Under review as a conference paper at ICLR 2025

OPTIBENCH: BENCHMARKING LARGE LANGUAGE
MODELS IN OPTIMIZATION MODELING WITH
EQUIVALENCE-DETECTION EVALUATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In operations research (OR), formulating optimization problems in industrial ap-
plications is often time-consuming and requires specialized expertise. Recently,
large language models (LLMs) have shown remarkable potential to automate this
process. However, evaluating the performance of LLMs in optimization modeling
remains challenging due to the scarcity of suitable datasets and rigorous evalua-
tion methodologies. To reduce this gap, we introduce OptiBench, a new bench-
mark designed to assess LLMs’ ability to formulate linear programming (LP) and
mixed-integer linear programming (MILP) models. OptiBench provides a diverse
dataset covering 816 optimization modeling word problems across 16 problem
classes and over 80 practical domains. It also adopts a model-data separation for-
mat with 2 levels of description abstraction. The dataset exhibits the complexity
of real-world optimization problems compared to traditional textbook examples.
OptiBench incorporates a new evaluation method based on a modified Weisfeiler-
Lehman graph isomorphism test (WL-test) algorithm. We theoretically prove that
this method can correctly judge whether two models are equivalent or not, set-
ting a new standard for automatically validating the correctness of optimization
modeling. We benchmark various LLMs using OptiBench and observe significant
performance differences. GPT-40 by direct prompting achieves 49.39% overall
accuracy, outperforming other models and LLM-based agents, including OpenAl
ol (preview and mini). Notably, GPT-40’s performance varies across different
problem classes, achieving over 90% accuracy on the knapsack problem class but
falling below 5% on the traveling salesman problem class. These findings provide
new insights into the strengths and limitations of LLMs in optimization modeling.

1 INTRODUCTION

Operations Research (OR) is a discipline that employs advanced analytical methods, such as mathe-
matical modeling and optimization techniques, to aid decision-making and problem-solving in com-
plex systems Hillier & Lieberman (2015). OR methods play an important role in various industries
such as logistics, manufacturing, finance, and healthcare, optimizing processes and resources to en-
hance efficiency and productivity Winston (2004). However, the formulation of optimization models
is often a complex task that requires a collaborative effort between domain experts, who possess
deep knowledge of the industry practices, and optimization experts, who are skilled in translating
real-world problems into mathematical models and applying solution techniques Vineetha & Shiyas
(2020). Such collaboration often demands significant time and expertise, which can pose a signifi-
cant barrier to the widespread adoption of OR methods.

To address this challenge, there is an increasing demand for automated modeling tools that can
bridge the gap between textual problem descriptions and mathematical models. Automating the
modeling process can reduce reliance on experts, enhance accessibility for non-experts, and expe-
dite decision-making processes [Kushman et al. (2014) and Miyani et al. (2015)). Such tools have
the potential to democratize access to OR techniques, enabling a broader range of practitioners to
leverage optimization in their operations.

Under review as a conference paper at ICLR 2025

Recent advancements in Large Language Models (LLMs), such as GPT-4 OpenAl et al. (2023) and
Llama-3 Dubey et al.|(2024)), have demonstrated remarkable capabilities in understanding, reason-
ing, and planning |Ouyang et al.| (2022); |Achiam et al.| (2023); |[Radford et al.| (2019); [Song et al.
(2024). These models have been successfully applied in various domains, including code generation
Chen et al.|(2021) and mathematical theorem proving|Yang et al. (2023)), showcasing their potential
in tasks that require comprehension of complex language and logical structures. Consequently, there
have been attempts to leverage LLMs for automatic optimization modeling, including LLM-based
agent Xiao et al.| (2023)); |/ AhmadiTeshnizi et al.[(2024) and fine-tuning LLM for optimization mod-
eling [Tang et al.| (2024). However, benchmarking the modeling ability of LLMs in OR remains a
challenging endeavor.

One significant challenge is the absence of comprehensive benchmark datasets specifically designed
for evaluating the optimization modeling capabilities of LLMs. Existing datasets often include both
problem description and numerical data in the promptRamamonjison et al. (2022a); |Xiao et al.
(2023)). This setting extremely limits the problem size, which is not reflective of practical modeling
problems where data is typically large-scale and independent of the modeling proces§AplO et al.|
Moreover, these datasets lack comprehensiveness, often evaluating models over a single or limited
level of complexity, and failing to capture the diverse range of problems encountered in real-world
applications.

Another challenge lies in the evaluation process, which is frequently imprecise and time-consuming.
Verification of the generated models often relies solely on solving the optimization problem and
comparing the solutions AhmadiTeshnizi et al. (2024); Xiao et al.| (2023)), but many Mixed-Integer
Linear Programming (MILP) problems are NP-hard and may not reach globally optimal solutions
within a reasonable timeframe |Chen et al.|(2022b). This reliance on solvers for verification makes
it difficult to accurately assess the correctness and quality of the generated models, as suboptimal
solutions or solver timeouts can obscure the evaluation Han et al. (2023).

In this paper, we address these challenges by introducing a comprehensive benchmark dataset and
an evaluation tool grounded in a principled and theoretically supported paradigm. Our contributions
are threefold:

1. Benchmark Dataset with Comprehensive Problem Features: We develop a set of 816
word problems with a clear separation between model and data, closely mimicking real-
world business problems. The dataset is constructed through a hierarchical reverse data
evolution pipeline, allowing controlled generation of problem instances with varying com-
plexity across 16 problem classes in LPs and MILPS, over 80 practical domains, and 2
levels of abstraction. Each problem is rigorously verified by OR experts to ensure accu-
racy and relevance. This approach enables a more practical and thorough assessment of
LLMs’ modeling capabilities across multiple aspects, including problem size, constraints,
and objective functions.

2. Benchmark Evaluation Tool with Principled and Theory-Supported Paradigm: We
propose a novel evaluation framework that formalizes the assessment of optimization mod-
eling based on graph theory. By representing mathematical models as graph structures, we
enable a structured and precise comparison between the generated models and ground truth
models. We develop an automatic evaluation algorithm that efficiently computes similarity
metrics between graphs, with proven computational efficiency and scalability. This method
overcomes the limitations of solver-based verification by providing a direct evaluation of
model correctness and completeness.

3. Benchmarking Popular LL.Ms and Recent Agent-Based Approaches: We conduct ex-
tensive experiments evaluating the performance of leading LLMs, including GPT-40 Ope-
nAl et al. (2023), and other models such as ol |OpenAl (2024)), Llama-3 |Dubey et al.
(2024), Claude |Anthropic| (2024a;b) on our benchmark dataset. Our results demonstrate
that GPT-40 outperforms other LLMs, including ol-preview in optimization modeling
tasks, highlighting its superior capability in understanding and formulating complex op-
timization problems. Interestingly, existing agent-based methods, which involve iterative
reasoning or decomposition strategies, did not show significant improvements over direct
prompting methods. We provide a comprehensive error analysis across various problem
features, shedding light on the strengths and limitations of current LLMs in optimization
modeling.

Under review as a conference paper at ICLR 2025

Our work aims to advance the field of automated optimization modeling by providing essential tools
and datasets for rigorous evaluation and by illuminating the current capabilities and limitations of
LLMs in this domain. We believe that our contributions will stimulate further research and devel-
opment in automated decision-making systems, ultimately making OR techniques more accessible
and practical for a wider audience.

Data Instance Graph
data. json R nodel.1p 69 G
3 4

v

Right
Model

1 (~1,integer) (~2,integer)

wp_structured. txt Model) <>
- Same
Gurobi_code.py
s v
1 Equivalency
| Test

r

<o
Graph

s @
A::i‘l"ﬁr 3 2 > Wrong
@ @ Model

v s (—1,integer) (—2,integer)

v

Figure 1: Benchmarking Pipeline

2 BACKGROUND AND RELATED WORK

2.1 BACKGROUND

Optimization problems are fundamentally characterized by an objective function that needs to be
minimized, subject to a set of constraints involving decision variables and parameters. In this work,
we focus on classical problems in linear programming (LP) and mixed-integer linear programming
(MILP). In the following of this paper, we denote a MLLP/LP problem P by

min c’x,
x€RP x{0,1}n—P (1)
st. Axob,l <x <u,

where A € R™*" ¢ € R", b € R™, 0 € {=,<,>,<,>}"™, l;,u; € RU {oo0,—00},Vi =
1 ,n.

The modeling procedure in optimization typically involves a collaborative three-stage process be-
tween domain experts and operations research professionals. In the pre-modeling stage, the busi-
ness problem is articulated in natural language, and all relevant data are collected, including nu-
merical values for parameters and coefficients essential for model formulation. The modeling stage
involves abstracting this problem description into a mathematical model, defining decision vari-
ables, formulating the objective function, and establishing the constraints that capture the problem’s
essence. Finally, in the post-modeling stage, the abstracted model is translated into solver-ready
code, integrating the collected data to produce a fully specified problem realization ready for compu-
tational solving. This systematic approach ensures that complex real-world problems are accurately
and efficiently translated into mathematical models for optimal decision-making.

2.2 RELATED WORK

NLP for OR Modeling While substantial progress has been made in automatic modeling of gen-
eral mathematical problems Bobrow|(1964); |Dellarosa (1986);|Sundaram & Khemani| (2015), there

Under review as a conference paper at ICLR 2025

has been limited focus on applying these techniques specifically to operations research. Prior to
the rise of LLMs, the NL4Opt competition Ramamonjison et al.|(2022b) explored the feasibility of
learning-based natural language interfaces for optimization solvers. More recently, works leverag-
ing LLMs, such as the Chain-of-Experts (CoE)Xiao et al. (2023) and OptiMUS |AhmadiTeshnizi
et al.|(2024)), introduced multi-agent cooperative systems to model and code complex OR problems
automatically. Furthermore, [Tang et al.| (2024) fine-tuned open-source LLMs with approximately 7
billion parameters, achieving significant performance improvements over baseline models. These
advancements underscore the immense potential of LLMs to enhance the efficiency and accuracy
of optimization modeling tasks, paving the way for automated natural language interfaces for opti-
mization solvers.

Broader Research on AI for OR Beyond model formulation, significant progress has been made
in the field of Al for Operations Research (Al for OR), particularly in parameter generation and
model optimization |Rajgopal| (2004). In parameter generation, Al techniques have been employed
for better simulation of key parameters of optimization problems |[Elmachtoub & Grigas (2022);
Maragno et al.| (2023)); Bergman et al. (2022). Similarly, we leverage LLMs to generate necessary
problem data through a program of thoughts|Chen et al. (2022a). On the optimization side, numer-
ous studies have focused on leveraging Al models in automatic algorithm configuration |Ansotegui
et al. (2009); Lindauer et al. (2022); |Anastacio & Hoos (2020) , optimization algorithm selection
Wang et al. (2019);Chi et al.|(2022), and heuristic algorithm design|Zeng et al.|(2022); Talbi (2009);
Romera-Paredes et al.| (2024). Specifically, a line of research has modeled MILP/LP problems as
bipartite graphs and applied Graph Neural Networks (GNNs) to make decisions at various stages
of their solution processesGasse et al. (2019);|Zhou et al. (2020). These GNN-based methods have
demonstrated efficacy in tasks such as variable selection and node branching, leading to significant
improvements in solver performance. Inspired by this, we model optimization problems as bipar-
tite graphs and formalize the evaluation paradigm based on the classical Weisfeiler-Lehman graph
isomorphism test (WL-test) algorithm [Leman & Weisfeiler (1968).

Benchmarking LLM on complex tasks With the emergence of LLMs, there is an increas-
ing need for benchmarks to understand their capability boundaries |Liu et al.| (2024)); Zhou et al.
(2024); [Sawada et al. (2023). Several optimization modeling benchmarks have been proposed to
evaluate LLMs. The Linear Programming Word Problem (LPWP) dataset Ramamonjison et al.
(2022a)includes multiple domains and comprises up to 1,001 LP problems. However, it primarily
consists of elementary-level LP problems, limiting its effectiveness in assessing advanced modeling
capabilities. The ComplexOR dataset |Xiao et al. (2023) was designed to feature more intricate OR
problems, but its limited size and inclusion of numerical data within problems constrain the level of
complexity it can represent. The NLP4LP dataset| AhmadiTeshnizi et al. (2024)) attempts to separate
data from model descriptions to provide a clearer evaluation of modeling skills, yet it remains small,
with problems that are overly structured and explicitly described. Datasets like IndustryOR [Tang
et al.[(2024), MAMO Huang et al. (2024), and E-OPT |Yang et al. (2024) strive to cover a broader
range of OR problems through data synthesis and augmentation. Nevertheless, they rely on solver
solution-based evaluations, which fail to directly assess the modeling failure of LLMs and are lim-
ited by solvers’ performance. In comparison to existing benchmarks, our work aims to provide a
more comprehensive dataset and to formalize the evaluation of modeling, enabling a more precise
assessment of LLM capabilities in optimization modeling.

3 OPTIBENCH

To evaluate the potential of LLMs as interfaces for optimization solvers, particularly in the mod-
eling and post-modeling stages we introduce OptiBench, a comprehensive benchmark designed to
assess LLM capabilities in optimization modeling rigorously. OptiBench leverages LLMs to simu-
late real-world OR problems with delicate prompt engineering and expert verification. It evaluates
LLMs’ abilities in language comprehension, model formulation, and domain-specific coding tasks
specific to optimization practices. Inspired by INFORMS modeling competition |AIMMS]| (2024),
we adopted a model-data separated format of the word problems.

The OptiBench encompasses multi-dimensional complexity through a hierarchical reverse data evo-
lution, including optimization problem type, classes, domains, variants, and level of abstrac-
tion. Our dataset comprises 816 optimization modeling word problems of two fundamental types

Under review as a conference paper at ICLR 2025

of optimization problems—LPs and MILPs. The dataset spans over 16 classical optimization prob-
lem classes, including but not limited to cutting stock(LP), network flow(LP), bin-packing prob-
lems(MILP), and set covering problem(MILP), detailed classes see Table@ To examine LLMs’
ability for practical relevance, the dataset spans about 80 class-specific domains, such as telecom-
munication, transportation, and supply chain management, reflecting real-world scenarios across
diverse industries. With approximately 480 optimization models, each represented in 2 levels of
description abstraction, OptiBench offers a wide array of challenges requiring domain knowledge
and a nuanced understanding of optimization.

3.1 MODEL-DATA SEPARATION

We adopt a model-data-separated format to mirror real-world optimization modeling tasks in our
word problems. This reflects standard practices in industrial settings, where problem formulation
and data collection are often sequential and handled by different teams.

Each word problem (WP) in the dataset consists of

* Problem Description (‘wp.txt): A detailed description of the optimization scenario, in-
cluding objectives and constraints, without embedding specific numerical data, and a spec-
ification of the nature and structure of the required data, guiding the LLM on what infor-
mation is needed without providing actual values.

* Data File (‘data.json‘): A structured file containing all the numerical data necessary to
model and solve the problem. This separation ensures that LLMs formulate the problem
based on the description before applying the data.

* Reference Model (‘model.lp¢): A reference answer of the modeling problem in ‘.1p* for-
mat, structured for readability of specific problem instances and easy exporting and import-
ing using optimization solvers.

An illustrative example is provided in Figure 2] demonstrating how the problem description and
data file complement each other. A example of our word problem is listed in ??By decoupling
problem complexity from data size, we can create conceptually challenging problems without being
prohibitive by LLM’s context window size.

Model Simulation WP Generation
-

—> With verification
— Without verification

i ‘
i E Type i
: (MILPs) :
i i
| - i
| = wp |
| Structured !
. wp |
' wp_structured. txt Unstructured !
' wp. ired. txt 1
! Instanc !
| El Class i
! (knapsack !
. probem) J |
| i
i i
i i
| i
i i
i i
i ‘
i i
i i
i i
i i
i i
i i
i i
i i
i i

Figure 2: Data Construction Pipeline

3.2 MULTI-DIMENSIONAL COMPLEXITY

To construct the multidimensional complexity efficiently, we employ a hierarchical reverse data
evolution pipeline encompassing three key stages: optimization model stimulation, reference answer
generation, and word problem generation.

Under review as a conference paper at ICLR 2025

Optimization Models Stimulation We leverage GPT-40 to propose optimization models, sys-
tematically evolving the context through problem types, classes, domains, and variants. Specifi-
cally, GPT-4o first identifies classical problem classes within LP and MILP. For each problem class,
GPT-40 subsequently determines common application domains, ensuring relevance and applicabil-
ity. Within each domain-specific problem class, GPT-4o0 first proposes the most canonical optimiza-
tion model and then augments it by varying optimization components to introduce diversity and
complexity.

Reference Answers Generation The simulated optimization model is represented as Gurobi code
that reads from an associated data file ‘data.json‘ and outputs the corresponding realization as
‘model.lp‘. This approach facilitates the evaluation process by providing a standardized reference
answer. To create the necessary ‘data.json‘ files, we utilize GPT-40 to generate Python programs
tailored to each optimization model. This method allows for scalable problem size adjustments by
simply modifying the dimensionality instructions within the prompts, thereby easing the expansion
of specific optimization models.

Word Problems Generation Finally, we reversely generate word problems from the stimulated
optimization models. Drawing insights from the INFORMS AIMMS-MOPTA AIMMS]| (2024)) Op-
timization Modeling Competition, we meticulously crafted a standardized word problem structure,
as illustrated in Figure[5] Using GPT-4o, we first translate the solver code into a detailed word prob-
lem adhering to this standardized structure. Subsequently, we refine and summarize the generated
content to produce more concise and unstructured problem statements. This comprehensive ap-
proach ensures that the generated word problems are both accurate representations of the underlying
optimization models and suitable for benchmarking in a more complex manner.

3.3 QUALITY CONTROL

We implement controlled generation with meticulous verification to ensure data quality in our bench-
mark.

Controlled Generation Similar to crafting standard word problem structures, we construct a code
skeleton specifically designed to stimulate optimization models. This simplifies the free-generation
task into a more manageable code completion task, which allows us to regulate the LLM’s out-
put tightly and thereby partially automate data evolution and verification pipeline. This controlled
framework maintains consistency across generated data and ensures that the models adhere to the
necessary structural requirements, as exemplified in Figure[8]

Verification We rigorously assess the validity of each model-answer pair. We execute the code
representations during the model simulation and answer generation phase; only those that run with-
out errors are considered valid. Additionally, in the word problem generation stage, we employ an
LLM-based verifier to ensure the optimization components in the code and their corresponding ele-
ments in the word problems are precisely matched. Experts in operations research further validated
this and removed problematic instances from our dataset.

Through our controlled generation and thorough verification, we maintain high data quality and
accuracy standards, ensuring the reliability and robustness of our benchmark for evaluating the ca-
pabilities of large language models in operations research modeling.

4 EVALUATION PARADIGM

4.1 EVALUATION PRINCIPAL

To evaluate if the LLM gives the correct answer for optimization modeling, we combine their gen-
eration with problem data to form a test modeling instance and compare the test instance with the
corresponding standard instance in our benchmark.

In general, it is challenging to check whether two optimization problem instances are “equal”. For
example, variables can be named in different notations or presented in different orders, resulting in
a set of not exactly the same but equivalent modeling. To fill this gap, we propose a new evalua-
tion paradigm, which identifies the correctness of optimization modeling by detecting whether the
inherent structure of the test instance is equivalent to that of the standard instance.

Under review as a conference paper at ICLR 2025

We first establish the correctness for MILP and LP model formulation based on the following three
principles: (1) Variables should reflect real-world entities. (2) Objectives should clearly align with
their descriptions, and (3) Constraints should represent real-world limitations without redundancy.

A model following the above principles should be regarded as correct. We further introduce the
notion of equivalence between two model instances. Specifically, the equivalence allows model
instances to change the notations of variables and rearrange their variables/constraints without losing
essential information. We denote that two instances P; and P, are model-equivalent by P; ~ Po; a
formal definition is provided in Appendix

Our concept of model-wise equivalence aligns with the isomorphism in graphs, allowing nodes to
be re-indexed or rearranged without changing the graph structure. This motivates us to incorporate
tools in graph theory to evaluate model equivalence. Following existing work in the field of learning
to optimize |Gasse et al. (2019); (Chen et al.| (2022b), we represent an LP/MILP model realization
with a bipartite graph (Figure[I). We proved that detecting the model equivalence can be reduced to
testing graph isomorphic; See Appendix for a formal demonstration.

4.2 EVALUATION METHOD
Based on our equivalence metric, we evaluate modeling result in two steps:

Create test and standard graphs As in Figure [1| we represent MILP/LP instances as bipartite
graphs. In such graphs, nodes can be divided into two groups— variable nodes and constraint nodes.
All nodes are equipped with the necessary features. Each constraint node connects with all associ-
ated variable nodes. We follow the formal notation from Chen et al.| (2022b); the detailed definition
is presented in Appendix

Isomorphism testing Graph isomorphism testing is a challenging problem, with no known
polynomial-time algorithm to date|Garey & Johnson|(1979); Babai (2016). Except for some corner
cases [Cai et al.| (1992), the Weisfeiler-Lehman (WL) test of graph isomorphism |Leman & Weis-
feiler (1968) is an effective and computationally efficient method for distinguishing a wide range
of graphs. Typically, one may determine that two graphs are non-isomorphic if the WL test algo-
rithm produces different coloring distributions. However, if the WL test yields the same distribution
for two graphs, it does not guarantee that the graphs are isomorphic. To prevent misjudgment, we
propose a modified isomorphism testing algorithm for equivalence detection; see Algorithm [T}

Algorithm 1 Modeling Equivalence Detection

Require: Two graph instances (G, Hy) € g,’;,n x HY x HW and adjacency matrix Ay, k = 1, 2; iterate

limit L > 0.
1: Color nodes in two graphs using WL-test Algorithm for MILP/LP, get two coloring multi-sets C, =
{{{Cf’v}}{lo, {{CJ’?’W}};‘:O}} ,k = 1,2 for coloring G1 and Go.
Derive set of unique elements in Cy, denote as set Ay, Vk = 1, 2.
if C1 # C2 then
return Not same
elseif len(A1) = len(C1) & len(Az) = len(C2) then > Check sufficient condition 1
return Same
else if len(A1) # len(Cy1) then
if G is symmetric decomposable[]then > Check sufficient condition 2
return Same
else
11: return Not Same
12: end if
13: end if

._
PYRRAINRED

This algorithm involves running a WL-test for MILP in the first step, we use the same implementa-
tion as (Chen et al.| (2022b); See Algorithm [2] After getting the coloring distribution from the WL
test, the algorithm checks whether the two instances satisfy any sufficient conditions, such that these
graphs can be discriminated directly through the coloring distribution; see Algorithm 3]

Under review as a conference paper at ICLR 2025

We proved that our modeling equivalence detection algorithm can test isomorphism for all graph
instances in our benchmark. In addition, in our benchmark, the time complexity to distinguish tested
problem instances from the standard instances with m variables and n nodes is at most O(mn +
nlogn), this is far better than complexity for exhausted isomorphism testing; detailed complexity
analysis can be found in Appendix

4.3 THEORETICAL GUARANTEE

Though the WL-test is widely used for isomorphism testing, it may fail to distinguish non-
isomorphic graphs in certain exceptional cases; counter-examples are presented in Appendix [A.TT]
Chen et al.|(2022b).

In previous work, (Chen et al.| (2022b) characterized one sufficient condition of problem instances,
say unfoldable, that can be accurately distinguished by WL-Test. Yet it is too strict for many MILP
problems. For example, graphs for bin-packing instances are typically not unfoldable; see Appendix
for an example. We extend the sufficient conditions to cover more cases, which benefits the
problems encountered in our benchmark.

To clarify the sufficient conditions for WL test in our evaluation paradigm, we define a class of
WL-determinable and decomposable symmetric problem instances.

Definition 4.1 (WL-Determinable Instance) We say a model instance P is WL-determinable if
WL test outputs distinct colors for different nodes in its graph representation.

This definition aligns with the definition of unfoldable graphs.

Definition 4.2 (Decomposable Symmetric Instance) We say a modeling instance P is decompos-
able symmetric if, after WL test coloring on its representation graph, the following conditions hold:

1. Excluding nodes that have distinct colors from all other nodes, the remaining nodes can
be divided into groups, denoted by 1, Is, - - - , Iy, each containing at least two nodes. All
nodes in the same group share the same color.

2. For any pair of groups 1;, 1;, either I; and I; are disconnected, or the nodes in I; and I
form a perfect matching. Specifically, a perfect matching means that every node in I; is
connected to exactly one node in 1;, and every node in I; is connected to exactly one node
in Ii.

One example of a decomposable symmetric instance can be found in Figure

In the following theorem, we showed that if the standard instance satisfies either of the two sufficient
conditions: being WL-determinable or decomposable symmetric, then Algorithm [I]can be reliably
used for detecting whether a test instance is model-equivalent to the standard instance. Rigorous
proof can be found in Appendix [A.§]

Theorem 4.1 Denote Algorithmby A(Gtest, Gstandard)- Suppose Psiandard is WL-determinable
or decomposable symmetric, then VPiest, we have A(Giest, Gstandard) == True <= Prest ~

Pstandard-

Generality of WL-determinable and Symmetric Decomposable Instances Many operations
research models, such as assignment problems and traveling salesman problems, are almost surely
to get a WL-determinable instance by random sampling problem data, we provide a theorem in
Appendix [A.9] to characterize this property. Our algorithm can determine whether a problem is
WL-determinable or Symmetric Decomposable by definition. Empirically, although we did not
intentionally select models and problem data for our benchmark, we found that almost all instances
in our benchmarks are either WL-determinable or symmetric-decomposable.

5 EXPERIMENT AND ANALYSIS

Experiment Setting To assess the capabilities of LLMs in optimization modeling, we conducted
a comprehensive evaluation using the OptiBench benchmark. Our evaluation focused on top-

Under review as a conference paper at ICLR 2025

performing LLMs via direct prompting, including closed-sourced models such as GPT-40 OpenAl
et al. (2023), ol-preview, ol-mini|OpenAl (2024)), Claude-3.5-sonnet|Anthropic (2024a), Claude-3-
opus [Anthropic| (2024b), and the open-sourced LLM Llama-3-70b-instruct Dubey et al. (2024). We
also deployed the Chain of Expert modeling agent |Xiao et al.|(2023). Each LLM was tested across
all 816 OptiBench questions to ensure a thorough and consistent assessment of their optimization
modeling abilities. The main evaluation result is listed in Table|[T]

Table 1: Evaluation Results on OptiBench. The “Overall” modeling accuracy is the accuracy
weighted by question count. The SOTA in each category is marked in red.

| Modeling Accuracy
LLMs ‘ L ‘ L ‘ Overall
| Structured | Unstructured | Structured | Unstructured |
Direct Prompting
gpt-do 56.87 42.18 56.85 41.62 49.39
ol-preview 47.87 32.70 43.65 30.46 38.73
ol-mini 45.97 35.55 43.15 32.99 39.46
claude-3-5-sonnet 45.97 33.18 51.78 39.59 42.52
claude-3-opus 52.61 39.34 51.78 34.52 44.61
1lama3-70b-instruct 42.65 24.17 39.09 29.44 33.82
LLM-based Agent
Chain-of-Experts | 48.82 37.91 | 5127 30.47 | 43.50

Comparing Performance Across Different LLMs and Prompting Methods Among the evalu-
ated models, GPT-40 achieved the highest overall performance, securing an accuracy rate of 45.38%
across all problem categories. Surprisingly, both the ol-preview and ol-mini models underper-
formed GPT-40. Claude-3.5-sonnet outperformed both ol-preview and ol-mini in MILPs, while
Claude-3-opus surpassed ol-preview and ol-mini across all tested settings.

Furthermore, the application of the Chain of Expert agents, intended to enhance problem-solving
through multi-agent collaboration and extensive reasoning paths, inadvertently reduced the perfor-
mance of GPT-40 to 39.98%. The intended multi-step reasoning in both ol and LLM-based agents
may have introduced inconsistencies in the generated code, which decreased the code pass rate.
Additionally, the accumulation of hallucinations—incorrect or fabricated information—further ex-
acerbated performance degradation, ultimately lowering the overall accuracy.

Note that we also explored the performance of the OptiMUS model /AhmadiTeshnizi et al.|(2024).
Initially, OptiMUS showed extremely bad performance due to several reasons. First, OptiMUS
requires extracting optimization entities during the initial modeling phase. However, the extrac-
tion accuracy on OptiBench is below 50%, which stops the agent from moving toward subsequent
modeling steps.(We monitor the sanity check and OptiMUS’s early interruption primarily due to
parameter names or dimensions mismatches. To mitigate this issue, we designed an improved ex-
traction agent tailored for OptiMUS. However, despite this enhancement, the overall code pass rate
remained below 10%, leading to an overall accuracy below this threshold.

Comparing Performance Across Different Dimensions of Complexity Our analysis revealed
significant variations in LLM performance based on the complexity dimensions of the OR prob-
lems. Specifically, MILPs were consistently more challenging for the LLMs compared to LPs. This
increased difficulty is likely due to the combinatorial nature and higher computational complex-
ity inherent in MILPs formulations. Furthermore, unstructured problems posed a more significant
challenge than structured ones, indicating that LLMs struggle more with tasks that lack clear for-
matting or predefined frameworks. Both Llama-3-70b-instruct and Claude-3.5-sonnet demonstrated
comparable performance levels on the unstructured versions of LP and MILP tasks.

Under review as a conference paper at ICLR 2025

Model Performance by Problem Class

EE ol-preview
= ol-mini
05 w MILP SN gpt-40-2024-08-06
claude-3-5-sonnet-20240620
= claude-3-0pus-20240229
llama-3-708
0.6 4
v
|4
s
&
0.4
02
0.0
S & S} 3) & S 5 & S S S & S S
9 & & S S & & S > & & N & & PN O
X 0\@& S b"\z‘(\ e S ‘-Q\\Q& Q"b\"f& R St <§"\\¢‘Q & S c‘;iqg
& F T S P @OF & S & T SF NS &Y SF 258 AAS
& € $E &< € FE &< &e‘ & € FE pTE g I P o &
&° s LY &5 & Fo& I
Qo& <€ $a%y

Figure 3: Performance Across Different Classes

Comparing Performance Across Different Problem Classes Beyond the primary performance
metrics, we also examined the modeling accuracy across various classes of OR problems to identify
potential biases in LLM knowledge bases. The results indicated a pronounced bias, with relatively
high accuracy observed in solving knapsack problems (MILP), assignment problems (MILP), and
diet problems (LP). These areas likely benefit from the simplicity of problem model and more ex-
tensive representation in training data. Conversely, the models exhibited relatively low accuracy in
addressing cutting stock problems (MILP) and near-zero accuracy for traveling salesman problem
and vehicle routing problem. These findings underscore significant gaps in LLMs’ capabilities, par-
ticularly in handling specialized and highly complex OR problems. The observed biases suggest
that while LLMs are proficient in certain well-represented problem classes, their effectiveness di-
minishes in less common or more intricate problem spaces, highlighting areas for future research
and training improvement.

6 CONCLUSION

In this work, we introduced OptiBench, a novel benchmark to evaluate the ability of LLMs in
optimization modeling tasks. OptiBench uniquely incorporates multi-dimensional complexity in a
model-data-separated manner, allowing a more structured and flexible evaluation process. To facil-
itate a comprehensive assessment of LLMs’ optimization capabilities, we formalized an evaluation
paradigm based on equivalence detection, ensuring accurate and meaningful comparisons between
models. We also theoretically proved the efficiency of our proposed method. By benchmarking
over OptiBench, GPT-40 demonstrated superior performance in the direct prompting setting, out-
performing all other LLMs and agents. In contrast, the latest model, ol-preview, and the existing
modeling agent surprisingly underperformed compared to GPT-40. This underperformance might be
attributed to the snowball effect of hallucination, especially prevalent during longer reasoning paths
when tackling complex tasks. Our results suggest that while current LLMs possess a foundational
capability in optimization modeling, there remains significant room for improvement. We plan to
develop a specialized modeling agent to address these gaps, incorporating a curated reasoning skele-
ton tailored specifically for optimization and operational research. In addition, we intend to extend
our hierarchical reverse data evolution method to create fine-tuning datasets for optimization tasks
and broader logical reasoning tasks. Through these efforts, we aim to push the boundaries of LLMs’
operational research and optimization modeling capabilities, ultimately fostering advancements in
Al research and practical applications.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. Optimus: Scalable optimization modeling
with (mi) Ip solvers and large language models. arXiv preprint arXiv:2402.10172, 2024.

AIMMS. 16th aimms-mopta optimization modeling competition.
https://coral.ise.lehigh.edu/ mopta/competition, 2024.

Marie Anastacio and Holger H Hoos. Combining sequential model-based algorithm cons-
ingh2012overviewuration with default-guided probabilistic sampling. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference Companion, pp. 301-302, 2020.

Carlos Ansoétegui, Meinolf Sellmann, and Kevin Tierney. A gender-based genetic algorithm for the
automatic consingh2012overviewuration of algorithms. In International Conference on Princi-
ples and Practice of Constraint Programming, pp. 142—157. Springer, 2009.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-5-sonnet, 2024a.

Anthropic. Introducing the next generation of claude. https://www.anthropic.com/news/claude-3-
family, 2024b.

Team AplO, Santiago Ramirez Palacio, Mariana Escallén Barrios, and Daniel Lépez Cornejo.
9th aimms-mopta optimization modeling competition (2017) production and delivery of radio-
pharmaceuticals to medical imaging centers.

Laszl6 Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp. 684—697, 2016.

David Bergman, Teng Huang, Philip Brooks, Andrea Lodi, and Arvind U Raghunathan. Janos: an
integrated predictive and prescriptive modeling framework. INFORMS Journal on Computing,
34(2):807-816, 2022.

Daniel G Bobrow. A question-answering system for high school algebra word problems. In Pro-
ceedings of the October 27-29, 1964, fall joint computer conference, part I, pp. 591-614, 1964.

Jin-Yi Cai, Martin Fiirer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389-410, 1992.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022a.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear pro-
grams by graph neural networks. arXiv preprint arXiv:2209.12288, 2022b.

Cheng Chi, Amine Aboussalah, Elias Khalil, Juyoung Wang, and Zoha Sherkat-Masoumi. A deep
reinforcement learning framework for column generation. Advances in Neural Information Pro-
cessing Systems, 35:9633-9644, 2022.

Denise Dellarosa. A computer simulation of children’s arithmetic word-problem solving. Behavior
Research Methods, Instruments, & Computers, 18(2):147-154, 1986.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

11

Under review as a conference paper at ICLR 2025

Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 63(1):
9-26, 2022.

Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman San
Francisco, 1979.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xi-
aodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
arXiv preprint arXiv:2302.05636, 2023.

Frederick S Hillier and Gerald J Lieberman. Introduction to operations research. McGraw-Hill,
2015.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Mamo: a mathematical
modeling benchmark with solvers. arXiv preprint arXiv:2405.13144, 2024.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learning to automatically
solve algebra word problems. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 271-281, 2014.

Andrei Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12—16, 1968.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Car-
olin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian opti-
mization package for hyperparameter optimization. Journal of Machine Learning Research, 23
(54):1-9, 2022.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong Duan, Zhiwei Fei, Fengzhe Zhou, Wen-
wei Zhang, Songyang Zhang, Dahua Lin, and Kai Chen. Mathbench: Evaluating the theory
and application proficiency of llms with a hierarchical mathematics benchmark. arXiv preprint
arXiv:2405.12209, 2024.

Donato Maragno, Holly Wiberg, Dimitris Bertsimas, S Ilker Birbil, Dick den Hertog, and Ade-
juyigbe O Fajemisin. Mixed-integer optimization with constraint learning. Operations Research,
2023.

Mitesh Miyani, Smit Doshi, and Jay Jain. Word problem solver system using artificial intelligence.
Procedia Computer Science, 45:800-807, 2015.

OpenAl Openai ol system card. https://openai.com/index/
openai-ol-system—card/, 2024.

R OpenAl et al. Gpt-4 technical report. ArXiv, 2303:08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Jayant Rajgopal. Principles and applications of operations research. Maynard’s Industrial Engi-
neering Handbook.—2004.—P, pp. 11-27, 2004.

Rindranirina Ramamonjison, Haley Li, Timothy T Yu, Shiqi He, Vishnu Rengan, Amin Banitalebi-

Dehkordi, Zirui Zhou, and Yong Zhang. Augmenting operations research with auto-formulation
of optimization models from problem descriptions. arXiv preprint arXiv:2209.15565, 2022a.

12

https://openai.com/index/openai-o1-system-card/
https://openai.com/index/openai-o1-system-card/

Under review as a conference paper at ICLR 2025

Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghad-
dar, Shigi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang.
Nl4opt competition: Formulating optimization problems based on their natural language descrip-
tions. In Marco Ciccone, Gustavo Stolovitzky, and Jacob Albrecht (eds.), Proceedings of the
NeurIPS 2022 Competitions Track, volume 220 of Proceedings of Machine Learning Research,
pp- 189-203. PMLR, 28 Nov—09 Dec 2022b. URL https://proceedings.mlr.press/
v220/ramamonjison23a.html.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468—475, 2024.

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla, Pranav Tadepalli, Paula Vidas, Alexander
Kranias, John J Nay, Kshitij Gupta, and Aran Komatsuzaki. Arb: Advanced reasoning benchmark
for large language models. arXiv preprint arXiv:2307.13692, 2023.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots
for theorem proving in lean. arXiv preprint arXiv:2404.12534, 2024.

Sowmya S Sundaram and Deepak Khemani. Natural language processing for solving simple word
problems. In Proceedings of the 12th international conference on natural language processing,

pp. 394-402, 2015.

EG Talbi. Metaheuristics: From design to implementation. John Wiley & Sons google schola, 2:
268-308, 2009.

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi Hu, Zizhuo Wang, Dongdong Ge, and Benyou
Wang. Orlm: Training large language models for optimization modeling. arXiv preprint
arXiv:2405.17743, 2024.

GR Vineetha and CR Shiyas. Optimization models in supply chain management: A critical re-
view. INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH, 8
(1):297-303, 2020.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and log-
ical reasoning using a differentiable satisfiability solver. In International Conference on Machine
Learning, pp. 6545-6554. PMLR, 2019.

Wayne L Winston. Operations research: applications and algorithm. Thomson Learning, Inc.,
2004.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex opera-
tions research problems. In The Twelfth International Conference on Learning Representations,
2023.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models, 2023. URL https://arxiv.org/abs/2306.15626.

Zhicheng Yang, Yinya Huang, Wei Shi, Liang Feng, Lingi Song, Yiwei Wang, Xiaodan Liang, and
Jing Tang. Benchmarking Ilms for optimization modeling and enhancing reasoning via reverse
socratic synthesis. arXiv preprint arXiv:2407.09887, 2024.

Sihan Zeng, Alyssa Kody, Youngdae Kim, Kibaek Kim, and Daniel K Molzahn. A reinforcement
learning approach to parameter selection for distributed optimal power flow. Electric Power Sys-
tems Research, 212:108546, 2022.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. Al open, 1:57-81, 2020.

Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu, Jindong Wang, Derek F Wong, Xiaowei Huang,
Qiufeng Wang, and Kaizhu Huang. Is your model really a good math reasoner? evaluating
mathematical reasoning with checklist. arXiv preprint arXiv:2407.08733, 2024.

13

https://proceedings.mlr.press/v220/ramamonjison23a.html
https://proceedings.mlr.press/v220/ramamonjison23a.html
https://arxiv.org/abs/2306.15626

	Introduction
	Background and related work
	Background
	Related Work

	OptiBench
	Model-Data Separation
	Multi-dimensional Complexity
	Quality control

	Evaluation Paradigm
	Evaluation Principal
	Evaluation Method
	Theoretical Guarantee

	Experiment and Analysis
	Conclusion
	Appendix
	Dataset
	Model Equivalence Class
	Weighted Bipartite Graph for Representing MILP/LP
	Connection between Model Equivalence and Graph Isomorphism
	Proof of lemma A.1:
	Algorithms
	Complexity Analysis
	Proof for Theorem 4.1
	Randomly sampling suffices to obtain WL-determinable instance
	Proof of Theorem A.2
	Examples
	Error Analysis

