
Understanding Adam Requires Better Rotation
Dependent Assumptions

Tianyue H. Zhang1,2,† Lucas Maes1,2,† Alan Milligan3

Alexia Jolicoeur-Martineau4 Ioannis Mitliagkas1,2,5,6 Damien Scieur2,4

Simon Lacoste-Julien1,2,4,5 Charles Guille-Escuret1,2

1 Mila, Quebec AI Institute 2 Université de Montréal
3 University of British Columbia 4 Samsung SAIL Montreal

5 Canada CIFAR AI Chair 6Archimedes Unit, Athena Research Center

Abstract

Despite its widespread adoption, Adam’s advantage over Stochastic Gradient De-
scent (SGD) lacks a comprehensive theoretical explanation. This paper investigates
Adam’s sensitivity to rotations of the parameter space. We observe that Adam’s
performance in training transformers degrades under random rotations of the pa-
rameter space, indicating a crucial sensitivity to the choice of basis in practice.
This reveals that conventional rotation-invariant assumptions are insufficient to cap-
ture Adam’s advantages theoretically. To better understand the rotation-dependent
properties that benefit Adam, we also identify structured rotations that preserve or
even enhance its empirical performance. We then examine the rotation-dependent
assumptions in the literature and find that they fall short in explaining Adam’s
behaviour across various rotation types. In contrast, we verify the orthogonality of
the update as a promising indicator of Adam’s basis sensitivity, suggesting it may
be the key quantity for developing rotation-dependent theoretical frameworks that
better explain its empirical success.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities as their scale
grows [Brown et al., 2020, Kaplan et al., 2020]. However, this unprecedented growth in model
scale has led to a proportional increase in the economic [Dong and Xie, 2024, Sharir et al., 2020,
Varoquaux et al., 2024] and environmental [Luccioni et al., 2023, 2019] costs associated with their
training. Despite this clear motivation, Adaptive Moment Estimation (Adam) [Kingma and Ba, 2015]
has persisted as the go-to optimizer especially for language models, with only minor modifications
such as AdamW [Loshchilov and Hutter, 2019] becoming widely adopted since Adam’s inception.
This success has prompted extensive research to provide theoretical justification for Adam’s perfor-
mance. While the original convergence proof for Adam was later found to be flawed [Rubio, 2017],
recent studies have proposed rigorous convergence proofs under plausible assumptions [Li et al.,
2023b, Chen et al., 2019, Défossez et al., 2022].

However, these proofs do not elucidate Adam’s advantages over SGD when training transformer
models [Vaswani et al., 2017]. Numerous works attempted to explain Adam’s superiority, employing

† Equal Contribution, correspondence to: tianyue.zhang@mila.quebec

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

1 20 40 60 80 100

Iteration (k)

2.8700

2.9425

3.0150

3.0875

3.1600

Tr
ai

ni
ng

 L
os

s

86

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

(a) GPT2 (124M)

1 20 40 60 80 100

Epoch

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Tr
ai

ni
ng

 L
os

s

51

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

(b) ViT/S (22M)

Figure 1: Adam’s performance degrades under certain random rotations of the parameter
space, demonstrating its dependence on the standard basis. (a) For GPT2, global rotations lead
to a 16% slowdown in training. (b) ViT experiences a more dramatic 96% slowdown under global
rotations. Performance is preserved under output-wise rotations but progressively worsens with
input-wise, layer-wise, and global rotations, revealing Adam’s increasing sensitivity to coordinate
changes of broader scopes. Experimental details are provided in Section 3.1.

diverse assumptions and analytical frameworks [Zhou et al., 2024, Pan and Li, 2022, Zhang et al.,
2024, Kunstner et al., 2024]. The heterogeneity of these approaches has led to a lack of consensus
on which theoretical explanations most accurately capture the fundamental mechanisms underlying
Adam’s improved performance. For instance, Zhang et al. [2020] suggests it stems from enhanced
robustness to heavy-tailed noise, while Kunstner et al. [2023] argues it plays no role.

This study focuses on a fundamental distinction between Adam and SGD: Adam’s dependency on
the coordinate system. SGD is rotation-equivariant, meaning if the loss landscape is rotated, the
resulting optimization trajectories from SGD will be the same up to that rotation. In contrast, Adam
produces substantially different trajectories. Although the sensitivity of adaptive methods to rotations
of the parameter space is well established [Duchi et al., 2011], it remains unclear what properties of a
rotation benefit or hinder performance, particularly in practical neural network training.

Our experimental investigation reveals that Adam’s performance when training transformers em-
pirically degrades when the objective function undergoes random rotations (Figure 1). This result
demonstrates that Adam’s effectiveness crucially depends on the canonical basis, challenging the
adequacy of many existing theoretical frameworks used to analyze Adam’s performance. Assump-
tions employed in the literature (Appendix F) are typically rotation-invariant, and thus the resulting
frameworks are agnostic to the basis, preventing them from fully capturing or justifying Adam’s
empirical advantages.

Beyond theoretical motivations, recent studies have shown that applying rotations to the canonical
basis can significantly enhance the performance of Adam and other optimizers [Vyas et al., 2025,
Gupta et al., 2018, Jordan et al., 2024]. However, these rotations are often designed based on intuition
and heuristics rather than systematically understanding their impact. By identifying the key properties
that make a basis advantageous for Adam, we can develop more principled approaches to constructing
optimal rotations that may outperform the existing rotation-based methods.

To understand the relationship between basis orientation and Adam’s performance, we address two
key questions:

Q1. How do various types of rotations influence Adam’s performance in practice?

We investigate Q1 by conducting experiments in Section 3, examining Adam’s convergence when
rotating specific regions of the parameter space. We also identify some rotations that preserve or
enhance Adam’s performance. These findings provide a more nuanced picture of Adam’s adaptive
behaviour and its dependency on the basis.

Finally, as a rotation-invariant theoretical framework cannot fully capture Adam’s advantage, we turn
to rotation-dependent assumptions existing in the literature, and seek to answer:

2

4 3 2 1 0 1 2

3

2

1

0

1

2

3
Original Quadratic Function

1.9
7.4

16.729.8

29.8

46.5

46.5

66.9

66.9

91.1

91.1 91.1

119.0
150.6
186.0
225.0

SGD-M

Adam

3 2 1 0 1 2 3
5

4

3

2

1

0

1

Rotated Quadratic Function

1.9

7.4

16
.7

29.8

46.5

46.5

66.9

66
.9

91.1

91.1

119.0

119.0

150.6

150.6

186.0

186.0

225.0

225.0

SGD-M

Adam

Figure 2: Trajectories of SGD-M and Adam on a quadratic under two different rotations. SGD-M
maintains the same trajectory up to rotation; Adam does not.

Q2. What rotation-dependent assumptions adequately capture Adam’s behaviour under rotations?

Section 4 examines three rotation-dependent assumptions used in literature in this context: L∞
bounded gradients, Hessian block-diagonality, and L∞-smoothness. Our analysis reveals that none of
these conditions fully capture Adam’s behaviour under rotations. Recently, Muon [Jordan et al., 2024]
achieved strong performance by approximating orthogonalized gradients for each layer. Inspired
by this, we measure the orthogonality of Adam’s weight matrix updates for each layer (up to scalar
multiplication) and find it closely aligns with performance across various rotations.

We summarize our key contributions:

1. Analysis of Adam’s sensitivity to various scopes of parameter space rotations in neural
network training: We conduct in Section 3.1 an empirical study demonstrating Adam’s
sensitivity to random parameter space rotations in practical training. We found a clear
correlation between rotation scope (e.g., global, layer-wise) and performance, where a
broader scope leads to greater degradation. In Section 3.2 we also employ a structured,
SVD-based rotation inspired by Zhao et al. [2024] that improves Adam’s convergence.

2. Challenging existing rotation-dependent assumptions: We assess the applicability of
rotation-dependent properties in the literature by examining them jointly with our exper-
imental study, and find that existing theoretical frameworks are not properly equipped to
understand the beneficial properties of Adam.

3. Verifying a better rotation-dependent quantity: Given that SVD-based rotations improve
performance, we analyze the singular values of the layer updates and find that their orthogo-
nality is a strong predictor of Adam’s performance across different bases. We also draw a
connection to the Muon optimizer [Jordan et al., 2024], which approximates orthogonalized
updates, and provide additional empirical support for its underlying intuition.

2 Preliminaries

Let f : Rd → R be the loss of a neural network with d trainable parameters. Stochastic optimization
algorithms approximate argminw∈Rd f(w) by only accessing independent stochastic functions
fB that depend on a stochastic minibatch B following some data distribution D such that ∀w ∈
Rd,EB∼D[fB(w)] = f(w).

Our study examines the optimization process under rotations of the parameter space. More formally,
let SO(d) be the set of rotation matrices,

SO(d)=
{
R∈Rd×d: R⊤R = RR⊤= I,det(R)=1

}
.

Instead of directly optimizing f , we consider its rotated counterpart f (R) : w → f(R⊤w), R ∈
SO(d). This transformation rotates the coordinate system while preserving the geometry of the
optimization landscape.

3

2.1 Rotational Equivariance of SGD

We say that an optimizer is rotation equivariant if, after a rotation of the parameter space, its
trajectories are equally rotated.

Definition 1 (Rotational equivariance). Consider an optimization algorithmA applied to the function
f , generating iterates wt+1 = A({wi}i=0,...,t, f, t). We say that the optimization algorithm is
rotation equivariant if it satisfies,

∀R ∈ SO(d), Rwt+1 = A({Rwi}i=0,...,t, f
(R), t),

where f (R) : w→ f(R⊤w) is the rotation of f .

Proposition 1. Stochastic Gradient Descent with momentum is rotation-equivariant.

The rotation equivariance of SGD-M is a straightforward result as the gradient operator is rotation
equivariant; we provide the proof in Appendix D for clarity. In contrast, Adam is not rotation
equivariant, due to its element-wise division (Figure 2).

2.2 Training Neural Networks in Rotated Parameter Spaces

A crucial aspect of our study is the empirical evaluation of Adam’s performance under parameter
space rotations. Our approach (Figure 3) maintains the weights wt in the standard basis and performs
Adam’s optimization steps in the rotated space. This allows us to leverage existing neural network
frameworks for forward and backward propagation while examining Adam’s behaviour under rotation.

(iii)

Adam

Weights
Rotated

Gradients

R

R
⏉

Gradients

Rotated

Step
Step

(i)

Backpropagation

(v)

Update

(ii)

(iv)

Figure 3: Methodology to train neural networks un-
der parameter space rotations. (i) Forward and back-
ward passes in the standard space to retrieve the
gradients. (ii) The gradients are rotated using R. (iii)
Adam receives the rotated gradients and produces an
update ∆w(R) in the rotated space. (iv) ∆w(R) is
rotated back to the original space using R⊤. (v) The
parameters are updated with R⊤∆w(R).

Global

Rotation

Input-wise

Rotation

Layer-wise

Rotation

Output-wise

Rotation

Figure 4: Illustration of different rota-
tion scopes for a model with weights
W ∆

= {W1,W2,W3}. Global rotation
rotates the entire parameter space at once,
layer-wise only performs rotations within
each layer subspace, and input-wise (resp.
output-wise) rotates within the weights
originating from a same input neuron (resp.
leading to a same output neuron).

Rotations in high dimension. It is computationally intractable to operate with full d× d rotation
matrices due to the size of modern neural networks. We employ a composite approach that combines
block-diagonal rotations with strategic permutations to circumvent this limitation while preserving the
essential characteristics of uniformly sampled rotations, effectively emulating the statistical properties
of full-scale rotations. A detailed description and ablation studies are provided in Appendix A.

Numerical considerations. Neural network training is sensitive to numerical precision [Li et al.,
2018, Wang et al., 2018, Sun et al., 2022], and it is crucial to ensure that rounding errors from
rotations do not significantly confound the impact of the rotation. In particular, we apply rotations in
single precision, and we refrain from using FlashAttention [Dao et al., 2022], which was found to
increase numeric deviations [Golden et al., 2024]. We validate our methodology with ablations on
SGD rotation equivalence, various rotation dimensions, and the use of FlashAttention in Appendix A.

4

3 Influence of Rotation on Adam’s Efficiency

This section examines the effect of random rotations from neuron-wise to global (Section 3.1),
showing that broader rotations degrade performance, while smaller-scale rotations have little to no
impact. We then demonstrate that specific structured rotations can enhance Adam’s performance.

3.1 Random Rotations

We first study the effect of four types of random rotations on Adam’s performance (Figure 4): Global
(entire parameter space), Layer-wise (per-layer subspaces; in transformers, keys/queries/values are
treated separately), Output-wise (rotate weights where connections terminate at the same neuron in
the subsequent layer), and Input-wise (rotate weights originating from the same neuron).

Experimental setting. We conduct experiments across three distinct settings spanning both trans-
former and non-transformer architectures, and language and vision tasks. Technical details and
hyperparameters are provided in Appendix B.

• Language modeling (GPT-2, Fig. 1a): 124M-parameter decoder-only Transformer [Rad-
ford et al., 2019] trained on OpenWebText [Gokaslan and Cohen, 2019].

• Image classification (ViT, Fig. 1b): 22M-parameter Vision Transformer (ViT/S) [Dosovit-
skiy et al., 2021] evaluated on ImageNet-1K [Deng et al., 2009].

• Image classification (ResNet, Fig. B): ResNet-50 [He et al., 2016] on ImageNet-1K, where
SGD often outperforms Adam [Keskar and Socher, 2017, Wilson et al., 2017].

Results. We make several key observations:

1. Adam’s performance degrades under global rotations across all settings, confirming that the
standard basis possesses advantageous properties.

2. The performance further degrades with broader rotation scopes. Layer-wise rotations, which
preserve some basis structure, consistently outperform global rotations, highlighting the
importance of local coordinate alignment.

3. ResNets exhibit minimal performance degradation under rotations. This reduced sensitivity
suggests Adam obtains limited benefit from the standard basis structure in ResNets, which
possibly explains its historically smaller marginal gain in training these networks.

4. Output-wise rotations show no degradation across all settings, with GPT2 even slightly im-
proving. This suggests that Adam’s adaptivity within output neurons is minimal, supporting
recent approaches to reduce redundancy in Adam’s second moments [Zhang et al., 2025].

Previous works [Zhang et al., 2024, 2025] have highlighted the heterogeneity across different
parameter block types in Transformer architectures. In Appendix C, we restrict rotations to specific
parameter types and study their individual impact on Adam’s rotation sensitivity.

3.2 Investigating the Performance-Improving Rotations

Inspired by GaLore [Zhao et al., 2024], which uses low-rank Singular Value Decomposition (SVD) to
compress optimizer states, we extend this concept to full-rank SVD to rotate the parameter space. Our
approach decomposes the gradient matrix G of each layer into G = USV⊤. This decomposition
yields a natural rotation of the parameter space through the transformation G → U⊤GV, which
corresponds to an output-wise rotation (via U⊤) and an input-wise rotation (via V). We train a GPT2
model under the same conditions as in Section 3.1, but in this SVD-rotated space. We update the
SVD decompositions every 250 steps.

Figure 5 shows that Adam’s performance improves under SVD-based rotations, with a low computa-
tional overhead. These results highlight the potential of rotation-based approaches and motivate a
more principled understanding of how basis orientation affects optimizer behaviour. Instead of relying
on intuition or heuristics, we advocate for theory-driven design grounded in rotation sensitivity.

To further understand this behaviour, Figure 6 shows second moment distributions after training
under various rotations. Global random rotations yield more concentrated second moments, implying
less variation in effective learning rates and reduced adaptivity, which explains Adam’s degraded

5

1 20 40 60 80 100

Iteration (k)

2.8700

2.9425

3.0150

3.0875

3.1600

Tr
ai

ni
ng

 L
os

s

Global Rotation
No Rotation
Output-Wise
Svd Rotation

Figure 5: Performance of GPT2 trained with
Adam in SVD-rotated space, without rotations,
with random output-wise rotation and with ran-
dom global rotation. The rotations computed
with SVD lead to sizeable improvement.

11.0 10.5 10.0 9.5 9.0 8.5

Log second moment values

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
eq

ue
nc

y

1e7

Global Rotation
No Rotation
Output-Wise
SVD

Figure 6: Distribution of second-moment values
for the final checkpoint of a GPT2 model trained
with Adam in various rotated spaces. Second
moments are more concentrated under ran-
dom rotations, indicating reduced adaptivity.

performance. However, the benefits of SVD rotations are not apparent from second moments alone,
suggesting a more subtle relationship between the parameter space and Adam’s adaptive behaviour.

4 Examining Rotation Dependent Assumptions

We have established that Adam’s performance depends heavily on the choice of basis. Rotation-
invariant analyses yield identical guarantees for all bases, failing to capture performance gaps between
rotations. A rotation-dependent assumption is necessary to explain Adam’s practical advantage. In this
section, we examine rotation-dependent assumption adequacy jointly with our GPT-2 experiments.

4.1 Adequacy of existing assumptions in theoretical frameworks

While rotation-invariant assumptions dominate optimization literature, some frameworks incorporate
rotation-dependent properties. This subsection examines three existing assumptions and whether
they adequately capture Adam’s rotation dependency. In particular, we focuses on two aspects: (i)
Practical Feasibility. The assumption must be realistic in practical settings. (ii) Alignment with
Adam’s Performance. An adequate property should have favourable constants under rotations that
improve performance and break down (or have unfavourable constants) under rotations that hinder
performance. An ideal theoretical convergence analysis should be based on realistic assumptions
that relate the problem’s characteristics to the optimizer’s performance, where faster theoretical rates
correspond to better practical performance.

L∞-smoothness and (1, 1)-norm. L∞-smoothness was recently shown to guarantee the conver-
gence of Adam, and presented as a potential key property of the basis [Xie et al., 2025, Balles et al.,
2020]. We first remember its definition.
Definition 2. A function f is C-smooth wrt. ∥·∥∞ if ∥∇f(x)−∇f(y)∥1 ≤ C∥x−y∥∞ ∀ x,y ∈ Rd.

Given the challenges in directly estimating the L∞-smoothness constant, Xie et al. [2025] proposed
using the (1,1)-norm of the Hessian as a surrogate, defined as:

∥H∥(1,1) :=
M∑

m=1

N∑
n=1

|Hmn|,

where Hmn represents the element at the m-th row and n-th column of the Hessian matrix. Notably,
they observed a degradation in their estimate of ∥H∥(1,1) under global random rotations. However, it
remains unclear whether this degradation is a universal phenomenon for all rotations of the parameter
space or if it specifically correlates with Adam’s performance. To investigate this, we estimate the
(1, 1)-norm by averaging the L1 norm of Hessian rows, sampled using the methodology described in
Section 4.1. Figure 8 illustrates the change in ∥H∥(1,1) under global, SVD, and output-wise rotations.

Under global rotations, we confirm the (1, 1)-norm degradation reported in [Xie et al., 2025], while
SVD rotations improve it in line with Adam’s performance gains, suggesting a link between this

6

Global SVD Output
Rotation Type

0.02

0.01

0.00

0.01

0.02

C
ha

ng
e

in
 T

ra
in

 L
os

s

Adam

0.5

0.0

0.5

C
ha

ng
e

in
 C

N
on

e

Figure 7: Empirical L∞ gradient bound C̃ over
1000 stochastic gradients at the last checkpoint
for Global, SVD, and output-wise rotations, pre-
sented as differences from the non-rotated base-
line. The trend disagrees with Adam’s perfor-
mance, especially under global rotation.

Global SVD Output
Rotation Type

0.02

0.01

0.00

0.01

0.02

C
ha

ng
e

in
 T

ra
in

 L
os

s

Adam

50

25

0

25

50

C
ha

ng
e

in
 (1

,1
)-N

or
m

Figure 8: Estimated (1,1)-norm of the Hessian
and final accuracy for Global, SVD, and output-
wise rotations, presented as differences from the
non-rotated baseline. The (1, 1) norm corre-
lates with Adam’s performance on global and
SVD rotations, but not on output-wise.

L∞ bounded gradients. Reddi et al. [2018], Kingma and Ba [2015] assume a bound on the L∞
norm of stochastic gradients,

∀ w ∈ Rd, ∥∇fB(w)∥∞ ≤ C almost surely.

The constant C depends on the basis, as the L∞ norm is not preserved under rotations. To evaluate
this assumption, we compute the empirical bound on the rotated gradients,

C̃R(R) := max
Bi

∥∇f (R)
Bi

(wR)∥∞,

where wR denotes the last checkpoint obtained by running Adam under rotation R. The maximum
is over 1000 stochastic minibatches Bi, across different rotations R (see Section 3). Figure 7 reveals
that C̃ significantly decreases under random global rotations, predicting better performance, but we
observe degradation in Adam’s convergence. This discrepancy shows that the L∞ gradient bound
fails to capture the beneficial properties of the basis for Adam.

geometric property and optimizer efficiency. Output-wise rotations yield slight performance gains
but reduced (1, 1)-norm, indicating that the metric does not capture all relevant factors. Overall,
the (1, 1)-norm shows promise as a rotation-sensitive indicator, especially under global and SVD
rotations, but its limitations motivate the development of refined or complementary measures.

Block-diagonality of the Hessian. A common hypothesis for understanding Adam’s behaviour is
that the Hessian is well-approximated by a block-diagonal matrix [Zhang et al., 2024]. Then, random
rotations likely disrupt block-diagonality and hinder convergence, while rotations within diagonal
blocks preserve the structure, explaining the stable performance under output-wise rotations.

To examine this assumption’s validity, we sample rows of the Hessian of f (R) at a checkpoint wR:

ri(R) = 1
k

∑k
j=1∇2f

(R)
Bj

(wR)[i,:] =
1
k

∑k
j=1 ei

⊤R∇2fBj
(wR)R⊤,

where ei denotes the ith canonical basis vector. The vector ri represents the average of the i-th row of
the stochastic Hessian over k minibatches. As k increases, ri converges to the true Hessian row. We
set k = 5000 in the experiments, and use efficient Hessian-vector products [Dagréou et al., 2024].

We partition the indices of the Hessian row ri corresponding to weight wi into three disjoint subsets:

ri = ri[IN] + ri[IL] + ri[I
�L
], where

• IN are indices of weights leading to the same output neuron as wi,
• IL are indices of other weights from the same layer,
• I

�L
are indices of weights of other layers,

and ri[IN] = ri (resp. IL and I
�L

) in the indices in IN (resp. IL and I
�L

) and zero elsewhere.

7

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

No Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Global Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Output-wise

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

SVD Rotation

Figure 9: Distribution of Hessian values within output neuron, layer and non-layer in the second
Transformer block attention projection layer. In no rotation, values within the neuron are of
magnitude higher than others, presuming a possible block-diagonal structure. The structure is
preserved in SVD and output-wise rotations, and lost in global rotation.

Figure 9 presents the distribution of absolute values for each subset. Our findings show that entries in
IN and, to a lesser extent, IL, are significantly larger than those from I

�L
, supporting an approximate

block-diagonal Hessian structure.

Given this approximately block-diagonal Hessian structure, previous work [Zhang et al., 2024]
proposes a strict block-diagonal approximation, assuming that the off-diagonal elements are negligible.
We further investigate whether this simplification can accurately reflect the local geometry by
assessing the practical implications of the block diagonal Hessian structure. We evaluate how each
block contributes to gradient variations for a given small direction δw via:

[∇f(w + δw)−∇f(w)]i ≈ e⊤i ∇2f(w)δw = ri[IN] · δw + ri[IL] · δw + ri[I
�L
] · δw.

δw direction Random Update
ri[IN] · δw (Neuron) 2.86× 10−5 −4.60× 10−10

ri[IL] · δw (Layer) −8.71× 10−6 1.30× 10−8

ri[I
�L
] · δw (Other) 1.48× 10−4 2.02× 10−7

Table 1: Contribution ri[I] · δw[I] of Hessian values in block
I to the variation of the i-th gradient component in direction
δw. Averaged over multiple δw, off-diagonal blocks con-
tribute significantly in both random and update directions.

Table 1 quantifies these contributions
in a random direction or update direc-
tion. Surprisingly, our results reveal
that Hessian values outside the block
are the primary drivers of gradient
evolution, despite their smaller mag-
nitude. This finding challenges the
strict block-diagonal Hessian assump-
tion in theoretical analyses. While the
diagonal blocks contain larger values,
their limited size compared to the full

parameter space means that off-diagonal elements collectively play a crucial role in shaping the
loss landscape’s geometry. Neglecting off-diagonal elements is an oversimplification, making the
approximation inadequate and potentially misleading downstream results.

4.2 Orthogonality of layer updates up to scalar factor

In Section 3.2 we find that SVD-based rotations improve Adam’s performance. We also discuss in
Appendix E connections with the recently proposed Muon optimizer [Jordan et al., 2024], which
achieves strong performance by performing updates in the orthogonalized first moment direction.

Scaled (semi-)orthogonality. Since orthogonality is defined only for square matrices, we adopt a
relaxed notion for rectangular matrices. Specifically, we say that a rectangular matrix is orthogonal if
all its singular values are either 1 or 0 (this notion is commonly referred to as semi-orthogonality
[Abadir and Magnus, 2005]). Moreover, we say that a matrix is a scaled orthogonal matrix if its
eigenvalues are either α or 0, where α is the scaling parameter. To measure the scaled orthogonality
of a matrix A, we will use the coefficient of variation of its singular values si,

CV(si) = σs

µs
= minα

1
µs

√
1
n

∑
i(si − α)2,

where µs and σs are the mean and standard deviation of the si’s, respectively. We discuss in
appendix C.4 other measures of scaled orthogonality of a matrix

Scaled orthogonality of the layer update. We resume training from a checkpoint for each rotation
type for the next 500 steps to measure the orthogonality of the update W

(l)
t+1 −W

(l)
t , where W

(l)
t

8

50000 50100 50200 50300 50400 50500
0.8

0.9

1.0

1.1

1.2

1.3
WQ

50000 50100 50200 50300 50400 50500

0.8

1.0

1.2

1.4
WV

50000 50100 50200 50300 50400 50500

0.35

0.40

0.45

0.50

0.55

0.60
MLP W1

50000 50100 50200 50300 50400 50500

0.9

1.0

1.1

1.2

1.3

WK

50000 50100 50200 50300 50400 50500

0.8

0.9

1.0

1.1

1.2
WO

50000 50100 50200 50300 50400 50500

0.4

0.5

0.6

0.7
MLP W2

Si
ng

ul
ar

 V
al

ue
 V

ar
ia

tio
n

No Rotation Full Rotation Output Rotation SVD Rotation

Figure 10: CV of singular values of layer updates over 500 steps, averaged over depth. SVD rotation
consistently yields lower CV and more orthogonal layer updates, whereas full rotation shows the
opposite. Downward spikes in the SVD rotation occur when the rotations are recomputed.

represents the weights of layer l at time t. For simplicity, we omit the layer index (l). To separate the

effect of step size and weight decay, we measure the update as A = R⊤M
(R)
t /(

√
V

(R)
t + ϵ).

Global SVD Output
Rotation Type

0.02

0.01

0.00

0.01

0.02

C
ha

ng
e

in
 T

ra
in

 L
os

s

Adam

0.1

0.0

0.1

C
ha

ng
e

in
 U

pd
at

e
O

rt
ho

go
na

lit
y

Figure 11: Each panel shows the difference
in loss and average CV of singular values
relative to the non-rotated baseline. The or-
thogonality of layer updates closely aligns
with performance under rotation.

Observations. Overall, we find that SVD consis-
tently yields lower CV and more orthogonal updates
under the coefficient of variation measure, and output-
wise rotation behaves similarly to the no-rotation
baseline. Full rotation consistently results in the least
orthogonal updates. This ranking aligns clearly with
the observed performance of Adam under rotations
(Figure 11), making it a promising quantity to under-
stand Adam’s behaviour.

In Figure 10, we show the CV across time for
each layer type, averaged over the depth. See Ap-
pendix C.4 for full results per layer and over time.
Notably, CV drops right after the SVD rotation is
recomputed every 250 steps. This offers insight into
the frequency tradeoff of SVD rotations, where more
frequent updates improve performance but introduce
computational overhead. Overall, our analysis sug-
gests that update orthogonality strongly correlates
with optimizer performance, supporting the approaches of Muon [Jordan et al., 2024] and SOAP
[Vyas et al., 2025] and opening new avenues for rotation-aware theoretical frameworks.

While a robust theoretical analysis of Muon’s update rule remains open, attempts have been made to
characterize in what context an orthogonal update is optimal. Bernstein [2025] argues that for linear
layers, the orthogonalized update controls the scale at which the weight matrices can scale features.
They argue this encourages stable optimization and can limit the need for normalization layers. As we
discuss in Appendix E, after simplification and SVD rotation the Adam update simplifies to dividing
the singular values by their magnitude. When rotated back, this results in the same update as Muon
through a different mechanism, which is consistent with Muon’s often superior performance.

5 Related Work

Optimization under rotations. Shampoo [Gupta et al., 2018] first demonstrated the benefits of
optimizing under rotations by running AdaGrad under regularly updated rotations, identifying the
singular values of the gradient matrices. More recently, SOAP [Vyas et al., 2025] improved Shampoo
by applying it to Adam and appropriately updating the moments at each change of basis. Muon

9

[Jordan et al., 2024] concurrently explores a similar approach, but removes the need to explicitly
store rotation matrices and instead orthogonalizes gradient matrices with a fast matrix iteration.
While these methods show promising empirical improvements via heuristics, our work highlights the
importance of developing better theoretical tools to understand their success.

On the theoretical side, we consider [Xie et al., 2025] to be the closest related study, showing that
Adam converges more slowly with a randomly rotated loss landscape. They provide convergence
analysis based on L∞ geometry, demonstrating that this yields a better empirical smoothness constant
for GPT-2 models. While their work offers valuable theoretical insights, our study takes a more
experimental stance. We aim to paint a comprehensive picture of Adam’s behaviour under a spectrum
of rotations, from random to structured transformations, and evaluate how existing rotation-invariant
assumptions correlate with Adam’s performance. Notably, Balles et al. [2020] also provides relevant
insights through the lens of sign gradient descent.

Understanding Adam. Our work casts light on the critical interactions between Adam and the
coordinate system, contributing to a growing body of research on Adam’s behaviour and convergence.
Recent works have attributed Adam’s success to the heterogeneous block-diagonal structure of its
Hessian [Zhang et al., 2024], though we find this assumption to be unrealistic. Others have improved
convergence guarantees: Défossez et al. [2022] and Guo et al. [2022] offered simplified and novel
derivations, Zhang et al. [2022] argued that vanilla Adam converges without modification, Zhou
et al. [2024] provided a general convergence analysis for adaptive methods in non-convex settings,
and Li et al. [2023b] proposed a convergence proof for Adam without relying on globally bounded
gradients. Li et al. [2023a] developed a convergence analysis based on generalized smoothness
conditions, and Hübler et al. [2023] proposed parameter-agnostic convergence results under these
relaxed conditions. Finally, lower bounds for non-convex optimization were established by Arjevani
et al. [2019], with Wang et al. [2023] addressing the gap between upper and lower bounds for Adam’s
iteration complexity.

Adam’s advantages over SGD. Prior works have attempted to justify Adam’s advantages over
SGD. Zhang et al. [2020], Zhou et al. [2024] suggest SGD suffers more from heavy-tailed noise, with
Adam converging faster when gradients are sparse. However, Kunstner et al. [2023] found that noise
reduction through larger batch sizes benefits Adam but not SGD. Additionally, Kunstner et al. [2024]
ties Adam’s advantage in language models to ill-conditioning caused by heavy-tailed class imbalance,
and Pan and Li [2022] to directional sharpness.

6 Discussion

Limitations. (i) Our purpose of the SVD rotation is not to introduce a new practical optimizer, but
to demonstrate the existence of a more beneficial rotation and provide insights into the relationship
between Adam and the standard basis. (ii) While our results reveal an alignment between the
semi-orthogonality of layer updates and Adam’s empirical performance, we do not offer theoretical
guarantees, and further work is needed to formalize formalize this quantity and incorporate it into
theoretical analysis. (iii) We relate our findings to the Muon optimizer and discuss the theoretical
motivation for scaled orthogonality; however, there is still a lacking of rigours understanding of why
Adam under SVD rotations produces more orthogonal updates than under the canonical basis, and
why this quantity leads to improved performance. (iv) Finally, although the observed gap appears
smaller in recent experiments, more evidence is required to confirm whether the superior performance
of SGD on ResNets primarily comes from reduced sensitivity to rotations.

Conclusion. In this work, we have conducted a comprehensive investigation into Adam’s sensitivity
to rotations of the parameter space, revealing key insights into its optimization dynamics. We demon-
strated that some rotations possess advantageous properties, opening new avenues for algorithmic
contributions to adaptive algorithms. Our study demonstrates that Adam’s performance is intricately
tied to the choice of basis, a relationship that existing theoretical frameworks struggle to capture
adequately. This investigation highlights the limitations of current rotation-invariant assumptions in
explaining Adam’s behaviour, and identifies update orthogonality as a promising theoretical tool. As
the field evolves, we hope these findings will spark new avenues of research, potentially leading to
more robust optimization algorithms and deepening our understanding of the fundamental principles
underlying successful deep learning optimization.

10

Acknowledgments and Disclosure of Funding

This research was partially supported by the Canada CIFAR AI Chair program (Mila) and Samsung
Electronics Co., Ltd. Simon Lacoste-Julien is a CIFAR Associate Fellow in the Learning in Machines
Brains program and acknowledges support by NSERC Discovery grant (RGPIN-2025-05123). We
also acknowledge that this research was partly enabled by computing resources, software, and
technical assistance provided by Mila and the Digital Research Alliance of Canada. Ioannis Mitliagkas
acknowledges support by an NSERC Discovery grant (RGPIN-2019-06512). We thank Adam Ibrahim
for his helpful comments and insights, and Ayoub Echchahed, Frederik Kunstner, Mark Schmidt,
Pedram Khorsandi, Ryan d’Orazio, and Vitória Barin Pacela for their valuable feedback.

References

K. M. Abadir and J. R. Magnus. Matrix Algebra. Cambridge University Press, Cambridge, 1st
edition, 2005. See Section 4.23 on Semi-orthogonality.

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake E. Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199:165–214,
2019.

Lukas Balles, Fabian Pedregosa, and Nicolas Le Roux. The geometry of sign gradient descent, 2020.

Jeremy Bernstein. Deriving muon, 2025. URL https://jeremybernste.in/writing/
deriving-muon.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k.
arXiv:2205.01580, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. In ICLR, 2019.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signsgd. In NeurIPS, 2022.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. How to compute hessian-vector
products? In ICLR Blogposts, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In NeurIPS, 2022.

Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of adam and adagrad. TMLR, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Haiwei Dong and Shuang Xie. Large language models (llms): Deployment, tokenomics and sustain-
ability. arXiv:2405.17147, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In ICLR, 2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 2011.

11

https://jeremybernste.in/writing/deriving-muon
https://jeremybernste.in/writing/deriving-muon

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus, 2019.

Alicia Golden, Samuel Hsia, Fei Sun, Bilge Acun, Basil Hosmer, Yejin Lee, Zachary DeVito,
Jeff Johnson, Gu-Yeon Wei, David Brooks, and Carole-Jean Wu. Is flash attention stable?
arXiv:2405.02803, 2024.

Baptiste Goujaud, Adrien Taylor, and Aymeric Dieuleveut. Optimal first-order methods for convex
functions with a quadratic upper bound. arXiv:2205.15033, 2022.

Charles Guille-Escuret, Baptiste Goujaud, Manuela Girotti, and Ioannis Mitliagkas. A study of
condition numbers for first-order optimization. In AISTATS, 2020.

Charles Guille-Escuret, Adam Ibrahim, Baptiste Goujaud, and Ioannis Mitliagkas. Gradient descent
is optimal under lower restricted secant inequality and upper error bound. In NeurIPS, 2022.

Charles Guille-Escuret, Hiroki Naganuma, Kilian Fatras, and Ioannis Mitliagkas. No wrong turns:
The simple geometry of neural networks optimization paths. In ICML, 2024.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis for
algorithms of the adam family and beyond. arXiv:2104.14840, 2022.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In ICLR, 2018.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Florian Hübler, Junchi YANG, Xiang Li, and Niao He. Parameter-agnostic optimization under relaxed
smoothness. In Neurips workshop OPT: Optimization for Machine Learning, 2023.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv:2001.08361, 2020.

Andrej Karpathy. NanoGPT, 2022.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to sgd. arXiv:1712.07628, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be. In
ICLR, 2023.

Frederik Kunstner, Alan Milligan, Robin Yadav, Mark Schmidt, and Alberto Bietti. Heavy-tailed
class imbalance and why adam outperforms gradient descent on language models. In NeurIPS,
2024.

Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
optimization under generalized smoothness. In NeurIPS, 2023a.

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed assumptions.
In NeurIPS, 2023b.

Huan Li and Zhouchen Lin. On the o(
√
d

T 1/4) convergence rate of rmsprop and its momentum extension
measured by ℓ1 norm. arXiv:2402.00389, 2024.

12

Zhaoqi Li, Yu Ma, Catalina Vajiac, and Yunkai Zhang. Exploration of numerical precision in deep
neural networks. arXiv:1805.01078, 2018.

Jingyuan Liu and Jianlin et al. Su. Muon is scalable for llm training, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the carbon footprint
of bloom, a 176b parameter language model. JMLR, 24(253):1–15, 2023.

Sasha Luccioni, Victor Schmidt, Alexandre Lacoste, and Thomas Dandres. Quantifying the carbon
emissions of machine learning. In NeurIPS Workshop on Tackling Climate Change with Machine
Learning, 2019.

Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of feasible descent methods:
a general approach. Annals of Operations Research, 46(1):157–178, 1993.

Francesco Mezzadri. How to generate random matrices from the classical compact groups. Notices
of the American Mathematical Society, 54:592 – 604, 2007.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate
o(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547, 1983.

Maris Ozols. How to generate a random unitary matrix, 2009. Technical report.

Yan Pan and Yuanzhi Li. Toward understanding why adam converges faster than SGD for transformers.
In NeurIPS Workshop OPT: Optimization for Machine Learning, 2022.

Boris T. Polyak. Gradient methods for the minimisation of functionals. USSR Computational
Mathematics and Mathematical Physics, 3(4):864 – 878, 1963.

B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computa-
tional Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In ICLR,
2018.

David Martınez Rubio. Convergence analysis of an adaptive method of gradient descent. University
of Oxford, Oxford, M. Sc. thesis, 2017.

Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise overview.
arXiv:2004.08900, 2020.

Yuxin Sun, Dong Lao, Ganesh Sundaramoorthi, and Anthony Yezzi. Surprising instabilities in
training deep networks and a theoretical analysis. In NeurIPS, 2022.

Gaël Varoquaux, Alexandra Sasha Luccioni, and Meredith Whittaker. Hype, sustainability, and the
price of the bigger-is-better paradigm in ai. arXiv:2409.14160, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and
Sham M. Kakade. SOAP: Improving and stabilizing shampoo using adam for language modeling.
In ICLR, 2025.

Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap between
the upper bound and lower bound of adam’s iteration complexity. In NeurIPS, 2023.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Training
deep neural networks with 8-bit floating point numbers. In NeurIPS, 2018.

13

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In NeurIPS, 2017.

Shuo Xie, Mohamad Amin Mohamadi, and Zhiyuan Li. Adam exploits ℓ_∞-geometry of
loss landscape via coordinate-wise adaptivity. In ICLR, 2025.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In NeurIPS, 2020.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. In NeurIPS, 2022.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective. In NeurIPS, 2024.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu Ye,
Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. In ICLR,
2025.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient LLM training by gradient low-rank projection. In ICLR Workshop
on practical ML for limited/low resource settings, 2024.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Ziyan Yang, and Quanquan Gu. On the convergence of
adaptive gradient methods for nonconvex optimization. TMLR, 2024.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for conver-
gences of adam and rmsprop. In CVPR, 2019.

14

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction are supported by the
following sections:

• In Section 3.1, we show that Adam’s performance in training transformers degrades
under random rotations of the parameter space. In Section 3.2, we demonstrate that
applying SVD-based rotations improves empirical performance.

• In Section 4.1, we examine three existing quantities and show that they fail to explain the
performance changes under rotation. In Section 4.2, we show that update orthogonality
better aligns with performance.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:

• In Section 3.2, we clarify that the purpose of the SVD rotation is not to propose a new
practical optimizer.

• In Section 4.2, we note that the proposed quantity opens the door for future work to
formalize it and incorporate it into theoretical analysis.

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best

15

judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: There are no major theoretical results. For Section 2.1, we provide a proof in
Appendix D for clarity and illustrative purposes, although this is not a novel result, as stated
in the main paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We use standard architectures and datasets commonly used in previous work,
as stated in Section 3. The experimental details and hyperparameters needed to reproduce
the main results are provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

16

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets we use are publicly available and standard. The code to reproduce
our experiments will be made publicly available upon publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and test details are publicly available and follow standard practices.
We provide the full details in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Although the large experiments were too computationally expensive to run
over multiple random seeds, we provide several ablation studies in Appendix C, examining
the dimension of the rotation matrices, numerical stability, and verifying that the same
procedure confirms the rotation invariance of SGD. For the analysis in Section 4, each
experiment is sampled from a specific number of steps from a checkpoint, as described in
the corresponding subsections.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources required are documented in Appendix B.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors confirm that the research was conducted conforming to the Code
of Ethics.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

18

https://neurips.cc/public/EthicsGuidelines

Justification: This paper focuses on foundational research aimed at understanding the
behaviour of generic algorithms used to optimize neural networks. It is not tied to any
specific application, and we do not foresee a direct path to social impact at this stage.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release data or models.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Section 3.1 and Appendix B includes references for the datasets, models,
and code used in this project, along with citations to the original papers and URLs where
available.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

19

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

20

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Understanding Adam Requires Better Rotation
Dependent Assumptions

(Appendix)

1 Introduction 1

2 Preliminaries 3
2.1 Rotational Equivariance of SGD . 4
2.2 Training Neural Networks in Rotated Parameter Spaces 4

3 Influence of Rotation on Adam’s Efficiency 5
3.1 Random Rotations . 5
3.2 Investigating the Performance-Improving Rotations 5

4 Examining Rotation Dependent Assumptions 6
4.1 Adequacy of existing assumptions in theoretical frameworks 6
4.2 Orthogonality of layer updates up to scalar factor 8

5 Related Work 9

6 Discussion 10

A Sampling Random Rotations in High Dimension 23
A.1 High-Dimensional Rotations . 23
A.2 Reflections and Sampling From The Haar Measure 24
A.3 Rotation Residual . 24
A.4 Overall Validation and Impact of FlashAttention 24

B Experimental Details 24
B.1 Rotations Design Choices . 25
B.2 Architectures . 25
B.3 Assumptions Estimation . 26

C Additional Results 26
C.1 Main Experiments . 26
C.2 Architecture Aware Rotation. 27
C.3 Hessian Rows . 28
C.4 Update orthogonality . 30

D Optimization Algorithms with Rotations 32

E SVD Rotations and Muon 40

F Common Assumptions in First-Order Optimization Theory 41

22

A Sampling Random Rotations in High Dimension

This section explains our method of sampling random rotations for high-dimensional spaces and the
implementation details.

A.1 High-Dimensional Rotations

Even small modern machine learning models typically have millions of parameters. Consequently,
storing a d× d rotation matrix is often intractable, let alone performing the dot product required to
rotate the gradient vector. To address this issue, we sample a n× n rotation matrix Rn with n≪ d
uniformly (in the sense of the Haar measure) from the special orthogonal group SO(n), and a random
permutation π of 0, . . . , d− 1. For now, we assume d

n ∈ N, see appendix A.3 for a general case. To
rotate a gradient g, we compute:

g(Rn,π) := π−1 ◦

d/n⊕
i=1

Rn

 (π ◦ g)

 , (1)

= π−1 ◦


Rn

Rn 0
Rn

0
. . .

Rn

 (π ◦ g) , (2)

where
⊕

denotes the direct sum operation, producing a block-diagonal matrix with d/n blocks Rn.
This procedure effectively computes a rotation by blocks of size n picked from a random partition of
indices, constituting a valid rotation.

Intuitively, if n is sufficiently large, we expect this procedure to approximate well the effect of random
rotations sampled uniformly from SO(d), due to the law of large numbers homogenizing geometric
properties across coordinates. To confirm this intuition, we perform an ablation study in Figure 12,
finding that the impact on Adam’s performance saturates well below our operational values.

Our approximation reduces the memory cost from O(d2) to O(n2 + d), and the computational cost
from O(d2) to O(nd). Since batch matrix multiplications required for the rotation can be performed
efficiently on modern GPUs, the final overhead of applying rotations is extremely small.

1.0 6.8 12.6 18.4 24.2 30.0

Iteration (k)

3.100

3.175

3.250

3.325

3.400

Tr
ai

ni
ng

 L
os

s

Rotation dimension
256
512
768
1024
no rotation

Figure 12: Training loss of GPT-2 when training with different rotation dimension n. The loss of
performance is consistent across n at our range.

23

A.2 Reflections and Sampling From The Haar Measure

To sample Rn uniformly from SO(n) with respect to the Haar measure, we employ the QR decompo-
sition trick [Mezzadri, 2007, Ozols, 2009], which samples from the Haar measure µ of the orthogonal
group O(n). Let us consider the projection π : O(n) → SO(n), such that π(R) is R when
R ∈ SO(n), and π(R) simply multiplies the first column of R by −1 when R ∈ O(n) \ SO(n).
The push forward of µ by π is the Haar measure on SO(n). Since Adam is reflection equivariant,
rotating with π(R) and with R will lead to identical performance for any R ∈ O(n). Thus we can
omit to apply π, and simply sample from µ using the QR decomposition method.

Similarly, Adam is permutation equivariant; thus we omit to apply the inverse permutation before
providing the rotated gradients to Adam, and to apply the permutation before rotating the update, as
removing these two steps does not affect performance.

A.3 Rotation Residual

Based on the type of rotation and the chosen dimension n, the number of blocks may not divide
evenly, i.e., d

n /∈ N. To address this issue, we introduce an additional rotation matrix, which we refer
to as the residual matrix, to complete the missing dimensions. More formally, let d represent the
dimensionality of the parameter space, and let n denote the block dimensions of the rotation. We
define b

∆
= ⌊ dn⌋ as the number of complete blocks. The residual matrix R is then sampled from

SO(p), where p
∆
= d− nb. Therefore, eq. (1) becomes

g(Rn,R,π) := π−1 ◦ ([B⊕R] (π ◦ g)) , (3)
(4)

= π−1 ◦
[
B
R

]
(π ◦ g) , (5)

= π−1 ◦


Rn

Rn 0
. . .

0 Rn

R

 (π ◦ g) . (6)

where B =
⊕b

i=1 Rn.

A.4 Overall Validation and Impact of FlashAttention

In Figure 13, we present the training loss when training GPT-2 with SGD without rotations, with global
random rotations using FlashAttention, and with global random rotations without FlashAttention. In
particular, we confirm two important observations:

• Without FlashAttention (the setting we use for our experiments) the performances of SGD
under global random rotation and under no rotations are identical. This validates that our
experimental setting is behaving as expected.

• When we use FlashAttention with rotations, we observe a slight difference in performance.
As explained in Section 2.2, this is due to FlashAttention amplifying numerical errors from
the application of the rotation. Interestingly, likely due to a slight regularization effect, it it
increases training performance.

B Experimental Details

This section provides additional details about the hyperparameters used for the architecture mentioned
in the paper, as well as their optimizer and rotations.

24

20 36 52 68 84 100

Iteration (k)

3.3

3.4

3.5

3.6

3.7

Tr
ai

ni
ng

 L
os

s

SGD
no rotation
global rotation, no flash attention
global rotation, flash attention

Figure 13: SGD performance when applying global random rotations, with and without FlashAtten-
tion.

B.1 Rotations Design Choices

By default, for random rotations we fix the dimension of our rotation matrix Rn at 768 (which is the
hidden dimension and thus makes residual rotations unnecessary for most rotation types). The matrix
is sampled at the start of training, remains fixed throughout, and is shared across blocks the entire
training process.

SVD Rotation. Following [Zhao et al., 2024], this is the only rotation that is dynamic rather than
static. Specifically, we compute the full-rank SVD decomposition of the gradient for each layer every
250 steps (recommended frequency in [Zhao et al., 2024]).

Rotation in Transformers. By default, many implementations store the query, key, and value pa-
rameters within a single linear layer. Thus, we split them to treat them as separate layers, reflecting the
fundamental differences in how their parameters are involved in forward computations. Additionally,
PyTorch stores parameters as tensors in the shape (output_dim, input_dim), but embeddings
are stored as lookup tables in the shape (input_dim, output_dim). For output neuron and input
neuron rotations to behave intuitively, we thus transpose embedding layers before and after rotations.

B.2 Architectures

GPT2 (Transformer). We trained a GPT-2 model with 124M parameters on the OpenWebText
dataset [Gokaslan and Cohen, 2019] using a configuration designed for efficient pretraining. The
model architecture includes 12 layers, 12 attention heads, and a 768-dimensional embedding space,
with no bias in LayerNorm or Linear layers. We employed the AdamW optimizer with a peak learning
rate of 6 × 10−4, β1 = 0.9, β2 = 0.95, and a weight decay of 0.1, applying gradient clipping of
1.0. Training ran for 100,000 iterations (or 30,000 for some smaller ablations), with learning cosine
rate decay starting after a 2,000-iteration warm-up, decaying to a minimum of 6× 10−5. We used a
sequence length of 1024 and micro batch size of 12 with gradient accumulation steps to simulate an
effective batch size of 480 sequences. We additionally tried tuning β2 by using values 0.9 and 0.99.
We found that the base AdamW showed slightly better performance, but the globally rotated model’s
performance decreased with both of these values, meaning further tuning will not close the gap
with the base model. All experiments were performed on four A100 80GB GPUs, leveraging mixed
precision. Unless otherwise specified, all optimizer hyperparameters were shared across experiments
and set to the default values specified in Karpathy [2022].

ViT (Vision Transformer). We trained a Vision Transformer (ViT) model on the ImageNet-1K
dataset [Deng et al., 2009] using the SimpleViT architecture [Beyer et al., 2022]. The model consists

25

of 12 layers, 6 attention heads, a hidden dimension of 384, and an MLP dimension of 1536, with a
patch size of 16 and input image size of 224. The AdamW optimizer was employed with a learning
rate of 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8, and a weight decay of 0.1. We used a cosine learning
rate schedule with 5 warm-up epochs. The training was conducted for 100 epochs with a batch size
of 1024. All experiments were performed with mixed precision.

ResNet-50 (CNN). We trained a ResNet-50 model [He et al., 2015] on the ImageNet-1K dataset
[Deng et al., 2009] using the AdamW optimizer. The optimizer was configured with a learning rate
of 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8, and a weight decay of 0.0001. We employed a cosine
learning rate schedule with 5 warm-up epochs. The training ran for 100 epochs with a batch size of
256.

B.3 Assumptions Estimation

We now outline how we computed empirical estimations of assumptions in Section 4.

L∞-bounded gradient. Algorithm 1 describes the process we use to estimate the bound constant
C̃ of stochastic gradients under L∞ norm, as detailed in section 4.1.

Algorithm 1 Empirical Gradient Bound Estimation for Adam

Require: T : total number of iterations (1000)
Require: wR: last checkpoint obtained by running Adam under rotation R

1: Initialize C̃ ← 0 ▷ Maximum infinity norm of gradients
2: for t← 1 to T do
3: Sample a minibatch Bi ▷ Select one minibatch
4: gBi

← ∇f (R)
Bi

(wR) ▷ Compute gradient for minibatch
5: C̃ ′ ← ∥gBi∥∞ ▷ Compute infinity norm of the gradient
6: C̃ ← max(C̃, C̃ ′) ▷ Update the maximum gradient bound
7: end for
8: return C̃ ▷ Return the estimated gradient bound

(1, 1)-Norm. Using the Hessian rows sampled from GPT-2 checkpoints that were trained under
various rotations in Section 4.1, we estimate ∥H∥(1,1)

d by averaging the L1 norm of sampled rows.
While this could induce a large variance from the sampling of rows, we find that variations of the L1

norms from rotations are fairly homogeneous across rows.

C Additional Results

C.1 Main Experiments

We provide additional results from our main line of experiments.

ViT/S (ImageNet). Figure 14 extends the results from Figure 1b with validation loss and accuracy

1 20 40 60 80 100

Epoch

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Tr
ai

ni
ng

 L
os

s

51

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

1 6 12 18 24 30

Epoch

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Va
lid

at
io

n
Lo

ss

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

1 20 40 60 80 100

Epoch

0

10

20

30

40

50

60

70

80

Va
lid

at
io

n
Ac

cu
ra

cy

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

Figure 14: SimpleViT - Imagenet training loss, validation loss and top-1 validation accuracy

26

ResNet50 (ImageNet). Figure 15 demonstrates that Adam maintains its performance well under
rotational transformations for ResNets. This robustness to rotation implies that Adam gains little
advantage from the standard basis structure in this setting. This finding aligns with the fact that SGD
with extensive tuning can outperform Adam when training these networks.

1 20 40 60 80 100

Epoch

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

ni
ng

 L
os

s

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

1 20 40 60 80 100

Epoch

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Va
lid

at
io

n
Lo

ss

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

1 20 40 60 80 100

Epoch

10

20

30

40

50

60

70

80

Va
lid

at
io

n
Ac

cu
ra

cy

Global Rotation
Layer-Wise
Input-Wise
Output-Wise
No Rotation

Figure 15: Training loss, validation loss and top 1 % validation accuracy, when training a ResNet-50
with Adam on ImageNet across different scopes of rotations.

C.2 Architecture Aware Rotation.

We seek to identify whether certain transformer layer types are more sensitive to rotations than
other, and contribute more to the overall performance degradation observed in Figure 1a when using
layer-wise rotations.

Figure 16 shows the loss curves when rotating only one layer type at a time. We find that the
performance degradation induced by layer-wise rotations is small for most layer types, seemingly
balanced across these layers, with the exception of value and embedding layers.

Layerwise rotation of value layers seem to impact the loss more noticeably than with other layer
types. In Figure 18, we find that reducing the scope of rotations to output neuron wise does not
improve the performance when rotating value layers.

The biggest drop of performances is observed for embedding layers, which we conjecture to be
linked to the discrepancy in frequency across tokens. Figure 17 shows indeed that when rotating
the embedding layer by output neuron (i.e., within weights corresponding to a same token) the
degradation becomes unnoticeable.

10 14 18 22 26 30

Iteration (k)

3.0500

3.0875

3.1250

3.1625

3.2000

Tr
ai

ni
ng

 L
os

s

no rotation
embedding
layer norm
key
query
value
attention projection
mlp
mlp projection

Figure 16: Layer-wise rotation applied to only specific layer types

27

10 14 18 22 26 30

Iteration (k)

3.0500

3.0875

3.1250

3.1625

3.2000

Tr
ai

ni
ng

 L
os

s

no rotation
embedding layer-wise
embedding output-wise

Figure 17: Layer-wise rotation and output-wise
rotation on embedding layers only

10 14 18 22 26 30

Iteration (k)

3.0500

3.0875

3.1250

3.1625

3.2000

Tr
ai

ni
ng

 L
os

s

no rotation
value layer-wise
value output-wise

Figure 18: Layer-wise rotation and output-wise
rotation on attention values only

C.3 Hessian Rows

We use the end checkpoint of GPT-2 to sample rows from the Hessian in different rotated parameter
spaces (see Section 4.1).

From Figure 19 to Figure 25, we present the same figure as in Figure 9, but for rows taken from
different layer types, confirming that the behaviour we observed is consistent across parameter types.
Except for embeddings, rows are always taken from the second Transformer block.

Figure 19: Hessian value distribution of a row in the embedding layer.

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

No Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Global Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Output-wise

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

SVD Rotation

Figure 20: Hessian value distribution of a row in the second Transformer layer norm layer.

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

No Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Global Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Output-wise

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

SVD Rotation

Figure 21: Hessian value distribution of a row in the second Transformer key layer.

28

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

No Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Global Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Output-wise

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

SVD Rotation

Figure 22: Hessian value distribution of a row in the second Transformer query layer.

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

No Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Global Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Output-wise

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

SVD Rotation

Figure 23: Hessian value distribution of a row in the second Transformer value layer.

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

No Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Global Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Output-wise

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

SVD Rotation

Figure 24: Hessian value distribution of a row in the second Transformer mlp layer.

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

No Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Global Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Output-wise

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

SVD Rotation

Figure 25: Hessian value distribution of a row in the second Transformer mlp projection layer.

Figure 26 shows a row in the attention projection layer of the 8-th transformer block, showing our
observations seem also consistent across depth.

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

No Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Global Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

No Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Global Rotation

Figure 26: Hessian value distribution of a row in the eighth Transformer attention projection layer.

29

Figure 27 uses checkpoints trained with the same rotations as the one applied to the Hessian. We find
the same behaviour for no rotations, global and output-wise, but we find that with the SVD-rotated
checkpoints, there is increased variance in the Hessian values outside of the layer.

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Ab
so

lu
e

Va
lu

e
(L

og
)

No Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Global Rotation

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

Output-wise

Neuron Layer Other
10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

SVD Rotation

Figure 27: Hessian value distribution of a row in the second Transformer attention projection layer
from checkpoints that are trained with different rotations.

C.4 Update orthogonality

We aim to measure the orthogonality of the update. Since weight decay is applied directly in parameter
space rather than to the gradient, the update rule (ignoring the bias corrections) becomes:

Wt+1 −Wt = −αtR
⊤ Mt√

Vt + ϵ
− αtλWt, (7)

where

Mt = β1Mt−1 + (1− β1)R∇L(W),

Vt = β2Vt−1 + (1− β2) (R∇L(W) ◦R∇L(W)) .

To isolate the effective update direction, we rewrite the expression as:

Wt+1 − (1− αtλ)Wt

−αt
= R⊤ Mt√

Vt + ϵ
:= A. (8)

Coefficient of variation. Suppose matrix A has singular values {si}. For a scale-invariant measure
of orthogonality, we minimize the normalized root mean square deviation between singular values
and a constant,

min
α

1

µ

√
1

n

∑
i

(si − α)2,

where µs =
1
n

∑
i si is the mean of {si}. The normalization facilitates the comparison between data

with different scales. The solution for this objective is the coefficient of variation (CV), defined as

CV(si) =
σs

µs
,

where σs is the standard deviation of the singular values. CV captures the relative dispersion of
the singular values and is invariant to uniform rescaling of A. This makes it especially suitable for
comparing updates or transformations that differ in magnitude but share underlying structure. Since
an orthogonal matrix has all singular values equal to 1, a lower CV indicates that the singular values
are more tightly clustered, suggesting that A is closer to being orthogonal up to a global scaling.

In Figure 10, we provided a mean variation of the singular values in the update for each layer type,
averaged across the depth of the network using GPT-2. We now expand on this and show the variation
for each individual weight matrix in the network. We display the coefficient of variation of the
singular values of each linear layer’s update. Each of the GPT-2 model’s twelve encoder layer has six
linear layers, four in the attention layer after splitting (to compute Q,K,V and the output projection
O) and two in the MLP block (labeled W1 and W2). We compute the SVD of each update, and
compute the coefficient of variation of the singular values and show the results in Figure 28. For
completeness, we also show this result at the beginning and end of training in Figure 29 and Figure 30
respectively. The trend is clearer and steadier at the end of training.

30

Other metrics. In our experimentation, we considered other metrics to measure orthogonality, with
each finding similar results.

One alternative method is to measure how far the scaled singular values are from 1:

1

n

n∑
i=1

(αsi − 1)2

where α is a scaling factor shared across the singular values si of the update. For a set of singular
values {s1, . . . , sn}, the optimal scaling factor is

α∗ =

n∑
i=1

si∑n
i=1 s

2
i

.

We display measures at the start, middle, and end of training in Figure 31 respectively. We found this
to be strongly correlated with the coefficient of variation of {si}.

Similarly, another measure of semi-orthogonality is how close AA⊤ is to the identity matrix I. The
objective being

min
α

1

µ

√
1

n
∥AA⊤ − αI∥2F =

σλ

µλ
= CV(λ),

where λ = s2i are the eigenvalues of AA⊤, and σλ and µλ are the standard deviation and mean of λ.

To see this, since AA⊤ is symmetric, so it has an eigendecomposition by the Spectral theorem, i.e.
AA⊤ = QΛQ−1 where Q is an orthogonal matrix. Then,

QΛQ−1 − αI

QΛQ−1 − αQQ−1

QΛQ−1 − αQQ−1

Q(Λ− αI)Q−1

Then, using the circulant property of the trace, we have

∥Q(Λ− αI)Q−1∥2F = Tr
(
(Q(Λ− αI)Q−1)⊤Q(Λ− αI)Q−1

)
= Tr

(
Q(Λ− αI)⊤Q−1Q(Λ− αI)Q−1

)
= Tr

(
Q(Λ− αI)⊤(Λ− αI)Q−1

)
= Tr

(
Q−1Q(Λ− αI)⊤(Λ− αI)

)
= Tr

(
(Λ− αI)⊤(Λ− αI)

)
=

n∑
i=1

(λi − α)2

= nσ2
λ Substituting optimal α∗

The optimal α∗ in this case is µλ. The normalization by mean assures scale invariance, and yields a
coefficient of variation of λ. We show this metric in Figure 32.

Instead, if the scaling factor is used on the symmetric matrix AA⊤, we have the objective

min
α

√
1

n
∥αAA⊤ − I∥2F ,

which is already scale invariant and yields the optimal scaling factor α∗ =
∑n

i=1
λi∑n

i=1 λ2
i

. We also
plot this metric in Figure 33.

31

Additionally, Liu and Su [2025] use a metric inspired by the signal processing literature called the
SVD entropy to study Muon updates, which is defined as follows.

H(s) = − 1

log(n)

n∑
i=1

s2i∑n
j=1 s

2
j

log

(
s2i∑n
j=1 s

2
j

)

We also computed this metric, and it again strongly correlated with the coefficient of variation. We
display measures at the start, middle, and end of training in Figure 34 and note that larger is better for
this metric, in contrast to the others we consider. While all metrics showed roughly the same trends,
we focus on the coefficient of variation of singular values for simplicity.

D Optimization Algorithms with Rotations

We remind here the SGD-M algorithm in Algorithm 2, AdamW algorithm (pseudocode) in Algo-
rithm 3, and provide a rotated version in Algorithm 4.

Algorithm 2 SGD Momentum Optimization Algorithm

Require: α: stepsize
Require: β: momentum parameter
Require: λ: weight decay coefficient
Require: f(θ): stochastic objective function with parameters θ

1: Initialize θ0, t← 0
2: while θt not converged do
3: t← t+ 1
4: gt ← ∇θft(θt−1) ▷ Get gradients w.r.t. stochastic objective at timestep t
5: θt ← θt−1 − αgt + β(θt−1 − θt−2)− αλθt−1 ▷ Update parameters
6: end while
7: return θt ▷ Return the final parameters

Proof of section 2.1. Using the notation of Section 2, we consider SGD with momentum with learn-
ing rate η, momentum parameter β, and fixed batches Bt:

wt+1 = A({wi}, f, t) = wt − η∇fBt
(wt) + β(wt −wt−1),

By the chain rule,∇f (R)
Bt

(wt) = R∇fBt(R
⊤wt), hence:

w
(R)
t+1 := A({Rwi}i=0,...,t, f

(R), t)

= Rwt − ηR∇fBt(R
⊤Rwt) + β(Rwt −Rwt−1)

= Rwt − ηR∇fBt(wt) + βR(wt −wt−1)

= Rwt+1

matching Definition 1.

While the SVD rotation we use in the AdamW algorithm can be represented as in Algorithm 4
mathematically for a specific choice in R, for clarity and to match our implementation, we write the
SVD rotated AdamW in Algorithm 5. In our experiments, the SVD update frequency 𭟋 was set to
250 steps. We note that while the other rotations we study are written as matrix-vector products, the
SVD rotation is written as a left and right matrix product on the gradient matrix. These can be shown
to be mathematically equivalent, but we clarify given the standard practice of writing the gradient as
a vector.

We consider the heavy ball formulation here [Polyak, 1964], but the same would hold for Nesterov
Accelerated Gradient [Nesterov, 1983].

32

0.8

1.0

1.2

1.4

1.6

La
ye

r
1

WQ

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5
WK

0.8

1.0

1.2

1.4

1.6

1.8

2.0
WV

0.8

1.0

1.2

1.4

1.6

1.8

WO

0.40

0.45

0.50

0.55

0.60

0.65

0.70

MLP W1

0.5

0.6

0.7

0.8

0.9
MLP W2

1.25

1.50

1.75

2.00

2.25

2.50

2.75

La
ye

r
2

1.5

2.0

2.5

3.0

3.5

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.2

1.4

1.6

1.8

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.8

1.0

1.2

1.4

1.6

La
ye

r
3

1.0

1.2

1.4

1.6

0.9

1.0

1.1

1.2

1.3

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0.4

0.5

0.6

0.7

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

La
ye

r
4

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.8

0.9

1.0

1.1

1.2

La
ye

r
5

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

1.2

0.8

0.9

1.0

1.1

0.35

0.40

0.45

0.50

0.55

0.60

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.8

0.9

1.0

1.1

1.2

La
ye

r
6

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

1.2

0.8

0.9

1.0

1.1

0.35

0.40

0.45

0.50

0.55

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.8

0.9

1.0

1.1

1.2

La
ye

r
7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

0.35

0.40

0.45

0.50

0.55

0.40

0.45

0.50

0.55

0.60

0.65

0.8

0.9

1.0

1.1

1.2

1.3

1.4

La
ye

r
8

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.8

0.9

1.0

1.1

0.35

0.40

0.45

0.50

0.55

0.40

0.45

0.50

0.55

0.60

0.65

0.8

0.9

1.0

1.1

1.2

1.3

La
ye

r
9

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0.8

0.9

1.0

1.1

1.2

0.35

0.40

0.45

0.50

0.55

0.40

0.45

0.50

0.55

0.60

0.65

0.8

1.0

1.2

1.4

1.6

La
ye

r
10

0.8

1.0

1.2

1.4

1.6

1.8

0.8

1.0

1.2

1.4

1.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.35

0.40

0.45

0.50

0.55

0.40

0.45

0.50

0.55

0.60

0.8

0.9

1.0

1.1

La
ye

r
11

0.8

0.9

1.0

1.1

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

0.35

0.40

0.45

0.50

0.55

0.40

0.45

0.50

0.55

0.60

50000 50100 50200 50300 50400 50500

0.8

0.9

1.0

1.1

La
ye

r
12

50000 50100 50200 50300 50400 50500

0.8

0.9

1.0

1.1

50000 50100 50200 50300 50400 50500

0.8

0.9

1.0

1.1

1.2

1.3

50000 50100 50200 50300 50400 50500

0.8

0.9

1.0

1.1

1.2

50000 50100 50200 50300 50400 50500
0.35

0.40

0.45

0.50

0.55

0.60

50000 50100 50200 50300 50400 50500

0.4

0.5

0.6

0.7

0.8

Step

Si
ng

ul
ar

 V
al

ue
 V

ar
ia

tio
n

No Rotation Full Rotation Output Rotation SVD Rotation

Figure 28: Singular value variation during training. We measure the variation of the singular values
of each update of AdamW under various rotations for every linear layer in each GPT2 encoder
block. While not universal, we find that a majority of the time, the SVD rotations leads to the lowest
variation, while the global rotations leads to the highest. Additionally, we see that recomputing the
SVD matrices (at 50000 and 50250 steps) leads to a downward spike in the variation.

33

0.5

1.0

1.5

2.0

2.5

3.0

3.5

La
ye

r
1

WQ

1

2

3

4

5
WK

1

2

3

4

5

6

7

WV

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
WO

0.50

0.75

1.00

1.25

1.50

1.75

2.00

MLP W1

0.5

1.0

1.5

2.0

2.5

3.0

3.5

MLP W2

1

2

3

4

5

La
ye

r
2

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1

2

3

4

5

6

1

2

3

4

5

6

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

1

2

3

4

5

La
ye

r
3

1

2

3

4

5

1

2

3

4

5

6

7

1

2

3

4

5

6

7

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

1

2

3

4

5

La
ye

r
4

1

2

3

4

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5

1.0

1.5

2.0

2.5

3.0

1

2

3

4

La
ye

r
5

1

2

3

4

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1

2

3

4

5

La
ye

r
6

1

2

3

4

5

2

4

6

8

2

4

6

8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1

2

3

4

5

6

La
ye

r
7

1

2

3

4

5

6

7

2

4

6

8

2

4

6

8

1

2

3

4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1

2

3

4

5

La
ye

r
8

1

2

3

4

5

6

2

4

6

8

10

2

4

6

8

10

1

2

3

4

5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1

2

3

4

5

6

La
ye

r
9

1

2

3

4

5

6

2

4

6

8

10

2

4

6

8

10

1

2

3

4

5

1

2

3

4

1

2

3

4

5

6

La
ye

r
10

1

2

3

4

5

6

7

2

4

6

8

10

2

4

6

8

10

1

2

3

4

5

1

2

3

4

1

2

3

4

5

6

7

La
ye

r
11

1

2

3

4

5

6

2

4

6

8

10

12

2

4

6

8

10

12

1

2

3

4

5

1

2

3

4

5

0 100 200 300 400 500

1

2

3

4

5

6

7

La
ye

r
12

0 100 200 300 400 500

1

2

3

4

5

6

7

0 100 200 300 400 500

2

4

6

8

10

12

0 100 200 300 400 500

2

4

6

8

10

12

0 100 200 300 400 500

1

2

3

4

5

0 100 200 300 400 500

1

2

3

4

5

Step

Si
ng

ul
ar

 V
al

ue
 V

ar
ia

tio
n

No Rotation Full Rotation Output Rotation SVD Rotation

Figure 29: Singular value variation at the beginning of training. While the variation increases at
initialization, we see it begin to trend downwards, notably after the SVD is recomputed.

34

0.8

1.0

1.2

1.4

1.6

La
ye

r
1

WQ

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5
WK

0.8

1.0

1.2

1.4

1.6

1.8

2.0
WV

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

WO

0.40

0.45

0.50

0.55

0.60

0.65

0.70

MLP W1

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

MLP W2

1.2

1.4

1.6

1.8

2.0

La
ye

r
2

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0.9

1.0

1.1

1.2

1.3

0.4

0.5

0.6

0.7

0.8

0.9

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

La
ye

r
3

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0.8

0.9

1.0

1.1

1.2

1.3

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.8

0.9

1.0

1.1

1.2

1.3

1.4

La
ye

r
4

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.8

0.9

1.0

1.1

1.2

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.4

0.5

0.6

0.7

0.8

0.9

0.8

0.9

1.0

1.1

1.2

1.3

1.4

La
ye

r
5

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.8

0.9

1.0

1.1

1.2

1.3

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.4

0.5

0.6

0.7

0.8

0.9

0.8

0.9

1.0

1.1

La
ye

r
6

0.8

0.9

1.0

1.1

1.2

0.8

0.9

1.0

1.1

1.2

1.3

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.35

0.40

0.45

0.50

0.55

0.60

0.4

0.5

0.6

0.7

0.8

0.9

0.8

0.9

1.0

1.1

1.2

1.3

La
ye

r
7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0.35

0.40

0.45

0.50

0.55

0.60

0.4

0.5

0.6

0.7

0.8

0.8

0.9

1.0

1.1

1.2

1.3

1.4

La
ye

r
8

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.8

0.9

1.0

1.1

0.35

0.40

0.45

0.50

0.55

0.4

0.5

0.6

0.7

0.8

0.8

0.9

1.0

1.1

1.2

1.3

1.4

La
ye

r
9

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.8

0.9

1.0

1.1

0.35

0.40

0.45

0.50

0.55

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.8

1.0

1.2

1.4

1.6

La
ye

r
10

0.8

1.0

1.2

1.4

1.6

1.8

0.8

1.0

1.2

1.4

1.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0.35

0.40

0.45

0.50

0.55

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.8

0.9

1.0

1.1

1.2

La
ye

r
11

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

1.2

1.3

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.35

0.40

0.45

0.50

0.55

0.40

0.45

0.50

0.55

0.60

0.65

0.70

100000 100100 100200 100300 100400 100500

0.8

0.9

1.0

1.1

1.2

La
ye

r
12

100000 100100 100200 100300 100400 100500

0.8

0.9

1.0

1.1

1.2

100000 100100 100200 100300 100400 100500

0.8

0.9

1.0

1.1

1.2

1.3

100000 100100 100200 100300 100400 100500

0.8

0.9

1.0

1.1

1.2

100000 100100 100200 100300 100400 100500
0.35

0.40

0.45

0.50

0.55

0.60

100000 100100 100200 100300 100400 100500

0.4

0.5

0.6

0.7

0.8

0.9

Step

Si
ng

ul
ar

 V
al

ue
 V

ar
ia

tio
n

No Rotation Full Rotation Output Rotation SVD Rotation

Figure 30: Singular value variation at the end of training. Except for a few layers, we see the variation
hold relatively stably aside from when the SVD is recomputed.

35

0 100 200 300 400 500

0.2

0.4

0.6

0.8

WQ

0 100 200 300 400 500

0.4

0.6

0.8

1.0
WV

0 100 200 300 400 500

0.2

0.4

0.6

0.8

MLP W1

0 100 200 300 400 500

0.2

0.4

0.6

0.8

WK

0 100 200 300 400 500

0.5

0.6

0.7

0.8

0.9

1.0
WO

0 100 200 300 400 500

0.2

0.4

0.6

0.8

MLP W2

Si
ng

ul
ar

 V
al

ue
 V

ar
ia

tio
n

No Rotation Full Rotation Output Rotation SVD Rotation

50000 50100 50200 50300 50400 50500

0.40

0.45

0.50

0.55

0.60

WQ

50000 50100 50200 50300 50400 50500

0.4

0.5

0.6

WV

50000 50100 50200 50300 50400 50500
0.10

0.15

0.20

0.25

MLP W1

50000 50100 50200 50300 50400 50500

0.40

0.45

0.50

0.55

0.60

WK

50000 50100 50200 50300 50400 50500

0.40

0.45

0.50

0.55

WO

50000 50100 50200 50300 50400 50500

0.15

0.20

0.25

0.30

MLP W2

Si
ng

ul
ar

 V
al

ue
 V

ar
ia

tio
n

No Rotation Full Rotation Output Rotation SVD Rotation

100000 100100 100200 100300 100400 100500

0.4

0.5

0.6

WQ

100000 100100 100200 100300 100400 100500

0.4

0.5

0.6

WV

100000 100100 100200 100300 100400 100500
0.10

0.15

0.20

0.25

MLP W1

100000 100100 100200 100300 100400 100500

0.40

0.45

0.50

0.55

0.60

0.65
WK

100000 100100 100200 100300 100400 100500

0.40

0.45

0.50

0.55

WO

100000 100100 100200 100300 100400 100500

0.2

0.3

0.4
MLP W2

Si
ng

ul
ar

 V
al

ue
 V

ar
ia

tio
n

No Rotation Full Rotation Output Rotation SVD Rotation

Figure 31: An alternative variation metric for singular values described in Appendix C.4 throughout
training, averaged over network depth. We see similar results to the coefficient of variation.

36

0 100 200 300 400 500

5

10

15

20
WQ

0 100 200 300 400 500

5

10

15

20

25
WV

0 100 200 300 400 500

5

10

15

20
MLP W1

0 100 200 300 400 500

5

10

15

WK

0 100 200 300 400 500

5

10

15

20

25
WO

0 100 200 300 400 500

5

10

15

20

MLP W2

E
ig

en
va

lu
e

Va
ri

at
io

n

No Rotation Full Rotation Output Rotation SVD Rotation

50000 50100 50200 50300 50400 50500

1.5

2.0

2.5

3.0

3.5

4.0

WQ

50000 50100 50200 50300 50400 50500

2

3

4

5

6

WV

50000 50100 50200 50300 50400 50500

1.0

1.5

2.0

MLP W1

50000 50100 50200 50300 50400 50500

2.0

2.5

3.0

3.5

4.0

WK

50000 50100 50200 50300 50400 50500

2

3

4

5

6

WO

50000 50100 50200 50300 50400 50500

1

2

3

MLP W2

E
ig

en
va

lu
e

Va
ri

at
io

n

No Rotation Full Rotation Output Rotation SVD Rotation

100000 100100 100200 100300 100400 100500

2

3

4

WQ

100000 100100 100200 100300 100400 100500

2

3

4

5
WV

100000 100100 100200 100300 100400 100500

1.0

1.5

2.0

MLP W1

100000 100100 100200 100300 100400 100500

2

3

4

WK

100000 100100 100200 100300 100400 100500

1.5

2.0

2.5

3.0

3.5
WO

100000 100100 100200 100300 100400 100500

1

2

3

4

5

MLP W2

E
ig

en
va

lu
e

Va
ri

at
io

n

No Rotation Full Rotation Output Rotation SVD Rotation

Figure 32: The coefficient of variation of the eigenvalues described in Appendix C.4 throughout
training, averaged over network depth. We see similar results to the coefficient of variation.

37

0 100 200 300 400 500

0.5

0.6

0.7

0.8

0.9

1.0
WQ

0 100 200 300 400 500

0.80

0.85

0.90

0.95

1.00
WV

0 100 200 300 400 500

0.6

0.7

0.8

0.9

1.0
MLP W1

0 100 200 300 400 500

0.5

0.6

0.7

0.8

0.9

1.0
WK

0 100 200 300 400 500

0.80

0.85

0.90

0.95

1.00
WO

0 100 200 300 400 500

0.7

0.8

0.9

1.0
MLP W2

E
ig

en
va

lu
e

Va
ri

at
io

n

No Rotation Full Rotation Output Rotation SVD Rotation

50000 50100 50200 50300 50400 50500

0.70

0.75

0.80

0.85

0.90

0.95
WQ

50000 50100 50200 50300 50400 50500

0.7

0.8

0.9

WV

50000 50100 50200 50300 50400 50500
0.3

0.4

0.5

0.6

0.7

0.8
MLP W1

50000 50100 50200 50300 50400 50500

0.70

0.75

0.80

0.85

0.90

0.95
WK

50000 50100 50200 50300 50400 50500

0.7

0.8

0.9

WO

50000 50100 50200 50300 50400 50500

0.4

0.6

0.8

MLP W2

E
ig

en
va

lu
e

Va
ri

at
io

n

No Rotation Full Rotation Output Rotation SVD Rotation

100000 100100 100200 100300 100400 100500

0.7

0.8

0.9

WQ

100000 100100 100200 100300 100400 100500

0.7

0.8

0.9

WV

100000 100100 100200 100300 100400 100500
0.3

0.4

0.5

0.6

0.7

0.8

MLP W1

100000 100100 100200 100300 100400 100500

0.7

0.8

0.9

WK

100000 100100 100200 100300 100400 100500

0.65

0.70

0.75

0.80

0.85

0.90

WO

100000 100100 100200 100300 100400 100500

0.4

0.6

0.8

MLP W2

E
ig

en
va

lu
e

Va
ri

at
io

n

No Rotation Full Rotation Output Rotation SVD Rotation

Figure 33: The variation eigenvalues of the scaled AA⊤ described in Appendix C.4 throughout
training, averaged over network depth. We see similar results to the coefficient of variation.

38

0 100 200 300 400 500

0.4

0.6

0.8

WQ

0 100 200 300 400 500

0.2

0.4

0.6

0.8
WV

0 100 200 300 400 500

0.4

0.6

0.8

MLP W1

0 100 200 300 400 500

0.4

0.6

0.8

WK

0 100 200 300 400 500

0.2

0.4

0.6

0.8

WO

0 100 200 300 400 500

0.2

0.4

0.6

0.8

MLP W2

SV
D

 E
nt

ro
py

No Rotation Full Rotation Output Rotation SVD Rotation

50000 50100 50200 50300 50400 50500

0.75

0.80

0.85

WQ

50000 50100 50200 50300 50400 50500

0.70

0.75

0.80

0.85

WV

50000 50100 50200 50300 50400 50500

0.90

0.92

0.94

0.96

MLP W1

50000 50100 50200 50300 50400 50500

0.75

0.80

0.85

WK

50000 50100 50200 50300 50400 50500

0.75

0.80

0.85

WO

50000 50100 50200 50300 50400 50500

0.850

0.875

0.900

0.925

0.950

MLP W2

SV
D

 E
nt

ro
py

No Rotation Full Rotation Output Rotation SVD Rotation

100000 100100 100200 100300 100400 100500

0.70

0.75

0.80

0.85

WQ

100000 100100 100200 100300 100400 100500

0.70

0.75

0.80

0.85

WV

100000 100100 100200 100300 100400 100500

0.90

0.92

0.94

0.96

MLP W1

100000 100100 100200 100300 100400 100500

0.70

0.75

0.80

0.85

WK

100000 100100 100200 100300 100400 100500

0.775

0.800

0.825

0.850

0.875

WO

100000 100100 100200 100300 100400 100500

0.80

0.85

0.90

0.95

MLP W2

SV
D

 E
nt

ro
py

No Rotation Full Rotation Output Rotation SVD Rotation

Figure 34: The SVD Entropy metric described in [Liu and Su, 2025] throughout training, averaged
over network depth. We see similar results to the coefficient of variation, noting that higher is better
for this metric.

39

Algorithm 3 AdamW Optimization Algorithm

Require: α: stepsize
Require: β1, β2 ∈ [0, 1): exponential decay rates for moment estimates
Require: λ: weight decay coefficient
Require: ϵ: small constant for numerical stability
Require: f(θ): stochastic objective function with parameters θ

1: Initialize θ0, m0 ← 0, v0 ← 0, t← 0
2: while θt not converged do
3: t← t+ 1
4: gt ← ∇θft(θt−1) ▷ Get gradients w.r.t. stochastic objective at timestep t
5: mt ← β1mt−1 + (1− β1)gt ▷ Update biased first moment estimate
6: vt ← β2vt−1 + (1− β2)g

2
t ▷ Update biased second raw moment estimate

7: m̂t ←mt/(1− βt
1) ▷ Compute bias-corrected first moment estimate

8: v̂t ← vt/(1− βt
2) ▷ Compute bias-corrected second raw moment estimate

9: θt ← θt−1 − αm̂t/(
√
v̂t + ϵ)− αλθt−1 ▷ Update parameters

10: end while
11: return θt ▷ Return the final parameters

Algorithm 4 AdamW Optimization Algorithm with Rotation

Require: α: stepsize
Require: β1, β2 ∈ [0, 1): exponential decay rates for moment estimates
Require: λ: weight decay coefficient
Require: ϵ: small constant for numerical stability
Require: f(θ): stochastic objective function with parameters θ

1: Initialize θ0, m0 ← 0, v0 ← 0, t← 0
2: while θt not converged do
3: t← t+ 1
4: gt ← ∇θft(θt−1) ▷ Get gradients w.r.t. stochastic objective at timestep t
5: g̃t = Rgt ▷ Apply rotation to gradients
6: mt ← β1mt−1 + (1− β1)g̃t ▷ Update biased first moment estimate
7: vt ← β2vt−1 + (1− β2)g̃

2
t ▷ Update biased second raw moment estimate

8: m̂t ←mt/(1− βt
1) ▷ Compute bias-corrected first moment estimate

9: v̂t ← vt/(1− βt
2) ▷ Compute bias-corrected second raw moment estimate

10: θt ← θt−1 − αR−1(m̂t/(
√
v̂t + ϵ))− αλθt−1 ▷ Update parameters

11: end while
12: return θt ▷ Return the final parameters

E SVD Rotations and Muon

Recently, Jordan et al. [2024] proposed Muon, an optimization algorithm for the internal linear layers
of neural networks. This algorithm departed from various modifications of Adam on favour of using
an “orthogonalized" matrix update. We write the Muon algorithm in Algorithm 6. We note that a
simpler version of the algorithm is described in [Jordan et al., 2024], however, their implementation
and the description in subsequent work is as described in Algorithm 6. We additionally make a
notational switch to emphasize that Muon acts only on the matrices of internal layers, Jordan et al.
[2024] recommends using a different update scheme (e.g., AdamW) on vector-valued parameters
such as bias vectors or LayerNorm parameters (along with the embedding and prediction layer in
transformers). We write parameters at time t as Θt and their gradients as Gt.

Muon’s normalization and orthogonalization step aims to drive the singular values of the update
towards one. That is, if B′

t has the Singular Value Decomposition USV⊤, Muon aims to have the
update approximate UV⊤. The approximation is computed through an iterative algorithm inspired
by the Newton-Schulz method. We show that under simplifications, this is the same update recovered
by SVD Rotated Adam(W). If we let β1 = β2 = ϵ = 0 in Adam(W) and compute a single step
update with rotation, the numerator and denominator terms become the singular values of the gradient
matrix, which cancel, and the rotation back to the original basis leaves us with UV⊤. Mathematically,

40

Algorithm 5 AdamW Optimization Algorithm with SVD Rotation

Require: α: stepsize
Require: β1, β2 ∈ [0, 1): exponential decay rates for moment estimates
Require: λ: weight decay coefficient
Require: ϵ: small constant for numerical stability
Require: 𭟋: a frequency at which to update the SVD matrices
Require: f(θ): stochastic objective function with parameters θ

1: Initialize θ0, m0 ← 0, v0 ← 0, t← 0
2: while θt not converged do
3: t← t+ 1
4: gt ← ∇θft(θt−1) ▷ Get gradients w.r.t. stochastic objective at timestep t
5: if t mod 𭟋 = 0 then
6: U,S,V⊤ ← SVD(gt) ▷ Calculate the Singular Value Decomposition of gt

7: end if
8: g̃t = U⊤gtV ▷ Apply rotation to gradients
9: mt ← β1mt−1 + (1− β1)g̃t ▷ Update biased first moment estimate

10: vt ← β2vt−1 + (1− β2)g̃t
2
t ▷ Update biased second raw moment estimate

11: m̂t ←mt/(1− βt
1) ▷ Compute bias-corrected first moment estimate

12: v̂t ← vt/(1− βt
2) ▷ Compute bias-corrected second raw moment estimate

13: θt ← θt−1 − αU(m̂t/(
√
v̂t + ϵ))V⊤ − αλθt−1 ▷ Update parameters

14: end while
15: return θt ▷ Return the final parameters

Algorithm 6 Muon Optimization Algorithm

Require: α: stepsize
Require: µ: Nesterov momentum parameter
Require: λ: weight decay coefficient
Require: ϵ: small constant for numerical stability
Require: f(Θ): stochastic objective function with parameters Θ

1: Initialize Θ0, B0 ← 0, t← 0
2: while Θt not converged do
3: t← t+ 1
4: Gt ← ∇Θft(Θt−1) ▷ Get gradients w.r.t. stochastic objective at timestep t
5: Bt ← µBt−1 +Gt ▷ Update momentum buffer
6: B′

t ← µBt +Gt ▷ Apply Nesterov Momentum
7: B̃t ← B′

t/(∥B′
t∥F + ϵ) ▷ Normalize the update

8: Ot ← NewtonSchulz5(B̃t) ▷ Approximately orthogonalize the update
9: Θt ← Θt−1 − αOt − αλΘt−1 ▷ Update parameters

10: end while
11: return Θt ▷ Return the final parameters

let USV⊤ be the SVD of gradient G. Then, the SVD Rotated Adam(W) numerator becomes
M = U⊤GV = U⊤USV⊤V = S. Similarly, the denominator is the entry-wise square of the
rotated gradient, which leaves us with V = S2. Then, computing the update M/

√
V leaves us with

S/S which is the identity. The final step in the algorithm is to rotate this update back, which is done
by UIV⊤, leaving us with the Muon update.

While this setting is an oversimplification (the momentum parameters are often crucial for perfor-
mance), it does offer an interesting connection between Adam’s update in a different basis and more
recent algorithms like Muon or Shampoo [Gupta et al., 2018].

F Common Assumptions in First-Order Optimization Theory

We present a non-exhaustive summary of common assumptions used in theoretical works for first-
order optimization, see Table 2. For each assumption, we indicate whether it is rotation invariant.

41

Assumption Rotation-Invariant
(Strong-) Convexity ✓
Polyak-Lojasiewicz [Polyak, 1963] ✓
Star-(Strong)-Convexity [Guille-Escuret et al., 2020] ✓
Quadratic Growth [Goujaud et al., 2022] ✓
L-Smoothness (L2 norm) [Défossez et al., 2022, Zhou et al., 2024] ✓
Gradient Growth Condition [Zhang et al., 2022] ✓
Bounded Expected Gradient Squared Norm [Zou et al., 2019] ✓
(L0, L1)-Smoothness [Li et al., 2023b] ✓
Restricted Secant Inequality [Guille-Escuret et al., 2022] ✓
Error Bound [Luo and Tseng, 1993, Guille-Escuret et al., 2024] ✓
L-smoothness (L∞ norm)[Guo et al., 2022] ✗
Coordinate-wise (L0, L1)-Smoothness [Crawshaw et al., 2022] ✗
Coordinate-wise “Affine” Variance Noise [Li and Lin, 2024] ✗
Bounded Gradient (L∞) [Reddi et al., 2018] ✗

Table 2: Common assumptions involved in first-order optimization algorithm, indicating whether
they are rotation-invariant. Rotation-dependent assumptions are comparatively rare in the literature.

42

	Introduction
	Preliminaries
	Rotational Equivariance of SGD
	Training Neural Networks in Rotated Parameter Spaces

	Influence of Rotation on Adam’s Efficiency
	Random Rotations
	Investigating the Performance-Improving Rotations

	Examining Rotation Dependent Assumptions
	Adequacy of existing assumptions in theoretical frameworks
	Orthogonality of layer updates up to scalar factor

	Related Work
	Discussion
	Sampling Random Rotations in High Dimension
	High-Dimensional Rotations
	Reflections and Sampling From The Haar Measure
	Rotation Residual
	Overall Validation and Impact of FlashAttention

	Experimental Details
	Rotations Design Choices
	Architectures
	Assumptions Estimation

	Additional Results
	Main Experiments
	Architecture Aware Rotation.
	Hessian Rows
	Update orthogonality

	Optimization Algorithms with Rotations
	SVD Rotations and Muon
	Common Assumptions in First-Order Optimization Theory

