against the two competitive baselines: LLM-VQA and LLM-VectorScale (threshold). As shown, to achieve the given accuracy, proposed Uni-VQA delegates significantly lower fraction of questions to LLM and thereby being computationally more efficient.

VLLM Inference Cost Analysis We also analyze the effectiveness of our Uni-VQA approach in reducing inference costs by using LLaVA, a large-scale vision language model (VLLM), as the LLM-based model. Our main objective is to demonstrate that Uni-VQA significantly lowers the reliance on LLaVA while maintaining comparable accuracy levels. table 4 presents the LLM-delegation percentages for different VQA architectures, between our Uni-VQA, LLM-VQA and LLM-VectorScale (threshold), in order to achieve the same accuracy as the LLaVA-only setup, indicating a substantial reduction in delegation when using Uni-VQA. For instance, with CLIP-ViL as TS-VQA model, Uni-VQA achieves the same accuracy as LLaVA-only (78.53%) while requiring approximately 15% and 8% less delegation compared to LLM-VQA and LLM-VectorScale, respectively.

By leveraging the calibrated confidences of our Calibrated TS-VQA models, Uni-VQA effectively routes a fraction of questions to LLaVA only when necessary, avoiding redundant heavy computation on questions that can be reliably answered by the TS-VQA. Consequently, Uni-VQA not only reduces inference latency but also lowers the overall computational cost, making it a cost-effective alternative to relying fully on large models.

Remark. As Tables 2 and 4 indicate, we observe that the reduction in LLM delegation is more pronounced for models with well-calibrated confidence scores. This further emphasizes the role of calibration of TS-VQA models in enabling effective knowledge-exchange and uncertainty-aware integration between the TS-VQA and LLM.

5.3 Sensitivity & Robustness Analysis

We conduct a cross-model hyperparameter transfer analysis, where we applied hyperparameters $\{l, u, K(c_i)\}$ tuned on each model to other models, and measuring the impact on their performance, to analyze generalizability of our hyperparameter selections. Table 9 (in Appendix G.7) shows that the maximum accuracy drop never exceeds 1.24 on COCO-QA, confirming that our proposed framework is not sensitive to careful tuning of the hyperparameters. Our analysis provides compelling evidence that careful threshold tuning is unnecessary, and thresholds show remarkable generalizability.

5.4 DISCUSSION

Reducing reliance on computationally intensive models is crucial in ensuring scalable and environmentally sustainable AI applications, as studies ave highlighted significant energy consumption and carbon emissions of large-scale language models (Strubell et al., 2020; Patterson et al., 2021). Our work addresses these concerns by minimizing frequent delegation to high-cost models through strategic integration. Unlike pruning (Zhu et al., 2024; Wan et al., 2023; Fu et al., 2024) and quantization (Zhao et al., 2024; Lin et al., 2024) techniques that reduce model size, our Uni-VQA approach improves inference efficiency by dynamically determining when LLM delegation is necessary based on calibrated TS-VQA confidence scores. his complementary approach can be combined with existing model efficiency techniques to further reduce computational costs while maintaining accuracy.

6 Conclusion

In this paper, we introduce an uncertainty-aware LLM integrated VQA model, referred to as Uni-VQA, which facilitates knowledge exchange between the LLM and a calibrated TS-VQA model based on reliable confidence scores. It cost-effectively improves VQA accuracy and inference speed. Our framework leverages well-calibrated confidence scores to guide the interaction between the LLM and TS-VQA. We conducted extensive experiments across multiple datasets, which demonstrate the effectiveness of Uni-VQA in terms of accuracy, computational efficiency, and reliability.

REFERENCES

- Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *Advances in Neural Information Processing Systems*, 35:23716–23736, 2022.
- Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and self-distillation in deep learning. In *The Eleventh International Conference on Learning Representations*.
- Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei Zhang. Bottom-up and top-down attention for image captioning and visual question answering. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 6077–6086, 2018.
- Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE international conference on computer vision*, pp. 2425–2433, 2015.
- Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT pre-training of image transformers. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=p-BhZSz59o4.
- Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.
- Glenn W Brier. Verification of forecasts expressed in terms of probability. *Monthly weather review*, 78(1):1–3, 1950.
- Corentin Dancette, Spencer Whitehead, Rishabh Maheshwary, Ramakrishna Vedantam, Stefan Scherer, Xinlei Chen, Matthieu Cord, and Marcus Rohrbach. Improving selective visual question answering by learning from your peers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24049–24059, 2023.
- Di Ding, Tianliang Yao, Rong Luo, and Xusen Sun. Visual question answering in robotic surgery: A comprehensive review. *IEEE Access*, 2025.
- John Duchi and Hongseok Namkoong. Variance-based regularization with convex objectives. *Journal of Machine Learning Research*, 20(68):1–55, 2019.
- Shohei Enomoro and Takeharu Eda. Learning to cascade: Confidence calibration for improving the accuracy and computational cost of cascade inference systems. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 7331–7339, 2021.
- Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. vol. 1 springer series in statistics. *New York*, 2001.
- Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari, and Mahyar Najibi. Lazyllm: Dynamic token pruning for efficient long context llm inference. *arXiv preprint arXiv:2407.14057*, 2024.
- Feng Gao, Qing Ping, Govind Thattai, Aishwarya Reganti, Ying Nian Wu, and Prem Natarajan. Transform-retrieve-generate: Natural language-centric outside-knowledge visual question answering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5067–5077, 2022.
- Peng Gao, Zhengkai Jiang, Haoxuan You, Pan Lu, Steven CH Hoi, Xiaogang Wang, and Hongsheng Li. Dynamic fusion with intra-and inter-modality attention flow for visual question answering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6639–6648, 2019.

- Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.
 - Jiaxian Guo, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Boyang Li, Dacheng Tao, and Steven Hoi. From images to textual prompts: Zero-shot visual question answering with frozen large language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10867–10877, 2023.
 - Ramya Hebbalaguppe, Mayank Baranwal, Kartik Anand, and Chetan Arora. Calibration transfer via knowledge distillation. In *Proceedings of the Asian Conference on Computer Vision*, pp. 513–530, 2024.
 - Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.
 - Yu Jiang, Vivek Natarajan, Xinlei Chen, Marcus Rohrbach, Dhruv Batra, and Devi Parikh. Pythia v0. 1: the winning entry to the vqa challenge 2018. *arXiv preprint arXiv:1807.09956*, 2018.
 - Wittawat Jitkrittum, Neha Gupta, Aditya K Menon, Harikrishna Narasimhan, Ankit Rawat, and Sanjiv Kumar. When does confidence-based cascade deferral suffice? *Advances in Neural Information Processing Systems*, 36:9891–9906, 2023.
 - Zaid Khan, Vijay Kumar BG, Samuel Schulter, Manmohan Chandraker, and Yun Fu. Exploring question decomposition for zero-shot vqa. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. *Advances in neural information processing systems*, 30, 2017.
 - Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *International conference on machine learning*, pp. 19730–19742. PMLR, 2023.
 - Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple and performant baseline for vision and language. *arXiv preprint arXiv:1908.03557*, 2019.
 - Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6: 87–100, 2024.
 - Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13*, pp. 740–755. Springer, 2014.
 - Yuanze Lin, Yujia Xie, Dongdong Chen, Yichong Xu, Chenguang Zhu, and Lu Yuan. Revive: Regional visual representation matters in knowledge-based visual question answering. *Advances in Neural Information Processing Systems*, 35:10560–10571, 2022.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*, 2023.
 - Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. *Advances in neural information processing systems*, 32, 2019.
 - Pan Lu, Hongsheng Li, Wei Zhang, Jianyong Wang, and Xiaogang Wang. Co-attending free-form regions and detections with multi-modal multiplicative feature embedding for visual question answering. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.

- Sasha Luccioni, Yacine Jernite, and Emma Strubell. Power hungry processing: Watts driving the cost of ai deployment? In *The 2024 ACM Conference on Fairness, Accountability, and Transparency*, pp. 85–99, 2024.
- Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Dokania. Calibrating deep neural networks using focal loss. Advances in Neural Information Processing Systems, 33:15288–15299, 2020.
- Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated probabilities using bayesian binning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 29, 2015.
- Duy-Kien Nguyen, Vedanuj Goswami, and Xinlei Chen. Movie: Revisiting modulated convolutions for visual counting and beyond. *arXiv preprint arXiv:2004.11883*, 2020.
- Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran. Measuring calibration in deep learning. In *CVPR workshops*, volume 2, 2019.
- David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. *arXiv* preprint arXiv:2104.10350, 2021.
- Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal. Rephrase, augment, reason: Visual grounding of questions for vision-language models. *arXiv preprint arXiv:2310.05861*, 2023.
- Tianwen Qian, Jingjing Chen, Shaoxiang Chen, Bo Wu, and Yu-Gang Jiang. Scene graph refinement network for visual question answering. *IEEE Transactions on Multimedia*, 2022.
- Stephan Rabanser, Nathalie Rauschmayr, Achin Kulshrestha, Petra Poklukar, Wittawat Jitkrittum, Sean Augenstein, Congchao Wang, and Federico Tombari. I know what i don't know: Improving model cascades through confidence tuning. *arXiv preprint arXiv:2502.19335*, 2025.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PMLR, 2021.
- Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring models and data for image question answering. *Advances in neural information processing systems*, 28, 2015.
- Hitesh Sapkota and Qi Yu. Adaptive robust evidential optimization for open set detection from imbalanced data. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=3yJ-hcJBqe.
- Hitesh Sapkota, Dingrong Wang, Zhiqiang Tao, and Qi Yu. Distributionally robust ensemble of lottery tickets towards calibrated sparse network training. *Advances in Neural Information Processing Systems*, 36, 2024.
- Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. *Communications of the ACM*, 63(12):54–63, 2020.
- Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi. A-okvqa: A benchmark for visual question answering using world knowledge. In *European Conference on Computer Vision*, pp. 146–162. Springer, 2022.
- Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, and Kurt Keutzer. How much can clip benefit vision-and-language tasks? *arXiv preprint arXiv:2107.06383*, 2021.
- Amanpreet Singh, Vedanuj Goswami, Vivek Natarajan, Yu Jiang, Xinlei Chen, Meet Shah, Marcus Rohrbach, Dhruv Batra, and Devi Parikh. Mmf: A multimodal framework for vision and language research. *MMF: A multimodal framework for vision and language research*, 2020.

- Tejas Srinivasan, Jack Hessel, Tanmay Gupta, Bill Yuchen Lin, Yejin Choi, Jesse Thomason, and Khyathi Raghavi Chandu. Selective" selective prediction": Reducing unnecessary abstention in vision-language reasoning. *arXiv preprint arXiv:2402.15610*, 2024.
 - Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for modern deep learning research. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 13693–13696, 2020.
 - Anthony Meng Huat Tiong, Junnan Li, Boyang Li, Silvio Savarese, and Steven CH Hoi. Plug-and-play vqa: Zero-shot vqa by conjoining large pretrained models with zero training. *arXiv* preprint *arXiv*:2210.08773, 2022.
 - Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan, Yi Zhu, Quanlu Zhang, et al. Efficient large language models: A survey. *arXiv preprint arXiv:2312.03863*, 2023.
 - Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal, Owais Khan Mohammed, Saksham Singhal, Subhojit Som, and Furu Wei. Image as a foreign language: BEiT pretraining for vision and vision-language tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2023.
 - Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, and Joseph E Gonzalez. Idk cascades: Fast deep learning by learning not to overthink. *arXiv preprint arXiv:1706.00885*, 2017.
 - David Warren and Mark Dras. Bi-directional model cascading with proxy confidence. *arXiv* preprint *arXiv*:2504.19391, 2025.
 - Laura Weidinger, Jonathan Uesato, Maribeth Rauh, Conor Griffin, Po-Sen Huang, John Mellor, Amelia Glaese, Myra Cheng, Borja Balle, Atoosa Kasirzadeh, et al. Taxonomy of risks posed by language models. In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency*, pp. 214–229, 2022.
 - Spencer Whitehead, Suzanne Petryk, Vedaad Shakib, Joseph Gonzalez, Trevor Darrell, Anna Rohrbach, and Marcus Rohrbach. Reliable visual question answering: Abstain rather than answer incorrectly. In *European Conference on Computer Vision*, pp. 148–166. Springer, 2022.
 - Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of generalization. *Advances in neural information processing systems*, 33:4697–4708, 2020.
 - Danny Wood, Tingting Mu, Andrew M Webb, Henry WJ Reeve, Mikel Luján, and Gavin Brown. A unified theory of diversity in ensemble learning. *Journal of machine learning research*, 24(359): 1–49, 2023.
 - Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental implications, challenges and opportunities. *Proceedings of Machine Learning and Systems*, 4:795–813, 2022.
 - Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Yumao Lu, Zicheng Liu, and Lijuan Wang. An empirical study of gpt-3 for few-shot knowledge-based vqa. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 3081–3089, 2022.
 - Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian. Deep modular co-attention networks for visual question answering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6281–6290, 2019.
 - Zhou Yu, Xuecheng Ouyang, Zhenwei Shao, Meng Wang, and Jun Yu. Prophet: Prompting large language models with complementary answer heuristics for knowledge-based visual question answering. *arXiv preprint arXiv:2303.01903*, 2023.
 - Yan Zeng, Xinsong Zhang, Hang Li, Jiawei Wang, Jipeng Zhang, and Wangchunshu Zhou. X 2-vlm: All-in-one pre-trained model for vision-language tasks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and accurate llm serving. *Proceedings of Machine Learning and Systems*, 6:196–209, 2024.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large language models. *Transactions of the Association for Computational Linguistics*, 12: 1556–1577, 2024.

Supplementary Material

In this Appendix, we first provide the Table summarizing the major notations used in our paper in Section A. Next, we provide the important concepts required for the Methodology in Section B. In Section C, we present the detailed methodology for training our diverse ensemble approach for VQA calibration. In Section D we provide the detailed mathematical proofs for our theoretical contributions. In Section F we provide additional experimental details along with the results, and provide a detailed Ablation study in Section G, and additional qualitative analysis in Section H. Finally, we provide the broader impact statement and limitations associated with our work in Sections J and I, respectively.

A SUMMARY OF NOTATIONS

756

758 759

760

761

762

763

764

765

766 767

768 769

770 771

772

773

774

775

776

777

779

780

781

782 783 784

785 786

787

789

790

791

792 793 794

796

797

798

799 800

801 802

804

805

806

808

809

Table 5 summarizes the major notations used in our paper.

Symbol Group Notation Description Answer set Image set Ouestion set Dataset $\widetilde{\mathcal{V} \times \mathcal{Q}}$ Input set $\mathbf{x}_n \equiv (\mathbf{v}_n, \mathbf{q}_n)$ Input image-question pair Total number of classes D_{i} f-divergence DRO Loss $l(\mathbf{x}, \Theta)$ Per-sample loss DRO loss parameter Output probability for n-th data sample associated with class yKNumber of answer candidates from TS-VQA Proposed Hybrid VQA Confidence of predicted answer given input x_i . Dynamically chosen answer candidates count based on the output confidence.

Table 5: Symbols with Descriptions

B Preliminaries

In this section, we provide the key concepts that are required to understand our approach.

VQA Accuracy: In the Visual Question Answering (VQA) task, each question is associated with multiple ground-truth answers provided by human annotators. Let a denote the set of ground-truth answers for a given question, and let \hat{a} represent the answer predicted by a VQA model. The VQA accuracy metric is defined as follows:

$$Acc(\hat{a}, \mathbf{a}) = \min\left(1, \frac{\# \text{ answers in } \mathbf{a} \text{ matching } \hat{a}}{3}\right).$$

Expected Calibration Error (ECE): Naeini et al. (2015) is a metric commonly used to assess the calibration error between the estimated confidences and the actual accuracies. ECE is calculated by dividing the N predictions into M equal bins according to their confidence scores. Within each bin B_m , the average accuracy and confidence are denoted by $\operatorname{acc}(B_m)$ and $\operatorname{conf}(B_m)$. Then, ECE is calculated as Guo et al. (2017):

$$ECE = \sum_{m=1}^{M} \frac{|B_m|}{N} \left| acc(B_m) - conf(B_m) \right|,$$

where $|B_m|$ is the number of samples in the m-th bin. In the context of VQA, where there is more than a single ground-truth answer, ECE is measured with respect to the most frequent answer in the ground-truth annotations.

Adaptive Calibration Error (ACE): Nixon et al. (2019) is an alternative metric to measure calibration, which measures the difference between the confidences and accuracies across all classes, with adaptive binning rather than static and fixed-width binning as in ECE. In contrast, ACE divides the interval [0, 1] into bins with equal number of samples. ACE is defined as:

836

837 838 839

840 841

845 846

847 848

849

850 851 852

853 854 855

856

858 859

862

863

860 861

 $ACE = \frac{1}{M|A|} \sum_{y=1}^{|A|} \sum_{m=1}^{M} |acc(m, y) - conf(m, y)|$ where r and k are bin and class indices, respectively, and |A| and M are the total number of classes

and bins, respectively.

Brier Score: Brier (1950) measures the squared error difference between the confidences and actual accuracies, without binning, and is defined as:

Brier =
$$\frac{1}{N} \sum_{n=1}^{N} (p_i - y_i)^2,$$

where p_i and y_i represent the confidence, and the prediction accuracy for the ith sample.

Negative Log Likelihood (NLL): Friedman et al. (2001) is also known as cross-entropy loss, and is defined as:

$$NLL = -\frac{1}{N} \sum_{i=1}^{N} \log p(y_i|x_i),$$

where $p(y_i|x_i)$ are the predicted probabilities of the ground-truth to the true targets for the ith input.

DETAILED METHODOLOGY: DIVERSE ENSEMBLE FOR VQA **CALIBRATION**

Our diverse ensemble approach builds upon Distributionally Robust Optimization (DRO) (Duchi & Namkoong, 2019), which seeks to minimize the worst-case expected loss over an uncertainty set of distributions. The standard DRO formulation is:

$$\mathcal{L}_{DRO}(\Theta) = \max_{\mathbf{w} \in \mathcal{W}} \sum_{n=1}^{N} \mathbf{w}_{n} l(\mathbf{x}_{n}, \Theta)$$
 (5)

where W is the uncertainty set defined as:

$$W := \left\{ \mathbf{w} \in \mathbb{R}^N : \mathbf{w}^\top \mathbf{1} = 1, \mathbf{w} \ge 0, D_f \left(\mathbf{w} || \frac{\mathbf{1}}{N} \right) \le \frac{\lambda}{N} \right\}$$
 (6)

Here, $D_f(\mathbf{w} \| \frac{1}{N})$ measures the f-divergence between the weight distribution \mathbf{w} and the uniform distribution $\frac{1}{N}$, and λ controls the size of the uncertainty set.

To make the optimization tractable, we employ the regularized version with KL-divergence as the f-divergence measure. The closed-form solution for the optimal weights becomes:

$$w_n^*(\lambda) = \frac{\exp(l(\mathbf{x}_n, \Theta)/\lambda)}{\sum_{j=1}^N \exp(l(\mathbf{x}_j, \Theta)/\lambda)}$$
(7)

This softmax-like weighting scheme has intuitive properties: (1) High Loss Emphasis: Samples with higher losses $l(\mathbf{x}_n, \Theta)$ receive exponentially higher weights, (2) **Temperature Control**: The parameter λ acts as a temperature parameter controlling the concentration of weights, (3) **Normalization**: The weights sum to 1, maintaining a valid probability distribution.

Effect of Hyperparameter λ **on Model Specialization** The hyperparameter λ fundamentally determines the focus of each ensemble member:

Case 1: Small λ (Hard Sample Expert)

When $\lambda \to 0$, the weight computation becomes:

$$\lim_{\lambda \to 0} w_n^*(\lambda) = \begin{cases} \frac{1}{|\mathcal{H}|} & \text{if } n \in \mathcal{H} = \arg\max_j l(\mathbf{x}_j, \Theta) \\ 0 & \text{otherwise} \end{cases}$$
 (8)

where \mathcal{H} is the set of hardest samples. This creates a model that focuses exclusively on the most challenging examples.

Case 2: Large λ (General Pattern Expert)

When $\lambda \to \infty$, the weights approach uniform distribution:

$$\lim_{\lambda \to \infty} w_n^*(\lambda) = \frac{1}{N}, \quad \forall n$$
 (9)

This is equivalent to standard Empirical Risk Minimization (ERM), producing a model that captures general data patterns, shows higher confidence on typical samples, achieves good average performance.

Case 3: Moderate λ (Balanced Expert)

Intermediate values of λ create models that balance between hard and easy samples.

D MATHEMATICAL PROOFS

In this section, we provide the mathematical proof for Lemma 4.1 and Theorem 4.2.

D.1 PROOF OF LEMMA 4.1

The DRO loss Sapkota & Yu (2023) can be written as the following:

$$\mathcal{L}_{DRO}(\theta) = -\sum_{y=1}^{|A|} \frac{\exp\left(-\frac{\log(\hat{p}_y)}{\lambda}\right)}{C^{DRO}} \log(\hat{p}_y)$$
 (10)

Where \hat{p}_y is the predictive distribution, λ is the DRO regularizer coefficient, C^{DRO} is the normalization constant and |A| being total number of classes. We can write the following inequality

$$\mathcal{L}_{DRO}(\theta) \ge -\frac{1}{C^{DRO}} \sum_{y=1}^{|A|} (1 - \lambda \hat{p}_y) q_y \log \hat{p}_y \tag{11}$$

Where q_y is the ground truth probability assigned to y^{th} class with $q_y = 1$ if y = a(answer) and $q_y = 0$ otherwise.

 $\forall y, \log(\hat{p}_y) \leq 0$ we can write the following:

$$\mathcal{L}_{DRO}(\theta) \ge -\frac{1}{C^{DRO}} \left[\sum_{y=1}^{|A|} q_y \log(\hat{p}_y) - \lambda \left| \sum_{y=1}^{|A|} q_y \hat{p}_y \log(\hat{p}_y) \right| \right]$$

$$\ge -\frac{1}{C^{DRO}} \left[\sum_{y=1}^{|A|} q_y \log(\hat{p}_y) - \lambda \max_j q_j \sum_{y=1}^{|A|} |\hat{p}_y \log(\hat{p}_y)| \right]$$

By Holder inequality $||fg||_1 \le ||f||_{\infty} ||g||_1$ we can further rewrite the above equation as follow

$$\mathcal{L}_{DRO}(\theta) \ge -\frac{1}{C^{DRO}} \left[\sum_{y=1}^{|A|} q_y \log(\hat{p}_y) - \lambda \sum_{y=1}^{|A|} \hat{p}_y \log(\hat{p}_y) \right]$$
$$= \frac{1}{C^{DRO}} [\mathcal{L}_{CE}(\theta) - \lambda \mathcal{H}[\hat{p}]]$$

Let $\lambda_1, ... \lambda_E$ be the DRO specific parameters for the E ensemble models and C_e^{DRO} be the respective normalization constant then we can write the following:

$$\sum_{e=1}^{|E|} \mathcal{L}^{DRO}(\theta) \ge \sum_{e=1}^{|E|} \frac{1}{C_{DRO}^{e}} \left[\mathcal{L}_{CE}^{e}(\theta) - \lambda_{e} \mathcal{H}^{e}[\hat{p}] \right]$$
 (12)

Consider, $C \in \min_{e \in |E|} \{C^e_{DRO}\}$ then we have the following

$$L_{DE}(\theta) \ge \frac{1}{C} \sum_{e=1}^{|E|} \left[\mathcal{L}_{CE}^{e}(\theta) - \lambda_e \mathcal{H}^{e}[\hat{p}] \right]$$
 (13)

This proves the Lemma.

Steps from Eq. 10 to 11:

We can rewrite the following:

$$\exp\left(-\frac{\log(\hat{p}_y)}{\lambda}\right) = \left(\exp\left(\log(\hat{p}_y)\right)\right)^{-\frac{1}{\lambda}} = \hat{p}_y^{-\frac{1}{\lambda}}$$

Case 1: if $\hat{p}_y \lambda \geq 1$: In this case $(1 - \lambda \hat{p}_y) \leq 0$ and $\hat{p}_y^{-\frac{1}{\lambda}} \geq 0$ and therefore $\hat{p}_y^{-\frac{1}{\lambda}} \geq (1 - \lambda \hat{p}_y)$

Case 2: if $\hat{p}_y \lambda < 1$: In this case as $\hat{p}_y < 1$, and therefore $\hat{p}_y^{-\frac{1}{\lambda}} > 1$ whereas $(1 - \lambda \hat{p}_y) < 1$ and therefore $\hat{p}_y^{-\frac{1}{\lambda}} \geq (1 - \lambda \hat{p}_y)$ As in both cases, $\hat{p}_y^{-\frac{1}{\lambda}} \geq (1 - \lambda \hat{p}_y)$ and therefore Eq. 11 leads from Eq. 10

D.2 PROOF OF THEOREM 4.2

Based on Lemma 4.1, minimizing our DE loss ensures increase in the entropy. We first formally show the inverse relationship between confidence and entropy. While this relationship can be strictly proven in the binary class (A=2), extending the result to multi-class settings require additional conditions to ensure that the inverse relationship holds. To address this, we identify a natural condition, which is the non-maximum probabilities are uniformly distributed after normalization, and provide a strict proof under this assumption:

Let the confidence $\hat{p} = \max_i p_i$, where $i \in [1, A]$, $p_i \geq 0$, and $\sum_{i=1}^A p_i = 1$. Assume the non-maximum probabilities are uniformly distributed after normalization. Let $c = \arg\max_i p_i$, so for all $i \neq c$,

$$p_i = \frac{1 - \hat{p}}{A - 1}.$$

Then the entropy becomes:

$$H(p) = -\hat{p}\log\hat{p} - (1-\hat{p})\log\left(\frac{1-\hat{p}}{A-1}\right).$$

Taking the derivative with respect to \hat{p} :

$$\frac{dH}{d\hat{p}} = -\log \hat{p} + \log \left(\frac{1-\hat{p}}{A-1}\right) = \log \left(\frac{1-\hat{p}}{(A-1)\hat{p}}\right).$$

since $\hat{p} \in (\frac{1}{A}, 1)$, we have

$$\frac{1-\hat{p}}{(A-1)\hat{p}} < 1 \Rightarrow \log\left(\frac{1-\hat{p}}{(A-1)\hat{p}}\right) < 0,$$

which proves that H(p) is decreasing in \hat{p} , establishing the inverse relationship under the stated condition.

Minimizing our DE loss ensures the increase in the entropy, which makes confidence \hat{p} lower than that of the ERM loss. We can state this fact in expectation: $\mathbb{E}[\hat{p}_{DE}] \leq \mathbb{E}[\hat{p}_{ERM}]$.

Considering the equal accuracy assumption between ERM and DE, we can write the following:

$$\mathbb{E}[P(\hat{y} \neq y)]_{DE} \approx \mathbb{E}[P(\hat{y} \neq y)]_{ERM} \tag{14}$$

Now let's break this into the high $(> \tau)$ and low confidence region $(< \tau)$. We can write the following:

$$\mathbb{E}[P(\hat{y} \neq y)]_{DE}^{<\tau} + \mathbb{E}[P(\hat{y} \neq y)]_{DE}^{>\tau} \approx \mathbb{E}[P(\hat{y} \neq y)]_{ERM}^{<\tau} + \mathbb{E}[P(\hat{y} \neq y)]_{ERM}^{>\tau}$$
(15)

Let us consider $N_{ERM,in}^{> au}$ be the number of incorrectly classified samples in the high confidences region in ERM and $N_{DE,in}^{> au}$ be the samples in DE. We make an assumption that the number of confidently wrong samples are higher in ERM. This has been observed in our empirical evaluation (Figure 10) as well as found in the existing literature (e.g. Figure C.2 from Mukhoti et. al. Mukhoti et al. (2020)). Based on this expectation and invoking the fact that $\mathbb{E}[\hat{p}_{DE}] \leq \mathbb{E}[\hat{p}_{ERM}]$, the incorrect samples using DE will be pushed more toward the low confidence region. This will lead to the following

$$\mathbb{E}[P(\hat{y} \neq y)]_{DE}^{>\tau} \le \mathbb{E}[P(\hat{y} \neq y)]_{ERM}^{>\tau} \tag{16}$$

Above equation immediately leads to the following:

$$\mathbb{E}[P(\hat{y} \neq y)]_{DE}^{<\tau} \ge \mathbb{E}[P(\hat{y} \neq y)]_{ERM}^{<\tau} \tag{17}$$

This proves our Theorem. Our empirical findings, shown in Figures 10 and 11, support this, as they demonstrate that our calibrated model has more samples in the less confident region compared to the uncalibrated Standard VQA. Figure 5 empirically validate that $N_{\text{DE}, in}^{<\tau} \geq N_{\text{ERM}, in}^{<\tau}$ hold. Additionally, fig. 8 validate that $N_{\text{DE}}^{\tau} \geq N_{\text{ERM}}^{\tau}$.

Empirical Support for the Inverse Relationship Between Entropy and Confidence: We further analyzed how often increases in entropy are associated with decreases in confidence. Among all samples with increased entropy, 96.61% also exhibit decreased confidence, providing strong empirical support for the inverse relationship.

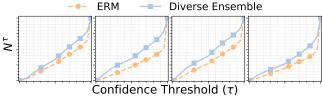


Figure 8: Empirical evidence illustrating $N_{\text{DE}}^{\tau} \geq N_{\text{ERM}}^{\tau}$, across four VQA architectures.

E ADDITIONAL RELATED WORK

Model Cascades: Our proposed framework relates to several research directions in the literature. While we discussed some related works in section 2, our approach also shares common goals with model cascades Wang et al. (2017); Warren & Dras (2025); Jitkrittum et al. (2023); Enomoro & Eda (2021); Rabanser et al. (2025), that aims at reducing the computational efficiency by strategically routing inputs through a cascade of models with progressively increasing capacity, complexity and computational costs, based on deferral mechanisms, hence enabling easy inputs to be handled by cheaper and simpler models, while complex inputs being progressively cascaded to the more complex models. In this section, we elaborate on the connections between our approach and existing approaches in model cascades, highlighting their key distinctions setting our work apart.

Model cascades are often used to improve inference efficiency by sequentially routing harder inputs to more sophisticated models, when earlier ones are uncertain, where a deferring mechanism determines whether to defer to a large model, or accept the current model's output. Common deferring mechanisms rely on confidence or uncertainty estimates from smaller model. Sharing the same goal, our method is different than existing method in the model cascades literature. Methods including IDK cascades Wang et al. (2017), rely solely on raw confidence scores (typically the maximum softmax probabilities) without applying any explicit calibration. However, recent works Jitkrittum

et al. (2023); Enomoro & Eda (2021); Rabanser et al. (2025) highlighted that uncalibrated confidences can lead to suboptimal deferral decisions, especially when the downstream model behaves as a specialist. In contrast, other methods proposed explicit confidence calibration techniques to improve deferral, such as learning-to-cascade (LtC) Enomoro & Eda (2021) and gatekeeper-based tuning Rabanser et al. (2025), both of which improve routing decisions by improving the calibration of the smaller model's confidence estimates. Nevertheless, these works consider simple routing as a deferring mechanism, i.e. if the calibrated confidence of the smaller model falls below a threshold, the input is routed to a large model which predicts the final answer. In contrast, out approach introduces adaptive integration by enabling the simple model to adaptively share knowledge with the larger model through candidate answers, which, as supported by our experiments, lead to more informed reasoning and significant improvements in our overall cascade accuracy.

F ADDITIONAL EXPERIMENTAL DETAILS

In this section, we first provide a detailed description of the datasets, followed by an explanation of the LLM prompt construction and in-context example selection. Next, we provide the implementation details of our technique. After that we show the ECE plot of our technique along with other competitive baselines. Finally, we show the performance of the hybrid approaches where we integrate different baselines with LLMs.

F.1 DATASET DESCRIPTION

We experiment on the VQA-v2 Antol et al. (2015) and COCO-QA Ren et al. (2015) datasets, which contains questions on the COCO image dataset Lin et al. (2014). VQA-v2 dataset consists of 443, 757 questions in training split, and 10 ground-truth answers per each question. As the ground-truth answers of the test split of VQA-v2 are not publicly available, we use the validation and test splits as provided by Whitehead et al. (2022), as evaluating the calibration error requires sample-level accuracies. The test split consists of 106k, and the validation split consists of 86k questions.

COCO-QA dataset contains 78,736 training, 38,948 testing questions generated from Microsoft COCO dataset Lin et al. (2014), with a single ground-truth answer per question. In experiments, we randomly sample a validation split of size of 12000 from the training set.

F.2 LLM-based Inference for VQA

We describe the process of delegating question answering to LLMs when the predicted confidence score of the TS-VQA model falls below a predefined threshold τ . We outline the in-context learning based paradigm for prompting the LLM, and the procedure for constructing effective prompts. For LLM-based prompting for VQA task, we follow prior works Yu et al. (2023); Yang et al. (2022). To leverage the LLM, we use the few-shot in-context learning approach, which is an effective approach to adapt the LLM to a certain task, without the need for computationally intensive fine-tuning, by augmenting the prompt with input and output examples, enabling an efficient and training-free adaptation to the task.

F.2.1 PROMPT CONSTRUCTION

Creating a structured input prompt for the LLM involves several components that help the LLM understand the question's context and generate accurate answers. The prompt is structured as shown in the template below, where underlined text represent template keywords, and the rest are placeholders for the data samples.

F.2.2 CONTEXTUAL INFORMATION

To help the LLM model comprehend the visual content referenced in the question, we use off-theshelf image captioning models to generate descriptive of the image in textual format. Similar to prior works Guo et al. (2023), we leverage the PNP-VQA model Tiong et al. (2022) for image captioning, which generates captions relevant to the question, ensuring that the LLM has relevant contextual information to answer the question.

F.2.3 IN-CONTEXT EXAMPLES

In-context examples consist of example prompt, along with the desired answers from the training data, formatted similarly to the test prompt. These examples help the LLM generate the answer by following the pattern established in the prompt. For each test sample, multiple in-context examples are selected based on their cosine similarity to the test image-question pairs. This involves extracting the image and text embeddings from the VQA data, using an off-the-shelf pretrained model. We specifically use BLIP-2 model Li et al. (2023) for this purpose. The average cosine similarity between the embeddings of any two image-question pairs $(\mathbf{q}_i, \mathbf{v}_i)$ and $(\mathbf{q}_j, \mathbf{v}_j)$ in training and test splits is calculated. The top N examples with the highest similarity are then chosen as in-context examples.

F.2.4 Answer-Candidates Augmented Prompts

As demonstrated in Figure 2d, the predictive performance of the LLM can be enhanced when the prompt is augmented with some answer candidates. Assume that given an input \mathbf{x}_i to the task-specifc VQA model, $\hat{\mathcal{A}}_M = \{\hat{a}_1, \cdots, \hat{a}_M\}$ are the M candidate answers corresponding to the M answers with highest probabilities in descending order, and $\mathcal{C}_M = \{\hat{p}_1, \cdots, \hat{p}_M\}$ are the corresponding probabilities, i.e. $\mathcal{A}_M = \underset{k=1\cdots K}{\operatorname{arg Top-}} M \ \hat{p}_k$ are the top-M answer candidates by the TS-VQA model.

Given the set of M answer candidates, we augment the prompt and present a set of answer candidates as additional context to the question. The answer candidate augmented prompt is constructed as bellow:

$$\frac{\text{Context: } \text{c } \setminus \text{n} \quad \underline{\text{Question: }} \quad \text{q } \setminus \text{n} \quad \underline{\text{Candidates: }} \quad \text{C } \setminus \text{n}$$

F.3 IMPLEMENTATION DETAILS

In this section, we provide additional implementation and experimental details of our proposed method and experiments. We conducted our experiments using PyTorch. Our experiments utilize publicly available implementations across all models. For all VQA architectures except for BEiT-3, we use their implementations as provided by the *MMF* Singh et al. (2020) repository². For BEiT-3, we use its official implementation from Microsoft's UniLM project Wang et al. (2023)³. To train the standard VQA models, the training hyperparameters of the networks given in *MMF* and *UniLM* repositories are used. For training Calibrated VQA models, we use the same training hyperparameters as the standard VQAs. We adopt the VectorScale implementation from Whitehead et al. (2022)⁴.

We trained BEiT-3 TS-VQA on a single A100-40 GB GPU, and the rest of the TS-VQA models on a single NVIDIA RTX A6000-48 GB GPU. Furthermore, the latencies and carbon emissions in fig. 1 and table 1 are reported based on the models running on a single A100-40 GB GPU. For LLM inference with Mistral-7B, we run the model on a single A100-40 GB GPU.

VQA by the LLM Model Following Yu et al. (2023); Yang et al. (2022) we provide 9 captions as context for the question, and use PNP-VQA Tiong et al. (2022) for generating question-related captions, as the context about images in the prompt. For each test instance, 10 in-context examples from the training data are selected based on the average of their image and question embedding cosine similarities, and included in the prompt. Specifically, BLIP-2 model is used to extract the image and question embeddings, used for in-context example selection. The LLM is queried 5 times to ensemble the answers as the final answer to the question. For answer-candidates-augmented

²https://github.com/facebookresearch/mmf

³https://github.com/microsoft/unilm/tree/master/beit3

⁴https://github.com/facebookresearch/reliable_vqa

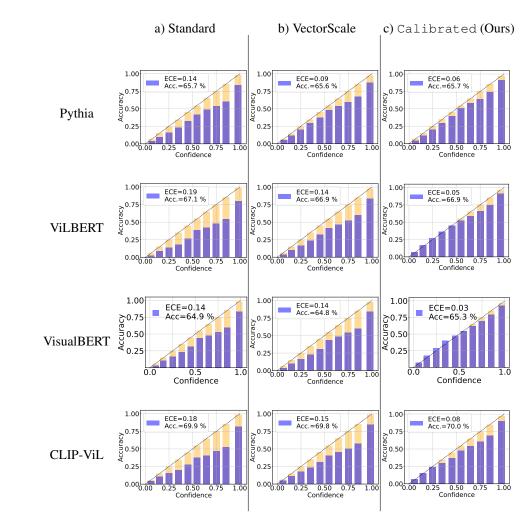


Figure 9: Effectiveness of DE-based VQA in improving the calibration of all VQA architectures. a) Standard, b) VectorScale-calibrated, and c) DE-based VQA models.

Table 6: Delegation percentage for hybrid models to match LLM-Only accuracy (72.03%) on COCOQA dataset.

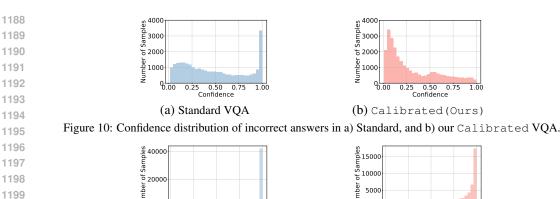
LLM-Only		Uni-VÇ	A (Ours)	
	Pythia	ViLBERT	VisualBERT	CLIP-ViL
100	18.14 (-81.86%)	8.06 (-91.94%)	25.56 (-74.44%)	12.13 (-87.87%)

VQA with LLM, we restrict to using 10, 5, 2, and 1 answer candidates. The LLM-based inferences are conducted once.

G ABLATION STUDY

G.1 ADDITIONAL EXPERIMENTS ON COCO-QA DATASET

Table 6 presents additional resuls on the COCOQA dataset, illustrating the extent of LLM-delegation necessary for the hybrid models to attain equivalent accuracy as the LLM (Mistral 7B) on the COCOQA dataset for each TS-VQA model. BEiT-3 is omitted since the BEiT TS-VQA already surpasses the accuracy of Mistral-7B model on COCO-QA.



0.25 0.50 0.75 Confidence

(a) Standard VQA

Figure 11: Confidence distribution of correct answers in a) Standard, and b) our Calibrated VQA.

(b) Calibrated (Ours)

G.2 Effectiveness of Diverse Ensemble (DE)-based VQA Calibration Towards Calibrated VQA

In this subsection, we analyze the effectiveness of the DE-based framework in improving the calibration of TS-VQA models compared to standard and VectorScale-based VQA models. We present reliability diagrams for all four VQA architectures to illustrate the differences in calibration performances. Figure 9 clearly shows that standard VQA models are overconfident and poorly calibrated, while VectorScale-based VQA models exhibit only a slight improvement in calibration, still suffering from overconfidence. In contrast, our proposed DE-based VQA significantly reduces the Expected Calibration Error (ECE) and overconfidence compared to the baselines, resulting in substantially improved reliability. These findings underscore the importance of employing effective calibration techniques, such as the DE framework, to enhance the reliability of VQA models and enable more accurate uncertainty estimates not only for ensuring reliability of the entire Uni-VQA framework, but also for effective integration with the LLM model.

G.3 EFFECTS OF DE-BASED VQA ON REDUCING OVERCONFIDENCE IN INCORRECT PREDICTIONS

Figures 10 (a) and (b) present histograms of confidence scores for incorrect predictions, respectively, made by the standard, and our DE-based Calibrated VQAs. Our proposed method, assigns low confidence scores to the majority of incorrect answers, while the standard VQA produces very high confidence scores for a large number of the incorrect answers. This observation confirms that our DE-based Calibrated VQA significantly reduces the overconfidence, by pushing the majority of incorrect answers towards lower confidence scores.

G.4 COMPREHENSIVE EVALUATION OF CALIBRATION USING ALTERNATIVE CALIBRATION METRICS

ECE (Expected Calibration Error) is a standard metric commonly used to assess model calibration; however, it has several known drawbacks, including sensitivity to binning choices, the inability to capture local miscalibrations effectively, and ignoring the distribution of prediction probabilities within each bin. To comprehensively demonstrate the robustness of our proposed calibration approach in improving the calibration of TS-VQA models across various architectures, we additionally evaluate it using alternative calibration metrics: 1) *Adaptive Calibration Error (ACE)*, is an extension of ECE that adaptively determines bin sizes to more accurately capture local miscalibration, 2) *Brier Score* measures the squared difference between predicted probabilities and actual outcomes, assessing both calibration quality and sharpness of probabilistic predictions, and 3) *Negative Log Likelihood (NLL)* quantifies the negative log probability assigned to true outcomes, heavily penalizing confident yet incorrect predictions. These metrics provide complementary perspectives essential for robustly evaluating calibration quality. Table 7 summarizes the results, clearly indicating that our calibration method consistently enhances performance across all evaluated calibration metrics.

Table 7: Performance comparison of Uni-VQA with baseline TS-VQA models and LLM across four architectures, evaluated using multiple calibration metrics including ECE, ACE.

				•					30000		
				VQA-v2					COCOQ		
Model		ACC [↑]	ECE.	ACE↓	Brier	. NLL↓	ACC†	ECE↓	ACE↓	Brier↓	NLL
LLM	-only (Mistral-7B)	69.09	0.31	0.34	0.30	0.91	72.03	0.27	0.48	0.27	0.94
	Standard VQA	65.66	0.14	0.13	0.19	0.67	68.62	0.16	0.16	0.19	0.80
Pythia	VectorScale	65.59	0.09	0.08	0.18	0.56	68.88	0.10	0.08	0.17	0.61
ryuna	Calibrated (Ours)	66.15	0.06	0.05	0.17	0.53	68.64	0.02	0.02	$\overline{0.15}$	0.47
	Uni-VQA (Ours)	71.00	$\overline{0.05}$	0.05	0.17	0.53	74.78	0.06	0.13	0.17	0.51
	Standard VQA	69.95	0.18	0.17	0.20	0.87	70.38	0.15	0.14	0.18	0.71
CLIP-ViL	VectorScale	69.81	0.15	0.14	0.19	0.67	70.41	0.11	0.09	0.17	0.58
CLIF-VIL	Calibrated (Ours)	70.05	0.08	0.07	0.16	0.52	$\overline{69.94}$	0.02	$\overline{0.03}$	$\overline{0.15}$	0.47
	Uni-VQA (Ours)	72.98	$\overline{0.07}$	0.07	0.17	0.53	74.95	0.06	0.13	0.17	0.50
	Standard VQA	66.98	0.19	0.17	0.21	0.89	69.23	0.20	0.18	0.21	0.99
Vilbert	VectorScale	66.87	0.14	0.13	0.19	0.65	69.04	0.17	0.15	0.20	0.77
VILDEKI	Calibrated (Ours)	66.90	0.05	0.04	0.16	0.49	70.59	0.02	0.03	0.15	0.46
	Uni-VQA (Ours)	71.65	0.07	0.07	0.17	0.53	75.63	0.06	0.12	0.16	0.49
	Standard VQA	64.92	0.14	0.13	0.19	0.68	65.28	0.19	0.16	0.21	0.87
VisualBERT	VectorScale	64.83	0.14	0.13	0.19	0.63	64.40	0.18	0.16	0.21	0.76
VISUAIDEKI	Calibrated (Ours)	65.26	0.03	0.03	0.16	0.49	67.38	0.01	0.02	0.16	0.48
	Uni-VQA (Ours)	70.95	0.08	0.08	0.18	0.55	74.34	0.06	0.14	0.18	0.52

G.5 Performance Comparison of LLM vs. ${\tt TS-VQAS}$ in Various Confidence Ranges

In this experiment we compare the performance of TS-VQA models, LLM without answer candidates, and LLMs augmented with answer candidates (2 candidates are given) across all four architectures, for both standard and our Calibrated VQA models. We evaluate the performance of theses models in terms of accuracy for samples whose confidences, as determined by the respective TS-VQA (Calibrated or standard), fall within three different confidence ranges: 1) low (0-0.1), 2) moderate (0.4-0.5), 3) and high (0.95-1). Results are presented in Table 8.

For our Calibrated models, we observe that in the low confidence range, the LLM alone is the most effective. In the moderate confidence range, providing answer candidates from the TS-VQA generally improves the performance of the LLM. However, in the high confidence range, the TS-VQA outperforms the LLMs. This suggests that answering hgih-confidence questions using the TS-VQA model, rather than the LLM, not only reduces the burden on the LLM and improves efficiency, but also benefits the hybrid approach in terms of improving the accuracy.

In contrast, when using a standard VQA as the TS-VQA, we observe that the LLM achieves the highest accuracy in both the low and moderate confidence ranges. The lower accuracy of the LLM with answer candidates indicates that the provided top-k answer candidates reduces the accuracy as compared to when no candidates are provided, suggesting poorer quality of the answer candidates set.

In the highest confidence range, the LLM with answer candidates generally performs better than both the LLM alone and the TS-VQA. This behavior makes the effectiveness of a hybrid approach suboptimal for any delegation confidence threshold when using a standard VQA model.

These findings highlight the importance of calibrating the TS-VQA model using the diverse ensemble, as it enables a more effective hybrid approach that leverages the strengths of both the TS-VQA and the LLM in different confidence ranges. By delegating low-confidence question to the LLM, incorporating answer candidates for moderate-confidence questions, and relying on the TS-VQA for high-confidence questions, our proposed approach improves both accuracy and efficiency in the VQA task.

G.6 EFFECTIVENESS OF THE DYNAMIC TOP-K SELECTION

To evaluate the effectiveness of the proposed uncertainty-guided dynamic answer candidate selection, we compare the performance of the Uni-VQA framework against the same approach with fixed top-K answer candidates provided for all confidence levels. In all methods, the TS-VQA model is our Calibrated VQA, trained according to the diverse ensemble. We refer to these variants as LLM-Calibrated (Top-K), where K represents the number of answer candidates provided to the LLM model.

Table 8: Comparison between predictive performances of LLM and our Calibrated in low and high confidences. In low confidences, total delegation to LLM yields higher accuracy, while it is misleaded when presented with the answer candidates from the VQA model. On the contrary, in high confidences, VQA model outperforms LLM, suggesting that high confident questions can be answered in a more efficient manner by the VQA.

		$c \in [0, 0.1]$			$c \in [0.4, 0.5]$			$c \in [0.95, 1]$	
Model	TS-VQA	LLM w.	LLM	TS-VQA	LLM w.	LLM	TS-VQA	LLM w.	LLM
		candidates			candidates			candidates	
Calibrated Pythia	4.6	6.97	14.23	39.41	46.29	46.83	90.95	89.79	86.85
Calibrated CLIP-ViL	6.95	8.58	16.17	37.01	39.45	36.52	89.88	87.94	83.64
Calibrated ViLBERT	6.5	10.47	18.88	45.15	49.30	46.75	91.41	90.14	87.14
Calibrated VisualBERT	7.12	13.16	20.18	47.56	54.44	52.48	93.19	92.02	90.05
Standard Pythia	3.84	6.42	12.29	32.13	35.88	37.31	83.94	84.43	81.87
Standard CLIP-ViL	4.37	6.34	14.10	27.42	30.66	31.91	81.50	81.03	77.14
Standard Vilbert	2.54	5.57	12.56	26.49	30.68	33.25	79.68	81.14	77.87
Standard VisualBERT	3.33	8.38	14.16	31.36	36.44	38.52	83.08	84.39	82.02

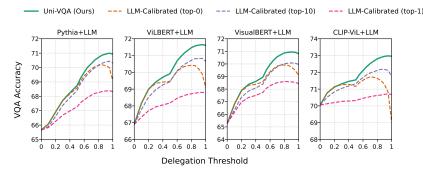


Figure 12: Performance comparison of the proposed ${\tt Uni-VQA}$, against LLM-Calibrated with fixed top-K answer candidates, with respect to the delegation threshold.

Figure 12 presents the VQA accuracy with respect to the delegation thresholds for various K values, across all 4 architectures. The figures suggest that the dynamic approach, i.e., Uni-VQA, achieves the highest overall accuracy for any delegation threshold. Additionally, for any given accuracy, the dynamic approach achieves the lowest delegation percentage among the other variants, while also achieving a higher accuracy than the highest achieved by the fixed top-K answer candidate variants, at certain delegation thresholds.

A comparison between the accuracy of the methods at fixed thresholds for thresholds below 0.2 highlights the effectiveness of the LLM-only prompting when no answer candidates are provided (Top-0). The VQA accuracies of the LLM-Calibrated (Top-1), and LLM-Calibrated (Top-10) variants at lower thresholds suggest that providing answer candidates in this region confuses the LLM, compared to when those answer candidates are not present. This can be attributed to the answer candidates being random guesses in the low-confidence region, indicating the model's total lack of knowledge.

These findings demonstrate the superiority of the dynamic top-K selection approach employed by Uni-VQA. By adaptively selecting the number of answer candidates based on the confidence of the TS-VQA model, Uni-VQA achieves higher accuracies and lower delegation percentages compared to fixed top-K variants. Furthermore, the results emphasize the importance of relying solely on the LLM for low-confidence questions, as providing answer candidates in this region can hinder the LLM's performance. The dynamic approach effectively leverages the strengths of both the TS-VQA and the LLM, leading to improved overall performance in the VQA task.

G.7 UNI-VQA HYPERPARAMETER GENERALIZABILITY

To validate the robustness of our Uni-VQA framework and demonstrate that it does not require careful per-model hyperparameter tuning, we conducted an extensive cross-model hyperparameter transfer analysis. This analysis evaluates whether hyperparameters optimized for one TS-VQA backbone can effectively transfer to other architectures without significant performance degradation.

Table 9: Cross-model hyperparameter generalizability on COCO-QA. Each cell shows accuracy when model in the corresponding row uses hyperparameters (HP) tuned for model in the column. Bold values indicate model-specific tuned parameters. Max Dev shows maximum deviation from optimal performance.

Model Evaluated	HP from CLIP-ViL	HP from Pythia	HP from ViLBERT	HP from VisualBERT	HP from BEIT3	Max Dev
CLIP-ViL	74.95	75.08	75.11	74.98	73.71	1.24
Pythia	74.76	74.78	74.78	74.82	74.41	0.37
ViLBERT	75.57	75.61	75.63	75.55	75.06	0.57
VisualBERT	74.28	74.25	74.25	74.32	73.72	0.60
BEIT3	76.08	75.99	75.99	75.90	76.01	0.11

For each VQA model in our framework, we apply the hyperparameters $\{l, u, K(c_i)\}$ originally tuned for that specific model to all other models in our evaluation set. This cross-application tests whether our delegation mechanism maintains consistent performance across architectural variations. The hyperparameters include: (1) the delegation threshold u that determines when to invoke the LLM, (2) The dynamic top-K bounds (l, u) that control answer candidate selection, (3) The confidence-adaptive function $K(c_i)$ that adjusts selection based on model confidence.

Key Findings. The analysis reveals remarkable robustness in our hyperparameter selection. The maximum deviation from optimal performance across all cross-model transfers is only 1.24% (CLIP-ViL using BEIT3 hyperparameters), with most deviations below 0.6%. This demonstrates that hyperparameters are not overly specialized to individual architectures. Additionally, the symmetry in the transfer matrix (e.g., ViLBERT \rightarrow Pythia and Pythia \rightarrow ViLBERT both maintain high accuracy) confirms that the hyperparameter robustness is bidirectional, not dependent on specific source-target model pairs.

These results validate our claim in Section 5.3 of main paper, that the Uni-VQA framework is not sensitive to careful hyperparameter tuning, making it a practical and scalable solution for real-world VQA applications. The framework's ability to maintain consistent performance across diverse architectures with shared hyperparameters addresses a critical deployment challenge in VQA systems.

G.8 ALTERNATIVE UNCERTAINTY MEASURES FOR UNI-VQA: ENTROPY

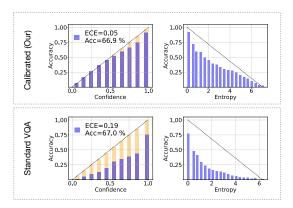
While our main approach uses confidence scores (*i.e.*, maximum output probability) to guide knowledge exchange between TS-VQA and LLM, we also explored an alternative uncertainty measure to assess robustness of our delegation strategy. A natural alternative to confidence score is *entropy*, which is widely used in uncertainty quantification literature, as it provides a measure of the prediction uncertainty by quantifying the dispersion of the probability mass across possible answers.

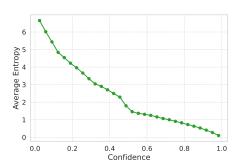
To empirically evaluate the effectiveness of our approach using "entropy" as an uncertainty measure for delegation and knowledge exchange, we implement an entropy-based delegation variant of Uni-VQA and compared it with our confidence-based approach. Table 10 compares performances of our Uni-VQA using the two uncertainty-measure, in terms of accuracy and LLM delegation percentage for ViLBERT TS-VQA on VQA-v2 dataset, and shows that both uncertainty measures achieve comparable performance, with confidence-based delegation showing slight advantage in both accuracy and efficiency.

Table 10: Performance comparison between confidence-based and entropy-based uncertainty measures for knowledge exchange in Uni-VQA using ViLBERT on VQA-v2 dataset.

Uncertainty Measure	ACC (†)	LLM-Delegation $(\%)(\downarrow)$
Confidence-based	71.6	79.1
Entropy-based	71.5	80.0

Figure 13a illustrates the relationship between both uncertainty measures (entropy and confidence score) and accuracy, for standard and our DE-based Calibrated TS-VQAs. For low-entropy (corresponding to high-confidence) regions, our calibrated models consistently achieves higher accuracy compared to high-entropy regions, indicating that the Calibrated model's answers are more re-





(a) Relationship between accuracy and uncertainty measures (confidence vs. entropy) for Calibrated (top) and Standard VQA (bottom) TS-VQA models.

(b) Inverse relationship between model prediction confidence and output entropy, averaged over 30 confidence bins.

Figure 13: Visualizations of confidence and entropy relationships in ViLBERT on VQA-v2 dataset.

liable in low-entropy regions, confirming that both measures effectively identify samples where the TS-VQA model can be trusted. Additionally, figure 13b depicts the relationship between average answer confidences and probability entropies, calculated in 30 equally spaced confidence intervals, illustrating a clear inverse trend where higher confidence values correspond to lower entropy in the predicted distributions.

While entropy can also serve as a proxy for uncertainty, we choose confidence as our primary uncertainty measure for several practical reasons: (1) **Interpretability**: Confidence is bounded between 0 and 1 with an intuitive probabilistic interpretation, where in a well-calibrated model confidence of 0.9 suggests a 90% probability of correctness. On the contrary, entropy ranges between 0 and $\log_2(C)$ where C is the number of answer classes, which makes setting and interpreting thresholds less intuitive. (2) **Direct relationship with calibration:** confidence score is a widely used measure in calibration literature. Additionally, calibration metrics including ECE are specifically designed to measure the alignment between confience scores and accuracies (both bounded between 0 and 1), hence confidence score is a natural choice for our framework. (3) **Simplicity:** Using confidence scores for both calibration assessment and delegation decisions leads to a simpler framework. Also, confidences are straightforward to obtain, while computing entropy introduces additional computational overhead.

G.9 DIVERSE ENSEMBLE DISTILLATION

The Uni-VQA framework is designed to reduce overall computational costs by reducing dependence on large-scale LLM models. Although effective during the inference phase, the use of an ensemble model increases the computational costs of inference by TS-VQA and may potentially lead to higher latency. To address this issue, inspired by the findings of Allen-Zhu & Li; Hebbalaguppe et al. (2024) on the advantages of ensemble learning and knowledge distillation to transfer predictive accuracy and calibration, we use knowledge distillation to transform the calibrated diverse ensemble model (DE) into a single VQA model, with the same architecture as individual ensemble components, and is trained to learn from the ensemble's output distribution instead of the target labels, thereby preserving both the ensemble's accuracy and enhanced calibration.

The distillation process minimizes the Kullback-Leibler divergence between the output distributions of the ensemble and the distilled model, expressed as follows:

$$\mathcal{L}_{KD}(X;\theta_s) = T^2 \sum_{i=1}^{N} \text{KL}\left(\sigma\left(\frac{f_s(x_i)}{T}\right) || \sigma\left(\frac{f_t(x_i)}{T}\right)\right),$$

where T is the temperature parameter used to smooth the probability distributions, and σ represents the softmax function. This process enables the distilled model to retain the ensemble's strengths while reducing the operational costs associated with deploying multiple models.

Table 11: Performance comparison of diverse ensemble and distilled VQA across four architectures. *Diverse Ensemble requires *three times* the total parameters of Distilled VQA since it comprises *three* independently trained models.

Table 12: Average inference latency (ms)
comparison between the Diverse Ensemble
(DE), and the distilled VQA model.

	Model	Diverse	Ensemble*	Distilled VQA		
	Model	ACC↑	ECE↓	ACC↑	ECE↓	
	Pythia	66.15	0.06	65.92	0.05	
VOA2	CLIP-ViL	70.05	0.07	69.64	0.07	
VQA-v2	Vilbert	68.90	0.05	67.29	0.05	
	VisualBERT	65.26	0.03	65.40	0.03	
	Pythia	65.01	0.02	65.02	0.02	
COCOOA	CLIP-ViL	65.87	0.02	66.04	0.03	
COCOQA	Vilbert	66.61	0.02	66.45	0.03	
	VisualBERT	63.52	0.01	63.97	0.02	

Model	Average Latency (ms)		
	Diverse Ensemble	Distilled VQA	
Pythia	4.29	3.71	
CLIP-ViL	59.94	24.0	
Vilbert	18.51	9.84	
VisualBERT	15.49	9.61	

Table 13: Performance and delegation comparison of diverse ensemble and distilled TS-VQA models on COCO-QA dataset, showing accuracy and LLM delegation percentages.

*Diverse Ensemble column corresponds to the results in the main paper presented in Table 1., where Distilled VQA corresponds using the Distilled model as the Calibrated TS-VQA.

Model	Diverse Ensemble		Distilled VQA		
	ACC†	Deleg %↓	ACC↑	Deleg %↓	
VilBERT	75.63	67.19	75.89	61.68	
VisualBERT	74.34	73.46	74.73	67.66	
CLIP-ViL	74.95	64.89	75.05	65.44	

Accuracy & Calibration Performance Preservation. Table 11 highlights the effectiveness of this approach in preserving calibration and predictive performance across four VQA architectures, on VQA-v2 and COCOQA datasets. The distilled model maintains the accuracy and calibration properties of the DE, while significantly reducing the computational overhead associated with ensembled models. As shown in table 12, the increased inference time caused by ensembling is effectively remedied when the ensemble model is distilled into a single VQA model. These latency measurements were obtained by running models on a single A6000 GPU, with a batch size of 32, averaged over 3 runs.

Integration with Uni-VQA Framework. While all results presented in the main paper utilize the original ensemble models, we validate that distilled models can serve as efficient alternatives within the Uni-VQA framework. Table 13 presents a direct comparison on the COCO-QA dataset, showing that distilled models not only maintain comparable accuracy but also achieve more efficient delegation patterns. Specifically: (1) VilBERT and VisualBERT demonstrate 5-6% reduction in LLM delegation while slightly improving accuracy (+0.26% and +0.39% respectively), indicating enhanced confidence in local question answering. (2) CLIP-ViL maintains robust performance with minimal change in delegation behavior (+0.55%), preserving the ensemble's already efficient delegation pattern.

G.10 Comprehensive Compute Cost Analysis

To provide a complete picture of our framework's efficiency, we present a detailed breakdown of both training and inference costs. While training introduces upfront computational overhead, the significant inference savings in production deployments justify this initial investment.

Our analysis considers three primary computational costs: (1) **Training Cost:** One-time GPU hours required for ensemble model training, (2) **Distillation Cost:** Additional training to compress ensembles (optional), (3) **Inference Cost:** Per-sample latency at inference time.

Table 14 presents the costs associated with training of our Uni-VQA components. If distillation is employed (optionally), it adds approximately one-third of the ensemble training time (equivalent to training a single model). Table 15 presents the effective inference costs in our hybrid system, accounting for selective delegation.

Key Cost-Benefit Findings. Inference costs dominate real-world computational expenses in production systems. While training the ensemble models requires an upfront investment of 15-366 GPU hours depending on the chosen backbone, this cost is quickly amortized in production deployments that process millions of queries daily. For instance, at a scale of 10 million queries per day, our

Table 14: Comprehensive compute cost breakdown for Uni-VQA components on VQA-v2 dataset. Calibrated models use ensemble of 3 independently trained models. Training time measured on A100 GPUs, inference latency on A6000 GPU.

Model	Parameters	Training Time	Avg Inference Time		
	(M)	(GPU Hours)	(ms/sample)		
Calibrated Models (Ensemble of 3)					
Pythia	3×147	$3 \times 5 = 15$	$3 \times 3 = 9$		
ViLBERT	3×250	$3 \times 47 = 141$	$3 \times 9 = 27$		
VisualBERT	3×114	$3 \times 19 = 57$	$3 \times 9 = 27$		
CLIP-ViL	3×256	$3 \times 122 = 366$	$3 \times 23 = 69$		
BEiT-3	$3 \times 1,900$	$3 \times 72 = 216$	$3 \times 9 = 27$		
Reference: LLM-only Baseline					
Mistral-7B	7,000	0*	534		

^{*}Pre-trained model used without additional training

Table 15: Effective inference latency comparison between Uni-VQA and LLM-only baseline. Delegation % indicates frequency of LLM invocation. Effective latency computed as: $t_{VQA} + (\text{Deleg}\% \times t_{LLM})$.

TS-VQA Backbone	TS-VQA Latency (ms)	Delegation %	Effective Latency (ms)	Speedup vs LLM-only	
Mistral-7B only	_	100%	534	1.00×	
Pythia	9	78.8%	115	6.64×	
Vilbert	27	79.1%	397	1.34×	
VisualBERT	27	77.9%	392	1.36×	
CLIP-ViL	96	69.9%	322	1.65×	
BEiT-3	27	35.9%	118	4.52×	

framework's improved inference efficiency translates to savings of approximately 11,000-35,000 GPU hours monthly compared to LLM-only inference.

G.11 EXPERIMENTS REPRODUCIBILITY

In this section the hyperparameters used for training the Diverse ensemble based Calibrated model. The DRO loss can be computationally expensive to optimize. To mitigate this, similar to the approach in Sapkota et al. (2024), we employ a regularized version of the loss function, defined as:

$$\mathcal{L}(\Theta)^{DRO} = \max_{\mathbf{w}, \mathbf{w}^T \mathbb{I} = 1} \sum_{n=1}^{N} w_n l(\mathbf{x}_n, \Theta) - \lambda D_f \left(\mathbf{p} \parallel \frac{\mathbb{I}}{N} \right), \tag{18}$$

which has a closed-form solution as demonstrated in Sapkota et al. (2024):

$$\mathcal{L}(\Theta)^{DRO} = \sum_{n=1}^{N} w_n^* l(\mathbf{x}_n, \Theta)$$
(19)

where, w_n^* is given as

$$w_n^* = \frac{\exp(\frac{l(\mathbf{x}_n, \Theta)}{\lambda})}{\sum_{j=1}^N \exp(\frac{l(\mathbf{x}_j, \Theta)}{\lambda})}$$
(20)

In this setup, our hyperparameters are the λ values corresponding to the diverse models in the ensemble. For all of our experiments, we set the ensemble count to 3, resulting in three hyperparameters: λ_1 , λ_2 , and λ_3 . For training our Calibrated TS-VQA models. We use $\lambda \in \{8, 10, 20, 50, 100, 200, 500, 1000\}$ in our experimentation, and select the final parameters based on the performance on the validation set, to obtain the desired ece. The final values of hyperparameters are given in Table 16. Due to computational overhead of LLM-based inferences, we report results based on single run.

H QUALITATIVE ANALYSIS

Figure 14 demonstrates qualitative examples, showing example inputs, along with the TS-VQA's initial answer and confidence score in various low-to-high ranges. Additionally, for each case, the

Table 16: Hyperparameters for training our Calibrated $VQA \ models$.

	VQA Model	λ_1	λ_2	λ_3
	Pythia	8	100	1000
***	Vilbert	8	20	100
VQA-v2	VisualBERT	10	20	100
	CLIP-ViL	20	100	1000
	BEiT-3	8	200	500
	Pythia	2	4	200
	Vilbert	2	3	4
COCO-QA	VisualBERT	2	3	5
	CLIP-ViL	1	2	50
	BEiT-3	0.05	0.5	5

candidate answers by the TS-VQA are listed. Examples, demonstrate LLM's answer & answer correctness with several number of answer candidates, depicting the arguments in 3.3. Specifically, in lowest confidence bins, the TS-VQA and answer candidates are all misleading, leading to misleading the LLM, when the answer candidates are provided. In this scenario, LLM with 0 answer candidates provides the correct answer. In low confidence range, LLM benefits from providing 10 answer candidates, and as the confidence range increases, the LLM's answer benefits from a lower number of answer candidates. In highest confidence range, where TS-VQA model's prediction is most relable, and although LLM with fewer number of answer candidates also provides a correct answer, TS-VQA's answer can be accepted without further delegation to LLM, which saves on high-cost computations by LLM.

I Broader Impact Statement

Modern large language model (LLM)-based systems have revolutionized AI applications, demonstrating remarkable capabilities in diverse domains, including healthcare, finance, and creative industries. Yet their widespread adoption comes at a substantial environmental cost, raising concerns about sustainability and their environmental impacts. Studies Strubell et al. (2020); Patterson et al. (2021) have highlighted the environmental costs of training and deploying these models, highlighting the significant carbon footprint associated with large-scale AI, emphasizing on the need for more energy efficient AI solutions. Furthermore, reports Patterson et al. (2021); Weidinger et al. (2022); Luccioni et al. (2024) indicate that inference accounts for a substantial AI workloads, often exceeding the energy costs of model training and development, due to their usage at scale. This underscores the urgent need to develop AI systems that balance computational efficiency with performance.

In line with the principles of Green AI Schwartz et al. (2020) - prioritizing innovation while minimizing resource consumption and computational costs - our work proposes a framework that selectively and dynamically utilizes LLMs when their unique capabilities are truly needed. Our approach identifies opportunities to use smaller, task-specific models for routine tasks while reserving resource-intensive LLMs for complex queries that demand their advanced capabilities. This selective deployment strategy can significantly reduce the environmental footprint of AI systems without compromising their performance.

While our approach improves trustworthiness through calibration, and efficiency of using LLMs by reducing overreliance on the LLMs, several negative merit further discussion. Firstly, calibrated confidence scores are critical in domains like medical, autonomous driving, or surveillance, where incorrect answers can have serious consequences. Although our framework improves reliability, *a high model confidence does not guarantee correctness*, and in such high-stake scenarios, a human supervision must make an informed decision. If such confidence scores are interpreted as definitive indicators of correctness (especially by non-expert users) this could lead to overtrust and potential harmful decisions in sensitive contexts. Secondly, our framework involves dynamic delegation of queries to LLMs, which may reside in third-party systems. In scenarios involving sensitive or private visual data, delegation to an external LLM (particularly one not hosted locally), poses serious privacy risks. Moreover, unless made explicitly transparent to users when delegation occurs, this can lead to unintended data exposure and ethical concerns around informed consent.

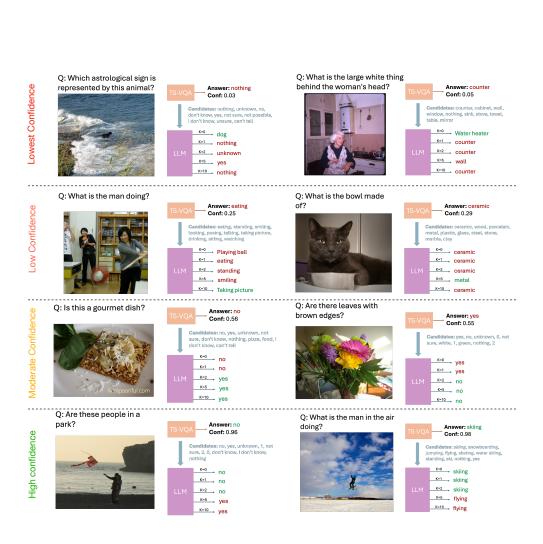


Figure 14: Qualitative exmaples demonstrating the knowledge exchange in various confidences of TS-VQA

J LIMITATIONS AND FUTURE WORKS

Our study has several limitations. First, while our approach employs confidence-based delegation from TS-VQA to the LLM with answer candidates, it does not leverage additional mechanisms, such as answer consistency checking or refinement techniques Srinivasan et al. (2024); Khan et al. (2024); Prasad et al. (2023), which could further boost the performance, when answering is delegated to an LLM. Second, our approach still lacks the systematic way of providing the well-calibrated uncertainty estimates on the LLM generated answers. While calibrated confidence estimates of our Calibrated TS-VQA provides a better reflection on the question difficulty, accurate confidence estimation of the LLM-generated answers can be important, particularly in safety critical domains such as medical, or security surveillances. As uncertainty quantification in LLMs remains an ongoing research challenge, we leave the development of more robust LLM calibration strategies for future work.

K SOURCE CODE

The source code is available at this link.