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Abstract

Schema matching – the task of finding matches between attributes across disparate
data sources with different tables and hierarchies – is critical for creating interoper-
able machine learning (ML)-ready data. Addressing this fundamental data-centric
problem has wide implications, especially in domains like healthcare, finance and
e-commerce — but also has the potential to benefit ML models more generally, by
increasing the data available for ML model training. However, schema matching is
a challenging ML task due to structural/hierarchical and semantic heterogeneity
between different schemas. Previous ML approaches to automate schema matching
have either required significant labeled data for model training, which is often
unrealistic, or suffer from poor zero-shot performance. To this end, we propose
Matchmaker - a compositional language model program for schema matching, com-
prised of candidate generation, refinement and confidence scoring. Matchmaker is
also able to self-improve in a zero-shot manner without the need for labeled demon-
strations via a novel optimization approach, which constructs synthetic in-context
demonstrations to guide the language model’s reasoning process. Empirically, we
demonstrate on real-world medical schema matching benchmarks that Matchmaker
outperforms previous ML-based approaches, highlighting its potential to accelerate
data integration and interoperability of ML-ready data.

1 Introduction

Data is fundamental to the success of machine learning (ML) models, which depend on access to large,
integrated and interoperable datasets [1–4]. Although well-structured and uniform datasets like those
on Kaggle are commonly assumed as the norm, such data is a rare luxury in practice. In real-world
scenarios, tabular data often exists in heterogeneous and disparate databases with diverse formats,
schemas, and terminologies, requiring harmonization to make the data "ML-ready" and interoperable.
The heterogeneity of databases presents three critical issues for ML: (1) data harmonization and
integration is an arduous task. Hence, researchers often limit the features/covariates used for model
training to a smaller, often common, set of features [5–7], thereby limiting the potential performance
of their ML models; (2) even if all the features are used, the lack of data interoperability means
limited external validation of ML models [8–12], which can undermine the credibility and utility of
the ML models; and (3) missed opportunities for insights on larger harmonized datasets (e.g., larger
patient populations), which may not be apparent when analyzing data sources independently.

Schema matching is a critical first step in data harmonization, aiming to establish correspondences
between attributes (i.e., features/covariates) measured across different data sources. Once matched,
these correspondences can help harmonize data from disparate sources into a cohesive, ML-ready
format. To understand the concept of schema matching, let us unpack the components of a schema. A
schema defines how data is organized in a database, comprising different tables (collections of related
data entries) and columns (also known as "attributes" or "features") that represent specific data fields.
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Figure 1: Example showing the complexity of schema matching due to the multi-faceted challenges: Database
heterogeneity (green arrows): Identifying the correct target table is the first step, as each schema has a
different number of tables, the corresponding information may be distributed differently across tables in each
schema. Structural heterogeneity (green arrows): Once the appropriate table is found, matching attributes is
complicated by differences in schema architectures, hierarchies, and granularity. Textual heterogeneity (green
arrows): Ambiguity in matching when attributes have the same names but different meanings, or different
names with the same meaning. Information mismatch (red arrows): Some attributes in one schema may lack
a corresponding match in the other schema, adding to the complexity of the matching process.

Importantly, schemas go beyond simple tabular data commonly found in CSV files, as they capture
the hierarchical structure and relationships between different tables and their attributes. For example,
in healthcare, schemas from different hospitals may have varying tables and attributes representing
patient information and lab measurements, with complex relationships and hierarchies connecting the
tables. Consequently, schema matching involves analyzing the context of attributes within the schema
hierarchy to establish meaningful mappings that preserve the intended semantics and relationships. It
goes beyond simple one-to-one column matching, considering not only the attribute itself but also
the hierarchical structure and relationships between tables defined by the schema. Notably, schema
matching does not assume access to raw data, relying on attribute names, descriptions and metadata
(e.g. in healthcare, patient data cannot be queried or accessed directly due to privacy concerns [13]).

The importance and value of schema matching cannot be overstated, as integrating data from various
data sources such as different regions, organizations or applications is vital in healthcare but also in
finance and e-commerce [13–15]. Schema matching is also generally valuable to anyone working on
ML, as a step toward increasing the training and validation data available to the ML community. e.g,
in healthcare, integrating data from multiple hospitals can lead to more comprehensive datasets to
train mor egeneralizable ML prognostic models [16]. Similarly, in e-commerce, combining diverse
customer data from various platforms can enable more accurate ML models built on customer data.

Unfortunately, prior ML approaches for "automated" schema matching often require extensive labeled
data to train models [13, 17], which is often infeasible. Although LLM-based methods [18, 19] have
attempted to address this, they have poor zero-shot performance and poor scalability in terms of the
number of LLM calls. These limitations have hindered the adoption of ML for schema matching,
meaning schema matching is still a largely manual and time-consuming task. To highlight the need
for automated and better performing ML schema matching, in the healthcare domain, it took 500
hours for two experts to map the schemas between the MIMIC database and the OMOP common
data model [20], demonstrating the substantial and non-trivial effort required.

Despite the need, schema matching is a challenging ML task, as shown in Fig. 1, as without access to
the raw data, schema matching methods must rely only on the attribute names and other metadata
to infer correspondences between attributes across schemas. This requires reasoning about various
challenges, namely: ▶ Semantic heterogeneity: ambiguous potential mappings, where attributes
across schemas might have the same name but different meanings, or different names but the same
meaning. ▶ Structural heterogeneity: schemas that have varied architectures, hierarchies, and
representational granularity. ▶ Database heterogeneity: schemas having different numbers of tables
in which information is represented. e.g. source schema table information may be represented across
multiple target schema tables. Hence, it is non-trivial to identify the appropriate table for an attribute.
▶ Information mismatch: Information may be contained in one schema, but not in another schema.
Hence, reasoning about "no possible match" is as important as reasoning about a possible match.

These issues make schema matching a challenging task that cannot be
solved by simple methods such as semantic similarity alone (see Fig. 2).
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Figure 2: Semantic similarity alone can-
not solve schema matching, with low accu-
racy@k, compared to Matchmaker.

To this end, we introduce Matchmaker, a self-improving
compositional language model program for schema match-
ing. Matchmaker leverages the reasoning capabilities of
large language models (LLMs) via a compositional lan-
guage model program with multi-stage LLM calls that
comprise candidate generation, refinement, and confidence
scoring (see Appendix C for examples of this process).
Matchmaker also self-improves without labeled data, via
a novel optimization process using synthetic in-context
examples for the different stages of the language model
program. Matchmaker makes the following contributions:

Contributions: 1⃝ We address recent calls to develop ML methods for data harmonization/interop-
erability [21, 22]. 2⃝ We propose Matchmaker, a compositional language model program to address
the complexities of schema matching. 3⃝ We introduce a novel optimization mechanism allowing
Matchmaker to self-improve in a zero-shot manner via synthetic in-context examples that guide
Matchmaker’s reasoning process. 4⃝ We empirically demonstrate that Matchmaker outperforms
different ML baselines on real-world schema matching benchmarks, along with showing the value
of our self-improvement mechanism and how Matchmaker can be used with a human-in-the-loop.

2 Related Work

This work engages with literature on schema matching (see Fig. 3) and contributes to data-centric AI.

Schema matching. Previous ML-based schema matching approaches have shown promise but face
limitations that hinder practical applicability. Early works [17, 23, 24] focused on simpler entity
matching tasks (matching items within columns) rather than the more complex schema matching
problem [25, 26]. Recent approaches like SMAT [13] address full schema matching using deep
learning (e.g., attention) but require substantial labeled data (> 50%) for training, which is impractical
in real-world scenarios where labeled data is scarce or expensive.

To reduce labeling needs, LLMs have been applied to schema matching [18, 27, 28]. However, meth-
ods using pre-trained LLMs [18, 27] or fine-tuned LLMs [28] show poor zero-shot performance (see
Sec. 5). Performance improvements require human-labeled examples (±500), limiting applicability.
Additionally, they also formulate schema matching as binary classification over the full Cartesian
product of attributes, resulting in poor scalability in terms of LLM calls.

The closest work to ours is ReMatch [14], which uses retrieval to narrow down semantically similar
candidates before prompting an LLM to match source schema attributes with target candidates.
However, ReMatch relies solely on semantic matching, which we empirically demonstrate in Sec. ??
is insufficient for real-world schemas. Our approach, Matchmaker, differs from ReMatch in three
key aspects: (1) System: Matchmaker decomposes the task into a multi-stage LLM program with
multiple reasoning steps, unlike ReMatch’s single LLM call. (2) Candidate Generation: Matchmaker
integrates multiple candidate generation sources, including both semantic retrieval and LLM-based
contextual reasoning, whereas ReMatch relies only on semantic retrieval. (3) Optimization: Match-
maker optimizes prompts via synthetic in-context examples, unlike ReMatch’s fixed prompt template.

Data-Centric AI. Data-centric AI aims to systematically improve data quality for ML [29–31]
through methods such as sample selection and valuation [32–35] of pre-existing integrated datasets.
This work addresses a fundamental upstream problem: schema matching which enables the creation
of harmonized datasets. In doing so, it contributes to the data-centric AI literature by tackling a
critical issue that precedes and supports existing approaches to enhance data quality for ML.

3 Schema Matching
3.1 Preliminaries.

Consider the schema matching task, where the goal is to map attributes from a source schema (Ss)
to a target schema (St). Each schema S is defined as a collection of tables T = {T1, T2, . . . , Tm}.
Each table Ti contains a set of attributes Ai = {Ai1, Ai2, . . . , Aik}. Additionally, each table Ti is
associated with metadata mi describing the purpose and content of the table. Similarly, each attribute
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Aij is associated with a description dij , which includes information describing the attribute, its
data type and relational context. These descriptions and data types provide additional contextual
information about the attributes to aid in the matching process.

Schema matching (defined below), aims to find matches between attributes across different schemas,
respecting the database hierarchies, relationships and restrictions. Recall matching solely relies on
schema-level information (attributes and metadata), without having access to the raw data. This adds
to the complexity, as matching must be performed without analyzing the actual data values.
Definition 1 (Schema Matching). The goal of schema matching is to find a mapping function
f : As → At ∪{∅} that correctly assigns each attribute of the source schema Ss to a corresponding
attribute in the target schema St or to the empty set ∅, indicating no possible match.

3.2 Schema matching as information retrieval.

As outlined in Sec. 2, schema matching is often formulated as a supervised binary classification
problem (match/no match) over the entire Cartesian product of source and target schema attributes.
Beyond the computational side, this formulation has several drawbacks: ▶ Labeling Cost: It
necessitates manual annotation of attribute pairs by domain experts, which is time-consuming and
costly. ▶ Class Imbalance: The prevalence of non-matching attribute pairs significantly outnumbers
matching pairs, resulting in severe class imbalance. ▶ Lack of Ranking: It does not yield a ranked
list of candidate matches, which is critical for human review if multiple possible matches exist.

To address the drawbacks, we propose a two-stage information retrieval approach to schema matching:

▶ 1. Candidate generation: For each source query attribute Asi ∈ As from the source schema Ss,
we generate a set of potential matches from the target schema. Let Ci ⊆ At be the set of candidate
target matches for query attribute Asi. The candidate generation process can be defined as a function
g : As ×At → P(At), where P(At) denotes the power set of At, such that Ci = g(Asi,At).

▶ 2. Ranking: We rank the candidates based on their relevance to the query attribute. We define a
ranking function r : (As ×Ds)× (At ×Dt)→ R, where Ds and Dt represent the sets of contextual
information associated with attributes in As and At, respectively. For each source attribute Asi ∈ As

and its associated contextual information dsi ∈ Ds, the ranking function r assigns a relevance score
to each candidate attribute Atj ∈ Ci ⊆ At and its associated contextual information dtj ∈ Dt.

The mapping function f can then be defined as follows:

f(Asi) =

{
argmaxAtj∈Ci r((Asi, dsi), (Atj , dtj)), if maxAtj∈Ci r((Asi, dsi), (Atj , dtj)) ≥ τ

∅, otherwise

where τ is a relevance threshold and f assigns the query attribute Asi to the candidate attribute Atj

with the highest relevance score. Conversely, we may assign ∅, indicating no match — accounting
for the fact that not all source attributes may have a possible match in the target schema.

4 Matchmaker: LLM-based Schema Matching

We propose Matchmaker, a self-improving compositional language model (LM) program for schema
matching (see Fig. 3), defined as a three-step LM program. For further details see Appendix A.2.

Why LLMs for schema matching? Large Language Models (LLMs) form the foundation of
Matchmaker, serving as key components within a compositional program comprised of multiple
language model calls. Specifically, LLMs exhibit several appealing properties and capabilities for
schema matching: ▶ Contextual understanding: LLMs have been pretrained on vast corpora
of information, equipping them with extensive prior knowledge spanning different contexts and
settings [36–38]. This contextual understanding enables LLMs to effectively reason about schema
hierarchies and identify potential matches. ▶ Hypothesis proposers: LLMs have been shown to be
“phenomenal hypothesis proposers” [39], making them particularly useful for candidate generation
tasks. ▶ Capable rankers: LLMs have been shown to be highly capable at relevance ranking;
assessing the suitability of candidates given a query and a set of options [40, 41], especially “when
ranking candidates retrieved by multiple candidate generators” [41].

Defining a compositional LM program. A compositional language model program, denoted as
L, is a multi-stage pipeline consisting of multiple LLM calls, i.e., L = {l1, l2, . . . , ln}, where
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Figure 3: Conceptual comparison of different schema matching approaches. (A) Supervised Matching [13]
trains a model (e.g., transformer) to predict binary match/no-match labels across all attribute pairs, scaling as
O(n)2 and requires labeled data, thus unsuitable for zero-shot. (B) LLM-Prompting [18, 27] uses a frozen
language model (e.g., GPT-4) for the same task, with similar scalability. Alternatively, [28] fine-tunes the LLM,
which requires labeled data. (C) RAG-Based [14] improves scalability by retrieving candidates from a vector
database and using a frozen LLM to select matches, but its effectiveness is limited to semantically similar options.
(D) Matchmaker (Ours) performs schema matching via a self-improving, compositional language model program
that enables enhanced reasoning. The program includes both retrieval and reasoning-based candidate generation
with refinement and confidence scoring. The program is zero-shot optimized using synthetic in-context examples.

li : (s, ks) → Y represents a specific LLM call taking as input a prompt string s and in-context
examples ks (which could be ∅). In the following sections (Secs. 4.1-4.3), we define the different
components of L specific to Matchmaker. Finally, we describe our optimization process (Sec. 4.4).

4.1 Multi-vector documents (Step 1)

To facilitate efficient retrieval of semantically similar target schema candidates for any given source
schema query, we construct a vector database containing target schema attributes. We begin by
representing the target schema as a collection of structured documents. Specifically, for each table
T in the target schema St, we create a document consisting of the attribute names and append the
attribute’s textual description and data type, providing contextual information about each attribute.
The metadata of each document includes the description of the table itself.

Unlike the common approach where each document is chunked and encoded as a single high-
dimensional vector, Matchmaker employs multi-vector representations. Specifically, we use ColBERT-
v2 [42] model to encode the document chunks, producing an embedding per token (i.e., token-level
dense vector), capturing token-level interactions. This approach has been demonstrated to enable
better expressivity [43, 44] and out-of-domain performance [42]. In the next section, we detail how
we retrieve semantically similar candidates for a given query using this multi-vector representation.

4.2 Diverse candidate generation (Step 2)

To narrow down the search space, Matchmaker identifies a subset of candidate attributes from the
target schema that are likely matches for a query attribute qi ∈ As from the source schema. We draw
inspiration from [41], which demonstrates that LLM ranking performance improves “‘when ranking
candidates are retrieved by multiple candidate generators.” Hence, while semantic candidates are
commonly used, Matchmaker goes beyond and employs two distinct types of candidate generation: (i)
Semantic retrieval candidates retrieved from the vector database, and (ii) Reasoning-based candidates
using a language model. This is then followed by a candidate refinement step. We outline each type
of candidate generation applicable to a given query attribute qi ∈ As.

(i) Semantic retrieval candidates. Given query qi, we encode it using ColBERT-V2, obtaining a
multi-vector query embedding. Matchmaker then uses this query embedding to retrieve the top-k
most similar target schema attributes in the vector database — denoted as Cs. We model similarity
via late-interaction [45], where each query embedding interacts with all document embeddings via a
MaxSim operator, which computes the maximum similarity (e.g., cosine similarity), and finally the
scalar outputs of each of these operators are summed across the different query terms.
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(ii) Reasoning-based candidates. To complement semantic matches, Matchmaker generates
reasoning-based candidates using a candidate reasoner LLM denoted as lc : (qi,At)→ CR, where
qi is the i-th query, At is the set of all target attributes and CR is a reasoning-based candidate set.
Specifically, Matchmaker employs Chain of Thought (CoT) prompting [46] to reason about the target
attributes At given the context of the schema hierarchy, descriptions and data types — generating the
most likely and relevant target schema candidate matches for each query qi.

Refinement. At this stage, the set of candidates is C = CR ∪ Cs. Given the diverse set of candidates,
Matchmaker aims to determine which candidates are the most likely and relevant matches for a given
query, to obtain a smaller candidate set C∗ to score and rank. Candidate refinement is achieved with a
refiner LLM using CoT, denoted as lr : s→ C∗, where s = (C, qi) and qi is the i-th source query.

4.3 Confidence scoring (Step 3)

The refined set of candidates, C∗ remains unordered. Hence, this step aims to obtain confidence
scores to rank the candidates but also gauge the certainty of each match, recognizing that sometimes
no suitable source-to-target attribute match exists, which requires the system to abstain from making
a match. While language models may not be well-calibrated at the sequence level, recent research
has shown that they exhibit better calibration at the token level [47], a feature notably beneficial
in multiple-choice question (MCQ) tasks [48]. Leveraging this insight, Matchmaker structures the
candidate scoring task as an MCQ format, labeling each candidate in C∗ for query qi as options (A),
(B), (C), etc. Additionally, to account for the possibility that none of the target attribute candidates
are a good match or there might be no possible match in the target schema, Matchmaker includes an
abstain option by adding "NONE of the above" as a choice. This ensures that the LLM is not forced
to select a candidate when there is no suitable match, aligning with the practices in [47, 49].

Matchmaker finally performs candidate ranking, where it is common to evaluate each candidate
individually [50–52]. Confidence scores are obtained by prompting the LLM to reason about the
relevance of each candidate ci ∈ C∗ to the given query qi. Furthermore, prior work has shown that
LLMs can provide good uncertainty at token-level [48] like in our MCQ, which is achievable via
prompting [53]. Consequently, Matchmaker elicits a confidence score by prompting the LLM to
provide a value between 0 and 100, indicating the relevance of a match. These confidence scores are
then used to either rerank the candidates or, if the highest score is assigned to "None of the above,"
return an empty list, suggesting that no suitable matches exist for the given query.

4.4 Self-improvment: Zero-shot optimization using synthetic in-context examples

Matchmaker optimizes the language model program L by leveraging the few-shot learning capabil-
ities of LLMs [54–56]. This is achieved by selecting input-output demonstrations (i.e. in-context
examples). In Sec. 5, we contrast this with an alternative self-improvement method via self-reflection.

Algorithm 1 Optimize LM program L
1: Input: Set of evaluation queries Deval =

e1, e2, . . . , en
2: Output: Set of top n demonstrations

Ddemo

3: for each input ei ∈ Deval do
4: ŷi, tracei ← L(ei) ▷ Teacher
L predicts, storing outputs and intermediate
traces

5: si ← E(ei, ŷi) ▷ Evaluation score
6: Ddemo ← Ddemo ∪ (ei, tracei, ŷi, si)
7: end for
8: Sort Ddemo by score
9: return Ddemo[0 : n] ▷ Select top n

However, selecting in-context examples is non-
trivial for schema matching for two reasons. (i) No
labeled demonstrations: We do not have access
to labeled demonstrations from which to select
in-context examples. To overcome this challenge,
we use the unlabeled schemas to create a "eval-
uation" set Deval = {e1, e2, . . . , em}, made up
of different types of source queries. Specifically,
we identify "easy queries" where the top-n (n=5)
target schema semantic matches have a similarity
score > 0.95, and "challenging queries" with the
lowest semantic matches. (ii) No evaluator: To
evaluate Matchmakers capabilities and guide the
optimization process, we need a validation metric. Since no validator is readily available, we propose
to use an evaluator LLM, E : (ei,L(ei)) → R, that employs chain of thought [46] to score the
relevance (from 0-5) of matches obtained from L when evaluated on examples from Deval.

Zero-shot optimization with synthetic in-context examples. To optimize our multi-stage language
model program, we aim to select in-context examples for each component in L. However, in-context
demonstrations for the intermediate stages are typically unavailable. To address this, we simulate
traces by running L on the evaluation examples ei ∈ Deval. A trace captures the intermediate
input-output pairs of each component in L during the execution of L on a given example. We then
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Table 1: Comparison of schema matching performance of different baselines.
Matchmaker ReMatch JellyFish-13b Jellyfish-7b LLM-DP SMAT (20-80) SMAT (50-50)

M
IM

IC acc@1 62.20 ± 2.40 42.50 15.36 ± 5.00 14.25 ± 3.00 29.59 ± 2.00 6.05 ± 5.00 10.85 ± 6.00
acc@3 68.80 ± 2.00 63.80 N.A. N.A. N.A. N.A. N.A.
acc@5 71.10 ± 2.00 72.90 N.A. N.A. N.A. N.A. N.A.

Sy
nt

he
a acc@1 70.20 ± 1.70 50.50 35.17 ± 3.90 31.52 ± 1.70 41.44 ± 5.40 36.23 ± 3.30 44.88 ± 2.60

acc@3 78.60 ± 2.50 58.10 N.A. N.A. N.A. N.A. N.A.
acc@5 80.90 ± 1.10 74.30 N.A. N.A. N.A. N.A. N.A.

score the final output using the evaluator E , assessing the overall performance of L on that example.
Finally, we adopt the DSPy bootstrapping process [57] that uses the intermediate input-output pairs
from the traces that produced the highest evaluation scores as synthetic in-context examples for each
component of L. i.e. we use the input-output pairs generated by Matchmaker itself (which resulted
in good evaluation performance) as synthetic in-context examples to guide the LLM reasoning.
This allows us to improve the program in a zero-shot manner, without relying on actual labeled
data. Algorithm 1 provides an overview. We refer to L with the selected in-context examples as
Matchmaker (Optimized).

5 Experiments
We now empirically investigate multiple aspects of Matchmaker. For qualitative examples of Match-
maker’s application, see to Appendix C. We conduct experiments on two real-world healthcare schema
matching datasets used in prior works: (1) MIMIC-OMOP and (2) Synthea-OMOP — selected as
they are widely used in the literature, reflecting real-world schema matching complexity.

We evaluate schema matching performance using accuracy@k as per [14] and widely used in
information retrieval. Besides, ReMatch the other baselines treat schema matching as a binary
classification using F1-score as the metric. In our setting of m:1 matching (i.e. one match per query),
accuracy@1 is equivalent to F1-score, if the binary label is assigned via argmax. Hence, we report
accuracy@1 for all other baselines for comparison to retrieval based approaches. Unless otherwise
stated, metrics are reported over 5 seeds. Additional experiments can be found in Appendix D.

5.1 Schema Matching performance: Does it work?

We evaluate Matchmaker’s schema matching performance against state-of-the-art baselines applicable
to zero-shot/unlabeled settings (see Sec. 2). We use GPT-4 (0613) [58] for all LLM baselines to
ensure fair comparison and mitigate variability of baselines due to the LLM itself.

Matchmaker has the best overall performance. Matchmaker consistently outperforms baselines,
across all settings, as shown in Table 1. Importantly, we find the largest performance gains (+-20%)
for accuracy@1. This is a desirable property, as it suggests a better ranking of matches. Moreover, a
higher accuracy at low k values enables the use of smaller prediction sets, reducing the human effort
required to select the final best target attribute match for a given source attribute query.

Formulation as information retrieval outperforms binary classification. A key insight from our
experiments is that information retrieval-based approaches (Matchmaker and ReMatch) perform
substantially better for accuracy@1 compared to the other binary classification-based approaches,
which evaluate the full Cartesian product of attributes. This performance gap can be attributed to the
smaller search space of the information retrieval formulation. Notably, Matchmaker and ReMatch
are evaluated on all mappings, including matches and nulls ("No possible match"), whereas binary
classification methods consider a simpler problem by only evaluating true matches.

5.2 Matchmaker self-improvement analysis

Matchmaker self-improves its language model program in a zero-shot manner (no labeled examples)
via an optimization process using synthetic in-context examples (Sec. 4.4). We evaluate the perfor-
mance of Matchmaker (Optimized) to three alternatives to disentangle the value of our in-context
example selection mechanism: (1) Matchmaker (Vanilla), which is the vanilla language model
program without in-context examples, (2) Matchmaker (Random): random selection of in-context
examples rather than our optimized/systematic selection of in-context examples and (3) Matchmaker
(Self-Reflection), which employs a self-reflection or self-refinement mechanism [59, 60] as an alter-
native self-improvement approach. i.e. the LLM iteratively self-corrects through feedback and has
been used for various LLM tasks to improve performance.
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The results in Table 2 illustrate the following: ▶ Matchmaker (Optimized) achieves significant
performance gains compared to Matchmaker (Unoptimized), particularly at low k values (+-5%
improvement for acc@1). This finding highlights the value of the synthetic in-context examples and
the potential for zero-shot self-improvement, even in the absence of labeled data or well-defined
evaluation metrics. ▶ Matchmaker (Optimized) outperforms Matchmaker (Random), confirming that
our systematic selection of in-context samples is the key driver of performance gains, rather than
the mere inclusion of any in-context examples. ▶ Matchmaker (Optimized) which uses an LLM
evaluator to score demonstration examples directly, provides better performance gains compared to
the self-reflection approach, where an LLM simply self-refines along the pipeline. This underscores
the importance of input-output demonstrations for Matchmaker, especially considering the multi-stage
nature of the program, where the outputs of earlier components affect later components.

Table 2: Comparison of different Matchmaker self-improvement mechanisms, showing the value of our
systematic selection of in-context samples vs random selection, vanilla or improvement via self-reflection.

Matchmaker
(Systematic - Full)

Matchmaker
(Random)

Matchmaker
(Vanilla)

Matchmaker
(Self-reflection)

M
IM

IC acc@1 62.20 ± 2.40 55.36 ± 2.15 57.90 ± 1.20 57.10 ± 0.60
acc@3 68.80 ± 2.00 62.74 ± 4.50 66.40 ± 0.60 66.60 ± 1.00
acc@5 71.10 ± 2.00 65.00 ± 6.42 70.20 ± 0.70 70.60 ± 0.50

Sy
nt

he
a acc@1 70.20 ± 1.70 67.76 ± 1.38 65.40 ± 0.90 67.80 ± 1.40

acc@3 78.60 ± 2.50 76.19 ± 5.28 78.20 ± 0.60 75.90 ± 0.70
acc@5 80.90 ± 1.10 77.66 ± 5.07 83.20 ± 1.10 81.10 ± 1.90

5.3 Matchmaker in practice: Human-in-the-loop deferral and remedial action.

How might we use Matchmaker in practice for schema matching? Let us examine two cases.
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(b)
Figure 4: Examples of using Matchmaker in practice. (a) Deferring uncertain samples to humans via entropy
deferral improves schema matching performance. (b) Performance gains are obtained when correcting errors
which are semantically similar to the true attribute.

(1) Matchmaker with human-in-the-loop deferral: We evaluate the effectiveness of integrating
Matchmaker with a human-in-the-loop approach by deferring uncertain matches to human experts (i.e.,
an oracle) for correction. High-uncertainty cases are identified using the entropy of Matchmaker’s
confidence scores, with the most challenging matches (those with the highest entropy) deferred to
the oracle. We evaluate different deferral percentages p ∈ {0, 10, 20, 30, 40, 50} and observe that
entropy-based deferral consistently yields greater performance gains compared to random deferral, as
shown in Fig. 4(a). This finding highlights the practical value of Matchmaker in real-world settings,
where based on entropy, one could strategically seek human oversight for challenging matches
and improve overall schema matching performance. The appropriate deferral percentage, however,
depends on context-specific factors such as human bandwidth and expert availability.

(2) Evaluating ease of remedial action based on the similarity between incorrect predictions
and true target attributes: Not all errors in source-target matching are equal; some might be
easier to rectify than others. We hypothesize that errors involving semantically similar attributes
are easier to correct compared to those involving completely dissimilar attributes. We analyze the
cosine similarity between incorrectly predicted attributes and their true target attributes using Pubmed-
Bert embeddings. To simulate post-hoc remedial action, we assess the performance gains achieved
by correcting erroneous predictions that exceed different similarity thresholds. Figure 4(b) shows
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substantial improvements in accuracy@1 when "fixing" errors, with high semantic similarity between
the erroneous prediction and true attribute (e.g., cosine similarity ≥ 0.8). These results suggest that
Matchmaker’s incorrect predictions are often semantically close to the true attributes (i.e. our errors
are not far off), making them more amenable to post-hoc remedial actions. This demonstrates the
viability of post-hoc remedial actions to improve schema matching performance.

6 Discussion
Matchmaker introduces a novel approach to schema matching, using a self-improving composi-
tional program using LLMs. Matchmaker’s superior performance compared to existing ML-based
approaches, underlines its potential to accelerate data integration for ML-ready data. Matchmaker’s
zero-shot self-improvement mechanism, using synthetic in-context examples, showcases the potential
of using LLMs to handle complex reasoning tasks without relying on labeled data.

Limitations and opportunities. (1) Matchmaker, while effective in schema matching, represents
just one component of the broader table harmonization process and needs to be integrated with other
tasks to generate ML-ready data. (2) Despite its advantages over alternative ML-based approaches,
Matchmaker is not a panacea and is best used with a human-in-the-loop (Sec. 5.3) to ensure reliability.
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A Matchmaker additional details

A.1 Matchmaker within the context of LLM table reasoning.

There has recently been works on LLMs for table reasoning. We contrast them to Matchmaker along
a variety of dimensions below.

Task/Goal: The table reasoning papers tackle a variety of tasks centered around understanding and
interacting with tabular data. Some examples include: TabSQLify [61] and OPENTAB [62] focus
on table question answering and fact verification, aiming to extract relevant information from tables
to answer questions or verify statements. Chain-of-Table [63] and "Large Language Models are
Few-Shot Table Reasoners" [64] explore LLMs’ capabilities in reasoning over tables for question
answering and fact verification tasks. The survey paper "Large Language Model for Table Processing"
[65] covers a broader range of tasks, including table manipulation, table augmentation, and text-
to-SQL conversion, showcasing LLMs’ potential in interpreting and manipulating tabular data. In
contrast, Matchmaker addresses the task of schema matching, which aims to find correspondences
between attributes across different schemas or tables. The goal is to enable data integration by
mapping attributes from a source schema to a target schema, considering the structural and semantic
differences between them. This task is crucial for creating ML-ready datasets by harmonizing data
from diverse sources.

Approach: Table reasoning approaches span prompting LLMs for direct answers [64], program
synthesis to generate SQL/code [61, 62], iterative table transformation [63], instruction tuning [65],
and agent-based methods [65]. Matchmaker proposes a novel self-improving compositional language
model program. It leverages LLM reasoning via a pipeline with multiple LLM calls for candidate
generation, refinement and confidence scoring. It also self-improves without labeled data via synthetic
in-context examples.

Inputs: The table reasoning papers mostly focus on single tables as input along with a question/query.
Matchmaker takes as input two tables/schemas (source and target) that need to be matched. It operates
solely on schema-level information (attribute names, metadata) without access to raw data in the
tables. This is also a key difference compared to the table reasoning papers, which often rely on the
actual data values for answering questions or verifying facts.

Outputs: Table reasoning papers aim to output answers to questions, binary fact verification labels,
updated tables after manipulation, generated SQL/code, etc. In contrast, Matchmaker outputs a
mapping between the source and target schema attributes, or indicates no match is possible for certain
attributes. The set of attribute pairs representing the schema matching results, can be used to guide
data integration processes.

Use of the LLM: Table reasoning employs LLMs for direct answer generation [64], program
synthesis [61, 62], iterative prompting [63], or as part of an agent system [65]. Matchmaker uses
LLMs for reasoning within a compositional program, generating candidates, refining them, and
scoring confidence.

Optimization/Training: Table reasoning works explore fine-tuning [61], instruction tuning [65],
and in-context few-shot learning [64]. Matchmaker introduces a novel optimization process to select
synthetic in-context examples for self-improvement without labeled data or fine-tuning.

Key differences: In summary, while the table reasoning papers focus on tasks like question answering,
fact verification, and table manipulation on single tables, Matchmaker addresses the distinct task of
schema matching across table pairs. Its novel approach of a self-improving compositional language
model program operating on schema-level information contrasts with general table reasoning which
mostly use LLMs for direct table QA or program synthesis.

16



A.2 Matchmaker algorithm

Below we provide a high-level overview algorithm of Matchmakers compositional language model
program for schema matching.

Algorithm 2 Matchmaker: Schema Matching with Self-Improving Compositional Language Model
Programs

Require: Source schema Ss, Target schema St

Ensure: Schema matches M
1: Stage 1: Multi-Vector Document Creation
2: for each table T ∈ St do
3: Create document DT with attribute names and descriptions
4: Append table metadata to DT

5: Encode DT using ColBERT-v2 to obtain multi-vector representation VT

6: Add VT to vector database V
7: end for
8: Stage 2: Candidate Generation
9: for each source attribute qi ∈ Ss do

10: Encode qi using ColBERT-v2 to obtain query embedding Eqi
11: Retrieve top-k semantic candidates Cs from V using Eqi
12: Generate reasoning-based candidates CR using LLM lc(qi, St)
13: Refine candidate set C∗ ← lr(Cs ∪ CR, qi)
14: end for
15: Stage 3: Confidence Scoring
16: for each source attribute qi ∈ Ss do
17: Format candidate set C as multiple-choice question Qi

18: for each candidate cj ∈ C do
19: Compute confidence score sj ← ls(Qi, cj)
20: end for
21: mi ←cj∈Csj ▷ Select match with highest confidence
22: Add (qi,mi) to schema matches M
23: end for
24: Self-Improvement Optimization (Over all steps)
25: Generate evaluation set Deval from unlabeled schemas
26: for each example ei ∈ Deval do
27: (ŷi, tracei)←Matchmaker(ei) ▷ Run Matchmaker to get output and traces
28: si ← El(ei, ŷi) ▷ Compute evaluation score using LLM El

29: Add (ei, tracei, ŷi, si) to Ddemo

30: end for
31: Sort Ddemo by score si
32: Select top-n examples from Ddemo as synthetic in-context examples
33: Update Matchmaker components with selected in-context examples
34: return Final output: Schema matches M
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A.3 Schema matching challenges.

• Database Heterogeneity: The number of tables in each schema may differ, i.e., |Ts| ≠ |Tt|,
making it challenging to establish correspondences between attributes across schemas.

• Structural Heterogeneity: Schemas may have different architectures, hierarchies, and
representational granularity. If we define a hierarchy function h(Ti) that describes the level
of nesting within tables, differences in h(Tsj) and h(Ttk) for any j, k can lead to significant
challenges in aligning attributes Asj and Atk.

• Semantic Heterogeneity: Attributes in different schemas may have the same name but
different meanings, or different names but the same meaning. Let Ni = {nij |Aij ∈ Ai}
be the set of attribute names for schema Si. Semantic heterogeneity occurs when ∃Asj ∈
As, Atk ∈ At : f(Asj) = Atk ∧ nsj ̸= ntk or when ∃Asj ∈ As, Atk ∈ At : f(Asj) ̸=
Atk ∧ nsj = ntk.

• Data Type Heterogeneity: Attributes in different schemas may have different data types,
even if they refer to the same concept. Let dij be the data type of attribute Aij . Data type
heterogeneity occurs when ∃Asj ∈ As, Atk ∈ At : f(Asj) = Atk ∧ dsj ̸= dtk.

• Information Mismatch: Some attributes in one schema may lack a corresponding match in
the other schema. This necessitates reasoning about "no possible match" cases, which is as
important as reasoning about possible matches.

• Unsupervised Nature: Schema matching is unsupervised, where no labeled data pairs
(Asj , Atk) are available to train or validate the mappings. This necessitates reliance on the
intrinsic structure and semantic information encoded in Ai, making the development of an
effective mapping function f challenging without external supervision.
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B Experimental details: Benchmarks & datasets

All experiments are run on a single Nvidia A4000 GPU with 20 GB of vram. We invoke GPT-4 via
the Azure OpenAI API.

B.1 Benchmarks

B.1.1 Matchmaker

Matchmaker is a compositional language model program for schema matching made up of multiple
component modules — formulated in the context of information retrieval.

GPT-4 Hyper-parameters. The model version used as the LLM was GPT-4-1106, with the fol-
lowing settings: {’temperature’: 0.5, ’max_tokens’: 1024, ’top_p’: 1, ’frequency_penalty’: 0,
’presence_penalty’: 0, ’n’: 1, }

Embedding model and documents. We use Colbert-V2 [42] as the embedding model and follow
the document creation process as outlined in Sec. 4.1. We use the implementation of Colbert-v2 from
RAGatouille (https://github.com/bclavie/RAGatouille/).

Candidates. For both semantic and reasoning-based candidates, we set k=5.

Optimization. As described in the main paper, we generate synthetic in-context samples to address
the unique challenges of a lack of labeled data and no demonstrations. As described, to achieve this
we follow a boostrapping process like in DSPy [57]. For our experiments we select at maximum 4
synthetic in-context examples

Prompts: We show examples with the prompts for each component of Matchmaker in Appendix C.

B.1.2 ReMatch

In the main text we report the numbers directly from the ReMatch paper, as there is no open-source
implementation.

How we selected the numbers to report: The ReMatch paper does an exploration of the number of
documents retrieved. Hence, we use the following two criteria.
(i) At least 1 document must be retrieved. i.e. the retrieval step cannot be skipped.

(ii) We then select the result that satisfies (i), with the highest accuracy@5.

Our implementation of ReMatch follows the original paper [14]. We use OpenAI Ada embeddings
for the embedding model and GPT-4 as the LLM.

We following the document creation procedure and use the prompt template as provided.

GPT-4 Hyper-parameters. The model version used for generation was GPT-4-1106, with the fol-
lowing settings from the ReMatch paper: {seed=42, temperature=0.5, max_tokens=4096, top_p=0.9,
frequency_penalty=0, presence_penalty=0}

B.1.3 Jellyfish

Jellyfish [28] is a fine-tuned language model tailored for data preprocessing tasks including schema
matching. The 7B and 13B models are fine tuned upon the OpenOrca-Platypus2 model.

Implementation (7b): https://huggingface.co/NECOUDBFM/Jellyfish-7B

Implementation (13b): https://huggingface.co/NECOUDBFM/Jellyfish-13B

B.1.4 LLM-DP

LLM-DP [18, 27] refer to works which have used pre-trained LLMs like GPT-3.5 or GPT-4 for data
processing tasks like schema matching via prompting. Since the papers in the few-shot case use
labeled examples we do not use those — given its unrealistic in practice. Hence, for these baselines
they operate in a zero shot manner.

Implementation: https://github.com/HazyResearch/fm_data_tasks
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B.1.5 SMAT

SMAT is a supervised learning approach which performs schema matching via an attention mecha-
nism. Of course, the model needs labeled data to train on. In our experiments, we assess two variants
given that labeled training data for schema matching is hard to access: (i) 20-80: 20% train and 80%
test and (ii) 50-50: 50% train and 50% test.

We use the default hyper-parameters: {Learning Rate: 0.8, Batch Size: 64, Epochs: 30}

Implementation: https://github.com/JZCS2018/SMAT

B.2 Datasets

We outline the two real-world electronic health record schema matching benchmarks used in this
paper. These datasets where chosen as they have been used in previous works as schema matching
datasets and are considered the most reflective of the real-world and challenging for schema matching.
Table 3 provides a summary of the table properties.

Note there is no specific train-test sets used as in supervised learning. As we perform the schema
matching task in a zero-shot manner.

Table 3: Summary of the table properties of our two schema matching datasets.
Dataset Source Tables Target Tables

MIMIC-OMOP 26 14
SYNTHEA-OMOP 12 21

MIMIC Dataset: The dataset contains a schema mapping between the MIMIC-III electronic health
record (Source schema) [66] and The Observational Medical Outcomes Partnership Common Data
Model (OMOP schema) (Target schema).

This dataset is currently the largest publicly available schema matching dataset [14] and is the cloest
to a real-world schema matching use case, wherein a proprietary database created for a specific
purpose (a source schema) is mapped to a given industry standard (a target schema) for further
uses. In this case the proprietary database schema is MIMIC and the industry standard is the OMOP
common data model.

Open-source data: https://github.com/meniData1/MIMIC_2_OMOP

Synthea Dataset: The Synthea dataset is part of the OMAP benchmark [13] and is a partial mapping
of the Synthea [67] (Source Schema) which is a synthetic healthcare dataset of a Massachusetts
health records and attempts to map it to a subset of the OMOP CDM (Target Schema). The dataset
has widely been used in previous schema matching papers [13, 14, 18] as a realistic and challenging
real-world schema matching benchmark.

Open-source data: https://github.com/JZCS2018/SMAT/tree/main/datasets/omap/
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C Examples using Matchmaker (with prompts)

C.1 Matchmaker prompt examples

We show two end-to-end schema matching examples with Matchmaker, where other methods fail. (1)
Example 1: case with No possible target schema match for the source schema query, (2) Example 2:
challenging reasoning case, where there is a match possible between source and target schema.
▶ In each component, we can show the "Optimized" In-context examples.

C.1.1 Example 1.
Source schema query: admissions-marital_status(string): Table admissions details-the admissions
table gives information regarding a patient’s admission to the hospital., Attribute marital_status details
-describe patient demographics.

Target scheme match: None possible.

Matchmaker: None of the above.
Figure 5: EXAMPLE 1: Candidate generation.

Candidate generation

You are an OMOP Schema expert. Your goal is to take the OMOP schema and based on the input,
refine the schema to include only 5 most likely matches to the input query.
—
Follow the following format.
Input Schema: Input OMOP schema values Input Query: input query Refined Schema: Five most
likely matches to input query. Include most likely matches to the input query. Respond with a single
JSON object. JSON Schema: {"defs": {"Extractor": {"properties": {"related": {"description":
"related matches", "title": "Related", "type": "string"}}, "required": ["related"], "title": "Extractor",
"type": "object"}}, "properties": {"value": {"items": {"ref": "/defs/Extractor"}, "title": "Value",
"type": "array"}}, "required": ["value"], "title": "Output", "type": "object"}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ... ’procedure_occurrence-provider_id(bigint)’, ’visit_detail-
visit_detail_source_value(varchar(50))’]
Input Query: procedureevents_mv-itemid
Refined Schema: "value": ["related": "procedure_occurrence-person_id(bigint)", "re-
lated": "procedure_occurrence-visit_occurrence_id(bigint)", "related": "procedure_occurrence-
procedure_date(date)", "related": "procedure_occurrence-procedure_source_value(varchar(50))",
"related": "procedure_occurrence-procedure_concept_id(integer)"]
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ... ’procedure_occurrence-provider_id(bigint)’, ’visit_detail-
visit_detail_source_value(varchar(50))’]
Input Query: noteevents-text
Refined Schema: "value": ["related": "note-note_text(varchar(max))", "related": "note-
note_title(varchar(250))", "related": "note-note_source_value(varchar(50))", "related": "note-
note_date(date)", "related": "note-note_datetime(datetime)"]
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, ... ’procedure_occurrence-provider_id(bigint)’, ’visit_detail-
visit_detail_source_value(varchar(50))’]
Input Query: admissions-marital_status(string): Table admissions details-the admissions table
gives information regarding a patient’s admission to the hospital., Attribute marital_status details
-describe patient demographics.
Refined Schema:
—————————————————————–
LLM Response
—————————————————————-
{"value": [{"related": "person-person_id(bigint)"}, {"related": "person-
gender_source_value(varchar(50))"}, {"related": "person-birth_datetime(datetime)"},
{"related": "person-death_datetime(datetime)"}, {"related": "visit_occurrence-
admitted_from_source_value(varchar(50))"}]}
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Figure 6: EXAMPLE 1: Candidate refinement.

Candidate refiner

You are an expert OMOP matching ranker. Your task is to take the OMOP candidates and based
on the input, refine the candidates to select the 5 most likely matches to the input query. Return
ONLY the keys.
—
Follow the following format.
Input Schema: List of key: value pairs
Input Query: input query
Reasoning: Let’s think step by step in order to {produce the refined_string_list}. We ...
Refined String List: Five most likely matches to input query. Include maximum of the 5 most
likely matches to the input query. Return ONLY the keys
—
Input Schema: [’person-person_id(bigint): Table person details-this table serves as the central
identity management for all persons in the database. it contains records that uniquely identify
each person or patient, and some demographic information., Attribute person_id details -it is
assumed that every person with a different unique identifier is in fact a different person and should
be treated independently.’, ... ’measurement-measurement_concept_id(integer): the measure-
ment_concept_id field is recommended for primary use in analyses, and must be used for network
studies’]
Input Query: procedureevents_mv-itemid
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for a
match to ’procedureevents_mv-itemid’, which seems to relate to a procedure event and its item
identifier. The ’procedureevents_mv’ part suggests we’re looking at a procedure occurrence, and
the ’itemid’ part suggests we’re looking for an identifier or id field. Given that, we should look for
keys in the ’procedure_occurrence’ table that represent identifiers.
Refined String List: ’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-visit_detail_id(bigint)’, ’procedure_occurrence-provider_id (big-
int)’
—
Input Schema: [’person-person_id(bigint): Table person details-this table serves as the central
identity management for all persons in the database. it contains records that uniquely identify
each person or patient, and some demographic information., Attribute person_id details -it is
assumed that every person with a different unique identifier is in fact a different person and should
be treated independently.’, ... ’measurement-measurement_concept_id(integer): the measure-
ment_concept_id field is recommended for primary use in analyses, and must be used for network
studies’]
Input Query: noteevents-text
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for
matches to "noteevents-text" in the input schema. The term "noteevents" matches with "note" in
the input schema, and "text" matches with "note_text". So, we should consider those keys that
contain both "note" and "text".
Refined String List: [’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’, ’note-
note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]
—
Input Schema: [’person-person_id(bigint): Table person details-this table serves as the central
identity management for all persons in the database. it contains records that uniquely identify
each person or patient, and some demographic information., Attribute person_id details -it is
assumed that every person with a different unique identifier is in fact a different person and should
be treated independently.’, ... ’measurement-measurement_concept_id(integer): the measure-
ment_concept_id field is recommended for primary use in analyses, and must be used for network
studies’]
Input Query: admissions-marital_status(string): Table admissions details-the admissions table
gives information regarding a patient’s admission to the hospital., Attribute marital_status details
-describe patient demographics.
Reasoning: Let’s think step by step in order to
—————————————————————–
LLM Response
—————————————————————-
"produce the refined string list. We are looking for a match to ’admissions-marital_status’, which
seems to relate to a hospital admission and the marital status of the patient. The ’admissions’ part
suggests we’re looking at a visit occurrence or visit detail, and the ’marital_status’ part suggests
we’re looking for demographic information, which is usually found in the ’person’ table. Given
that, we should look for keys in the ’visit_occurrence’, ’visit_detail’, and ’person’ tables.String List:
’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’, ’visit_detail-
person_id(bigint)’, ’visit_detail-visit_occurrence_id(bigint",
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Figure 7: EXAMPLE 1: MCQ Formatter.

MCQ Formatter

You are an expert MCQ formatter. Your task is to take a list of schema values and convert them
into a multiple choice question format with (letter)Schema value, where the schema values should
be key(description).
—
Follow the following format.
Input: input list of schema values Mcq: MCQ format of schema values e.g (A)Schema value,
(B)Schema value. Do not include additional options, only the schema values as options. where the
schema values should be key(description). Add a No Match option.
—
Input: ["’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-visit_detail_id(bigint)’, ’procedure_occurrence-provider_id (big-
int)’"] Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id
(bigint)’, (F)No Match
—
Input: ["[’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’,
’note-note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]"] Mcq:
(A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match
—
Input: ["’visit_occurrence-person_id(bigint)’, ’visit_occurrence-visit_occurrence_id(bigint)’,
’visit_detail-person_id(bigint)’, ’visit_detail-visit_occurrence_id(bigint"] Mcq:
—————————————————————–
LLM Response
—————————————————————-
"(A)’visit_occurrence-person_id(bigint)’, (B)’visit_occurrence-visit_occurrence_id(bigint)’,
(C)’visit_detail-person_id(bigint)’, (D)’visit_detail-visit_occurrence_id(bigint)’, (E)No Match",

Figure 8: EXAMPLE 1: Confidence scoring.

Confidence scoring

You are a schema matching expert. Your task is given the input and the MCQ format of the schema,
predict the likelihood or relation score from 0-100 of the input query being related to each option.
Your scores will be calibrated. If there is no good match score No Match as 100
—
Follow the following format.
Input Mcq: Input MCQ format of schema values
Input Query: input query
Relation: Relation score of input query being related to the option as value. Assess each indepen-
dently including No Match, returning a score from 0-100 for each. Return with key as MCQ letter
e.g (A) and score=value as JSON
—
Input Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id
(bigint)’, (F)No Match
Input Query: procedureevents_mv-itemid
Relation: {"(A)": 0, "(B)": 0, "(C)": 0, "(D)": 0, "(E)": 0, "(F)": 100}
—
Input Mcq: (A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match
Input Query: noteevents-text
Relation: {"A": 90, "B": 0, "C": 0, "D": 90, "E": 10}
—
Input Mcq: (A)’visit_occurrence-person_id(bigint)’, (B)’visit_occurrence-
visit_occurrence_id(bigint)’, (C)’visit_detail-person_id(bigint)’, (D)’visit_detail-
visit_occurrence_id(bigint’, (E)No Match Input Query: admissions-marital_status(string):
Table admissions details-the admissions table gives information regarding a patient’s admission to
the hospital., Attribute marital_status details -describe patient demographics.
Relation:
—————————————————————–
LLM Response
—————————————————————-
"{(̈A):̈ 0, (̈B):̈ 0, (̈C):̈ 0, (̈D):̈ 0, (̈E):̈ 100}"
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C.1.2 Example 2

Source schema query: admissions-marital_status(string): Table admissions details-the admissions
table gives information regarding a patient’s admission to the hospital., Attribute marital_status
details -describe patient demographics.

Target scheme match: ’procedure_occurrence- quantity

Matchmaker: ’procedure_occurrence- quantity

Figure 9: Candidate generation.

EXAMPLE 2: Candidate generation.

You are an OMOP Schema expert. Your goal is to take the OMOP schema and based on the input,
refine the schema to include only 5 most likely matches to the input query.
—
Follow the following format.
Input Schema: Input OMOP schema values Input Query: input query Refined Schema: Five
most likely matches to input query. Include maximum of the 10 most likely matches to the input
query. Respond with a single JSON object. JSON Schema: {"defs": {"Extractor": {"properties":
{"related": {"description": "related matches", "title": "Related", "type": "string"}}, "required":
["related"], "title": "Extractor", "type": "object"}}, "properties": {"value": {"items": {"ref":
"/defs/Extractor"}, "title": "Value", "type": "array"}}, "required": ["value"], "title": "Output",
"type": "object"}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, .... ’visit_detail-visit_detail_source_value(varchar(50))’]
Input Query: procedureevents_mv-itemid Refined Schema: {"value": [{"related":
"procedure_occurrence-person_id(bigint)"}, {"related": "procedure_occurrence-
visit_occurrence_id(bigint)"}, {"related": "procedure_occurrence-procedure_date(date)"},
{"related": "procedure_occurrence-procedure_source_value(varchar(50))"}, {"related":
"procedure_occurrence-procedure_concept_id(integer)"}]}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, .... ’visit_detail-visit_detail_source_value(varchar(50))’] Input
Query: noteevents-text Refined Schema: {"value": [{"related": "note-note_text(varchar(max))"},
{"related": "note-note_title(varchar(250))"}, {"related": "note-note_source_value(varchar(50))"},
{"related": "note-note_date(date)"}, {"related": "note-note_datetime(datetime)"}]}
—
Input Schema: [’visit_occurrence-person_id(bigint)’, ’visit_occurrence-
visit_occurrence_id(bigint)’, .... ’visit_detail-visit_detail_source_value(varchar(50))’] Input
Query: procedures_icd-seq_num(integer): Table procedures_icd details-contains icd procedures
for patients, most notably icd-9 procedures, Attribute seq_num details -provides the order in which
the procedures were performed Refined Schema:
"{v̈alue:̈ [{r̈elated:̈ p̈rocedure_occurrence-person_id(bigint)}̈, {r̈elated:̈ p̈rocedure_occurrence-
visit_occurrence_id(bigint)}̈, {r̈elated:̈ p̈rocedure_occurrence-procedure_date(date)}̈, {r̈elated:̈
p̈rocedure_occurrence-procedure_concept_id(integer)}̈, {r̈elated:̈ p̈rocedure_occurrence-
quantity(integer)}̈]}"
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Figure 10: EXAMPLE 2: Candidate Refinement.

Candidate refinement

You are an expert OMOP matching ranker. Your task is to take the OMOP candidates and based
on the input, refine the candidates to select the 5 most likely matches to the input query. Return
ONLY the keys.
—
Follow the following format.
Input Schema: List of key: value pairs
Input Query: input query
Reasoning: Let’s think step by step in order to {produce the refined_string_list}. We ...
Refined String List: Five most likely matches to input query. Include maximum of the 5 most
likely matches to the input query. Return ONLY the keys
—
Input Schema: [’procedure_occurrence-person_id(bigint): Table procedure_occurrence details-this
table contains records of activities or processes ordered by, or carried out by, a healthcare provider
on the patient with a diagnostic or therapeutic purpose., Attribute person_id details -the person_id
of the person for whom the procedure is recorded. this may be a system generated code.’ ....
’visit_detail-care_site_id(bigint): this field provides information about the care site where the visit
detail took place’]
Input Query: procedureevents_mv-itemid
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for a
match to ’procedureevents_mv-itemid’, which seems to relate to a procedure event and its item
identifier. The ’procedureevents_mv’ part suggests we’re looking at a procedure occurrence, and
the ’itemid’ part suggests we’re looking for an identifier or id field. Given that, we should look for
keys in the ’procedure_occurrence’ table that represent identifiers.
Refined String List: ’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-visit_detail_id(bigint)’, ’procedure_occurrence-provider_id (big-
int)’
—
Input Schema: [’procedure_occurrence-person_id(bigint): Table procedure_occurrence details-this
table contains records of activities or processes ordered by, or carried out by, a healthcare provider
on the patient with a diagnostic or therapeutic purpose., Attribute person_id details -the person_id
of the person for whom the procedure is recorded. this may be a system generated code.’ ....
’visit_detail-care_site_id(bigint): this field provides information about the care site where the visit
detail took place’]
Input Query: noteevents-text
Reasoning: Let’s think step by step in order to produce the refined string list. We are looking for
matches to "noteevents-text" in the input schema. The term "noteevents" matches with "note" in
the input schema, and "text" matches with "note_text". So, we should consider those keys that
contain both "note" and "text".
Refined String List: [’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’, ’note-
note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]
—
Input Schema: [’procedure_occurrence-person_id(bigint): Table procedure_occurrence details-this
table contains records of activities or processes ordered by, or carried out by, a healthcare provider
on the patient with a diagnostic or therapeutic purpose., Attribute person_id details -the person_id
of the person for whom the procedure is recorded. this may be a system generated code.’ ....
’visit_detail-care_site_id(bigint): this field provides information about the care site where the visit
detail took place’]
Input Query: procedures_icd-seq_num(integer): Table procedures_icd details-contains icd proce-
dures for patients, most notably icd-9 procedures, Attribute seq_num details -provides the order in
which the procedures were performed
Reasoning: Let’s think step by step in order to
"produce the refined string list. We are looking for a match to ’procedures_icd-seq_num’, which
seems to relate to a procedure occurrence and its sequence number. The ’procedures_icd’ part sug-
gests we’re looking at a procedure occurrence, and the ’seq_num’ part suggests we’re looking for a
sequential number or order field. Given that, we should look for keys in the ’procedure_occurrence’
table that represent order or sequence.
Refined String List: ’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_date(date)’,
’procedure_occurrence-procedure_concept_id(integer)’, ’procedure_occurrence-
quantity(integer)’"
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Figure 11: EXAMPLE 2: MCQ Formatter.

MCQ Formatter

You are an expert MCQ formatter. Your task is to take a list of schema values and convert them
into a multiple choice question format with (letter)Schema value, where the schema values should
be key(description).
—
Follow the following format.
Input: input list of schema values Mcq: MCQ format of schema values e.g (A)Schema value,
(B)Schema value. Do not include additional options, only the schema values as options. where the
schema values should be key(description). Add a No Match option.
—
Input: ["’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_concept_id(integer)’,
’procedure_occurrence-visit_detail_id(bigint)’, ’procedure_occurrence-provider_id (big-
int)’"] Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id
(bigint)’, (F)No Match
—
Input: ["[’note-note_text(varchar(max))’, ’note-note_title(varchar(250))’,
’note-note_source_value(varchar(50))’, ’note-note_text(varchar(max))’]"] Mcq:
(A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match
—
Input: ["’procedure_occurrence-person_id(bigint)’, ’procedure_occurrence-
visit_occurrence_id(bigint)’, ’procedure_occurrence-procedure_date(date)’,
’procedure_occurrence-procedure_concept_id(integer)’, ’procedure_occurrence-
quantity(integer)’"] Mcq:
"(A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_date(date)’,
(D)’procedure_occurrence-procedure_concept_id(integer)’, (E)’procedure_occurrence-
quantity(integer)’, (F)No Match",

Figure 12: EXAMPLE 2: Confidence scoring.

Confidence scoring

You are a schema matching expert. Your task is given the input and the MCQ format of the schema,
predict the likelihood or relation score from 0-100 of the input query being related to each option.
Your scores will be calibrated. If there is no good match score No Match as 100
—
Follow the following format.
Input Mcq: Input MCQ format of schema values Input Query: input query Relation: Relation
score of input query being related to the option as value. Assess each independently including
No Match, returning a score from 0-100 for each. Return with key as MCQ letter e.g (A) and
score=value as JSON
—
Input Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_concept_id(integer)’,
(D)’procedure_occurrence-visit_detail_id(bigint)’, (E)’procedure_occurrence-provider_id
(bigint)’, (F)No Match Input Query: procedureevents_mv-itemid Relation: {"(A)": 0, "(B)": 0,
"(C)": 0, "(D)": 0, "(E)": 0, "(F)": 100}
—
Input Mcq: (A)note-note_text(varchar(max)), (B)note-note_title(varchar(250)), (C)note-
note_source_value(varchar(50)), (D)note-note_text(varchar(max)), (E)No Match Input Query:
noteevents-text Relation: {"A": 90, "B": 0, "C": 0, "D": 90, "E": 10}
—
Input Mcq: (A)’procedure_occurrence-person_id(bigint)’, (B)’procedure_occurrence-
visit_occurrence_id(bigint)’, (C)’procedure_occurrence-procedure_date(date)’,
(D)’procedure_occurrence-procedure_concept_id(integer)’, (E)’procedure_occurrence-
quantity(integer)’, (F)No Match Input Query: procedures_icd-seq_num(integer): Table
procedures_icd details-contains icd procedures for patients, most notably icd-9 procedures,
Attribute seq_num details -provides the order in which the procedures were performed Relation:
"{(̈A):̈ 0, (̈B):̈ 0, (̈C):̈ 0, (̈D):̈ 0, (̈E):̈ 90, (̈F):̈ 10}",
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C.2 LLM Evaluator

We provide examples of the LLM evaluator, showing demonstrations achieving high and low scores.

LLM Evaluator Example: High Score

You are a schema matching expert, your task is to rate if any of the suggested matches are potential
good matches for the query. Be lenient and rate a match as good (4 or 5) if it is relevant to the
query. Rate the matches from 1-5. If none of the matches are good, rate 0.
—
Follow the following format.
Query: The query.
Answers: possible matches
Reasoning: Let’s think step by step in order to {produce the rating}. We ...
Rating: Rate if any of the suggested matches are good for the query from 1-5. Only output the
rating and nothing else.
—
Query: noteevents-chartdate
Answers: ["’note-note_date(date)’, ’note-note_datetime(datetime)’,
’note-visit_occurrence_id(bigint)’, ’note-provider_id(bigint)’, ’note-person_id(bigint)’"]
Reasoning: Let’s think step by step in order to
—————————————————————–
LLM Response
—————————————————————-
produce the rating. We can see that the query is looking for a match related to the date of
a note event in a chart. The first two suggested matches, ’note-note_date(date)’ and ’note-
note_datetime(datetime)’, are both related to dates and notes, making them potentially good
matches for the query. The other three suggestions are not directly related to dates or note events,
so they are not as good matches.
Rating: 4

Figure 13: LLM evaluator example, rated with a high score.

LLM Evaluator Example: Low Score

You are a schema matching expert, your task is to rate if any of the suggested matches are potential
good matches for the query. Be lenient and rate a match as good (4 or 5) if it is relevant to the
query. Rate the matches from 1-5. If none of the matches are good, rate 0.
—
Follow the following format.
Query: The query.
Answers: possible matches
Reasoning: Let’s think step by step in order to {produce the rating}. We ...
Rating: Rate if any of the suggested matches are good for the query from 1-5. Only output the
rating and nothing else.
—
Query: cptevents-subsectionheader
Answers: [’visit_occurrence-visit_type_concept_id(int)’,
’visit_detail-visit_detail_concept_id(int)’, ’procedure_occurrence-procedure_concept_id(int)’,
’procedure_occurrence-visit_detail_id(int)’, ’condition_occurrence-visit_occurrence_id(int)’]
Reasoning: Let’s think step by step in order to
—————————————————————–
LLM Response
—————————————————————-
"produce the rating. We can see that the query is looking for a match related to ’cptevents-
subsectionheader’. However, none of the suggested matches seem to directly relate to this
query. They all refer to different concepts such as ’visit_occurrence’, ’visit_detail’, ’proce-
dure_occurrence’, and ’condition_occurrence’. Therefore, none of the matches seem to be a good
fit for the query.
Rating: 0

Figure 14: LLM evaluator example, rated with a low score.
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D Additional experiments

D.1 Number of LLM calls

Goal. To compare the number of LLM calls required by Matchmaker and other baseline methods for
schema matching on the MIMIC-OMOP and SYNTHEA-OMOP datasets.

Experiment. We count the number of LLM calls made by each method during the schema matching
process on both the MIMIC-OMOP and SYNTHEA-OMOP datasets. For methods that do not rely
on LLMs (e.g., SMAT), we consider the number of forward passes through the neural network as
equivalent to an LLM call for comparison purposes.

Results. Table 4 presents the number of LLM calls required by each method on the two datasets.

Table 4: Number of LLM calls
Method MIMIC-OMOP SYNTHEA-OMOP
Matchmaker 1340 890
ReMatch 268 178
Jellyfish-13b 24771 29637
Jellyfish-7b 24771 29637
LLM-DP 24771 29637
SMAT 24771 29637

Discussion. The results in Table 4 highlight the efficiency of Matchmaker and ReMatch in terms of
the number of LLM calls required for schema matching.

Both Matchmaker and ReMatch formulate schema matching as an information retrieval problem,
which significantly reduces the search space compared to the binary classification formulation used
by Jellyfish-13b, Jellyfish-7b, LLM-DP, and SMAT.

The high number of LLM calls required by Jellyfish-13b, Jellyfish-7b, LLM-DP, and SMAT can
be attributed to their formulation of schema matching as a binary classification problem over the
Cartesian product of source and target attributes. In this formulation, the LLM is prompted to provide
a label of Yes/No for each pair of source-target attributes, resulting in a large number of LLM calls
that scales (O(n2)). Consequently, these methods are computationally expensive and less scalable
compared to Matchmaker and ReMatch, which employ a more efficient approach.

The fewer number of LLM calls used by Matchmaker and ReMatch has practical implications in terms
of computational cost and runtime efficiency. By reducing the number of LLM calls, these methods
can perform schema matching more quickly and with lower computational overhead compared to
methods that rely on a large number of calls. This is particularly important when dealing with
large-scale schemas or when schema matching needs to be performed frequently in real-world
applications.

D.2 Matchmaker with other LLMs

Goal. To understand the performance of Matchmaker when using a less powerful LLM backbone
compared to GPT-4, and contrast it with the ReMatch baseline using GPT-4.

Experiment. We evaluate the performance of Matchmaker using GPT-3.5 as the backbone LLM for
all components, instead of GPT-4 which was used in the main experiments. We compare this to the
performance of Matchmaker with GPT-4 and ReMatch with GPT-4. All other aspects of the setup
remain the same as in the main text.

Results. Table 5 shows the schema matching accuracy@k for the different methods. We observe
that Matchmaker with GPT-3.5 performs worse than Matchmaker with GPT-4, which is expected
given GPT-3.5 is a less powerful LLM. Interestingly, Matchmaker with GPT-3.5 achieves comparable
performance to ReMatch with GPT-4, despite GPT-3.5 being a much weaker LLM than GPT-4. On
MIMIC, Matchmaker with GPT-3.5 slightly outperforms ReMatch with GPT-4 for accuracy@1 and
is competitive at higher k. On Synthea, performance is similar for accuracy@1 but Matchmaker with
GPT-3.5 outperforms ReMatch with GPT-4 for accuracy@3 and accuracy@5.
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Table 5: Comparison of schema matching performance of different baselines.
Matchmaker (GPT-4) Matchmaker (GPT-3.5) ReMatch (GPT-4)

M
IM

IC acc@1 62.20 ± 2.40 ↑ 48.30± 2.80 ↑ 42.50
acc@3 68.80 ± 2.00 62.00 ± 4.20 63.80
acc@5 71.10 ± 2.00 70.00 ± 4.20 72.90

Sy
nt

he
a acc@1 70.20 ± 1.70 47.80 ± 3.20 50.50

acc@3 78.60 ± 2.50 63.30 ± 4.30 ↑ 58.10
acc@5 80.90 ± 1.10 77.10 ± 0.70 ↑ 74.30

Discussion. These results demonstrate that the Matchmaker approach of using a compositional
LLM program is quite robust and can provide good schema matching performance even with weaker
LLM backbones. The fact that Matchmaker with GPT-3.5 is competitive with ReMatch using GPT-4
highlights the strength of the multi-stage Matchmaker approach over ReMatch’s single-stage LLM
usage. However, using a more powerful LLM like GPT-4 still provides significant gains, underlining
the importance of using an LLM with powerful reasoning capabilities for this complex task.

D.3 Source of gain ablation: Why does it work?

Matchmaker’s performance relies on the generated candidate matches. Given its strong performance
compared to baselines, we investigate which candidate generation approach contributes most to Match-
maker’s success. To disentangle the role of each candidate generation method, we assess Matchmaker
with (1) reasoning-based candidates from the LLM only (Matchmaker_reasoning_only) and (2)
semantic candidates via retrieval only (Matchmaker_semantic_only).

The results in Table 6 show that reasoning-based candidates outperform semantic retrieval-based
candidates. This finding suggests that LLM reasoning over the database hierarchy and data types
produces better candidates than semantic matches that do not consider hierarchical relationships. In
some cases (e.g., Synthea acc@1), the inclusion of retrieval-based candidates harms performance.
However, the overall results indicate that Matchmaker benefits from both candidate generation
approaches, with reasoning-based candidates providing greater value. This highlights the value of
candidate generation via diverse mechanisms.

Table 6: Understanding the impact of different candidate generation approaches on Matchmaker.
Matchmaker Matchmaker_reasoning_only Matchmaker_semantic_only

M
IM

IC acc@1 62.20 ± 2.50 61.60 ± 1.50 60.20 ± 2.20
acc@3 68.80 ± 2.00 68.70 ± 1.60 64.50 ± 2.80
acc@5 71.10 ± 2.00 70.40 ± 1.00 67.10 ± 3.10

Sy
nt

he
a acc@1 70.20 ± 1.70 73.00 ± 1.90 63.10 ± 0.70

acc@3 78.60 ± 2.50 78.50 ± 1.50 77.40 ± 0.90
acc@5 80.90 ± 1.10 79.40 ± 0.30 80.20 ± 0.40

D.4 Further performance results: ReMatch reimplementation

Goal. To compare the performance of Matchmaker against the ReMatch baseline, using both the
original reported results from the ReMatch paper and the re-implementation of ReMatch.

Experiment. In the main paper, we report the performance of the ReMatch baseline using the results
directly from the paper, as code is not available for ReMatch. However, for completeness, we also
re-implement the ReMatch approach based on the details provided in the ReMatch paper.

Our re-implementation uses the OpenAI Ada-002 text embeddings for the retrieval step, following
the same procedure as ReMatch for chunking and creating documents. We then use the same prompts
as described in the ReMatch paper for the schema matching task. We compare the performance of
our re-implemented ReMatch with the original reported results and Matchmaker.

Results. Table 7 presents the schema matching accuracy@k for Matchmaker, the original ReMatch
results, and our re-implemented ReMatch. We observe that Matchmaker consistently outperforms
both the original ReMatch results and our re-implementation across all metrics and datasets. We also
find the re-implemented ReMatch achieves lower performance compared to the original reported
results.

Discussion. These results further confirm the superiority of Matchmaker over the ReMatch baseline,
even when considering our re-implementation of the method. The lower performance of the re-
implemented ReMatch compared to the original reported results could be due to differences in
implementation details, such as the choice of text embeddings or variations not accounted for.
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Table 7: Comparison of schema matching performance of different baselines.
Matchmaker ReMatch (Original) ReMatch (Reimplemented)

M
IM

IC acc@1 62.20 ± 2.40 42.50 41.99 ± 0.61
acc@3 68.80 ± 2.00 63.80 46.63 ± 1.99
acc@5 71.10 ± 2.00 72.90 46.63 ± 1.99

Sy
nt

he
a acc@1 70.20 ± 1.70 50.50 29.10 ± 0.80

acc@3 78.60 ± 2.50 58.10 32.71 ± 0.35
acc@5 80.90 ± 1.10 74.30 33.46 ± 0.63

However, it is important to note that even with these differences, Matchmaker consistently outperforms
ReMatch (original) by a significant margin. The fact that Matchmaker achieves strong performance
gains over both the original ReMatch and our re-implementation underscores the value of the novel
techniques introduced in Matchmaker, such as the multi-stage language model program, the use
of diverse candidate generators and the self-improvement mechanism through synthetic in-context
examples.

D.5 Improving performance: Use of Ontology Mappings to remedy errors

Goal. To investigate the potential performance improvement in Matchmaker when leveraging readily
available ontological mappings to rectify errors between directly mapped attributes.

Experiment. In schema matching, certain attributes like source_value and concept_id have a direct
ontological mapping (e.g. in OMOP). If Matchmaker incorrectly maps the source attribute to the
wrong target attribute (e.g., mapping to source_value instead of concept_id or vice versa), these errors
can be easily rectified by leveraging the existing ontological relationship.

To simulate this error correction, we implement a post-processing step where we adjust Matchmaker’s
predictions if the predicted target attribute has a direct ontological mapping to the true target attribute.
We apply this correction for all values of k and measure the resulting performance improvement.

Results. Figure 15 shows the accuracy gains across different values of k when applying the ontological
mapping correction. We observe consistent performance improvements across all k values. These
results indicate that leveraging ontological knowledge can indeed help rectify some of the errors
made by Matchmaker.
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Figure 15: Performance improvement in Matchmaker when leveraging readily available ontological
mappings to correct errors between directly mapped attributes like source_value and concept_id.

Discussion. While the results demonstrate the potential benefit of using ontological mappings for
error correction, it is important to note that the performance gains are relatively modest compared to
other strategies like human-in-the-loop deferral based on Matchmaker’s confidence scores (as shown
in the main text).

Moreover, the ontological mapping correction relies on the availability of direct mappings between
attributes, which may not always exist in practice. Therefore, while this approach can serve as a
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useful post-processing step, it should be seen as a complementary technique to be used alongside
other strategies like human-in-the-loop for improving schema matching performance.
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E Broader Impact

Schema matching is a critical step in data integration, enabling the creation of large, harmonized
datasets that can be used to train machine learning models. The proposed Matchmaker approach,
with its self-improving compositional language model program, has the potential to significantly
accelerate and automate the schema matching process, thus facilitating the development of more
accurate and robust ML models across various domains.

The importance and value of schema matching cannot be overstated, as integrating data from various
sources such as different regions, organizations or applications is vital in many fields, including
healthcare, finance, and e-commerce. By enabling the integration of data from disparate sources,
schema matching plays a critical role in creating comprehensive, harmonized datasets that can provide
a more complete picture of the domain under study. For example, in healthcare, integrating data
from multiple hospitals can lead to more representative and diverse datasets, allowing researchers to
identify patterns and insights that may not be apparent when analyzing data from a single institution.

Moreover, schema matching is not only valuable for specific domains but also for the machine
learning community as a whole. By increasing the pool of available data (larger and more diverse) for
training and validation, schema matching can contribute to the development of more accurate, robust,
and generalizable ML models. Furthermore, having access to a larger pool of data can enable more
rigorous validation and testing of ML models, allowing researchers to assess their performance across
different subpopulations, time periods, and data sources. This, in turn, can lead to more reliable and
trustworthy ML models that can be confidently applied in real-world settings.

Below we describe some positive implications that could be unlocked as schema matching approaches
such as Matchmaker are used in practice. We also show some drawbacks with mitigation strategies.

Positive Impacts:

• Improved data integration: Matchmaker can help overcome the challenges of integrating
data from heterogeneous sources, leading to the creation of larger, more comprehensive
datasets. This can enable the development of more powerful and generalizable ML models.

• Accelerated research and discovery: By reducing the time and effort required for data
integration, Matchmaker can accelerate research and discovery in fields, where data often
resides in disparate databases with diverse schemas.

• Enhanced decision-making: The ability to train ML models on larger, more diverse datasets
enabled by Matchmaker can lead to more accurate and reliable predictions, supporting better
decision-making in various applications.

Potential Drawbacks and Mitigation Strategies:

• Overreliance on automated schema matching: While Matchmaker can significantly auto-
mate the schema matching process, it is not perfect and may make errors. Overreliance
on automated methods without human oversight could lead to incorrect data integration.
Mitigation: Matchmaker should be used as a tool to assist human experts in the schema
matching process, rather than as a complete replacement. The paper demonstrates how
Matchmaker can be effectively used with a human-in-the-loop approach, leveraging the
strengths of both human expertise and automated methods.

• Propagation of errors: If Matchmaker introduces errors during the schema matching process,
these errors can propagate downstream and affect the quality of the resulting integrated
datasets and ML models. Mitigation: It is essential to implement rigorous validation and
quality control measures to detect and correct errors introduced by Matchmaker. This
can include manual spot-checks, automated consistency checks, and the use of domain-
specific validation rules. Establishing a feedback loop to continuously monitor and improve
Matchmaker’s performance based on real-world usage can also help mitigate the propagation
of errors.
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