

000 001 002 003 004 005 006 007 KNOWLEDGE EXCHANGE WITH CONFIDENCE: COST- 008 EFFECTIVE LLM INTEGRATION FOR RELIABLE AND 009 EFFICIENT VISUAL QUESTION ANSWERING 010 011

012 **Anonymous authors**
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

Paper under double-blind review
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Recent advances in large language models (LLMs) have improved the accuracy of visual question answering (VQA) systems. However, directly applying LLMs to VQA still presents several challenges: (a) suboptimal performance when handling questions from specialized domains, (b) higher computational costs and slower inference speed due to large model sizes, and (c) the absence of a systematic approach to precisely quantify the uncertainty of LLM responses, raising concerns about their reliability in high-stakes tasks. To address these issues, we propose an UNcertainty-aware LLM-Integrated VQA model (*Uni*-VQA). This model facilitates knowledge exchange between the LLM and a calibrated task specific model (*i.e.*, *TS*-VQA), guided by reliable confidence scores, resulting in improved VQA accuracy, reliability and inference speed. Our framework strategically leverages these confidence scores to manage the interaction between the LLM and *TS*-VQA: the specialized questions are answered by the *TS*-VQA model, while general knowledge questions are handled by the LLM. For questions requiring both specialized and general knowledge, the *TS*-VQA provides candidate answers, which the LLM then combines with its internal knowledge to generate a more accurate response. Extensive experiments on VQA datasets demonstrate the theoretically justified advantages of *Uni*-VQA over using the LLM or *TS*-VQA alone.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have opened new opportunities to enhance Visual Question Answering (VQA) performance by leveraging the rich general knowledge these models acquire through large-scale pre-training. LLMs consistently achieve higher accuracy on VQA tasks compared to traditional task-specific VQA models (*TS*-VQA), which are smaller models trained specifically for visual question answering. However, fully relying on LLMs for VQA faces critical practical challenges that limit their real-world deployment.

The primary challenge is computational efficiency. LLMs typically require billions of parameters, resulting in prohibitive computational overhead, high financial costs, and significant inference latency. These limitations become critical in time-sensitive applications (Ding et al., 2025) and resource-constrained environments. Moreover, recent studies show that multi-purpose LLMs can be orders of magnitude more expensive to operate than task-specific models during inference. Environmental concerns add another layer of complexity, as large-scale models contribute substantially to carbon emissions and energy consumption (Strubell et al., 2020; Bommasani et al., 2021; Weidinger et al., 2022; Wu et al., 2022). Additionally, relying on third-party LLMs introduces recurring costs, and potential data privacy risks.

However, this computational burden may be unnecessary for many questions. Not all visual questions require the full power of massive language models – smaller *TS*-VQA models can effectively handle simpler queries while consuming significantly less computational resources. Furthermore, *TS*-VQA models trained on domain-specific data can sometimes provide more accurate answers than LLMs in specialized areas where the LLMs lack sufficient knowledge. Most importantly, our empirical analysis reveals that LLMs and *TS*-VQA models possess complementary strengths: even when *TS*-VQA models are uncertain about their final answers, they often generate valuable candidate answers that, when shared with LLMs, substantially improve LLM performance (as shown in

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
19

Figure 2: (a) Effectiveness of incorporation of candidate answer of four TS-VQA models on the performance of Mistral-7B, demonstrating improved accuracy as more knowledge is shared with the LLM. (b) and (c) present reliability diagrams of a baseline and calibrated TS-VQAs (VisualBERT), respectively, showing how model confidence aligns with actual accuracy (orange bars represent a perfect calibration). (d) General workflow of Uni-VQA during inference, illustrating how confidence levels determine whether to use the VQA model directly, consult and LLM, or rely entirely on the LLM.

Large Language Model based VQA. Due to pre-training and reasoning capabilities of LLMs, these models provide an implicit knowledge source for the VQA tasks. Yang et al. (2022) use image captions to provide visual context to GPT-3 as an implicit knowledge base for knowledge based VQA task. Yu et al. (2023) propose a framework that prompts LLMs with complementary answer candidates and answer-aware examples to enhance OK-VQA performance. However, these LLM based VQA models are inadequate for building reliable, efficient, and cost-effective VQA due to their total reliance on LLMs to address all the questions. The knowledge exchange between the LLM and the TS-VQA is not properly guided, which may lead to sub-optimal performance.

Calibration in VQA. Whitehead et al. (2022) introduced the concept of reliability in VQA, treating it as a selective prediction task. They propose incorporating an additional selection mechanism to determine whether the model should provide an answer or abstain, based on an estimated confidence score. Training the selector component requires an additional held-out labeled dataset. To avoid this, Dancette et al. (2023) propose a training strategy, which enables training both the VQA model and selector on the same dataset, by obtaining pseudo-labels for training the selector in a distributed manner. While these methods enhance the model prediction reliability by abstaining answers with low confidence, they do not address the issue of poor-calibration and overconfidence phenomenon stemming from memorization effect. Also, abstaining when confidence is low limits their use in real-world applications where we always expect an answer.

Retrieval-Augmented Generation. Our framework shares a high-level principle with Retrieval-Augmented Generation (RAG) methods Guu et al. (2020); Lewis et al. (2020); Hu et al. (2023); Izacard & Grave (2021): both augment LLMs with external modules. However, they target different bottlenecks and are complementary. RAG retrieves textual evidence from external corpora (e.g., the web, knowledge bases) to expand LLM knowledge coverage, typically invoking the LLM on every query. In contrast, Uni-VQA employs a calibrated TS-VQA model that provides candidate answers and confidence scores, enabling selective LLM invocation only for low- and mid-confidence cases. The two frameworks address orthogonal concerns: RAG controls what textual evidence the LLM sees; Uni-VQA controls when and how the LLM is used. Crucially, our diverse ensemble calibration naturally pushes out-of-distribution and knowledge-intensive questions (where TS-VQA lacks expertise), toward the lowest-confidence region (further discussion in Appendix G.11). This creates a natural integration point: questions routed to the LLM without TS-VQA candidates are those that would benefit most from RAG augmentation. Thus, Uni-VQA could directly wrap a RAG-enhanced LLM for low-confidence queries without modifying the calibration or routing logic.

3 METHODOLOGY

Assume $\mathcal{D}_N = \{(\mathbf{v}_n, \mathbf{q}_n, \mathbf{a}_n)\}_{n=1}^N$ is a dataset consisting of N instances, where each instance comprises an image \mathbf{v}_n , a question \mathbf{q}_n , and an answer \mathbf{a}_n . We establish $\mathcal{X} \equiv \mathcal{V} \times \mathcal{Q}$ as the input space, with $\mathbf{x}_n = (\mathbf{v}_n, \mathbf{q}_n)$ representing an input data point. Additional concepts utilized in the paper are elaborated in the Appendix.

3.1 OVERVIEW OF THE FRAMEWORK

Figure 3 illustrates the overview of the proposed Uni-VQA framework. During the training phase, we first train a well-calibrated TS-VQA model employing a diverse ensemble based approach.

Figure 3: General overview of Uni-VQA framework at inference time. LLM serves different roles depending on the VQA’s confidence. (a) If VQA model is least confident, the LLM serves as a teacher and provides the answer to question, (b) If VQA model is confused among multiple candidate answers, the LLM serves as a consultant and helps to select answer from candidate models. If VQA model is highly confident, Uni-VQA directly answers without LLM involvement.

This calibration step is crucial because reliable confidence scores enable effective integration between the TS-VQA and LLM components during inference. The inference phase, operates through a confidence-guided process: Initially, the calibrated TS-VQA model generates an initial answer along with its associated confidence score c . Based on this confidence score, the framework routes the query to one of three distinct scenarios defined by confidence thresholds l and u . 1) when the TS-VQA exhibits high confidence ($c \geq u$), the TS-VQA answer is accepted directly without LLM’s involvement, leveraging the model’s domain-specific expertise efficiently. 2) When confidence is low ($c < l$, typically for questions requiring broad general knowledge beyond TS-VQA’s specialization.), the question is fully delegated to the LLM without answer candidates, which we refer to as the **LLM as Teacher** scenario. 3) For moderate confidence levels ($l \leq c < u$), where TS-VQA has partial knowledge but remains uncertain, answer candidates of TS-VQA are dynamically selected and provided to the LLM in what we call the **LLM as Consultant** scenario, enabling a collaborative reasoning where the LLM integrates these specialized insights with its own general knowledge.

This confidence-guided delegation mechanism strategically leverages the complementary strengths of both model types. It utilizes the TS-VQA’s domain-specific expertise with low computational cost for high-confidence questions, harnesses the LLM’s broad reasoning capabilities for challenging general knowledge queries, and facilitates knowledge exchange through candidate answers when both specialized and general knowledge are needed to improve predictive performance.

3.2 RELIABLE VQA VIA MODEL CALIBRATION

In our Uni-VQA framework, the integration of LLM and TS-VQA models depends critically on the TS-VQA model’s confidence estimates. For optimal integration, these confidence estimates must reliably indicate answer correctness, *i.e.*, low confidence should signal incorrect answers, while high confidence should signal correct ones. This requires well-calibrated TS-VQA models where confidence estimates accurately align with actual accuracies. However, standard VQA models trained with cross-entropy loss suffer from overconfidence (fig. 2b), consistently expressing higher confidence than their actual accuracies.

Diverse Ensemble Strategy. To address the calibration problem, we propose a Diverse Ensemble (DE) strategy that creates multiple complementary TS-VQA models, each specializing on different aspects of the data distribution. Deep ensembles are shown to effectively improve model accuracy and calibration (Wilson & Izmailov, 2020; Lakshminarayanan et al., 2017; Wood et al., 2023; Sapkota et al., 2024), particularly when diversity is enforced among base learners. Our approach lever-

ages Distributionally Robust Optimization (DRO) (Duchi & Namkoong, 2019) to train an ensemble of E diverse TS-VQA models that naturally complement each other.

Given training samples $\{x_n\}_{n=1}^N$ and per-sample loss $l(x_n, \Theta)$ (cross-entropy), we view calibration as learning under an adversarial reweighting of the empirical distribution. For each ensemble member, we minimize a DRO-style weighted loss:

$$\mathcal{L}_{DRO}(\Theta) = \sum_{n=1}^N \mathbf{w}_n l(\mathbf{x}_n, \Theta) \quad (1)$$

where \mathbf{w}_n determines the emphasis on each training instance \mathbf{x}_n . The weight vector \mathbf{w} are dynamically computed at every training step based on the current model’s losses. Concretely, we adopt the regularized DRO formulation with KL-divergence, which yields the closed-form softmax weighting (see Appendix C for derivation):

$$w_n^*(\lambda) = \frac{\exp(l(x_n, \Theta)/\lambda)}{\sum_{j=1}^N \exp(l(x_j, \Theta)/\lambda)}.$$

where $\lambda > 0$ controls how far \mathbf{w}^* can deviate from uniform weights, and thus how strongly the model focuses on high-loss (difficult) samples.

By varying the hyperparameter λ across ensemble members, we obtain models that specialize on different difficulty regimes. When λ is small, the weighting scheme emphasizes challenging samples, producing a model that tends to be cautious (lower confidence) since it has learned to handle difficult cases. When λ is large, the weighting approaches uniform distribution, creating a model that captures general patterns and tends to be more confident on typical samples. In all experiments, we use an ensemble of $E = 3$ models with small, medium, and large λ values, creating complementary expertise across the difficulty spectrum (See Appendix C and Appendix G.13 for details).

At inference time, we average the logits of the ensemble members, $f_{DE}(\mathbf{x}) = \frac{1}{E} \sum_{e=1}^E f_e(\mathbf{x})$, (where $f_e(\mathbf{x})$ represents the logits from the e -th ensemble member), and obtain the confidence score from the resulting softmax distribution. This combination naturally produces well-calibrated confidence scores because the cautious models (trained on hard samples) temper the overconfidence of models trained on easier samples, while confident predictions from easy-sample experts are validated across the ensemble.

As demonstrated in Figures 11 and 12 in the appendix appendix G.3, our diverse ensemble significantly improves calibration by assigning appropriately lower confidence to incorrect answers while maintaining high confidence for correct responses, making the confidence scores a reliable indicator for our delegation mechanism.

3.3 CONFIDENCE GUIDED KNOWLEDGE EXCHANGE

Calibrated TS-VQA confidence scores are critical in selectively delegating challenging questions along with answer candidates to the LLM, not only improving the overall predictive performance but also enabling efficient inference of easier questions by the TS-VQA model. Additionally, the effectiveness of these candidate answers varies significantly across different confidence intervals.

Motivated by this observation, we hypothesize that within different confidences, the number of answer candidates from which the LLM can benefit if presented by those varies. Specifically, for an effective combination of LLM and VQA by answer-candidate augmentation, fewer answer-candidates are needed at high confidences of TS-VQA, while more candidates become beneficial as the confidences decrease. At lowest confidences, providing large number of answer candidates is impractical, making it more effective for the LLM to answer the questions without relying on any answer candidates. To validate this hypothesis we compare the LLM’s predictive accuracy within each confidence interval of the TS-VQA for varying number of answer candidates in top-0, top-1, top-2, and top-10 along with LLM’s performance without answer candidates. As fig. 4b suggests, in higher confidence intervals, LLMs performance is higher when fewer answer candidates are presented. As confidence interval decreases, LLMs performance is enhanced when more answer candidates are included. In the lowest confidence intervals, the LLM’s performance with answer candidates drops as compared to when no answer candidate is presented.

To that end, we propose a dynamic approach for effective answer candidate selection, informed by the TS-VQA’s answer confidence. Considering $c_i = \max f_\Theta(\mathbf{x}_i)$ as the confidence of the predicted

Figure 4: (a) Learned mapping: confidence to k . (b) Accuracy for $k \in \{0, 1, 2, 10\}$ across confidence bins.

answer \hat{a}_i . We define l , as threshold for delegating to LLM with no answer candidates, and u as thresholds for using TS-VQA for question answering. Specifically, if $c_i \geq u$, then the answer predicted by the TS-VQA model i.e. \hat{a}_i is accepted, and if $c_i < l$, answering is delegated to LLM, without any answer candidates included in the prompt. For $u \geq c_i \geq l$, answering is delegated to LLM provided with $K(c_i) \geq 1$ answer-candidate where K is determined by:

$$K(c_i) \approx \lceil M e^{-W(\frac{c_i-l}{u-l})} \rceil, \quad (2)$$

where $0 \geq l, u \leq 1$, and learnable parameters M, W are determined based on a validation set and $\lceil x \rceil$ is the rounding operation that converts the fractional value into the closest integer. Figure 4a presents the learned top- k answer candidate selection for Calibrated CLIP-ViL.

3.4 ACCELERATING INFERENCE WITH KNOWLEDGE DISTILLATION

To further reduce the inference cost, we propose to leverage knowledge distillation to transfer the predictive accuracy and calibration of the diverse ensemble (DE) into a single TS-VQA model with the same architecture as the individual ensemble components. Instead of learning from target labels using cross-entropy loss, the distilled model minimizes the Kullback-Leibler divergence between its output distribution and the diverse ensemble’s output logits distribution. This approach effectively preserves both accuracy and calibration with theoretical guarantees Allen-Zhu & Li; Hebbalaguppe et al. (2024) while eliminating the additional computational burden of ensembling. Our experiments show that the distilled model maintains comparable ECE and accuracy (within 0.4%) while reducing latency up to 60%. Further details and numerical results are provided in Appendix G.9.

4 THEORETICAL ANALYSIS

In this section, we theoretically demonstrate that the proposed Uni-VQA technique effectively delegates a greater number of incorrect predictions, that would otherwise be confidently wrong. We show this in two steps. First, we demonstrate how the diverse ensemble technique improves calibration. In the second step, we show that with better calibration, more incorrect samples are shifted into the low-confidence regions, allowing them to be effectively delegated to the LLM for correction. Complete proofs for the theoretical results are provided in Appendix D.

Diverse ensemble improves the ECE. In this section, we showcase the lemma demonstrating how diverse ensemble techniques improve the model calibration (i.e., ECE) compared to an Expected Risk Minimization (ERM)-based model. Specifically, in the following lemma, we show that the DE loss will be an upperbound on the regularized cross-entropy loss where the regularizer is the negative entropy of the predictive distribution $\hat{p} = f_\theta(\mathbf{x})$

Lemma 4.1 Consider $\mathcal{L}_{DE}(\theta)$ being the diverse ensemble loss and $\mathcal{L}_{CE}^e(\theta)$ being the cross entropy loss for the subnetwork e , and $\hat{p}^e = f_\theta^e(\mathbf{x})$ being the prediction distribution of the base subnetwork e . Then, we have:

$$\mathcal{L}_{DE}(\theta) \geq \frac{1}{C} \sum_{e=1}^{|E|} [\mathcal{L}_{CE}^e(\theta) - \lambda_e \mathcal{H}^e[\hat{p}]] \quad (3)$$

where $|E|$ is the total number of subnetworks used in our ensemble, C is the normalization constant of DRO weights, λ_e is the DRO hyperparameter controlling the balance between CE loss and predictive entropy, and $\mathcal{H}^e[\hat{p}]$ being the entropy of the \hat{p} .

324 **Remark.** The Lemma indicates that minimizing the DE loss leads to: (a) minimization of the
 325 cross-entropy loss, and (b) an increase in the entropy of the predictive distribution \hat{p} . Increasing
 326 the entropy of the predictive distribution can avoid overconfident predictions produced by the DNN
 327 network, thereby improving the calibration. As a result our approach will reduce the likelihood
 328 of errors in the high confidence region, ensuring that the incorrect predictions remain in the low
 329 confidence regions. These low-confidence questions are then delegated to the LLM, that provides
 330 the final answer with the support of the dynamically selected candidate answers from the TS-VQA.

331 **Diverse ensemble maximizes incorrect sample delegation.** Because of the improved calibration
 332 achieved through the diverse ensemble technique, our approach shifts more incorrect samples into
 333 the low confidence region compared to the ERM-based approach. This is because, ERM tends to
 334 produce overconfident prediction for most of the samples, causing many wrongly answered samples
 335 to fall in the high-confidence region (as shown empirically in Figure 11). In contrast, diverse
 336 ensemble lowers confidence levels, leading to a higher number of samples in the low-confidence
 337 region.

339 Figure 5: Empirical evidence illustrating $N_{DE}^{in, \tau} \geq N_{ERM}^{in, \tau}$, across four VQA architectures.
 340
 341
 342
 343
 344
 345

346 **Theorem 4.2** Let N_{DE}^{τ} and N_{ERM}^{τ} being total number of samples belonging to the low confidence
 347 region $\mathcal{R} : \{\hat{p} \in [0, \dots, \tau]\}$ with τ being the threshold defining the low-confidence region. Then, for
 348 the region \mathcal{R} , the following holds true

$$N_{DE}^{in, \tau} \geq N_{ERM}^{in, \tau} \quad (4)$$

349 where $N_{DE}^{in, \tau}$, $N_{ERM}^{in, \tau}$ are # of incorrect samples from DRO and ERM, respectively in region \mathcal{R} .
 350
 351

352 **Remark.** By leveraging the DE-framework, we ensure that the incorrect samples are more likely
 353 to be in the low-confidence region, as empirically illustrated in Figure 5. It maximizes the LLM’s
 354 ability to correct these incorrect answers. In contrast, the ERM-based approach frequently assigns
 355 high confidence scores to incorrect samples due to overfitting. As a result, the delegation threshold
 356 must be set very high to pass these samples to the LLM for correction. This leads to either sub-
 357 optimal accuracy if threshold is not high enough, or sub-optimal efficiency if the threshold is set too
 358 high, requiring more frequent delegation to the LLM.
 359
 360

5 EXPERIMENTS

361 We evaluated the performance of our Uni-VQA framework on multiple existing VQA architectures
 362 and report comparative quantitative results on the VQA-v2 (Antol et al., 2015) and COCOQA (Ren
 363 et al., 2015) test splits, and conduct extensive ablation studies to justify the effectiveness of various
 364 proposed components. This includes effectiveness of (i) diverse ensemble-based VQA, (ii) answer-
 365 candidate augmented LLM prompting, and (iii) dynamic answer-candidate selection approach. Due
 366 to limited space, we have included more experimental results in the appendix G.9.
 367
 368

369 **Baselines.** We have considered five baselines. This include (a) Pretrained-LLM, (b) TS-VQA, (c)
 370 VectorScale-based post-hoc calibrated VQA, referred as VectorScale Guo et al. (2017), (d) hybrid
 371 LLM-VQA confidence threshold based delegation, referred as LLM-VQA, and (e) VQA models
 372 with our novel calibration technique denoted as Calibrated. LLM-VectorScale refers to integ-
 373 ration of LLM with the VectorScale calibrated VQA. Specifically, in terms of VQA models, we
 374 consider five TS-VQA models: Pythia Jiang et al. (2018), CLIP-ViL Shen et al. (2021), ViLBERT
 375 Lu et al. (2019), VisualBERT Li et al. (2019), and BEiT-3 Wang et al. (2023). Pythia Jiang et al.
 376 (2018) is a bottom-up top-down model, which leverages the up-down attention mechanism Anderson
 377 et al. (2018), and combines the representations of question and image by element-wise multiplica-
 378 tion. CLIP-ViL Shen et al. (2021) uses the Movie-MCAN architecture Nguyen et al. (2020) with the

Figure 6: Performance comparison of the proposed, against LLM-VQA, and LLM-VectorScale (threshold) models, with respect to the delegation threshold. Accuracy at zero delegation is accuracy of TS-VQA model.

Figure 7: Performance comparison of the proposed, against LLM-VQA, and LLM-VectorScale (threshold) models with fixed top-10 answer candidates, with respect to the delegation percentage.

visual encoder of the CLIP Radford et al. (2021) pre-training model. ViLBERT Lu et al. (2019) and VisualBERT Li et al. (2019) are pre-training-based transformer architectures with attention mechanisms. BEiT-3 is an state-of-the-art general-purpose vision-language model trained through masked-data modeling. For LLM-based models, we have employed frozen *Mistral-7B* Jiang et al. (2023), and LLaVA-1.5 13B Liu et al. (2023) as a VLM.

Dataset and evaluation metrics. We use VQA-v2 (Antol et al., 2015) and COCOQA (Ren et al., 2015) data sets. See appendix F.1 for more details. We utilize three metrics for evaluation: (1) VQA accuracy (ACC) to illustrate predictive performance, (2) Expected Calibration Error (ECE) which measures the difference between model confidence and actual accuracy (lower is better, with 0 indicating a perfect calibration, and is used to assess the reliability, (3) the proportion of questions assigned to LLM (LLM-Deleg %) as a proxy for computational expense and inference time, reflecting the extra cost incurred by LLM, and (4) Average latency of inference (Latency) measured in seconds. For complete implementation details refer to Appendix F.3.

5.1 COMPARISON RESULTS

Figure 6 compares our approach with the baselines for various delegation thresholds. With the delegation threshold of 0, none of the questions is delegated to the LLM whereas, as threshold increases, more questions with lower confidence scores are delegated to the LLM. LLM-only indicates the baseline result when we directly answer all questions using LLM. There are two key observations that can be inferred from the Figure 6. First, delegating low-confidence samples to the LLM improves performance across all baselines, including our Uni-VQA. This improvement can be attributed to the LLM’s ability to handle challenging questions that the TS-VQA models struggle with. Second, due to its superior calibration, coupled with the uncertainty-sensitive dynamic delegation technique, our Uni-VQA delegates more incorrect samples to the LLM, achieving better overall performance compared to other baselines. This highlights the importance of calibration enhancement and dynamic delegation in hybrid VQA models.

Figure 7 compares our Uni-VQA with baselines in terms of the VQA accuracy against the LLM-delegation percentage. First, our approach achieves the highest maximum accuracy than the baselines. At any given fixed delegation percentage, it also obtains a higher accuracy than the baselines. It’s worth to note that, our model can match the accuracy of baselines with a lower delegation percentage, which implies a lower inference-time and computational overhead. For example, in VisualBERT, Uni-VQA achieves the same 68.3% VQA accuracy as LLM-VectorScale but with 11.67% lower LLM delegation. Table 1 further demonstrates the effectiveness of our Uni-VQA with regard to different VQA models against the competitive baselines. The Table mainly demonstrates two key phenomenon. First, our calibration technique, **Calibrated** (Ours), improves the calibration performance i.e., ECE without compromising the accuracy. Second, due to the enhanced calibration, the presence of overconfident wrong predictions are effectively minimized in the highest confidence regions. As a result, the uncertainty-aware dynamic delegation ensures that easier questions—those in the high-confidence bins of the calibrated TS-VQA model—are confidently answered without further delegation to the LLM, provided their confidence surpasses the dynamic threshold. Conse-

432 Table 1: Performance comparison of Uni-VQA with TS-VQA models and LLM across four architectures.
433

434	435	436	437	438	439	440	441	442	443	444	VQA-v2			COCOQA																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
											445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Model	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
LLM-only (Mistral-7B)	69.09	0.31	100	0.534	72.03	0.27	100	0.534	70.38	0.15	-	0.016	68.62	0.16	-	0.001	68.88	0.10	-	0.001	68.64	0.02	-	0.009	74.78	0.06	64.84	0.342	74.95	0.06	64.89	0.314	70.38	0.15	-	0.016	70.41	0.11	-	0.017	69.94	0.02	-	0.048	75.63	0.05	67.19	0.347	69.23	0.20	-	0.004	69.04	0.17	-	0.007	70.59	0.02	-	0.012	64.40	0.18	-	0.003	67.38	0.01	-	0.009	74.34	0.06	73.46	0.382	65.28	0.19	-	0.003	72.29	0.18	-	0.009	72.16	0.16	-	0.009	71.94	0.02	-	0.027	76.01	0.02	57.82	0.291	73.19	0.14	-	0.009	73.62	0.14	-	0.009	73.25	0.04	-	0.027	74.33	0.07	35.91	0.181	70.06	(-14.32%)	50.06	(-16.05%)	24.4	(-11.1%)	41.06	(-9.97%)	47.51	(-16.5%)	9.06	(-1.1%)	66.11	27.56	40.56	41.06	66.79	49.18	26.23	6.71	(-19.52%)	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	10.16	73.71	70.07	66.11	71.6	70.42	60.86	69.88	67.79	72.29	18.0	72.16	16.0	71.94	0.02	76.01	0.02	57.82	0.291	70.07	64.38	71.51	35.5	70.25	51.03	69.75	

486
487 Table 3: Delegation percentage for Uni-VQA
models to match LLM-Only accuracy.488
489
490
491

Target ACC	LLM-Deleg (%)		
	Pythia	ViLBERT	VisualBERT
VQA-v2	69.09	38.81	19.4
COCOQA	72.03	17.14	8.06
			40.39
			12.13

492
493 Table 4: LLaVA Delegation across models, to match the
494 LLaVA accuracy (78.35%).495
496
497
498

Model	LLM-Deleg (%)		
	LLM-VQA	LLM-VectorScale	Uni-VQA (Ours)
CLIP-ViL	80.3	73.8	65.4
ViLBERT	94.0	87.4	82.7
VisualBERT	93.2	89.9	84.6
Pythia	89.7	85.9	84.3

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
reliance on LLaVA while maintaining comparable accuracy levels. table 4 presents the LLM-delegation percentages for different VQA architectures, between our Uni-VQA, LLM-VQA and LLM-VectorScale (threshold), in order to achieve the same accuracy as the LLaVA-only setup, indicating a substantial reduction in delegation when using Uni-VQA. For instance, with CLIP-ViL as TS-VQA model, Uni-VQA achieves the same accuracy as LLaVA-only (78.53%) while requiring approximately 15% and 8% less delegation compared to LLM-VQA and LLM-VectorScale, respectively.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
By leveraging the calibrated confidences of our Calibrated TS-VQA models, Uni-VQA effectively routes a fraction of questions to LLaVA only when necessary, avoiding redundant heavy computation on questions that can be reliably answered by the TS-VQA. Consequently, Uni-VQA not only reduces inference latency but also lowers the overall computational cost, making it a cost-effective alternative to relying fully on large models.500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Remark. As Tables 2 and 4 indicate, we observe that the reduction in LLM delegation is more pronounced for models with well-calibrated confidence scores. This further emphasizes the role of calibration of TS-VQA models in enabling effective knowledge-exchange and uncertainty-aware integration between the TS-VQA and LLM.510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

5.3 SENSITIVITY & ROBUSTNESS ANALYSIS

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
We conduct a cross-model hyperparameter transfer analysis, where we applied hyperparameters $\{l, u, K(c_i)\}$ tuned on each model to other models, and measuring the impact on their performance, to analyze generalizability of our hyperparameter selections. Table 9 (in Appendix G.7) shows that the maximum accuracy drop never exceeds 1.24 on COCO-QA, confirming that our proposed framework is not sensitive to careful tuning of the hyperparameters. Our analysis provides compelling evidence that careful threshold tuning is unnecessary, and thresholds show remarkable generalizability.540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

5.4 DISCUSSION

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
Reducing reliance on computationally intensive models is crucial in ensuring scalable and environmentally sustainable AI applications, as studies ave highlighted significant energy consumption and carbon emissions of large-scale language models (Strubell et al., 2020; Patterson et al., 2021). Our work addresses these concerns by minimizing frequent delegation to high-cost models through strategic integration. Unlike pruning (Zhu et al., 2024; Wan et al., 2023; Fu et al., 2024) and quantization (Zhao et al., 2024; Lin et al., 2024) techniques that reduce model size, our Uni-VQA approach improves inference efficiency by dynamically determining when LLM delegation is necessary based on calibrated TS-VQA confidence scores. This complementary approach can be combined with existing model efficiency techniques to further reduce computational costs while maintaining accuracy.599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

6 CONCLUSION

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
In this paper, we introduce an uncertainty-aware LLM integrated VQA model, referred to as Uni-VQA, which facilitates knowledge exchange between the LLM and a calibrated TS-VQA model based on reliable confidence scores. It cost-effectively improves VQA accuracy and inference speed. Our framework leverages well-calibrated confidence scores to guide the interaction between the LLM and TS-VQA. We conducted extensive experiments across multiple datasets, which demonstrate the effectiveness of Uni-VQA in terms of accuracy, computational efficiency, and reliability.

540 REPRODUCIBILITY STATEMENT
541

542 We provide: (1) Complete implementation details in Appendix and F.3 with all hyperparameters
 543 in Table 16 (Appendix G.11); (2) Reference to public baseline implementations via MMF (Singh
 544 et al., 2020) and UniLM (Wang et al., 2023) repositories; (3) Standard public datasets (VQA-v2,
 545 COCO-QA) with preprocessing documented in Appendix F.1; (4) LLM prompting methodology in
 546 Appendix F.2; (5) Threshold learning procedure in Section 3.3; and (6) code repository provided in
 547 supplementary materials, with public release at publication. Computational environment details are
 548 in Appendix G.10 (Tables 14-15).

550 REFERENCES
551

552 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
 553 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
 554 model for few-shot learning. *Advances in Neural Information Processing Systems*, 35:23716–
 555 23736, 2022.

556 Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
 557 self-distillation in deep learning. In *The Eleventh International Conference on Learning Representations*.

558

559 Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and
 560 Lei Zhang. Bottom-up and top-down attention for image captioning and visual question answer-
 561 ing. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 562 6077–6086, 2018.

563

564 Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
 565 nick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE international*
 566 *conference on computer vision*, pp. 2425–2433, 2015.

567

568 Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT pre-training of image trans-
 569 formers. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=p-BhZSz59o4>.

570

571 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
 572 Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
 573 nities and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.

574

575 Glenn W Brier. Verification of forecasts expressed in terms of probability. *Monthly weather review*,
 78(1):1–3, 1950.

576

577 Corentin Dancette, Spencer Whitehead, Rishabh Maheshwary, Ramakrishna Vedantam, Stefan
 578 Scherer, Xinlei Chen, Matthieu Cord, and Marcus Rohrbach. Improving selective visual ques-
 579 tion answering by learning from your peers. In *Proceedings of the IEEE/CVF Conference on*
 580 *Computer Vision and Pattern Recognition*, pp. 24049–24059, 2023.

581

582 Di Ding, Tianliang Yao, Rong Luo, and Xusen Sun. Visual question answering in robotic surgery:
 A comprehensive review. *IEEE Access*, 2025.

583

584 John Duchi and Hongseok Namkoong. Variance-based regularization with convex objectives. *Jour-
 585 nal of Machine Learning Research*, 20(68):1–55, 2019.

586

587 Shohei Enomoro and Takeharu Eda. Learning to cascade: Confidence calibration for improving
 588 the accuracy and computational cost of cascade inference systems. In *Proceedings of the AAAI*
 589 *Conference on Artificial Intelligence*, volume 35, pp. 7331–7339, 2021.

590

591 Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. vol. 1
 592 Springer series in statistics. *New York*, 2001.

593

594 Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari, and Mahyar Na-
 595 jibi. Lazylm: Dynamic token pruning for efficient long context llm inference. *arXiv preprint*
 596 *arXiv:2407.14057*, 2024.

594 Feng Gao, Qing Ping, Govind Thattai, Aishwarya Reganti, Ying Nian Wu, and Prem Natarajan. Transform-retrieve-generate: Natural language-centric outside-knowledge visual question
 595 answering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5067–5077, 2022.

596

597

598 Peng Gao, Zhengkai Jiang, Haoxuan You, Pan Lu, Steven CH Hoi, Xiaogang Wang, and Hongsheng
 599 Li. Dynamic fusion with intra-and inter-modality attention flow for visual question answering.
 600 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 601 6639–6648, 2019.

602

603 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
 604 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.

605

606 Jiaxian Guo, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Boyang Li, Dacheng Tao, and
 607 Steven Hoi. From images to textual prompts: Zero-shot visual question answering with frozen
 608 large language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 609 Pattern Recognition*, pp. 10867–10877, 2023.

610 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
 611 language model pre-training. In *International conference on machine learning*, pp. 3929–3938.
 612 PMLR, 2020.

613

614 Ramya Hebbalaguppe, Mayank Baranwal, Kartik Anand, and Chetan Arora. Calibration transfer via
 615 knowledge distillation. In *Proceedings of the Asian Conference on Computer Vision*, pp. 513–530,
 616 2024.

617 Ziniu Hu, Ahmet Iscen, Chen Sun, Zirui Wang, Kai-Wei Chang, Yizhou Sun, Cordelia Schmid,
 618 David A Ross, and Alireza Fathi. Reveal: Retrieval-augmented visual-language pre-training with
 619 multi-source multimodal knowledge memory. In *Proceedings of the IEEE/CVF conference on
 620 computer vision and pattern recognition*, pp. 23369–23379, 2023.

621

622 Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
 623 domain question answering. In *Proceedings of the 16th conference of the european chapter of the
 624 association for computational linguistics: main volume*, pp. 874–880, 2021.

625

626 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 627 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
 628 *Mistral 7b*. *arXiv preprint arXiv:2310.06825*, 2023.

629

630 Yu Jiang, Vivek Natarajan, Xinlei Chen, Marcus Rohrbach, Dhruv Batra, and Devi Parikh. Pythia
 631 v0. 1: the winning entry to the vqa challenge 2018. *arXiv preprint arXiv:1807.09956*, 2018.

632

633 Wittawat Jitkrittum, Neha Gupta, Aditya K Menon, Harikrishna Narasimhan, Ankit Rawat, and
 634 Sanjiv Kumar. When does confidence-based cascade deferral suffice? *Advances in Neural Infor-
 635 mation Processing Systems*, 36:9891–9906, 2023.

636

637 Zaid Khan, Vijay Kumar BG, Samuel Schulter, Manmohan Chandraker, and Yun Fu. Exploring
 638 question decomposition for zero-shot vqa. *Advances in Neural Information Processing Systems*,
 639 36, 2024.

640

641 Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
 642 lution or region supervision. In *International conference on machine learning*, pp. 5583–5594.
 643 PMLR, 2021.

644

645 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 646 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,
 647 30, 2017.

648

649 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 650 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 651 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 652 9459–9474, 2020.

648 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 649 pre-training with frozen image encoders and large language models. In *International conference*
 650 *on machine learning*, pp. 19730–19742. PMLR, 2023.

651 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple
 652 and performant baseline for vision and language. *arXiv preprint arXiv:1908.03557*, 2019.

653 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 654 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 655 on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6:
 656 87–100, 2024.

657 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 658 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer*
 659 *Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014,*
 660 *Proceedings, Part V 13*, pp. 740–755. Springer, 2014.

661 Yuanze Lin, Yujia Xie, Dongdong Chen, Yichong Xu, Chenguang Zhu, and Lu Yuan. Revive:
 662 Regional visual representation matters in knowledge-based visual question answering. *Advances*
 663 *in Neural Information Processing Systems*, 35:10560–10571, 2022.

664 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 665 2023.

666 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolin-
 667 guistic representations for vision-and-language tasks. *Advances in neural information processing*
 668 *systems*, 32, 2019.

669 Pan Lu, Hongsheng Li, Wei Zhang, Jianyong Wang, and Xiaogang Wang. Co-attending free-form
 670 regions and detections with multi-modal multiplicative feature embedding for visual question
 671 answering. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.

672 Sasha Luccioni, Yacine Jernite, and Emma Strubell. Power hungry processing: Watts driving the
 673 cost of ai deployment? In *The 2024 ACM Conference on Fairness, Accountability, and Trans-*
 674 *parency*, pp. 85–99, 2024.

675 Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
 676 question answering benchmark requiring external knowledge. In *Proceedings of the IEEE/cvf*
 677 *conference on computer vision and pattern recognition*, pp. 3195–3204, 2019.

678 Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Dokan-
 679 nia. Calibrating deep neural networks using focal loss. *Advances in Neural Information Process-
 680 ing Systems*, 33:15288–15299, 2020.

681 Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated proba-
 682 bilities using bayesian binning. In *Proceedings of the AAAI conference on artificial intelligence*,
 683 volume 29, 2015.

684 Duy-Kien Nguyen, Vedanuj Goswami, and Xinlei Chen. Movie: Revisiting modulated convolutions
 685 for visual counting and beyond. *arXiv preprint arXiv:2004.11883*, 2020.

686 Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran. Measur-
 687 ing calibration in deep learning. In *CVPR workshops*, volume 2, 2019.

688 David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
 689 David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. *arXiv*
 690 *preprint arXiv:2104.10350*, 2021.

691 Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal. Rephrase, augment, reason: Visual ground-
 692 ing of questions for vision-language models. *arXiv preprint arXiv:2310.05861*, 2023.

693 Tianwen Qian, Jingjing Chen, Shaoxiang Chen, Bo Wu, and Yu-Gang Jiang. Scene graph refinement
 694 network for visual question answering. *IEEE Transactions on Multimedia*, 2022.

702 Stephan Rabanser, Nathalie Rauschmayr, Achin Kulshrestha, Petra Poklukar, Wittawat Jitkrittum,
 703 Sean Augenstein, Congchao Wang, and Federico Tombari. I know what i don't know: Improving
 704 model cascades through confidence tuning. *arXiv preprint arXiv:2502.19335*, 2025.

705

706 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 707 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 708 models from natural language supervision. In *International conference on machine learning*, pp.
 709 8748–8763. PMLR, 2021.

710 Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring models and data for image question
 711 answering. *Advances in neural information processing systems*, 28, 2015.

712

713 Hitesh Sapkota and Qi Yu. Adaptive robust evidential optimization for open set detection from
 714 imbalanced data. In *The Eleventh International Conference on Learning Representations*, 2023.
 715 URL <https://openreview.net/forum?id=3yJ-hcJBqe>.

716 Hitesh Sapkota, Dingrong Wang, Zhiqiang Tao, and Qi Yu. Distributionally robust ensemble of
 717 lottery tickets towards calibrated sparse network training. *Advances in Neural Information Pro-
 718 cessing Systems*, 36, 2024.

719 Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. *Communications of the
 720 ACM*, 63(12):54–63, 2020.

721

722 Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
 723 A-okvqa: A benchmark for visual question answering using world knowledge. In *European
 724 Conference on Computer Vision*, pp. 146–162. Springer, 2022.

725

726 Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei
 727 Yao, and Kurt Keutzer. How much can clip benefit vision-and-language tasks? *arXiv preprint
 728 arXiv:2107.06383*, 2021.

729

730 Sasha Sheng, Amanpreet Singh, Vedanuj Goswami, Jose Magana, Tristan Thrush, Wojciech Galuba,
 731 Devi Parikh, and Douwe Kiela. Human-adversarial visual question answering. *Advances in
 732 Neural Information Processing Systems*, 34:20346–20359, 2021.

733

734 Amanpreet Singh, Vedanuj Goswami, Vivek Natarajan, Yu Jiang, Xinlei Chen, Meet Shah, Marcus
 735 Rohrbach, Dhruv Batra, and Devi Parikh. Mmf: A multimodal framework for vision and language
 736 research. *MMF: A multimodal framework for vision and language research*, 2020.

737

738 Tejas Srinivasan, Jack Hessel, Tanmay Gupta, Bill Yuchen Lin, Yejin Choi, Jesse Thomason, and
 739 Khyathi Raghavi Chandu. Selective” selective prediction”: Reducing unnecessary abstention in
 740 vision-language reasoning. *arXiv preprint arXiv:2402.15610*, 2024.

741

742 Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
 743 modern deep learning research. In *Proceedings of the AAAI conference on artificial intelligence*,
 744 volume 34, pp. 13693–13696, 2020.

745

746 Anthony Meng Huat Tiong, Junnan Li, Boyang Li, Silvio Savarese, and Steven CH Hoi. Plug-and-
 747 play vqa: Zero-shot vqa by conjoining large pretrained models with zero training. *arXiv preprint
 748 arXiv:2210.08773*, 2022.

749

750 Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen
 751 Yan, Yi Zhu, Quanlu Zhang, et al. Efficient large language models: A survey. *arXiv preprint
 752 arXiv:2312.03863*, 2023.

753

754 Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
 755 Owais Khan Mohammed, Saksham Singhal, Subhajit Som, and Furu Wei. Image as a foreign
 756 language: BEiT pretraining for vision and vision-language tasks. In *Proceedings of the IEEE/CVF
 757 Conference on Computer Vision and Pattern Recognition*, 2023.

758

759 Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, and Joseph E Gonzalez.
 760 Idk cascades: Fast deep learning by learning not to overthink. *arXiv preprint arXiv:1706.00885*,
 761 2017.

756 David Warren and Mark Dras. Bi-directional model cascading with proxy confidence. *arXiv preprint*
 757 *arXiv:2504.19391*, 2025.

758

759 Laura Weidinger, Jonathan Uesato, Maribeth Rauh, Conor Griffin, Po-Sen Huang, John Mellor,
 760 Amelia Glaese, Myra Cheng, Borja Balle, Atoosa Kasirzadeh, et al. Taxonomy of risks posed by
 761 language models. In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and*
 762 *Transparency*, pp. 214–229, 2022.

763 Spencer Whitehead, Suzanne Petryk, Vedaad Shakib, Joseph Gonzalez, Trevor Darrell, Anna
 764 Rohrbach, and Marcus Rohrbach. Reliable visual question answering: Abstain rather than an-
 765 swer incorrectly. In *European Conference on Computer Vision*, pp. 148–166. Springer, 2022.

766

767 Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
 768 generalization. *Advances in neural information processing systems*, 33:4697–4708, 2020.

769

770 Danny Wood, Tingting Mu, Andrew M Webb, Henry WJ Reeve, Mikel Luján, and Gavin Brown. A
 771 unified theory of diversity in ensemble learning. *Journal of machine learning research*, 24(359):
 772 1–49, 2023.

773

774 Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
 775 Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental impli-
 776 cations, challenges and opportunities. *Proceedings of Machine Learning and Systems*, 4:795–813,
 777 2022.

778

779 Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Yumao Lu, Zicheng Liu, and Lijuan Wang.
 An empirical study of gpt-3 for few-shot knowledge-based vqa. In *Proceedings of the AAAI*
 Conference on Artificial Intelligence, volume 36, pp. 3081–3089, 2022.

780

781 Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian. Deep modular co-attention networks for
 782 visual question answering. In *Proceedings of the IEEE/CVF conference on computer vision and*
 783 *pattern recognition*, pp. 6281–6290, 2019.

784

785 Zhou Yu, Xuecheng Ouyang, Zhenwei Shao, Meng Wang, and Jun Yu. Prophet: Prompting large
 786 language models with complementary answer heuristics for knowledge-based visual question an-
 swering. *arXiv preprint arXiv:2303.01903*, 2023.

787

788 Yan Zeng, Xinsong Zhang, Hang Li, Jiawei Wang, Jipeng Zhang, and Wangchunshu Zhou. X 2-vlm:
 789 All-in-one pre-trained model for vision-language tasks. *IEEE Transactions on Pattern Analysis*
 and *Machine Intelligence*, 2023.

790

791 Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
 Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
 792 accurate llm serving. *Proceedings of Machine Learning and Systems*, 6:196–209, 2024.

793

794 Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression
 795 for large language models. *Transactions of the Association for Computational Linguistics*, 12:
 796 1556–1577, 2024.

797

798

799

800

801

802

803

804

805

806

807

808

809

810 811 812 Supplementary Material

813 In this Appendix, we first provide the Table summarizing the major notations used in our paper in
 814 Section A. Next, we provide the important concepts required for the Methodology in Section B. In
 815 Section C, we present the detailed methodology for training our diverse ensemble approach for VQA
 816 calibration. In Section D we provide the detailed mathematical proofs for our theoretical contribu-
 817 tions. In Section F we provide additional experimental details along with the results, and provide a
 818 detailed Ablation study in Section G, and additional qualitative analysis in Section H. Finally, we
 819 provide the broader impact statement and limitations associated with our work in Sections J and I,
 820 respectively.

821 A SUMMARY OF NOTATIONS

822 Table 5 summarizes the major notations used in our paper.

823 Table 5: Symbols with Descriptions

824 Symbol Group	825 Notation	826 Description
827 Dataset	\mathcal{A}	828 Answer set
	\mathcal{V}	829 Image set
	\mathcal{Q}	830 Question set
	$\mathcal{V} \times \mathcal{Q}$	831 Input set
	$\mathbf{x}_n \equiv (\mathbf{v}_n, \mathbf{q}_n)$	832 Input image-question pair
833 DRO Loss	C	834 Total number of classes
	D_f	835 f -divergence
	$l(\mathbf{x}, \Theta)$	836 Per-sample loss
	λ	837 DRO loss parameter
838 Proposed Hybrid VQA	p_y^n	839 Output probability for n -th data sample associated with class y
	K	840 Number of answer candidates from TS-VQA
	c_i	841 Confidence of predicted answer given input \mathbf{x}_i .
842	$K(c_i)$	843 Dynamically chosen answer candidates count based on the output confidence.
		844

845 B PRELIMINARIES

846 In this section, we provide the key concepts that are required to understand our approach.

847 **VQA Accuracy:** In the Visual Question Answering (VQA) task, each question is associated with
 848 multiple ground-truth answers provided by human annotators. Let \mathbf{a} denote the set of ground-truth
 849 answers for a given question, and let \hat{a} represent the answer predicted by a VQA model. The VQA
 850 accuracy metric is defined as follows:

$$851 \quad Acc(\hat{a}, \mathbf{a}) = \min \left(1, \frac{\# \text{ answers in } \mathbf{a} \text{ matching } \hat{a}}{3} \right).$$

852 **Expected Calibration Error (ECE):** Naeini et al. (2015) is a metric commonly used to assess
 853 the calibration error between the estimated confidences and the actual accuracies. ECE is calculated
 854 by dividing the N predictions into M equal bins according to their confidence scores. Within each
 855 bin B_m , the average accuracy and confidence are denoted by $acc(B_m)$ and $conf(B_m)$. Then, ECE
 856 is calculated as Guo et al. (2017):

$$857 \quad ECE = \sum_{m=1}^M \frac{|B_m|}{N} |acc(B_m) - conf(B_m)|,$$

858 where $|B_m|$ is the number of samples in the m -th bin. In the context of VQA, where there is more
 859 than a single ground-truth answer, ECE is measured with respect to the most frequent answer in the
 860 ground-truth annotations.

861 **Adaptive Calibration Error (ACE):** Nixon et al. (2019) is an alternative metric to measure cal-
 862 ibration, which measures the difference between the confidences and accuracies across all classes,
 863 with adaptive binning rather than static and fixed-width binning as in ECE. In contrast, ACE divides
 864 the interval $[0, 1]$ into bins with equal number of samples. ACE is defined as:

864

865

$$866 \quad \text{ACE} = \frac{1}{M|A|} \sum_{y=1}^{|A|} \sum_{m=1}^M |\text{acc}(m, y) - \text{conf}(m, y)|$$

867

868

869 where r and k are bin and class indices, respectively, and $|A|$ and M are the total number of classes

870 and bins, respectively.

871

872

873 **Brier Score:** Brier (1950) measures the squared error difference between the confidences and

874 actual accuracies, without binning, and is defined as:

875

876

877

$$\text{Brier} = \frac{1}{N} \sum_{n=1}^N (p_i - y_i)^2,$$

878

879 where p_i and y_i represent the confidence, and the prediction accuracy for the i th sample.

880

881

882 **Negative Log Likelihood (NLL):** Friedman et al. (2001) is also known as cross-entropy loss, and

883 is defined as:

884

885

$$\text{NLL} = -\frac{1}{N} \sum_{i=1}^N \log p(y_i|x_i),$$

886

887 where $p(y_i|x_i)$ are the predicted probabilities of the ground-truth to the true targets for the i th input.

888

889

C DETAILED METHODOLOGY: DIVERSE ENSEMBLE FOR VQA 890 CALIBRATION

891

892

893

894 Our diverse ensemble approach builds upon Distributionally Robust Optimization (DRO) (Duchi &
895 Namkoong, 2019), which seeks to minimize the worst-case expected loss over an uncertainty set of
896 distributions. The standard DRO formulation is:

897

898

$$\mathcal{L}_{DRO}(\Theta) = \max_{\mathbf{w} \in \mathcal{W}} \sum_{n=1}^N \mathbf{w}_n l(\mathbf{x}_n, \Theta) \quad (5)$$

899

900

901 where \mathcal{W} is the uncertainty set defined as:

902

903

904

905 $\mathcal{W} := \left\{ \mathbf{w} \in \mathbb{R}^N : \mathbf{w}^\top \mathbf{1} = 1, \mathbf{w} \geq 0, D_f \left(\mathbf{w} \left\| \frac{\mathbf{1}}{N} \right. \right) \leq \frac{\lambda}{N} \right\} \quad (6)$

906

907

908 Here, $D_f(\mathbf{w} \left\| \frac{\mathbf{1}}{N} \right.)$ measures the f-divergence between the weight distribution \mathbf{w} and the uniform
909 distribution $\frac{\mathbf{1}}{N}$, and λ controls the size of the uncertainty set.

910

911

912 To make the optimization tractable, we employ the regularized version with KL-divergence as the
913 f-divergence measure. The closed-form solution for the optimal weights becomes:

914

915

916

$$w_n^*(\lambda) = \frac{\exp(l(\mathbf{x}_n, \Theta)/\lambda)}{\sum_{j=1}^N \exp(l(\mathbf{x}_j, \Theta)/\lambda)} \quad (7)$$

917

918

919

920 This softmax-like weighting scheme has intuitive properties: (1) **High Loss Emphasis:** Samples
921 with higher losses $l(\mathbf{x}_n, \Theta)$ receive exponentially higher weights, (2) **Temperature Control:** The
922 parameter λ acts as a temperature parameter controlling the concentration of weights, (3) **Normal-
923 ization:** The weights sum to 1, maintaining a valid probability distribution.

924

925

926 **Effect of Hyperparameter λ on Model Specialization** The hyperparameter λ fundamentally de-
927 termines the focus of each ensemble member:

918 *Case 1: Small λ (Hard Sample Expert)*919 When $\lambda \rightarrow 0$, the weight computation becomes:

920
$$\lim_{\lambda \rightarrow 0} w_n^*(\lambda) = \begin{cases} \frac{1}{|\mathcal{H}|} & \text{if } n \in \mathcal{H} = \arg \max_j l(\mathbf{x}_j, \Theta) \\ 0 & \text{otherwise} \end{cases} \quad (8)$$

921 where \mathcal{H} is the set of hardest samples. This creates a model that focuses exclusively on the most
922 challenging examples.923 *Case 2: Large λ (General Pattern Expert)*924 When $\lambda \rightarrow \infty$, the weights approach uniform distribution:

925
$$\lim_{\lambda \rightarrow \infty} w_n^*(\lambda) = \frac{1}{N}, \quad \forall n \quad (9)$$

926 This is equivalent to standard Empirical Risk Minimization (ERM), producing a model that captures
927 general data patterns, shows higher confidence on typical samples, achieves good average perfor-
928 mance.929 *Case 3: Moderate λ (Balanced Expert)*930 Intermediate values of λ create models that balance between hard and easy samples.931

D MATHEMATICAL PROOFS

932 In this section, we provide the mathematical proof for Lemma 4.1 and Theorem 4.2.

933

D.1 PROOF OF LEMMA 4.1

934 The DRO loss Sapkota & Yu (2023) can be written as the following:

935
$$\mathcal{L}_{DRO}(\theta) = - \sum_{y=1}^{|A|} \frac{\exp\left(-\frac{\log(\hat{p}_y)}{\lambda}\right)}{C^{DRO}} \log(\hat{p}_y) \quad (10)$$

936 Where \hat{p}_y is the predictive distribution, λ is the DRO regularizer coefficient, C^{DRO} is the normal-
937 ization constant and $|A|$ being total number of classes. We can write the following inequality

938
$$\mathcal{L}_{DRO}(\theta) \geq - \frac{1}{C^{DRO}} \sum_{y=1}^{|A|} (1 - \lambda \hat{p}_y) q_y \log \hat{p}_y \quad (11)$$

939 Where q_y is the ground truth probability assigned to y^{th} class with $q_y = 1$ if $y = a(answer)$ and
940 $q_y = 0$ otherwise.941 $\forall y, \log(\hat{p}_y) \leq 0$ we can write the following:

942
$$\begin{aligned} \mathcal{L}_{DRO}(\theta) &\geq - \frac{1}{C^{DRO}} \left[\sum_{y=1}^{|A|} q_y \log(\hat{p}_y) - \lambda \left| \sum_{y=1}^{|A|} q_y \hat{p}_y \log(\hat{p}_y) \right| \right] \\ &\geq - \frac{1}{C^{DRO}} \left[\sum_{y=1}^{|A|} q_y \log(\hat{p}_y) - \lambda \max_j q_j \sum_{y=1}^{|A|} |\hat{p}_y \log(\hat{p}_y)| \right] \end{aligned}$$

943 By Holder inequality $\|fg\|_1 \leq \|f\|_\infty \|g\|_1$ we can further rewrite the above equation as follow

944
$$\begin{aligned} \mathcal{L}_{DRO}(\theta) &\geq - \frac{1}{C^{DRO}} \left[\sum_{y=1}^{|A|} q_y \log(\hat{p}_y) - \lambda \sum_{y=1}^{|A|} \hat{p}_y \log(\hat{p}_y) \right] \\ &= \frac{1}{C^{DRO}} [\mathcal{L}_{CE}(\theta) - \lambda \mathcal{H}[\hat{p}]] \end{aligned}$$

972 Let $\lambda_1, \dots, \lambda_E$ be the DRO specific parameters for the E ensemble models and C_e^{DRO} be the respective
 973 normalization constant then we can write the following:
 974

$$975 \quad 976 \quad 977 \quad \sum_{e=1}^{|E|} \mathcal{L}^{DRO}(\theta) \geq \sum_{e=1}^{|E|} \frac{1}{C_e^{DRO}} [\mathcal{L}_{CE}^e(\theta) - \lambda_e \mathcal{H}^e[\hat{p}]] \quad (12)$$

978 Consider, $C \in \min_{e \in |E|} \{C_e^{DRO}\}$ then we have the following
 979

$$980 \quad 981 \quad 982 \quad L_{DE}(\theta) \geq \frac{1}{C} \sum_{e=1}^{|E|} [\mathcal{L}_{CE}^e(\theta) - \lambda_e \mathcal{H}^e[\hat{p}]] \quad (13)$$

984 This proves the Lemma.

985 Steps from Eq. 10 to 11:

986 We can rewrite the following:
 987

$$988 \quad 989 \quad \exp\left(-\frac{\log(\hat{p}_y)}{\lambda}\right) = (\exp(\log(\hat{p}_y)))^{-\frac{1}{\lambda}} = \hat{p}_y^{-\frac{1}{\lambda}}$$

990 **Case 1: if $\hat{p}_y \lambda \geq 1$:** In this case $(1 - \lambda \hat{p}_y) \leq 0$ and $\hat{p}_y^{-\frac{1}{\lambda}} \geq 0$ and therefore $\hat{p}_y^{-\frac{1}{\lambda}} \geq (1 - \lambda \hat{p}_y)$
 991

992 **Case 2: if $\hat{p}_y \lambda < 1$:** In this case as $\hat{p}_y < 1$, and therefore $\hat{p}_y^{-\frac{1}{\lambda}} > 1$ whereas $(1 - \lambda \hat{p}_y) < 1$ and
 993 therefore $\hat{p}_y^{-\frac{1}{\lambda}} \geq (1 - \lambda \hat{p}_y)$ As in both cases, $\hat{p}_y^{-\frac{1}{\lambda}} \geq (1 - \lambda \hat{p}_y)$ and therefore Eq. 11 leads from Eq.
 994 10
 995

1000 D.2 PROOF OF THEOREM 4.2

1001 Based on Lemma 4.1, minimizing our DE loss ensures increase in the entropy. We first formally
 1002 show the inverse relationship between confidence and entropy. While this relationship can be strictly
 1003 proven in the binary class ($A = 2$), extending the result to multi-class settings require additional
 1004 conditions to ensure that the inverse relationship holds. To address this, we identify a natural condition,
 1005 which is the non-maximum probabilities are uniformly distributed after normalization, and provide
 1006 a strict proof under this assumption:

1007 Let the confidence $\hat{p} = \max_i p_i$, where $i \in [1, A]$, $p_i \geq 0$, and $\sum_{i=1}^A p_i = 1$. Assume the non-
 1008 maximum probabilities are uniformly distributed after normalization. Let $c = \arg \max_i p_i$, so for
 1009 all $i \neq c$,

$$1010 \quad 1011 \quad p_i = \frac{1 - \hat{p}}{A - 1}.$$

1012 Then the entropy becomes:
 1013

$$1014 \quad 1015 \quad H(p) = -\hat{p} \log \hat{p} - (1 - \hat{p}) \log \left(\frac{1 - \hat{p}}{A - 1} \right).$$

1016 Taking the derivative with respect to \hat{p} :

$$1017 \quad 1018 \quad \frac{dH}{d\hat{p}} = -\log \hat{p} + \log \left(\frac{1 - \hat{p}}{A - 1} \right) = \log \left(\frac{1 - \hat{p}}{(A - 1)\hat{p}} \right).$$

1020 since $\hat{p} \in (\frac{1}{A}, 1)$, we have
 1021

$$1022 \quad 1023 \quad \frac{1 - \hat{p}}{(A - 1)\hat{p}} < 1 \Rightarrow \log \left(\frac{1 - \hat{p}}{(A - 1)\hat{p}} \right) < 0,$$

1024 which proves that $H(p)$ is decreasing in \hat{p} , establishing the inverse relationship under the stated
 1025 condition.

1026 Minimizing our DE loss ensures the increase in the entropy, which makes confidence \hat{p} lower than
 1027 that of the ERM loss. We can state this fact in expectation: $\mathbb{E}[\hat{p}_{DE}] \leq \mathbb{E}[\hat{p}_{ERM}]$.

1028 Considering the equal accuracy assumption between ERM and DE, we can write the following:

$$1030 \mathbb{E}[P(\hat{y} \neq y)]_{DE} \approx \mathbb{E}[P(\hat{y} \neq y)]_{ERM} \quad (14)$$

1031 Now let's break this into the high ($> \tau$) and low confidence region ($< \tau$). We can write the following:
 1032

$$1033 \mathbb{E}[P(\hat{y} \neq y)]_{DE}^{<\tau} + \mathbb{E}[P(\hat{y} \neq y)]_{DE}^{>\tau} \approx \mathbb{E}[P(\hat{y} \neq y)]_{ERM}^{<\tau} + \mathbb{E}[P(\hat{y} \neq y)]_{ERM}^{>\tau} \quad (15)$$

1035 Let us consider $N_{ERM,in}^{>\tau}$ be the number of incorrectly classified samples in the high confidences
 1036 region in ERM and $N_{DE,in}^{>\tau}$ be the samples in DE. We make an assumption that the number of
 1037 confidently wrong samples are higher in ERM. This has been observed in our empirical evaluation
 1038 (Figure 11) as well as found in the existing literature (e.g. Figure C.2 from Mukhoti et. al. Mukhoti
 1039 et al. (2020)). Based on this expectation and invoking the fact that $\mathbb{E}[\hat{p}_{DE}] \leq \mathbb{E}[\hat{p}_{ERM}]$, the incorrect
 1040 samples using DE will be pushed more toward the low confidence region. This will lead to the
 1041 following

$$1042 \mathbb{E}[P(\hat{y} \neq y)]_{DE}^{>\tau} \leq \mathbb{E}[P(\hat{y} \neq y)]_{ERM}^{>\tau} \quad (16)$$

1043 Above equation immediately leads to the following:

$$1044 \mathbb{E}[P(\hat{y} \neq y)]_{DE}^{<\tau} \geq \mathbb{E}[P(\hat{y} \neq y)]_{ERM}^{<\tau} \quad (17)$$

1046 This proves our Theorem. Our empirical findings, shown in Figures 11 and 12, support this, as
 1047 they demonstrate that our calibrated model has more samples in the less confident region compared
 1048 to the uncalibrated Standard VQA. Figure 5 empirically validate that $N_{DE,in}^{<\tau} \geq N_{ERM,in}^{<\tau}$ hold.
 1049 Additionally, fig. 8 validate that $N_{DE}^{<\tau} \geq N_{ERM}^{<\tau}$.

1051 **Empirical Support for the Inverse Relationship Between Entropy and Confidence:** We fur-
 1052 ther analyzed how often increases in entropy are associated with decreases in confidence. Among
 1053 all samples with increased entropy, 96.61% also exhibit decreased confidence, providing strong
 1054 empirical support for the inverse relationship.

1061 Figure 8: Empirical evidence illustrating $N_{DE}^{<\tau} \geq N_{ERM}^{<\tau}$, across four VQA architectures.

1063 E ADDITIONAL RELATED WORK

1065 **Model Cascades:** Our proposed framework relates to several research directions in the literature.
 1066 While we discussed some related works in section 2, our approach also shares common goals with
 1067 model cascades Wang et al. (2017); Warren & Dras (2025); Jitkrittum et al. (2023); Enomoro & Eda
 1068 (2021); Rabanser et al. (2025), that aims at reducing the computational efficiency by strategically
 1069 routing inputs through a cascade of models with progressively increasing capacity, complexity and
 1070 computational costs, based on deferral mechanisms, hence enabling easy inputs to be handled by
 1071 cheaper and simpler models, while complex inputs being progressively cascaded to the more com-
 1072 plex models. In this section, we elaborate on the connections between our approach and existing
 1073 approaches in model cascades, highlighting their key distinctions setting our work apart.

1074 Model cascades are often used to improve inference efficiency by sequentially routing harder inputs
 1075 to more sophisticated models, when earlier ones are uncertain, where a deferring mechanism deter-
 1076 mines whether to defer to a large model, or accept the current model's output. Common deferring
 1077 mechanisms rely on confidence or uncertainty estimates from smaller model. Sharing the same goal,
 1078 our method is different than existing method in the model cascades literature. Methods including
 1079 IDK cascades Wang et al. (2017), rely solely on raw confidence scores (typically the maximum
 softmax probabilities) without applying any explicit calibration. However, recent works Jitkrittum

Figure 9: Entropy-confidence analysis. (a) Empirical predictions within the admissible entropy-confidence region. (b) Quadrant analysis shows our method increases entropy while reducing confidence for the majority of samples. (c) Distribution shift: mean entropy increases from 0.61 to 1.43; mean confidence decreases from 0.86 to 0.68.

et al. (2023); Enomoro & Eda (2021); Rabanser et al. (2025) highlighted that uncalibrated confidences can lead to suboptimal deferral decisions, especially when the downstream model behaves as a specialist. In contrast, other methods proposed explicit confidence calibration techniques to improve deferral, such as learning-to-cascade (LtC) Enomoro & Eda (2021) and gatekeeper-based tuning Rabanser et al. (2025), both of which improve routing decisions by improving the calibration of the smaller model’s confidence estimates. Nevertheless, these works consider simple routing as a deferring mechanism, i.e. if the calibrated confidence of the smaller model falls below a threshold, the input is routed to a large model which predicts the final answer. In contrast, our approach introduces adaptive integration by enabling the simple model to adaptively share knowledge with the larger model through candidate answers, which, as supported by our experiments, lead to more informed reasoning and significant improvements in our overall cascade accuracy.

F ADDITIONAL EXPERIMENTAL DETAILS

In this section, we first provide a detailed description of the datasets, followed by an explanation of the LLM prompt construction and in-context example selection. Next, we provide the implementation details of our technique. After that we show the ECE plot of our technique along with other competitive baselines. Finally, we show the performance of the hybrid approaches where we integrate different baselines with LLMs.

1134
1135

F.1 DATASET DESCRIPTION

1136 We experiment on the VQA-v2 Antol et al. (2015) and COCO-QA Ren et al. (2015) datasets,
 1137 which contains questions on the COCO image dataset Lin et al. (2014). VQA-v2 dataset con-
 1138 sists of 443, 757 questions in training split, and 10 ground-truth answers per each question. As the
 1139 ground-truth answers of the test split of VQA-v2 are not publicly available, we use the validation
 1140 and test splits as provided by Whitehead et al. (2022), as evaluating the calibration error requires
 1141 sample-level accuracies. The test split consists of 106k, and the validation split consists of 86k
 1142 questions.

1143 COCO-QA dataset contains 78, 736 training, 38, 948 testing questions generated from Microsoft
 1144 COCO dataset Lin et al. (2014), with a single ground-truth answer per question. In experiments, we
 1145 randomly sample a validation split of size of 12000 from the training set.

1146

F.2 LLM-BASED INFERENCE FOR VQA

1147

1148 We describe the process of delegating question answering to LLMs when the predicted confidence
 1149 score of the TS-VQA model falls below a predefined threshold τ . We outline the in-context learning
 1150 based paradigm for prompting the LLM, and the procedure for constructing effective prompts. For
 1151 LLM-based prompting for VQA task, we follow prior works Yu et al. (2023); Yang et al. (2022). To
 1152 leverage the LLM, we use the few-shot in-context learning approach, which is an effective approach
 1153 to adapt the LLM to a certain task, without the need for computationally intensive fine-tuning,
 1154 by augmenting the prompt with input and output examples, enabling an efficient and training-free
 1155 adaptation to the task.

1156

F.2.1 PROMPT CONSTRUCTION

1157

1158 Creating a structured input prompt for the LLM involves several components that help the LLM un-
 1159 derstand the question’s context and generate accurate answers. The prompt is structured as shown in
 1160 the template below, where underlined text represent template keywords, and the rest are placeholders
 1161 for the data samples.

1162
1163
1164

Context: c \n Question: q \n Answer: a
--

1165
1166

F.2.2 CONTEXTUAL INFORMATION

1167
1168
1169
1170
1171
1172

To help the LLM model comprehend the visual content referenced in the question, we use off-the-
 shelf image captioning models to generate descriptive of the image in textual format. Similar to prior
 works Guo et al. (2023), we leverage the PNP-VQA model Tiong et al. (2022) for image captioning,
 which generates captions relevant to the question, ensuring that the LLM has relevant contextual
 information to answer the question.

1173

F.2.3 IN-CONTEXT EXAMPLES

1174

In-context examples consist of example prompt, along with the desired answers from the training
 data, formatted similarly to the test prompt. These examples help the LLM generate the answer by
 following the pattern established in the prompt. For each test sample, multiple in-context examples
 are selected based on their cosine similarity to the test image-question pairs. This involves extract-
 ing the image and text embeddings from the VQA data, using an off-the-shelf pretrained model.
 We specifically use BLIP-2 model Li et al. (2023) for this purpose. The average cosine similarity
 between the embeddings of any two image-question pairs $(\mathbf{q}_i, \mathbf{v}_i)$ and $(\mathbf{q}_j, \mathbf{v}_j)$ in training and test
 splits is calculated. The top N examples with the highest similarity are then chosen as in-context
 examples.

1183

F.2.4 ANSWER-CANDIDATES AUGMENTED PROMPTS

1184

1185
1186
1187

As demonstrated in Figure 2d, the predictive performance of the LLM can be enhanced when the
 prompt is augmented with some answer candidates. Assume that given an input \mathbf{x}_i to the task-specific
 VQA model, $\hat{\mathcal{A}}_M = \{\hat{a}_1, \dots, \hat{a}_M\}$ are the M candidate answers corresponding to the M answers

1188 with highest probabilities in descending order, and $\mathcal{C}_M = \{\hat{p}_1, \dots, \hat{p}_M\}$ are the corresponding
 1189 probabilities, i.e. $\mathcal{A}_M = \arg \max_{k=1 \dots K} \hat{p}_k$ are the top- M answer candidates by the TS-VQA model.
 1190

1191 Given the set of M answer candidates, we augment the prompt and present a set of answer candidates
 1192 as additional context to the question. The answer candidate augmented prompt is constructed as
 1193 bellow:

1194	<u>Context:</u> c \n	<u>Question:</u> q \n	<u>Candidates:</u> C \n
1195	<u>Answer:</u> a		
1196			

1197 F.3 IMPLEMENTATION DETAILS

1198 In this section, we provide additional implementation and experimental details of our proposed
 1199 method and experiments. We conducted our experiments using PyTorch. Our experiments utilize
 1200 publicly available implementations across all models. For all VQA architectures except for BEiT-3,
 1201 we use their implementations as provided by the *MMF* Singh et al. (2020) repository². For BEiT-
 1202 3, we use its official implementation from Microsoft’s UniLM project Wang et al. (2023)³. To
 1203 train the standard VQA models, the training hyperparameters of the networks given in *MMF* and
 1204 *UniLM* repositories are used. For training Calibrated VQA models, we use the same training
 1205 hyperparameters as the standard VQAs. We adopt the VectorScale implementation from Whitehead
 1206 et al. Whitehead et al. (2022)⁴.

1207 We trained BEiT-3 TS-VQA on a single A100-40 GB GPU, and the rest of the TS-VQA models
 1208 on a single NVIDIA RTX A6000-48 GB GPU. Furthermore, the latencies and carbon emissions in
 1209 fig. 1 and table 1 are reported based on the models running on a single A100-40 GB GPU. For LLM
 1210 inference with Mistral-7B, we run the model on a single A100-40 GB GPU.

1211 **VQA by the LLM Model** Following Yu et al. (2023); Yang et al. (2022) we provide 9 captions
 1212 as context for the question, and use PNP-VQA Tiong et al. (2022) for generating question-related
 1213 captions, as the context about images in the prompt. For each test instance, 10 in-context examples
 1214 from the training data are selected based on the average of their image and question embedding
 1215 cosine similarities, and included in the prompt. Specifically, BLIP-2 model is used to extract the
 1216 image and question embeddings, used for in-context example selection. The LLM is queried 5 times
 1217 to ensemble the answers as the final answer to the question. For answer-candidates-augmented
 1218 VQA with LLM, we restrict to using 10, 5, 2, and 1 answer candidates. The LLM-based inferences
 1219 are conducted once.

1222 F.4 CONFIDENCE THRESHOLD DETERMINATION AND DYNAMIC CANDIDATE SELECTION

1223 In this section, we provide a detailed explanation of how the confidence thresholds l and u , as well
 1224 as the dynamic answer candidate selection function $K(c_i)$, are determined using a held-out validation
 1225 set. Our approach is fully data-driven and optimizes for accuracy while structurally ensuring
 1226 efficiency through selective LLM delegation.

1227 **Optimization Objective and Process:** The threshold selection process is designed to maximize
 1228 VQA accuracy on the validation set within each confidence region, while efficiency gains emerge
 1229 naturally from the threshold structure itself. Specifically: (a) **(Primary objective)** We maximize
 1230 validation accuracy within each confidence bin, and (b) **(Efficiency mechanism)** by setting
 1231 threshold u based on where TS-VQA achieves best accuracy (or alternatively dynamically based on
 1232 computational budget), we automatically avoid unnecessary LLM invocations in high-confidence
 1233 regions.

1234
 1235 The complete process consists of two main steps:

1236 **Step 1: Per-confidence-Bin Policy Selection.** We first partition the confidence range $[0, 1]$ into B
 1237 equal-width bins (we use $B = 10$ in our experiments). For each bin b , we evaluate multiple inter-

²<https://github.com/facebookresearch/mmf>

³<https://github.com/microsoft/unilm/tree/master/beit3>

⁴https://github.com/facebookresearch/reliable_vqa

Figure 10: Effectiveness of DE-based VQA in improving the calibration of all VQA architectures. a) Standard, b) VectorScale-calibrated, and c) DE-based VQA models.

action modes on the validation set. (1) *TS-VQA only*, (2) *LLM-only*, without any answer candidates from *TS-VQA*, (3) *LLM with top-K candidates* ($K \in \{1, 2, 5, 7, 10\}$) from *TS-VQA*.

For each bin b and each mode m , we compute the VQA accuracy on validation samples whose *TS-VQA* confidence falls within bin b . We then select the mode that maximizes accuracy for that bin:

$$m_b^* = \arg \max_{m \in \mathcal{M}} \text{Acc}(m, b) \quad (18)$$

where $\mathcal{M} = \{\text{TS-VQA}, \text{LLM}_{\text{top},0}, \text{LLM}_{\text{top},1}, \dots\}$. This creates a discrete mapping from confidence bins to optimal interaction modes, ensuring that we only invoke the LLM (and only with a specific number of candidates) in regions where it demonstrably improves accuracy on held-out data.

Step 2: Deriving Thresholds and Smooth $K(c)$ Function. From the bin-wise optimal policies determined in *Step 1*, we derive the continuous thresholds and candidate selection function:

- Lower threshold l : We define l as the upper boundary of the highest confidence bin where “LLM-only (Top-0)” achieves the best accuracy. This identifies the region where *TS-VQA* has minimal domain knowledge and the LLM should answer without potentially misleading candidates.
- Upper threshold u : We define u as the lower boundary of the lowest confidence bin where “TS-VQA only” achieves the best accuracy. This identifies the region where *TS-VQA* is sufficiently reliable to answer without LLM consultation.

1296 Table 6: Delegation percentage for hybrid models to match LLM-Only accuracy (72.03%) on COCOQA
 1297 dataset.

LLM-Only	Uni-VQA (Ours)			
	Pythia	ViLBERT	VisualBERT	CLIP-ViL
100	18.14 (-81.86%)	8.06 (-91.94%)	25.56 (-74.44%)	12.13 (-87.87%)

1302 • **Dynamic candidate function $K(c_i)$:** For the intermediate region $[l, u]$, we fit a smooth,
 1303 monotonically decreasing function that maps confidence scores to the optimal number of
 1304 answer candidates. We use the exponential form presented in eq. (2) of the main paper,
 1305 where the parameters M and W are learned by fitting to the per-bin optimal K values
 1306 determined in Step 1, subject to the constraints that $K(l) \approx M$ (maximum candidates
 1307 at the lower threshold) and $K(c) \rightarrow 1$ as $c \rightarrow u$ (minimum candidates near the upper
 1308 threshold).

1309 **Rationale and Trade-offs:** This data-driven approach offers several advantages: (1) Accuracy-
 1310 optimized: By selecting the best-performing mode for each confidence region on validation data,
 1311 we ensure that delegation decisions are evidence-based rather than heuristic, (2) Efficiency through
 1312 structure: The threshold u naturally limits LLM usage to cases where it provides value, as high-
 1313 confidence samples are handled by the calibrated TS-VQA, (3) Adaptive candidate selection: The
 1314 smooth function $K(c_i)$ avoids abrupt changes in the number of candidates provided, ensuring that
 1315 the LLM receives appropriate amounts of specialized knowledge based on TS-VQA uncertainty.

G ABLATION STUDY

G.1 ADDITIONAL EXPERIMENTS ON COCO-QA DATASET

1321 Table 6 presents additional results on the COCOQA dataset, illustrating the extent of LLM-delegation
 1322 necessary for the hybrid models to attain equivalent accuracy as the LLM (Mistral 7B) on the CO-
 1323 COQA dataset for each TS-VQA model. BEiT-3 is omitted since the BEiT TS-VQA already sur-
 1324 passes the accuracy of Mistral-7B model on COCO-QA.

1325 Figure 11: Confidence distribution of incorrect answers in a) Standard, and b) our Calibrated VQA.

1326 Figure 12: Confidence distribution of *correct* answers in a) Standard, and b) our Calibrated VQA.

G.2 EFFECTIVENESS OF DIVERSE ENSEMBLE (DE)-BASED VQA CALIBRATION TOWARDS CALIBRATED VQA

1346 In this subsection, we analyze the effectiveness of the DE-based framework in improving the cali-
 1347 bration of TS-VQA models compared to standard and VectorScale-based VQA models. We present
 1348 reliability diagrams for all four VQA architectures to illustrate the differences in calibration per-
 1349 formances. Figure 10 clearly shows that standard VQA models are overconfident and poorly cali-
 brated, while VectorScale-based VQA models exhibit only a slight improvement in calibration, still

1350 Table 7: Performance comparison of Uni-VQA with baseline TS-VQA models and LLM across four architectures, evaluated using multiple calibration metrics including ECE, ACE.
1351

1353	Model	VQA-v2					COCOQA					
		ACC↑	ECE↓	ACE↓	Brier↓	NLL↓	ACC↑	ECE↓	ACE↓	Brier↓	NLL↓	
1354	LLM-only (Mistral-7B)	69.09	0.31	0.34	0.30	0.91	72.03	0.27	0.48	0.27	0.94	
1355	Pythia	Standard VQA	65.66	0.14	0.13	0.19	0.67	68.62	0.16	0.16	0.19	0.80
		VectorScale	65.59	0.09	0.08	0.18	0.56	68.88	0.10	0.08	0.17	0.61
		Calibrated (Ours)	66.15	0.06	0.05	0.17	0.53	68.64	0.02	0.02	0.15	0.47
		Uni-VQA (Ours)	71.00	0.05	0.05	0.17	0.53	74.78	0.06	0.13	0.17	0.51
1357	CLIP-ViL	Standard VQA	69.95	0.18	0.17	0.20	0.87	70.38	0.15	0.14	0.18	0.71
		VectorScale	69.81	0.15	0.14	0.19	0.67	70.41	0.11	0.09	0.17	0.58
		Calibrated (Ours)	70.05	0.08	0.07	0.16	0.52	69.94	0.02	0.03	0.15	0.47
		Uni-VQA (Ours)	72.98	0.07	0.07	0.17	0.53	74.95	0.06	0.13	0.17	0.50
1359	ViLBERT	Standard VQA	66.98	0.19	0.17	0.21	0.89	69.23	0.20	0.18	0.21	0.99
		VectorScale	66.87	0.14	0.13	0.19	0.65	69.04	0.17	0.15	0.20	0.77
		Calibrated (Ours)	66.90	0.05	0.04	0.16	0.49	70.59	0.02	0.03	0.15	0.46
		Uni-VQA (Ours)	71.65	0.07	0.07	0.17	0.53	75.63	0.06	0.12	0.16	0.49
1362	VisualBERT	Standard VQA	64.92	0.14	0.13	0.19	0.68	65.28	0.19	0.16	0.21	0.87
		VectorScale	64.83	0.14	0.13	0.19	0.63	64.40	0.18	0.16	0.21	0.76
		Calibrated (Ours)	65.26	0.03	0.03	0.16	0.49	67.38	0.01	0.02	0.16	0.48
		Uni-VQA (ours)	70.95	0.08	0.08	0.18	0.55	74.34	0.06	0.14	0.18	0.52

1364
1365
1366 suffering from overconfidence. In contrast, our proposed DE-based VQA significantly reduces the
1367 Expected Calibration Error (ECE) and overconfidence compared to the baselines, resulting in sub-
1368 stantially improved reliability. These findings underscore the importance of employing effective
1369 calibration techniques, such as the DE framework, to enhance the reliability of VQA models and
1370 enable more accurate uncertainty estimates not only for ensuring reliability of the entire Uni-VQA
1371 framework, but also for effective integration with the LLM model.

1372 G.3 EFFECTS OF DE-BASED VQA ON REDUCING OVERCONFIDENCE IN INCORRECT 1373 PREDICTIONS

1375 Figures 11 (a) and (b) present histograms of confidence scores for incorrect predictions, respectively,
1376 made by the standard, and our DE-based Calibrated VQAs. Our proposed method, assigns low
1377 confidence scores to the majority of incorrect answers, while the standard VQA produces very high
1378 confidence scores for a large number of the incorrect answers. This observation confirms that our
1379 DE-based Calibrated VQA significantly reduces the overconfidence, by pushing the majority of
1380 incorrect answers towards lower confidence scores.

1382 G.4 COMPREHENSIVE EVALUATION OF CALIBRATION USING ALTERNATIVE CALIBRATION 1383 METRICS

1385 ECE (Expected Calibration Error) is a standard metric commonly used to assess model calibration;
1386 however, it has several known drawbacks, including sensitivity to binning choices, the inability to
1387 capture local miscalibrations effectively, and ignoring the distribution of prediction probabilities
1388 within each bin. To comprehensively demonstrate the robustness of our proposed calibration
1389 approach in improving the calibration of TS-VQA models across various architectures, we additionally
1390 evaluate it using alternative calibration metrics: 1) *Adaptive Calibration Error (ACE)*, is an exten-
1391 sion of ECE that adaptively determines bin sizes to more accurately capture local miscalibration, 2)
1392 *Brier Score* measures the squared difference between predicted probabilities and actual outcomes,
1393 assessing both calibration quality and sharpness of probabilistic predictions, and 3) *Negative Log*
1394 *Likelihood (NLL)* quantifies the negative log probability assigned to true outcomes, heavily penaliz-
1395 ing confident yet incorrect predictions. These metrics provide complementary perspectives essential
1396 for robustly evaluating calibration quality. Table 7 summarizes the results, clearly indicating that
1397 our calibration method consistently enhances performance across all evaluated calibration metrics.

1398 G.5 PERFORMANCE COMPARISON OF LLM VS. TS-VQAS IN VARIOUS CONFIDENCE 1399 RANGES

1401 In this experiment we compare the performance of TS-VQA models, LLM without answer candi-
1402 dates, and LLMs augmented with answer candidates (2 candidates are given) across all four archi-
1403 tectures, for both standard and our Calibrated VQA models. We evaluate the performance of
theses models in terms of accuracy for samples whose confidences, as determined by the respective

1404
 1405 Table 8: Comparison between predictive performances of LLM and our Calibrated in low and
 1406 high confidences. In low confidences, total delegation to LLM yields higher accuracy, while it is
 1407 misled when presented with the answer candidates from the VQA model. On the contrary, in
 1408 high confidences, VQA model outperforms LLM, suggesting that high confident questions can be
 1409 answered in a more efficient manner by the VQA.

Model	$c \in [0, 0.1]$			$c \in [0.4, 0.5]$			$c \in [0.95, 1]$		
	TS-VQA	LLM w. candidates	LLM	TS-VQA	LLM w. candidates	LLM	TS-VQA	LLM w. candidates	LLM
Calibrated Pythia	4.6	6.97	14.23	39.41	46.29	46.83	90.95	89.79	86.85
Calibrated CLIP-ViL	6.95	8.58	16.17	37.01	39.45	36.52	89.88	87.94	83.64
Calibrated ViLBERT	6.5	10.47	18.88	45.15	49.30	46.75	91.41	90.14	87.14
Calibrated VisualBERT	7.12	13.16	20.18	47.56	54.44	52.48	93.19	92.02	90.05
Standard Pythia	3.84	6.42	12.29	32.13	35.88	37.31	83.94	84.43	81.87
Standard CLIP-ViL	4.37	6.34	14.10	27.42	30.66	31.91	81.50	81.03	77.14
Standard ViLBERT	2.54	5.57	12.56	26.49	30.68	33.25	79.68	81.14	77.87
Standard VisualBERT	3.33	8.38	14.16	31.36	36.44	38.52	83.08	84.39	82.02

1417
 1418 TS-VQA (Calibrated or standard), fall within three different confidence ranges: 1) low (0 – 0.1),
 1419 2) moderate (0.4 – 0.5), 3) and high (0.95 – 1). Results are presented in Table 8.

1420
 1421 For our Calibrated models, we observe that in the low confidence range, the LLM alone
 1422 is the most effective. In the moderate confidence range, providing answer candidates from the
 1423 TS-VQA generally improves the performance of the LLM. However, in the high confidence range,
 1424 the TS-VQA outperforms the LLMs. This suggests that answering high-confidence questions using
 1425 the TS-VQA model, rather than the LLM, not only reduces the burden on the LLM and improves
 1426 efficiency, but also benefits the hybrid approach in terms of improving the accuracy.

1427 In contrast, when using a standard VQA as the TS-VQA, we observe that the LLM achieves the
 1428 highest accuracy in both the low and moderate confidence ranges. The lower accuracy of the LLM
 1429 with answer candidates indicates that the provided top- k answer candidates reduces the accuracy as
 1430 compared to when no candidates are provided, suggesting poorer quality of the answer candidates
 1431 set.

1432 In the highest confidence range, the LLM with answer candidates generally performs better than
 1433 both the LLM alone and the TS-VQA. This behavior makes the effectiveness of a hybrid approach
 1434 suboptimal for any delegation confidence threshold when using a standard VQA model.

1435 These findings highlight the importance of calibrating the TS-VQA model using the diverse ensemble,
 1436 as it enables a more effective hybrid approach that leverages the strengths of both the TS-VQA
 1437 and the LLM in different confidence ranges. By delegating low-confidence questions to the LLM,
 1438 incorporating answer candidates for moderate-confidence questions, and relying on the TS-VQA
 1439 for high-confidence questions, our proposed approach improves both accuracy and efficiency in the
 1440 VQA task.

1441 G.6 EFFECTIVENESS OF THE DYNAMIC TOP-K SELECTION

1442 To evaluate the effectiveness of the proposed uncertainty-guided dynamic answer candidate selection,
 1443 we compare the performance of the Uni-VQA framework against the same approach with fixed
 1444 top- K answer candidates provided for all confidence levels. In all methods, the TS-VQA model is
 1445 our Calibrated VQA, trained according to the diverse ensemble. We refer to these variants as
 1446 LLM-Calibrated (Top- K), where K represents the number of answer candidates provided to
 1447 the LLM model.

1448 Figure 13 presents the VQA accuracy with respect to the delegation thresholds for various K values,
 1449 across all 4 architectures. The figures suggest that the dynamic approach, *i.e.*, Uni-VQA, achieves
 1450 the highest overall accuracy for any delegation threshold. Additionally, for any given accuracy,
 1451 the dynamic approach achieves the lowest delegation percentage among the other variants, while also
 1452 achieving a higher accuracy than the highest achieved by the fixed top- K answer candidate variants,
 1453 at certain delegation thresholds.

1454 A comparison between the accuracy of the methods at fixed thresholds for thresholds below 0.2
 1455 highlights the effectiveness of the LLM-only prompting when no answer candidates are provided
 1456 (Top-0). The VQA accuracies of the LLM-Calibrated (Top-1), and LLM-Calibrated (Top-

Figure 13: Performance comparison of the proposed Uni-VQA, against LLM-Calibrated with fixed top- K answer candidates, with respect to the delegation threshold.

10) variants at lower thresholds suggest that providing answer candidates in this region confuses the LLM, compared to when those answer candidates are not present. This can be attributed to the answer candidates being random guesses in the low-confidence region, indicating the model’s total lack of knowledge.

These findings demonstrate the superiority of the dynamic top- K selection approach employed by Uni-VQA. By adaptively selecting the number of answer candidates based on the confidence of the TS-VQA model, Uni-VQA achieves higher accuracies and lower delegation percentages compared to fixed top- K variants. Furthermore, the results emphasize the importance of relying solely on the LLM for low-confidence questions, as providing answer candidates in this region can hinder the LLM’s performance. The dynamic approach effectively leverages the strengths of both the TS-VQA and the LLM, leading to improved overall performance in the VQA task.

G.7 UNI-VQA HYPERPARAMETER GENERALIZABILITY

To validate the robustness of our Uni-VQA framework and demonstrate that it does not require careful per-model hyperparameter tuning, we conducted an extensive cross-model hyperparameter transfer analysis. This analysis evaluates whether hyperparameters optimized for one TS-VQA backbone can effectively transfer to other architectures without significant performance degradation.

For each VQA model in our framework, we apply the hyperparameters $\{l, u, K(c_i)\}$ originally tuned for that specific model to all other models in our evaluation set. This cross-application tests whether our delegation mechanism maintains consistent performance across architectural variations. The hyperparameters include: (1) the delegation threshold u that determines when to invoke the LLM, (2) The dynamic top- K bounds (l, u) that control answer candidate selection, (3) The confidence-adaptive function $K(c_i)$ that adjusts selection based on model confidence.

Key Findings. The analysis reveals remarkable robustness in our hyperparameter selection. The maximum deviation from optimal performance across all cross-model transfers is only 1.24% (CLIP-ViL using BEiT3 hyperparameters), with most deviations below 0.6%. This demonstrates that hyperparameters are not overly specialized to individual architectures. Additionally, the symmetry in the transfer matrix (e.g., ViLBERT \rightarrow Pythia and Pythia \rightarrow ViLBERT both maintain high accuracy) confirms that the hyperparameter robustness is bidirectional, not dependent on specific source-target model pairs.

These results validate our claim in Section 5.3 of main paper, that the Uni-VQA framework is not sensitive to careful hyperparameter tuning, making it a practical and scalable solution for real-world VQA applications. The framework’s ability to maintain consistent performance across diverse architectures with shared hyperparameters addresses a critical deployment challenge in VQA systems.

G.8 ALTERNATIVE UNCERTAINTY MEASURES FOR UNI-VQA: ENTROPY

While our main approach uses confidence scores (*i.e.*, maximum output probability) to guide knowledge exchange between TS-VQA and LLM, we also explored an alternative uncertainty measure to assess robustness of our delegation strategy. A natural alternative to confidence score is *entropy*,

1512 Table 9: Cross-model hyperparameter generalizability on COCO-QA. Each cell shows accuracy when model in
 1513 the corresponding row uses hyperparameters (HP) tuned for model in the column. **Bold** values indicate model-
 1514 specific tuned parameters. Max Dev shows maximum deviation from optimal performance.

Model Evaluated	HP from CLIP-ViL	HP from Pythia	HP from ViLBERT	HP from VisualBERT	HP from BEiT3	Max Dev
CLIP-ViL	74.95	75.08	75.11	74.98	73.71	1.24
Pythia	74.76	74.78	74.78	74.82	74.41	0.37
ViLBERT	75.57	75.61	75.63	75.55	75.06	0.57
VisualBERT	74.28	74.25	74.25	74.32	73.72	0.60
BEiT3	76.08	75.99	75.99	75.90	76.01	0.11

1521
 1522 which is widely used in uncertainty quantification literature , as it provides a measure of the prediction
 1523 uncertainty by quantifying the dispersion of the probability mass across possible answers.

1524
 1525 To empirically evaluate the effectiveness of our approach using “entropy” as an uncertainty measure
 1526 for delegation and knowledge exchange, we implement an entropy-based delegation variant of
 1527 Uni-VQA and compared it with our confidence-based approach. Table 10 compares performances
 1528 of our Uni-VQA using the two uncertainty-measure, in terms of accuracy and LLM delegation
 1529 percentage for ViLBERT TS-VQA on VQA-v2 dataset, and shows that both uncertainty measures
 1530 achieve comparable performance, with confidence-based delegation showing slight advantage in
 1531 both accuracy and efficiency.

1532 Table 10: Performance comparison between confidence-based and
 1533 entropy-based uncertainty measures for knowledge exchange in
 1534 Uni-VQA using ViLBERT on VQA-v2 dataset.

Uncertainty Measure	ACC (\uparrow)	LLM-Delegation (%) (\downarrow)
Confidence-based	71.6	79.1
Entropy-based	71.5	80.0

1553 (a) Relationship between accuracy and uncertainty measures
 1554 (confidence vs. entropy) for Calibrated (top) and Stan-
 1555 dard VQA (bottom) TS-VQA models.

1556 (b) Inverse relationship between model prediction
 1557 confidence and output entropy, averaged
 1558 over 30 confidence bins.

1559 Figure 14: Visualizations of confidence and entropy relationships in ViLBERT on VQA-v2 dataset.

1560 Figure 14a illustrates the relationship between both uncertainty measures (entropy and confidence
 1561 score) and accuracy, for standard and our DE-based Calibrated TS-VQAs. For low-entropy (cor-
 1562 responding to high-confidence) regions, our calibrated models consistently achieves higher accuracy
 1563 compared to high-entropy regions, indicating that the Calibrated model’s answers are more re-
 1564 liable in low-entropy regions, confirming that both measures effectively identify samples where the
 1565 TS-VQA model can be trusted. Additionally, figure 14b depicts the relationship between average
 1566 answer confidences and probability entropies, calculated in 30 equally spaced confidence intervals,
 1567 illustrating a clear inverse trend where higher confidence values correspond to lower entropy in the
 1568 predicted distributions.

1566 While entropy can also serve as a proxy for uncertainty, we choose confidence as our primary uncertainty
 1567 measure for several practical reasons: (1) **Interpretability**: Confidence is bounded between
 1568 0 and 1 with an intuitive probabilistic interpretation, where in a well-calibrated model confidence
 1569 of 0.9 suggests a 90% probability of correctness. On the contrary, entropy ranges between 0 and
 1570 $\log_2(C)$ where C is the number of answer classes, which makes setting and interpreting thresholds
 1571 less intuitive. (2) **Direct relationship with calibration**: confidence score is a widely used measure
 1572 in calibration literature. Additionally, calibration metrics including *ECE* are specifically designed
 1573 to measure the alignment between confidence scores and accuracies (both bounded between 0 and 1),
 1574 hence confidence score is a natural choice for our framework. (3) **Simplicity**: Using confidence
 1575 scores for both calibration assessment and delegation decisions leads to a simpler framework. Also,
 1576 confidences are straightforward to obtain, while computing entropy introduces additional computational
 1577 overhead.
 1578

G.9 DIVERSE ENSEMBLE DISTILLATION

1580 The Uni-VQA framework is designed to reduce overall computational costs by reducing dependence
 1581 on large-scale LLM models. Although effective during the inference phase, the use of an ensemble
 1582 model increases the computational costs of inference by TS-VQA and may potentially lead to higher
 1583 latency. To address this issue, inspired by the findings of Allen-Zhu & Li; Hebbalaguppe et al. (2024)
 1584 on the advantages of ensemble learning and knowledge distillation to transfer predictive accuracy
 1585 and calibration, we use knowledge distillation to transform the calibrated diverse ensemble model
 1586 (DE) into a single VQA model, with the same architecture as individual ensemble components,
 1587 and is trained to learn from the ensemble’s output distribution instead of the target labels, thereby
 1588 preserving both the ensemble’s accuracy and enhanced calibration.

1589 The distillation process minimizes the Kullback-Leibler divergence between the output distributions
 1590 of the ensemble and the distilled model, expressed as follows:

$$1591 \mathcal{L}_{KD}(X; \theta_s) = T^2 \sum_{i=1}^N \text{KL} \left(\sigma \left(\frac{f_s(x_i)}{T} \right) \parallel \sigma \left(\frac{f_t(x_i)}{T} \right) \right),$$

1595 where T is the temperature parameter used to smooth the probability distributions, and σ represents
 1596 the softmax function. This process enables the distilled model to retain the ensemble’s strengths
 1597 while reducing the operational costs associated with deploying multiple models.

1598 **Accuracy & Calibration Performance Preservation.** Table 11 highlights the effectiveness of this
 1599 approach in preserving calibration and predictive performance across four VQA architectures, on
 1600 VQA-v2 and COCOQA datasets. The distilled model maintains the accuracy and calibration prop-
 1601 erties of the DE, while significantly reducing the computational overhead associated with ensembled
 1602 models. As shown in table 12, the increased inference time caused by ensembling is effectively
 1603 remedied when the ensemble model is distilled into a single VQA model. These latency measure-
 1604 ments were obtained by running models on a single A6000 GPU, with a batch size of 32, averaged
 1605 over 3 runs.

1606 **Integration with Uni-VQA Framework.** While all results presented in the main paper utilize the
 1607 original ensemble models, we validate that distilled models can serve as efficient alternatives within
 1608 the Uni-VQA framework. Table 13 presents a direct comparison on the COCO-QA dataset, show-
 1609 ing that distilled models not only maintain comparable accuracy but also achieve more efficient
 1610 delegation patterns. Specifically: (1) VilBERT and VisualBERT demonstrate 5 – 6% reduction
 1611 in LLM delegation while slightly improving accuracy (+0.26% and +0.39% respectively), indicat-
 1612 ing enhanced confidence in local question answering. (2) CLIP-ViL maintains robust performance
 1613 with minimal change in delegation behavior (+0.55%), preserving the ensemble’s already efficient
 1614 delegation pattern.

G.10 EVALUATION ON RECENT TRANSFORMER-BASED VQA ARCHITECTURES

1615 We extend our evaluation to include ViLT (Vision-and-Language Transformer) Kim et al. (2021),
 1616 a state-of-the-art transformer-based model that represents recent advances in vision-language un-
 1617 derstanding. Unlike the earlier architectures evaluated in our main experiments (VisualBERT, ViL-
 1618 BERT, CLIP-ViL), ViLT employs a simpler design that processes raw image patches directly through

1620
1621 Table 11: Performance comparison of diverse en-
1622 semble and distilled VQA across four architectures.
1623 *Diverse Ensemble requires *three times* the total parameters of Distilled
1624 VQA since it comprises *three* independently trained models.

	Model	Diverse Ensemble*		Distilled VQA	
		ACC↑	ECE↓	ACC↑	ECE↓
VQA-v2	Pythia	66.15	0.06	65.92	0.05
	CLIP-ViL	70.05	0.07	69.64	0.07
	ViLBERT	68.90	0.05	67.29	0.05
	VisualBERT	65.26	0.03	65.40	0.03
COCOQA	Pythia	65.01	0.02	65.02	0.02
	CLIP-ViL	65.87	0.02	66.04	0.03
	ViLBERT	66.61	0.02	66.45	0.03
	VisualBERT	63.52	0.01	63.97	0.02

1625
1626 Table 12: Average inference latency (ms)
1627 comparison between the Diverse Ensemble
1628 (DE), and the distilled VQA model.

Model	Average Latency (ms)	
	Diverse Ensemble	Distilled VQA
Pythia	4.29	3.71
CLIP-ViL	59.94	24.0
ViLBERT	18.51	9.84
VisualBERT	15.49	9.61

1629
1630
1631 Table 13: Performance and delegation comparison of diverse ensemble
1632 and distilled TS-VQA models on COCO-QA dataset, showing accuracy
1633 and LLM delegation percentages.

1634 *Diverse Ensemble column corresponds to the results in the main paper presented in Table 1.,
1635 where Distilled VQA corresponds using the Distilled model as the Calibrated TS-VQA.

Model	Diverse Ensemble		Distilled VQA	
	ACC↑	Deleg %↓	ACC↑	Deleg %↓
ViLBERT	75.63	67.19	75.89	61.68
VisualBERT	74.34	73.46	74.73	67.66
CLIP-ViL	74.95	64.89	75.05	65.44

1636
1637 a transformer, without relying on pre-extracted region features, making it more representative of
1638 modern end-to-end vision-language architectures.

1639
1640 We train our Calibrated ViLT models using the same diverse ensemble configuration as other archi-
1641 tectures, with DRO hyperparameters $\lambda \in \{2, 3, 4\}$ for COCO-QA and $\lambda \in \{8, 20, 100\}$ on VQA-v2.
1642 All other training hyperparameters follow the original ViLT implementation.

1643
1644 Table 14 presents a comprehensive comparison of Standard ViLT, our Calibrated ViLT, and Uni-
1645 VQA integration on COCO-QA, alongside the LLM-only baseline. The results demonstrate that
1646 our diverse ensemble approach effectively improves calibration for modern transformer archi-
1647 tectures. Our Calibrated ViLT achieves substantial calibration improvements, reducing ECE from **0.17**
1648 to **0.02**, while maintaining comparable accuracy to Standard ViLT. Furthermore, when integrated
1649 into the Uni-VQA framework, ViLT achieves the highest accuracy of (76.33% on COCOQA and
1650 74.31% on VQA-v2) and efficient LLM delegation of (70.47% on COCOQA and 65.31% on VQA-
1651 v2), demonstrating that our approach maintains its effectiveness on modern transformer-based ar-
1652 chitectures.

1653 G.11 ROBUSTNESS TO DISTRIBUTION SHIFT AND OUT-OF-DISTRIBUTION 1654 GENERALIZATION

1655
1656 A critical concern for real-world VQA deployment is whether calibrated confidence scores remain
1657 reliable under distribution shifts, or out-of-distribution questions. To evaluate the robustness of
1658 our calibration approach, we conduct experiments on the AdVQA dataset Sheng et al. (2021), an
1659 adversarial out-of-distribution benchmark specifically designed to challenge VQA model robustness
1660 through carefully constructed adversarial question-answer pairs.

1661
1662 **Experimental Setup:** We evaluate VQA models trained on VQA-v2 directly on the AdVQA test
1663 set without any finetuning, creating a true out-of-distribution evaluation scenario. This setup tests
1664 whether our diverse ensemble calibration maintains its advantages when facing distribution shifts
1665 that differ from the training distributions. We compare Standard VQA models (trained with cross-
1666 entropy loss) against our Calibrated models across four architectures: Pythia, CLIP-ViL, ViL-
1667 BERT, and VisualBERT.

1668
1669 **Out-of-Distribution Calibration Performance:** Table 15 presents the performance of Standard and
1670 Calibrated VQA models on the AdVQA dataset. As expected, all models experience significant
1671 accuracy degradation and increased calibration error compared to in-distribution performance (Table
1672 1). However, the critical finding is that our Calibrated models consistently maintain better
1673 calibration than Standard models across all architectures.

1674
1675 Table 14: Performance comparison of Uni-VQA with TS-VQA models and LLM on ViLT architec-
ture.

Model	VQA-v2			COCOQA		
	ACC↑	ECE↓	LLM-Deleg (%)↓	ACC↑	ECE↓	LLM-Deleg (%)↓
LLM-only (Mistral-7B)	69.09	0.31	100	72.03	0.27	100
Standard VQA	66.60	0.21	-	73.61	0.17	-
ViLT	Calibrated (Ours)	66.44	0.07	73.89	0.02	-
	Uni-VQA (Ours)	74.31	0.04	65.31	76.33	0.03
						70.47

1681
1682 Table 15: Out-of-distribution performance comparison on AdVQA dataset (test split). All models are trained
1683 on VQA-v2, and evaluated on AdVQA to assess robustness of our Calibrated and Uni-VQA models
under distribution shift.

Model	VQA-v2			AdVQA		
	ACC↑	ECE↓	LLM-Deleg (%)↓	ACC↑	ECE↓	LLM-Deleg (%)↓
LLM-only (Mistral-7B)	69.09	0.31	100	38.98	0.53	100
Standard VQA	65.67	0.14	-	30.6	0.36	-
Pythia	Calibrated (Ours)	66.15	0.06	31.5	0.12	-
	Uni-VQA (Ours)	71.00	0.05	41.05	0.19	98.08
CLIP-ViL	Standard VQA	69.95	0.18	32.13	0.23	-
	Calibrated (Ours)	70.05	0.08	31.95	0.06	-
	Uni-VQA (Ours)	72.98	0.07	38.11	0.11	99.86
VILBERT	Standard VQA	66.98	0.19	32.36	0.37	-
	Calibrated (Ours)	66.90	0.05	32.07	0.20	-
	Uni-VQA (Ours)	71.65	0.07	40.21	0.19	91.76
VisualBERT	Standard VQA	64.92	0.14	31.41	0.36	-
	Calibrated (Ours)	65.26	0.03	31.53	0.14	-
	Uni-VQA (Ours)	70.95	0.08	40.77	0.16	96.03

1700 Notably, we observe that across all architectures, our Calibrated models achieve lower ECE
1701 compared to Standard models on AdVQA. This demonstrates that the calibration benefits of diverse
1702 ensemble training are not limited to in-distribution data. While all methods exhibit higher ECE
1703 on AdVQA compared to VQA-v2, which is expected behavior under distribution shift, the relative
1704 advantage of our calibration approach remains consistent.

1705 **Analysis of Confidence Distribution Under Distribution Shift:** To get insights on how calibration
1706 behaves at a more granular level under distribution shift, we analyze the confidence distributions of
1707 correct and incorrect predictions on AdVQA. Figures, 15 and 16 present confidence histograms
1708 comparing Standard and our Calibrated ViLBERT models.

1710 As illustrated in Figure 15, Standard VQA exhibits severe overconfidence on incorrect predictions,
1711 with a pronounced spike in the highest confidence bin (around 1.0), indicating that the model is over-
1712 confident on many incorrect answers. In contrast, our Calibrated model shifts the distribution of
1713 incorrect predictions toward lower confidence regions, with substantially higher concentration in the
1714 low-confidence bins (particularly in the 0.0-0.3 range). The overconfident spike at confidence 1.0
1715 is greatly reduced in the Calibrated model. These patterns mirror the in-distribution behaviors
1716 observed in Figures 11-12, confirming that diverse ensemble training continues to shift incorrect
1717 predictions to lower confidence regions even under distribution shift.

1718 **Implications for RAG integration:** The above analysis reveals an important opportunity for in-
1719 tegrating Retrieval-Augmented Generation (RAG) methods Lewis et al. (2020); Guu et al. (2020)
1720 with Uni-VQA. Our diverse ensemble calibration reliably pushes OOD and knowledge-intensive
1721 questions toward the lowest-confidence region (precisely the regime where the LLM is invoked with-
1722 out TS-VQA candidates). To further validate this, we evaluated our calibrated TS-VQA (trained on
1723 VQA-v2) on OK-VQA Marino et al. (2019), a knowledge-based VQA benchmark requiring external
1724 world knowledge. On OK-VQA, 56.6% of incorrect predictions from our calibrated model (accu-
1725 racy: 20%, ECE: 0.11) fall below the lower confidence threshold, compared to only 27% for standard
1726 TS-VQA. This confirms that knowledge-heavy questions are reliably routed to the lowest-confidence
1727 region. In Uni-VQA, this is exactly where RAG augmentation could be most beneficial—enhancing
1728 LLM accuracy on knowledge-intensive questions while avoiding the cost of invoking RAG on every
1729 query.

(a) Standard VQA

(b) Calibrated (Ours)

Figure 15: Confidence distribution of incorrect answers in a) Standard, and b) our Calibrated VQA on AdVQA dataset (out-of-distribution).

(a) Standard VQA

(b) Calibrated (Ours)

Figure 16: Confidence distribution of correct answers in a) Standard, and b) our Calibrated VQA on AdVQA dataset (out-of-distribution).

G.12 COMPREHENSIVE COMPUTE COST ANALYSIS

To provide a complete picture of our framework’s efficiency, we present a detailed breakdown of both training and inference costs. While training introduces upfront computational overhead, the significant inference savings in production deployments justify this initial investment.

Our analysis considers three primary computational costs: (1) **Training Cost**: One-time GPU hours required for ensemble model training, (2) **Distillation Cost**: Additional training to compress ensembles (optional), (3) **Inference Cost**: Per-sample latency at inference time.

Table 16 presents the costs associated with training of our Uni-VQA components. If distillation is employed (optionally), it adds approximately one-third of the ensemble training time (equivalent to training a single model). Table 17 presents the effective inference costs in our hybrid system, accounting for selective delegation.

Key Cost-Benefit Findings. Inference costs dominate real-world computational expenses in production systems. While training the ensemble models requires an upfront investment of 15-366 GPU hours depending on the chosen backbone, this cost is quickly amortized in production deployments that process millions of queries daily. For instance, at a scale of 10 million queries per day, our framework’s improved inference efficiency translates to savings of approximately 11,000-35,000 GPU hours monthly compared to LLM-only inference.

Table 16: Comprehensive compute cost breakdown for Uni-VQA components on VQA-v2 dataset. Calibrated models use ensemble of 3 independently trained models. Training time measured on A100 GPUs, inference latency on A6000 GPU.

Model	Parameters (M)	Training Time (GPU Hours)	Avg Inference Time (ms/sample)
<i>Calibrated Models (Ensemble of 3)</i>			
Pythia	3×147	$3 \times 5 = 15$	$3 \times 3 = 9$
ViLBERT	3×250	$3 \times 47 = 141$	$3 \times 9 = 27$
VisualBERT	3×114	$3 \times 19 = 57$	$3 \times 9 = 27$
CLIP-ViL	3×256	$3 \times 122 = 366$	$3 \times 23 = 69$
BEiT-3	$3 \times 1,900$	$3 \times 72 = 216$	$3 \times 9 = 27$
<i>Reference: LLM-only Baseline</i>			
Mistral-7B	7,000	0*	534

*Pre-trained model used without additional training

Table 17: Effective inference latency comparison between Uni-VQA and LLM-only baseline. Delegation % indicates frequency of LLM invocation. Effective latency computed as: $t_{VQA} + (\text{Deleg\%} \times t_{LLM})$.

TS-VQA Backbone	TS-VQA Latency (ms)	Delegation %	Effective Latency (ms)	Speedup vs LLM-only
Mistral-7B only	—	100%	534	1.00x
Pythia	9	78.8%	115	6.64x
ViLBERT	27	79.1%	397	1.34x
VisualBERT	27	77.9%	392	1.36x
CLIP-ViL	96	69.9%	322	1.65x
BEiT-3	27	35.9%	118	4.52x

Table 18: Hyperparameters for training our Calibrated VQA models.

	VQA Model	λ_1	λ_2	λ_3
VQA-v2	Pythia	8	100	1000
	ViLBERT	8	20	100
	VisualBERT	10	20	100
	CLIP-ViL	20	100	1000
	BEiT-3	8	200	500
COCO-QA	Pythia	2	4	200
	ViLBERT	2	3	4
	VisualBERT	2	3	5
	CLIP-ViL	1	2	50
	BEiT-3	0.05	0.5	5

G.13 EXPERIMENTS REPRODUCIBILITY

In this section the hyperparameters used for training the Diverse ensemble based Calibrated model. The DRO loss can be computationally expensive to optimize. To mitigate this, similar to the approach in Sapkota et al. (2024), we employ a regularized version of the loss function, defined as:

$$\mathcal{L}(\Theta)^{DRO} = \max_{\mathbf{w}, \mathbf{w}^T \mathbb{I} = 1} \sum_{n=1}^N w_n l(\mathbf{x}_n, \Theta) - \lambda D_f \left(\mathbf{p} \parallel \frac{\mathbb{I}}{N} \right), \quad (19)$$

which has a closed-form solution as demonstrated in Sapkota et al. (2024):

$$\mathcal{L}(\Theta)^{DRO} = \sum_{n=1}^N w_n^* l(\mathbf{x}_n, \Theta) \quad (20)$$

where, w_n^* is given as

$$w_n^* = \frac{\exp(\frac{l(\mathbf{x}_n, \Theta)}{\lambda})}{\sum_{j=1}^N \exp(\frac{l(\mathbf{x}_j, \Theta)}{\lambda})} \quad (21)$$

In this setup, our hyperparameters are the λ values corresponding to the diverse models in the ensemble. For all of our experiments, we set the ensemble count to 3, resulting in three hyperparameters: λ_1 , λ_2 , and λ_3 . For training our Calibrated TS-VQA models. We use $\lambda \in \{8, 10, 20, 50, 100, 200, 500, 1000\}$ in our experimentation, and select the final parameters based on the performance on the validation set, to obtain the desired ece. The final values of hyperparameters are given in Table 18. Due to computational overhead of LLM-based inferences, we report results based on single run.

H QUALITATIVE ANALYSIS

Figure 17 demonstrates qualitative examples, showing example inputs, along with the TS-VQA’s initial answer and confidence score in various low-to-high ranges. Additionally, for each case, the candidate answers by the TS-VQA are listed. Examples, demonstrate LLM’s answer & answer correctness with several number of answer candidates, depicting the arguments in section 3.3. Specifically, in lowest confidence bins, the TS-VQA and answer candidates are all misleading, leading

Figure 17: Qualitative examples demonstrating the knowledge exchange in various confidences of TS-VQA

to misleading the LLM, when the answer candidates are provided. In this scenario, LLM with 0 answer candidates provides the correct answer. In low confidence range, LLM benefits from providing 10 answer candidates, and as the confidence range increases, the LLM’s answer benefits from a lower number of answer candidates. In highest confidence range, where TS-VQA model’s prediction is most reliable, and although LLM with fewer number of answer candidates also provides a correct answer, TS-VQA’s answer can be accepted without further delegation to LLM, which saves on high-cost computations by LLM.

I BROADER IMPACT STATEMENT

Modern large language model (LLM)-based systems have revolutionized AI applications, demonstrating remarkable capabilities in diverse domains, including healthcare, finance, and creative industries. Yet their widespread adoption comes at a substantial environmental cost, raising concerns about sustainability and their environmental impacts. Studies Strubell et al. (2020); Patterson et al. (2021) have highlighted the environmental costs of training and deploying these models, highlighting the significant carbon footprint associated with large-scale AI, emphasizing on the need for more energy efficient AI solutions. Furthermore, reports Patterson et al. (2021); Weidinger et al. (2022); Luccioni et al. (2024) indicate that inference accounts for a substantial AI workloads, often exceeding the energy costs of model training and development, due to their usage at scale. This underscores the urgent need to develop AI systems that balance computational efficiency with performance.

1890 In line with the principles of Green AI Schwartz et al. (2020) - prioritizing innovation while min-
 1891 imizing resource consumption and computational costs - our work proposes a framework that se-
 1892 lectively and dynamically utilizes LLMs when their unique capabilities are truly needed. Our ap-
 1893 proach identifies opportunities to use smaller, task-specific models for routine tasks while reserving
 1894 resource-intensive LLMs for complex queries that demand their advanced capabilities. This selec-
 1895 tive deployment strategy can significantly reduce the environmental footprint of AI systems without
 1896 compromising their performance.

1897 While our approach improves trustworthiness through calibration, and efficiency of using LLMs by
 1898 reducing overreliance on the LLMs, several negative merit further discussion. Firstly, calibrated
 1899 confidence scores are critical in domains like medical, autonomous driving, or surveillance, where
 1900 incorrect answers can have serious consequences. Although our framework improves reliability, ***a***
 1901 ***high model confidence does not guarantee correctness***, and in such high-stake scenarios, a human
 1902 supervision must make an informed decision. If such confidence scores are interpreted as definitive
 1903 indicators of correctness (especially by non-expert users) this could lead to overtrust and potential
 1904 harmful decisions in sensitive contexts. Secondly, our framework involves dynamic delegation of
 1905 queries to LLMs, which may reside in third-party systems. In scenarios involving sensitive or private
 1906 visual data, delegation to an external LLM (particularly one not hosted locally), poses serious privacy
 1907 risks. Moreover, unless made explicitly transparent to users when delegation occurs, this can lead to
 1908 unintended data exposure and ethical concerns around informed consent.

1909 J LIMITATIONS AND FUTURE WORKS

1910 Our study has several limitations. First, while our approach employs confidence-based delegation
 1911 from TS-VQA to the LLM with answer candidates, it does not leverage additional mechanisms,
 1912 such as answer consistency checking or refinement techniques Srinivasan et al. (2024); Khan et al.
 1913 (2024); Prasad et al. (2023), which could further boost the performance, when answering is delegated
 1914 to an LLM. Second, our approach still lacks the systematic way of providing the well-calibrated un-
 1915 certainty estimates on the LLM generated answers. While calibrated confidence estimates of our
 1916 Calibrated TS-VQA provides a better reflection on the question difficulty, accurate confidence
 1917 estimation of the LLM-generated answers can be important, particularly in safety critical domains
 1918 such as medical, or security surveillances. As uncertainty quantification in LLMs remains an on-
 1919 going research challenge, we leave the development of more robust LLM calibration strategies for
 1920 future work.

1921 K SOURCE CODE

1922 The source code is available at this link.

1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943