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ABSTRACT

Many common loss functions such as mean-squared-error, cross-entropy, and re-
construction loss are unnecessarily rigid. Under a probabilistic interpretation,
these common losses correspond to distributions with fixed shapes and scales.
We instead argue for optimizing full likelihoods that include parameters like the
normal variance and softmax temperature. Joint optimization of these “likelihood
parameters” with model parameters can adaptively tune the scales and shapes of
losses in addition to the strength of regularization. We explore and systematically
evaluate how to parameterize and apply likelihood parameters for robust mod-
eling, outlier-detection, and re-calibration. Additionally, we propose adaptively
tuning L2 and L1 weights by fitting the scale parameters of normal and Laplace
priors and introduce more flexible element-wise regularizers.

1 INTRODUCTION

Choosing the right loss matters. Many common losses arise from likelihoods, such as the squared
error loss from the normal distribution , absolute error from the Laplace distribution, and the cross
entropy loss from the softmax distribution. The same is true of regularizers, where L2 arises from a
normal prior and L1 from a Laplace prior.

Deriving losses from likelihoods recasts the problem as a choice of distribution which allows data-
dependent adaptation. Standard losses and regularizers implicitly fix key distribution parameters,
limiting flexibility. For instance, the squared error corresponds to fixing the normal variance at
a constant. The full normal likelihood retains its scale parameter and allows optimization over
a parametrized set of distributions. This work examines how to jointly optimize distribution and
model parameters to select losses and regularizers that encourage generalization, calibration, and
robustness to outliers. We explore three key likelihoods: the normal, softmax, and the robust re-
gression likelihood ρ of Barron (2019). Additionally, we cast adaptive priors in the same light and
introduce adaptive regularizers. Our contributions:

1. We systematically survey and evaluate global, data, and predicted likelihood parameters
and introduce a new self-tuning variant of the robust adaptive loss ρ

2. We apply likelihood parameters to create new classes of robust models, outlier detectors,
and re-calibrators.

3. We propose adaptive versions of L1 and L2 regularization using parameterized normal and
Laplace priors on model parameters.

2 BACKGROUND

Notation We consider a dataset D of points xi and targets yi indexed by i ∈ {1, . . . , N}. Targets
for regression are real numbers and targets for classification are one-hot vectors. The model f with
parameters θ makes predictions ŷi = fθ(x). A loss L(ŷ, y) measures the quality of the prediction
given the target. To learn model parameters we solve the following loss optimization:

min
θ

E
(x,y)∼D

L(ŷ = fθ(x), y) (1)

1



Under review as a conference paper at ICLR 2021

(a) The Normal PDF and NLL (b) The Softmax CDF and NLL

Figure 1: Optimizing likelihood parameters adapts the loss without manual hyperparameter tuning
to balance accuracy and certainty.

A likelihood L(ŷ|y, φ) measures the quality of the prediction as a distribution over ŷ given the
target y and likelihood parameters φ. We use the negative log-likelihood ` (NLL), and the likelihood
interchangeably since both have the same optima. We define the full likelihood optimization:

min
θ,φ

E
(x,y)∼D

`(ŷ = fθ(x)|y, φ) (2)

to jointly learn model and likelihood parameters. “Full” indicates the inclusion of φ, which controls
the distribution and induced NLL loss. We focus on full likelihood optimization in this work. We
note that the target, y, is the only supervision needed to optimize model and likelihood parameters,
θ and φ respectively. Additionally, though the shape and scale varies with φ, reducing the error ŷ−y
always reduces the NLL for our distributions.

Distributions Under Investigation This work considers the normal likelihood with variance σ
(Bishop et al., 2006; Hastie et al., 2009), the softmax likelihood with temperature τ (Hinton et al.,
2015), and the robust likelihood ρ (Barron, 2019) with shape α and scale σ that control the scale and
shape of the likelihood. The first two are among the most common losses in machine learning, and
the last loss provides an important illustration of a likelihood parameter that affects “shape” instead
of “scale”. We note that changing the scale and shape of the likelihood distribution is not “cheating”
as there is a trade-off between uncertainty and credit. Figure 1 shows how this trade-off affects the
Normal and softmax distributions and their NLLs.

The normal likelihood has terms for the residual ŷ − y and the variance σ as

N (ŷ|y, σ) = (2πσ2)−
1
2 exp

(
−1

2

(ŷ − y)2

σ2

)
, (3)

with σ ∈ (0,∞) scaling the distribution. The normal NLL can be written `N = 1
2σ2 (ŷ−y)2+log σ,

after simplifying and omitting constants that do not affect minimization. We recover the squared
error by substituting σ = 1.

The softmax defines a categorical distribution defined by scores z for each class c as

softmax(ŷ = y|z, τ) = ezyτ∑
c e
zcτ

, (4)

with the temperature, τ ∈ (0,∞), adjusting the entropy of the distribution. We recover the classifi-
cation cross-entropy loss, − log p(ŷ = y), by substituting τ = 1 in the respective NLL. We state the
gradients of these likelihoods with respect to their σ and τ in Section A of the supplement.

The robust loss ρ and its likelihood are

ρ (x, α, σ) =
|α− 2|
α

( (x/σ)
2

|α− 2|
+ 1

)α/2

− 1

 and (5)

p (ŷ | y, α, σ) = 1

σZ (α)
exp (−ρ (ŷ − y, α, σ)) , (6)

2



Under review as a conference paper at ICLR 2021

with shape α ∈ [0,∞), scale σ ∈ (0,∞), and normalization function Z (α). This robust loss, ρ,
has the interesting property that it generalizes several different loss functions commonly used in
robust learning such as the L2 loss (α = 2), pseudo-huber loss (Charbonnier et al., 1997)(α = 1),
Cauchy loss (Li et al., 2018) (α = 0), Geman-McClure loss (Ganan & McClure, 1985), (α = −2),
and Welsch (Dennis Jr & Welsch, 1978) loss (alpha = −∞). Learning the shape parameter allows
models to adapt the shape of their noise distribution.

3 RELATED WORK

Likelihood optimization follows from maximum likelihood estimation (Hastie et al., 2009; Bishop
et al., 2006), yet is uncommon in practice for fitting deep regressors and classifiers for discriminative
tasks. However Kendall & Gal (2017); Kendall et al. (2018); Barron (2019); Saxena et al. (2019)
optimize likelihood parameters to their advantage yet differ in their tasks, likelihoods, and param-
eterizations. In this work we aim to systematically experiment, clarify usage, and encourage their
wider adoption.

Early work on regressing means and variances (Nix & Weigend, 1994) had the key insight that
optimizing the full likelihood can fit these parameters and adapt the loss. Some recent works use
likelihoods for loss adaptation, and interpret their parameters as the uncertainty (Kendall & Gal,
2017; Kendall et al., 2018), robustness (Kendall & Gal, 2017; Barron, 2019; Saxena et al., 2019),
and curricula (Saxena et al., 2019) of losses. MacKay & Mac Kay (2003) uses Bayesian evidence to
select hyper-parameters and losses based on proper likelihood normalization. Barron (2019) define
a generalized robust regression loss, ρ, to jointly optimize the type and degree of robustness with
global, data-independent, parameters. Kendall & Gal (2017) predict variances for regression and
classification to handle data-dependent uncertainty. Kendall et al. (2018) balance multi-task loss
weights by optimizing variances for regression and temperatures for classification. These global
parameters depend on the task but not the data, and are interpreted as inherent task uncertainty.
Saxena et al. (2019) define a differentiable curriculum for classification by assigning each training
point its own temperature. These data parameters depend on the index of the data but not its value.
We compare these different likelihood parameterizations across tasks and distributions.

In the calibration literature, Guo et al. (2017) have found that deep networks are often miscalibrated,
but they can be re-calibrated by cross-validating the temperature of the softmax. In this work we
explore several generalizations of this concept. Alternatively, Platt scaling (Platt, 1999) fits a sig-
moid regressor to model predictions to calibrate probabilities. Kuleshov et al. (2018) re-calibrate
regressors by fitting an Isotonic regressor to the empirical cumulative distribution function.

4 LIKELIHOOD PARAMETER TYPES

We explore the space of likelihood parameter representations for model optimization and inference.
Though we note that some losses, like adversarial losses, are difficult to represent as likelihoods,
many different losses in the community have a natural probabilistic interpretation. Often, these
probabilistic interpretations can be parametrized in a variety of ways. We explore two key axes of
generality when building these loss functions: conditioning and dimensionality.

Conditioning We represent the likelihood parameters by three functional classes: global, data, and
predicted. Global parameters, φ = c, are independent of the data and model and define the same
likelihood distribution for all points. Data parameters, φi, are conditioned on the index, i, of the
data, xi, but not its value. Every training point is assigned an independent likelihood parameter, φi
that define different likelihoods for each training point. Predicted parameters, φ(x) = gη(x), are
determined by a model, g, with parameters η (not to be confused with the task model parameters
θ). Global and predicted parameters can be used during training and testing, but data parameters are
only assigned to each training point and are undefined for testing. We show a simple example of
predicted temperature in Figure 4, and an illustration of the parameter types in Figure 2.

We note that for certain global parameters like a learned Normal scale, changing the scale does not
affect the optima, but does change the probabilistic interpretation. This invariance has led many
authors to drop the scale from their formulations. However, when models can predict these scale
parameters they can naturally remain calibrated in the presence of heteroskedasticity and outliers.
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Figure 2: Illustration of an image classifier with
three different types of likelihood temperature
conditioning: global, predicted, and data. Each
represents a different way to parametrize the
model’s temperature.

Figure 3: An image loss function with three
different likelihood parameter dimensionalities.
Each represents a possible way to parametrize
the additional scale parameter added to the loss.

Figure 4: A synthetic logistic regression experiment. Regressing softmax temperature reduces the
influence of outliers (blue, bottom-left), by locally raising temperature. The jointly optimized model
(center and right panel) achieves a more accurate classification that a model trained without adaptive
temperature (left panel).

Additionally we note that for the shape parameter of the robust likelihood, ρ, changing global pa-
rameters does affect model fitting. Previous works have adapted a global softmax temperature for
model distillation (Hinton et al., 2015), and recalibration (Guo et al., 2017). Barron (2019) also
experiments with global values of loss function shape and scale parameters. The main work on Data
parameters is that of Saxena et al. (2019) who use these to learn a curriculum. Model-based param-
eters appear in earlier work on regressing variance (Nix & Weigend, 1994), and more recent work
by Kendall & Gal (2017).

Dimensionality The dimensionality, |φ|, of likelihood parameters can vary with the dimension of
the task prediction, ŷ. For example, image regressors can use a single likelihood parameter for
each image |φ| = 1, RGB image channel |φ| = C, or even every pixel |φ| = W × H × C as
in Figure 3. These choices correspond to different likelihood distribution classes. Dimensionality
and Conditioning of likelihood parameters can interact. For example, data parameters with |φ| =
W × H × C would result in N ×W × H × C additional parameters, where N is the size of the
dataset. This can complicate implementations and slow down optimization due to disk I/O when
their size exceeds memory. Table 5 in the appendix contrasts the computational requirements of
different likelihood parameter types. The work of Barron (2019) explores both scalar and pixel-wise
dimensionalities for his robust loss.

5 APPLICATIONS
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Table 1: MSE, Time, and Memory increase (compared to standard normal likelihood) for reconstruc-
tion by variational auto-encoders with different parameterizations of the robust loss, ρ. Predicted
likelihood parameters yield more accurate reconstruction models.

Param. Dim MSE Time Mem
Global 1×1×1 225.8 1.04× <1KB
Data 1×1×1 244.2 2.70× 0.6GB
Pred. 1×1×1 228.5 1.04× <1MB

Global H×W×C 231.1 1.08× <1MB
Data H×W×C 252.6 9.42× 4.4GB
Pred. H×W×C 222.3 1.08× <1MB

5.1 ROBUSTNESS AND OUTLIER DETECTION

Data in the wild is noisy, and machine learning methods should be robust to noise, heteroskedastic-
ity, and corruption. Unfortunately, models trained with the standard mean squared error (MSE) loss
are highly susceptible to outliers, and cannot naturally handle heteroskedasticity due to this loss’
fixed variance (Huber, 2004). Allowing models to predict and optimize their likelihood parameters
allows models to generalize to these more complex settings. More specifically, likelihood parame-
ters naturally transform standard methods such as regressors, classifiers, and manifold learners into
robust variants without expensive outer-loop of model fitting such as RANSAC (Fischler & Bolles,
1981) and Theil-Sen (Theil, 1992). Figure 4 demonstrates this effect with a simple classification
dataset, and we point readers to Figures 9 of the Supplement for similar examples for regression and
manifold learning.

In certain datasets, even the assumption of Gaussianity is too restrictive and one must consider more
robust and long-tailed distributions. This has led many to investigate broader classes of likelihoods
such as Generalized Linear Models (GLMs) (Nelder & Wedderburn, 1972) or the more recent gen-
eral robust loss, ρ, of (Barron, 2019). To systematically explore how likelihood parameter dimen-
sion and conditioning affect model robustness and quality, we reproduce Barron (2019)’s variational
auto-encoding (Kingma & Ba, 2015) (VAE) experiments on faces from the CelebA dataset (Liu
et al., 2015) in Table 1. We explore learned data (Saxena et al., 2019) and model parameters in addi-
tion to Barron’s learned global parameters. We also include two natural parameter dimensionalities:
a single set of parameters for the whole image, and a set of parameters for each pixel and chan-
nel. We find that predicted parameters achieve the best performance while maintaining fast training
time and a small memory footprint. We also find that pixel-wise learned parameters correlate with
challenging areas of images and we visualize these parameters in Section D of the Appendix.

This experiment uses a 1 × 1 convolution on the last hidden layer of the decoder as a likelihood
parameter model and has the same resolution as the output. The low and high dimensional losses
use the same convolutional regressor, but the 1 dimensional case averages over pixels. In the high di-
mensional case, the output has three channels (for RGB), with six channels total for shape and scale
regression. We use the same non-linearities to constrain the shape and scale outputs to reasonable
ranges as in (Barron, 2019). More specifically, we use an affine sigmoid to keep the shape α ∈ [0, 3]
and the softplus to keep scale c ∈ [10−8,∞). Table 1 gives the results of evaluating each method by
MSE on the validation set, while training each method with their respective loss parameters. Data
parameter optimization uses Tensorflow’s implementation of sparse RMSProp (Tieleman & Hinton,
2012). We also inherit weight decay ‖φ‖22, gradient clipping ∇φ/‖∇φ‖22, and learning rate scaling
αφ = α ·m for learning rate α and multiplier m from Barron (2019).

The robustness we see in our VAE experiments stems from the fact that likelihood parameter predic-
tion gives models a direct channel to express their “uncertainty” for each data-point with respect to
the task. This allows models to naturally down-weight and clean outliers from the dataset which can
improve model robustness. Consequently, one can harness this effect to create outlier detectors from
any underlying model architecture by using learned scales or temperatures as an outlier score func-
tion. Furthermore, predicted likelihood parameters allow these methods to detect outliers in unseen
data. In Figure 5 we show how auditing temperature or noise parameters can help practitioners spot
erroneous labels and poor quality examples. In particular, the model-parameterized temperatures of
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Figure 5: The data with the lowest (top) and highest (bottom) predicted temperatures in the SVHN
dataset. High temperature entries are blurry, cropped poorly, and generally difficult to classify.

Table 2: Median outlier detection performance
of several methods across 22 benchmark datasets
from ODDS.

Method Median AUC
LOF .669
FB .702

ABOD .727
AE .737

VAE .792
COPOD .799

PCA .808
OCSVM .814

MCD .820
KNN .822

HBOS .822
IF .823

CBLOF .836
AE+S (Ours) .846

PCA+S (Ours) .868

Figure 6: Distribution of Outlier Detection AUC
across the ODDS Benchmark. Our approaches,
PCA+S and AE+S, are competitive with other
Outlier Detection systems.

an image classifier (trained using the setup of 5.3) correlates strongly with blurry, dark, and diffi-
cult examples on the Street View House Number (SVHN) dataset. We use this approach to create
simple outlier detection algorithms by considering deep (AE+S) and linear (PCA+S) auto-encoders
(Kramer, 1991) with data-conditioned scale parameters as outlier scores. We evaluate this approach
on tabular datasets using deep and linear auto-encoders with model-parameterized scales. In Table
2 we quantitatively demonstrate the quality of these simple likelihood parameter approaches across
22 datasets from the Outlier Detection Datasets (ODDS), a standard outlier detection benchmark
(Rayana, 2016). The ODDS benchmark supplies ground truth outlier labels for each dataset, which
allows one to treat outlier detection as an unsupervised classification problem. We compare against
a variety of established outlier detection approaches included in the pyOD (Zhao et al., 2019) frame-
work including: One-Class SVMs (OCSVM) (Schölkopf et al., 2000), Local Outlier Fraction (LOF)
(Breunig et al., 2000), Angle Based Outlier Detection (ABOD) (Kriegel et al., 2008), Feature Bag-
ging (FB) (Lazarevic & Kumar, 2005), Auto Encoder Distance (AE) (Aggarwal, 2015), K-Nearest
Neighbors (KNN) (Ramaswamy et al., 2000; Angiulli & Pizzuti, 2002), Copula Based Outlier Detec-
tion (COPOD) (Li et al., 2020), Variational AutoEncoders (VAE) (Kingma & Welling, 2013), Mini-
mum Covariance Determinants with Mahlanohbis Distance (MCD) (Rousseeuw & Driessen, 1999;
Hardin & Rocke, 2004), Histogram-based Outlier Scores (HBOS) (Goldstein & Dengel, 2012), Prin-
cipal Component Analysis (PCA) (Shyu et al., 2003), Isolation Forests (IF) (Liu et al., 2008; 2012),
and the Clustering-Based Local Outlier Factor (CBLOF) (He et al., 2003).

Our predicted scale auto-encoders use PyTorch’s layers API (Paszke et al., 2019) with rectified linear
unit (ReLU) activations for deep auto-encoders and Glorot uniform initialization (Dahl et al., 2013;
Glorot & Bengio, 2010) for all layers. We use Adam (Kingma & Ba, 2015) with a learning rate of
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Figure 7: Performance of L2 (left) and L1 (middle) regularized linear regression on a 500 dimen-
sional synthetic dataset where the true parameters, w∗, are known. Dynamic Ridge (D-Ridge)
and D-LASSO regression find the regularization strength that best estimates the true parameters.
M-LASSO outperforms any single global regularization strength and does not shrink informative
weights. (right) Performance of adaptive L1 regularization methods as a function of true model
sparsity. In all cases, Multi-LASSO outperforms other methods by orders of magnitude.

.0005 for 4000 steps with 20% dropout before the code space. We follow ODDS guidelines and
standard scale the data prior to fitting.

Our methods (PCA+S and AE+S) use a similar principle as isolation-based approaches that deter-
mine outliers based on how difficult they are to model. In existing approaches, outliers influence and
skew the isolation model which causes the model to exhibit less confidence on the whole. This hurts
a model’s ability to distinguish between inliers and outliers. In contrast, our approach allows the un-
derlying model to down-weight outliers. This yields a more consistent model with a clearer decision
boundary between outliers and inliers as shown in Figure 4. As a future direction of investigation we
note that our approach is model-architecture agnostic, and can be combined with domain-specific
architectures to create outlier detection methods tailored to images, text, and audio.

5.2 ADAPTIVE REGULARIZATION WITH PRIOR PARAMETERS

In addition to optimizing the shape and scale of the likelihood distribution of the model output,
we can use the same approach to optimize the prior distribution of the model parameters. More
specifically, we propose adaptive regularizers for a model’s parameters, θ. This approach optimizes
the distribution parameters of the prior, φprior, to naturally tune the degree of regularization. In
particular, the Normal (Ridge, L2) and Laplace (LASSO, L1) priors, with scale parameters σ and
b, regularize model parameters for small magnitude and sparsity respectively (Hastie et al., 2009).
The degree of regularization, λ ∈ [0,∞), is conventionally a hyperparameter of the regularized loss
function:

min
θ

N∑
i

(ŷi := fθ(xi)− yi)2 + λ

P∑
j

|θj |. (7)

We note that we cannot choose λ by direct minimization because it admits a trivial minimum at
λ = 0. In the linear case, one can select this weight efficiently using Least Angle Regression (Efron
et al., 2004). However, in general λ is usually learned through expensive cross validation methods.
Instead, we retain the prior with its scale parameter, and jointly optimize over the full likelihood:

min
θ,σ,b

N∑
i

(
1

2σ2
(ŷi − yi)2 + log σ

)
+

P∑
j

(
|θj |
b

+ log b

)
(8)

This approach, the Dynamic Lasso (D-LASSO), admits no trivial solution for the prior parameter
b, and must balance the effective regularization strength, 1

b , with the normalization factor, log b.
D-LASSO selects the degree of regularization by gradient descent, rather than expensive black-box
search. In Figure 7 (left) and (middle) we show that this approach, and its Ridge equivalent, yield
ideal settings of the regularization strength on a suite of synthetic regression problems. Figure 7
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(right) shows D-LASSO converges to the best LASSO regularization strength for a variety of true-
model sparsities. As a further extension, we replace the global σ or b with a σj or bj for each model
parameter, θj , to locally adapt regularization to each model weight (Multi-Lasso). This consistently
outperforms any global setting of the regularization strength and shields important weights from
undue shrinkage 7 (middle). For our experiments we use 500 samples of 500 dimensional normal
distributions mapped through linear functions with additive gaussian noise. Linear transformations
use Uniform[1, 2] weights and LASSO experiments use sparse transformations. We use tensorflow’s
Adam optimizer with lr = .0005 for 100000 steps.
Our approach of learning regularizer scale parameters can be viewed naturally through the lens of
hierarchical priors (Gelman et al., 2013). More specifically this approach is implicitly performing
maximum a posteriori (MAP) inference on the prior’s scale with respect to a uniform prior on that
parameter. We note that though these methods for hyperparameter selection are common in the
Bayesian literature, they are not widely used in practice in the deep learning community. This work
aims to bring these parameters back within the scope of deep learning where they can be easily
expanded to more flexible forms such as our introduced Multi-Lasso.

5.3 RE-CALIBRATION

The work of (Guo et al., 2017) shows that modern networks are accurate, yet systematically over-
confident, a phenomenon called mis-calibration. We investigate the role of optimizing likelihood
parameters to re-calibrate models. More specifically, we can fit likelihood parameter regressors on a
validation set to modify an existing model’s confidence to better align with the validation set. This
approach is a generalization of Guo et al. (2017)’s Temperature Scaling method, which we refer to
as Global Scaling (GS) for notational consistency. Global Scaling re-calibrates classifiers with a
learned global parameter, τ in the loss function: σ(~x, τ).

Fitting model-conditioned likelihood parameters to a validation set defines a broad class of re-
calibration strategies. From these we introduce three new re-calibration methods. Linear Scaling
(LS) learns a linear mapping, l, to transform logits to a softmax temperature: σ(~x, l(~x)). Linear
Feature Scaling (LFS) learns a linear mapping, l, to transform the features prior to the logits, ~f , to
a softmax temperature: σ(~x, l(~f)). Finally, we introduce Deep Scaling (DS) for regressors which
learns a nonlinear network, N , to transform features, ~f , into a temperature: σ(~x,N(~f)).

In Table 3 we compare our recalibration approaches to the previous state of the art: Global Scaling.
We note that (Guo et al., 2017) have already shown that Global Scaling outperform Bayesian Binning
into Quantiles (Naeini et al., 2015), Histogram binning (Zadrozny & Elkan, 2001), and Isotonic
Regression. We recalibrate both ResNet50 (He et al., 2016) and DenseNet121 (Huang et al., 2017)
on a variety of vision datasets. We measure classifier miscalibration using the Expected Calibration
Error (ECE) (Guo et al., 2017) to align with prior art. We additionally evaluate Isotonic recalibration,
Platt Scaling (Platt, 1999), and Vector Scaling (VS) (Guo et al., 2017), which learns a vector, ~v, to
re-weight logits: σ(~v~x, 1). LS and LFS tend to outperform other approaches like GS and VS,
which demonstrates that richer likelihood parametrizations can improve calibration akin to how
richer models can improve prediction.
Our experiments leverage Tensorflow’s Dataset APIs that include the SVHN, (Netzer et al., 2011),
ImageNet (Deng et al., 2009), CIFAR-100, CIFAR-10 (Krizhevsky, 2009) datasets. We use Keras
implementations of DenseNet-121 (Huang et al., 2017) and ResNet-50 (He et al., 2016) with default
initializations. For optimization we use Adam with lr = 0.0001, β1 = .9, β2 = .99 (Kingma & Ba,
2015) and train for 300 epoch with a batch size of 512.

For recalibrating regressors, we compare against the previous state of the art, Kuleshov et al. (2018),
who use an Isotonic regressor to correct a regressors’ confidence. We use the same experimental
setting as Kuleshov et al. (2018) including the UCI datasets (Dua & Graff, 2017), and regressor
calibration metric (CAL). Table 4 shows that our approaches can outperform this baseline as well as
the regression equivalent of Global Scaling. Inputs and targets are scaled to unit norm and variance
prior to fitting for all regression experiments and missing values are imputed using scikit-learn’s
“SimpleImputer” (Pedregosa et al., 2011). Experiments utilize Keras’ layers API with two hidden
rectified linear unit (ReLU) layers, Glorot uniform initialization (Dahl et al., 2013; Glorot & Bengio,
2010) and Adam optimization with lr = 0.001 for 3000 steps without minibatching.
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Table 3: Comparison of calibration methods by ECE for ResNet-50 (RN50) and DenseNet-121
(DN121) architectures on test data. Our predicted likelihood parameter methods: Linear Scaling
(LS) and Linear Feature Scaling (LFS) outperform other approaches. In all cases our methods
reduce miscalibration with comparable computation time as GS.

Model Dataset Uncalibrated Platt Isotonic GS VS LS LFS
RN50 CIFAR-10 .250 .034 .053 .046 .037 .018 .018
RN50 CIFAR-100 .642 .061 .072 .035 .044 .030 .173
RN50 SVHN .072 .053 .010 .029 .022 .009 .009
RN50 ImageNet .430 .018 .070 .019 .023 .026 .015

DN121 CIFAR-10 .253 .048 .042 .039 .034 .028 .028
DN121 CIFAR-100 .537 .049 .067 .024 .024 .014 .031
DN121 SVHN .079 .018 .010 .022 .017 .011 .010
DN121 ImageNet .229 .028 .095 .021 .019 .043 .019

Table 4: Comparison of regression calibration methods as evaluated by their calibration error as
defined in (Kuleshov et al., 2018). Predicted likelihood parameters often outperform other methods.

Dataset Uncalibrated Isotonic GS LS DS
crime 0.3624 0.3499 0.0693 0.0125 0.0310

kinematics 0.0164 0.0103 0.0022 0.0021 0.0032
bank 0.0122 0.0056 0.0027 0.0024 0.0020
wine 0.0091 0.0108 0.0152 0.0131 0.0064
mpg 0.2153 0.2200 0.1964 0.1483 0.0233
cpu 0.0862 0.0340 0.3018 0.2078 0.1740
soil 0.3083 0.3000 0.3130 0.3175 0.3137
fried 0.0006 0.0002 0.0002 0.0002 0.0002

6 EXPERIMENTAL DETAILS

We run all experiments on Ubuntu 16.04 Azure Standard NV24 virtual machines (24 CPUs, 224 Gb
memory, and 4× M60 GPUs) with Tensorflow 1.15 (Abadi et al., 2015) and PyTorch 1.17 (Paszke
et al., 2019). Many likelihood parameters have constrained domains, such as the normal variance
σ ∈ [0,∞). To evade the complexity of constrained optimization, we define unconstrained param-
eters φu and choose a transformation t(·) with inverse t−1(·) to map to and from the constrained
φ. For positivity, exp/log parameterization is standard (Kendall & Gal, 2017; Kendall et al., 2018;
Saxena et al., 2019). However, this parameterization can lead to instabilities and we use the softplus,
s+(x) = log(1 + exp(x)), instead. Shifting the softplus, s+c (x) = (ln(1 + ex) + c)/(ln(2) + c),
further improves stability and we explore this effect in Figure 12 of the Appendix. We use an affine
softplus s+.01 and s+.2 respectively for adaptive scales and temperatures respectively. The one excep-
tion is adaptive regularizer scales where we found exp led to faster convergence. For the constrained
interval [a, b] we use affine transformations of the sigmoid s(x) = 1

1+exp(−x) (Barron, 2019). We
initialize likelihood parameter biases to settings that yield MSE and Cross Entropy (σ = τ = 1).

7 CONCLUSION

Optimizing the full likelihood can improve model quality by adapting losses and regularizers. Full
likelihoods are agnostic to the architecture, optimizer, and task, which makes them simple substitutes
for standard losses. Global, data, and predicted likelihood parameters offer different degrees of
expressivity and efficiency. In particular, predicted parameters adapt the likelihood to each data
point during training and testing without significant time and space overhead. By including these
parameters in a loss function one can improve a model’s robustness and generalization ability and
create new classes of outlier detectors and recalibrators that outperform baselines. More generally,
we hope this work encourages joint optimization of model and likelihood parameters, and argue it
is likely that your loss should be a likelihood.
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Sweden, 10–15 Jul 2018. PMLR.

Aleksandar Lazarevic and Vipin Kumar. Feature bagging for outlier detection. In Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pp.
157–166, 2005.

Xuelong Li, Quanmao Lu, Yongsheng Dong, and Dacheng Tao. Robust subspace clustering by
cauchy loss function. IEEE transactions on neural networks and learning systems, 30(7):2067–
2078, 2018.

Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: copula-based outlier
detection. arXiv preprint arXiv:2009.09463, 2020.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pp. 413–422. IEEE, 2008.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection. ACM Trans-
actions on Knowledge Discovery from Data (TKDD), 6(1):1–39, 2012.

11



Under review as a conference paper at ICLR 2021

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In ICCV, December 2015.

David JC MacKay and David JC Mac Kay. Information theory, inference and learning algorithms.
Cambridge university press, 2003.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated prob-
abilities using bayesian binning. In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

John Ashworth Nelder and Robert WM Wedderburn. Generalized linear models. Journal of the
Royal Statistical Society: Series A (General), 135(3):370–384, 1972.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

David A Nix and Andreas S Weigend. Estimating the mean and variance of the target probability
distribution. In ICNN, volume 1, pp. 55–60. IEEE, 1994.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
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