
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIBENCH: BENCHMARKING LARGE LANGUAGE
MODELS IN OPTIMIZATION MODELING WITH
EQUIVALENCE-DETECTION EVALUATION

Anonymous authors

Paper under double-blind review

ABSTRACT

In operations research (OR), formulating optimization problems in industrial ap-
plications is often time-consuming and requires specialized expertise. Recently,
large language models (LLMs) have shown remarkable potential to automate this
process. However, evaluating the performance of LLMs in optimization modeling
remains challenging due to the scarcity of suitable datasets and rigorous evalua-
tion methodologies. To reduce this gap, we introduce OptiBench, a new bench-
mark designed to assess LLMs’ ability to formulate linear programming (LP) and
mixed-integer linear programming (MILP) models. OptiBench provides a diverse
dataset covering 816 optimization modeling word problems across 16 problem
classes and over 80 practical domains. It also adopts a model-data separation for-
mat with 2 levels of description abstraction. The dataset exhibits the complexity
of real-world optimization problems compared to traditional textbook examples.
OptiBench incorporates a new evaluation method based on a modified Weisfeiler-
Lehman graph isomorphism test (WL-test) algorithm. We theoretically prove that
this method can correctly judge whether two models are equivalent or not, set-
ting a new standard for automatically validating the correctness of optimization
modeling. We benchmark various LLMs using OptiBench and observe significant
performance differences. GPT-4o by direct prompting achieves 49.39% overall
accuracy, outperforming other models and LLM-based agents, including OpenAI
o1 (preview and mini). Notably, GPT-4o’s performance varies across different
problem classes, achieving over 90% accuracy on the knapsack problem class but
falling below 5% on the traveling salesman problem class. These findings provide
new insights into the strengths and limitations of LLMs in optimization modeling.

1 INTRODUCTION

Operations Research (OR) is a discipline that employs advanced analytical methods, such as mathe-
matical modeling and optimization techniques, to aid decision-making and problem-solving in com-
plex systems Hillier & Lieberman (2015). OR methods play an important role in various industries
such as logistics, manufacturing, finance, and healthcare, optimizing processes and resources to en-
hance efficiency and productivity Winston (2004). However, the formulation of optimization models
is often a complex task that requires a collaborative effort between domain experts, who possess
deep knowledge of the industry practices, and optimization experts, who are skilled in translating
real-world problems into mathematical models and applying solution techniques Vineetha & Shiyas
(2020). Such collaboration often demands significant time and expertise, which can pose a signifi-
cant barrier to the widespread adoption of OR methods.

To address this challenge, there is an increasing demand for automated modeling tools that can
bridge the gap between textual problem descriptions and mathematical models. Automating the
modeling process can reduce reliance on experts, enhance accessibility for non-experts, and expe-
dite decision-making processes Kushman et al. (2014) and Miyani et al. (2015). Such tools have
the potential to democratize access to OR techniques, enabling a broader range of practitioners to
leverage optimization in their operations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Recent advancements in Large Language Models (LLMs), such as GPT-4 OpenAI et al. (2023) and
Llama-3 Dubey et al. (2024), have demonstrated remarkable capabilities in understanding, reason-
ing, and planning Ouyang et al. (2022); Achiam et al. (2023); Radford et al. (2019); Song et al.
(2024). These models have been successfully applied in various domains, including code generation
Chen et al. (2021) and mathematical theorem proving Yang et al. (2023), showcasing their potential
in tasks that require comprehension of complex language and logical structures. Consequently, there
have been attempts to leverage LLMs for automatic optimization modeling, including LLM-based
agent Xiao et al. (2023); AhmadiTeshnizi et al. (2024) and fine-tuning LLM for optimization mod-
eling Tang et al. (2024). However, benchmarking the modeling ability of LLMs in OR remains a
challenging endeavor.

One significant challenge is the absence of comprehensive benchmark datasets specifically designed
for evaluating the optimization modeling capabilities of LLMs. Existing datasets often include both
problem description and numerical data in the promptRamamonjison et al. (2022a); Xiao et al.
(2023). This setting extremely limits the problem size, which is not reflective of practical modeling
problems where data is typically large-scale and independent of the modeling processApIO et al..
Moreover, these datasets lack comprehensiveness, often evaluating models over a single or limited
level of complexity, and failing to capture the diverse range of problems encountered in real-world
applications.

Another challenge lies in the evaluation process, which is frequently imprecise and time-consuming.
Verification of the generated models often relies solely on solving the optimization problem and
comparing the solutions AhmadiTeshnizi et al. (2024); Xiao et al. (2023), but many Mixed-Integer
Linear Programming (MILP) problems are NP-hard and may not reach globally optimal solutions
within a reasonable timeframe Chen et al. (2022b). This reliance on solvers for verification makes
it difficult to accurately assess the correctness and quality of the generated models, as suboptimal
solutions or solver timeouts can obscure the evaluation Han et al. (2023).

In this paper, we address these challenges by introducing a comprehensive benchmark dataset and
an evaluation tool grounded in a principled and theoretically supported paradigm. Our contributions
are threefold:

1. Benchmark Dataset with Comprehensive Problem Features: We develop a set of 816
word problems with a clear separation between model and data, closely mimicking real-
world business problems. The dataset is constructed through a hierarchical reverse data
evolution pipeline, allowing controlled generation of problem instances with varying com-
plexity across 16 problem classes in LPs and MILPS, over 80 practical domains, and 2
levels of abstraction. Each problem is rigorously verified by OR experts to ensure accu-
racy and relevance. This approach enables a more practical and thorough assessment of
LLMs’ modeling capabilities across multiple aspects, including problem size, constraints,
and objective functions.

2. Benchmark Evaluation Tool with Principled and Theory-Supported Paradigm: We
propose a novel evaluation framework that formalizes the assessment of optimization mod-
eling based on graph theory. By representing mathematical models as graph structures, we
enable a structured and precise comparison between the generated models and ground truth
models. We develop an automatic evaluation algorithm that efficiently computes similarity
metrics between graphs, with proven computational efficiency and scalability. This method
overcomes the limitations of solver-based verification by providing a direct evaluation of
model correctness and completeness.

3. Benchmarking Popular LLMs and Recent Agent-Based Approaches: We conduct ex-
tensive experiments evaluating the performance of leading LLMs, including GPT-4o Ope-
nAI et al. (2023), and other models such as o1 OpenAI (2024), Llama-3 Dubey et al.
(2024), Claude Anthropic (2024a;b) on our benchmark dataset. Our results demonstrate
that GPT-4o outperforms other LLMs, including o1-preview in optimization modeling
tasks, highlighting its superior capability in understanding and formulating complex op-
timization problems. Interestingly, existing agent-based methods, which involve iterative
reasoning or decomposition strategies, did not show significant improvements over direct
prompting methods. We provide a comprehensive error analysis across various problem
features, shedding light on the strengths and limitations of current LLMs in optimization
modeling.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our work aims to advance the field of automated optimization modeling by providing essential tools
and datasets for rigorous evaluation and by illuminating the current capabilities and limitations of
LLMs in this domain. We believe that our contributions will stimulate further research and devel-
opment in automated decision-making systems, ultimately making OR techniques more accessible
and practical for a wider audience.

Figure 1: Benchmarking Pipeline

2 BACKGROUND AND RELATED WORK

2.1 BACKGROUND

Optimization problems are fundamentally characterized by an objective function that needs to be
minimized, subject to a set of constraints involving decision variables and parameters. In this work,
we focus on classical problems in linear programming (LP) and mixed-integer linear programming
(MILP). In the following of this paper, we denote a MLLP/LP problem P by

P : min
x2Rp⇥{0,1}n�p

c
T
x,

s.t. Ax � b, l  x  u,

(1)

where A 2 Rm⇥n, c 2 Rn, b 2 Rm, � 2 {=, <,>,,�}m, li, ui 2 R [{1,�1}, 8i =
1, · · · , n.

The modeling procedure in optimization typically involves a collaborative three-stage process be-
tween domain experts and operations research professionals. In the pre-modeling stage, the busi-
ness problem is articulated in natural language, and all relevant data are collected, including nu-
merical values for parameters and coefficients essential for model formulation. The modeling stage

involves abstracting this problem description into a mathematical model, defining decision vari-
ables, formulating the objective function, and establishing the constraints that capture the problem’s
essence. Finally, in the post-modeling stage, the abstracted model is translated into solver-ready
code, integrating the collected data to produce a fully specified problem realization ready for compu-
tational solving. This systematic approach ensures that complex real-world problems are accurately
and efficiently translated into mathematical models for optimal decision-making.

2.2 RELATED WORK

NLP for OR Modeling While substantial progress has been made in automatic modeling of gen-
eral mathematical problems Bobrow (1964); Dellarosa (1986); Sundaram & Khemani (2015), there

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

has been limited focus on applying these techniques specifically to operations research. Prior to
the rise of LLMs, the NL4Opt competition Ramamonjison et al. (2022b) explored the feasibility of
learning-based natural language interfaces for optimization solvers. More recently, works leverag-
ing LLMs, such as the Chain-of-Experts (CoE)Xiao et al. (2023) and OptiMUS AhmadiTeshnizi
et al. (2024), introduced multi-agent cooperative systems to model and code complex OR problems
automatically. Furthermore, Tang et al. (2024) fine-tuned open-source LLMs with approximately 7
billion parameters, achieving significant performance improvements over baseline models. These
advancements underscore the immense potential of LLMs to enhance the efficiency and accuracy
of optimization modeling tasks, paving the way for automated natural language interfaces for opti-
mization solvers.

Broader Research on AI for OR Beyond model formulation, significant progress has been made
in the field of AI for Operations Research (AI for OR), particularly in parameter generation and
model optimization Rajgopal (2004). In parameter generation, AI techniques have been employed
for better simulation of key parameters of optimization problems Elmachtoub & Grigas (2022);
Maragno et al. (2023); Bergman et al. (2022). Similarly, we leverage LLMs to generate necessary
problem data through a program of thoughts Chen et al. (2022a). On the optimization side, numer-
ous studies have focused on leveraging AI models in automatic algorithm configuration Ansótegui
et al. (2009); Lindauer et al. (2022); Anastacio & Hoos (2020) , optimization algorithm selection
Wang et al. (2019); Chi et al. (2022), and heuristic algorithm design Zeng et al. (2022); Talbi (2009);
Romera-Paredes et al. (2024). Specifically, a line of research has modeled MILP/LP problems as
bipartite graphs and applied Graph Neural Networks (GNNs) to make decisions at various stages
of their solution processesGasse et al. (2019); Zhou et al. (2020). These GNN-based methods have
demonstrated efficacy in tasks such as variable selection and node branching, leading to significant
improvements in solver performance. Inspired by this, we model optimization problems as bipar-
tite graphs and formalize the evaluation paradigm based on the classical Weisfeiler-Lehman graph
isomorphism test (WL-test) algorithm Leman & Weisfeiler (1968).

Benchmarking LLM on complex tasks With the emergence of LLMs, there is an increas-
ing need for benchmarks to understand their capability boundaries Liu et al. (2024); Zhou et al.
(2024); Sawada et al. (2023). Several optimization modeling benchmarks have been proposed to
evaluate LLMs. The Linear Programming Word Problem (LPWP) dataset Ramamonjison et al.
(2022a)includes multiple domains and comprises up to 1,001 LP problems. However, it primarily
consists of elementary-level LP problems, limiting its effectiveness in assessing advanced modeling
capabilities. The ComplexOR dataset Xiao et al. (2023) was designed to feature more intricate OR
problems, but its limited size and inclusion of numerical data within problems constrain the level of
complexity it can represent. The NLP4LP dataset AhmadiTeshnizi et al. (2024) attempts to separate
data from model descriptions to provide a clearer evaluation of modeling skills, yet it remains small,
with problems that are overly structured and explicitly described. Datasets like IndustryOR Tang
et al. (2024), MAMO Huang et al. (2024), and E-OPT Yang et al. (2024) strive to cover a broader
range of OR problems through data synthesis and augmentation. Nevertheless, they rely on solver
solution-based evaluations, which fail to directly assess the modeling failure of LLMs and are lim-
ited by solvers’ performance. In comparison to existing benchmarks, our work aims to provide a
more comprehensive dataset and to formalize the evaluation of modeling, enabling a more precise
assessment of LLM capabilities in optimization modeling.

3 OPTIBENCH

To evaluate the potential of LLMs as interfaces for optimization solvers, particularly in the mod-
eling and post-modeling stages we introduce OptiBench, a comprehensive benchmark designed to
assess LLM capabilities in optimization modeling rigorously. OptiBench leverages LLMs to simu-
late real-world OR problems with delicate prompt engineering and expert verification. It evaluates
LLMs’ abilities in language comprehension, model formulation, and domain-specific coding tasks
specific to optimization practices. Inspired by INFORMS modeling competition AIMMS (2024),
we adopted a model-data separated format of the word problems.

The OptiBench encompasses multi-dimensional complexity through a hierarchical reverse data evo-
lution, including optimization problem type, classes, domains, variants, and level of abstrac-

tion. Our dataset comprises 816 optimization modeling word problems of two fundamental types

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of optimization problems—LPs and MILPs. The dataset spans over 16 classical optimization prob-
lem classes, including but not limited to cutting stock(LP), network flow(LP), bin-packing prob-
lems(MILP), and set covering problem(MILP), detailed classes see Table2. To examine LLMs’
ability for practical relevance, the dataset spans about 80 class-specific domains, such as telecom-
munication, transportation, and supply chain management, reflecting real-world scenarios across
diverse industries. With approximately 480 optimization models, each represented in 2 levels of
description abstraction, OptiBench offers a wide array of challenges requiring domain knowledge
and a nuanced understanding of optimization.

3.1 MODEL-DATA SEPARATION

We adopt a model-data-separated format to mirror real-world optimization modeling tasks in our
word problems. This reflects standard practices in industrial settings, where problem formulation
and data collection are often sequential and handled by different teams.

Each word problem (WP) in the dataset consists of

• Problem Description (‘wp.txt‘): A detailed description of the optimization scenario, in-
cluding objectives and constraints, without embedding specific numerical data, and a spec-
ification of the nature and structure of the required data, guiding the LLM on what infor-
mation is needed without providing actual values.

• Data File (‘data.json‘): A structured file containing all the numerical data necessary to
model and solve the problem. This separation ensures that LLMs formulate the problem
based on the description before applying the data.

• Reference Model (‘model.lp‘): A reference answer of the modeling problem in ‘.lp‘ for-
mat, structured for readability of specific problem instances and easy exporting and import-
ing using optimization solvers.

An illustrative example is provided in Figure 2, demonstrating how the problem description and
data file complement each other. A example of our word problem is listed in ??By decoupling
problem complexity from data size, we can create conceptually challenging problems without being
prohibitive by LLM’s context window size.

Figure 2: Data Construction Pipeline

3.2 MULTI-DIMENSIONAL COMPLEXITY

To construct the multidimensional complexity efficiently, we employ a hierarchical reverse data
evolution pipeline encompassing three key stages: optimization model stimulation, reference answer
generation, and word problem generation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Optimization Models Stimulation We leverage GPT-4o to propose optimization models, sys-
tematically evolving the context through problem types, classes, domains, and variants. Specifi-
cally, GPT-4o first identifies classical problem classes within LP and MILP. For each problem class,
GPT-4o subsequently determines common application domains, ensuring relevance and applicabil-
ity. Within each domain-specific problem class, GPT-4o first proposes the most canonical optimiza-
tion model and then augments it by varying optimization components to introduce diversity and
complexity.

Reference Answers Generation The simulated optimization model is represented as Gurobi code
that reads from an associated data file ‘data.json‘ and outputs the corresponding realization as
‘model.lp‘. This approach facilitates the evaluation process by providing a standardized reference
answer. To create the necessary ‘data.json‘ files, we utilize GPT-4o to generate Python programs
tailored to each optimization model. This method allows for scalable problem size adjustments by
simply modifying the dimensionality instructions within the prompts, thereby easing the expansion
of specific optimization models.

Word Problems Generation Finally, we reversely generate word problems from the stimulated
optimization models. Drawing insights from the INFORMS AIMMS-MOPTA AIMMS (2024) Op-
timization Modeling Competition, we meticulously crafted a standardized word problem structure,
as illustrated in Figure 5. Using GPT-4o, we first translate the solver code into a detailed word prob-
lem adhering to this standardized structure. Subsequently, we refine and summarize the generated
content to produce more concise and unstructured problem statements. This comprehensive ap-
proach ensures that the generated word problems are both accurate representations of the underlying
optimization models and suitable for benchmarking in a more complex manner.

3.3 QUALITY CONTROL

We implement controlled generation with meticulous verification to ensure data quality in our bench-
mark.

Controlled Generation Similar to crafting standard word problem structures, we construct a code
skeleton specifically designed to stimulate optimization models. This simplifies the free-generation
task into a more manageable code completion task, which allows us to regulate the LLM’s out-
put tightly and thereby partially automate data evolution and verification pipeline. This controlled
framework maintains consistency across generated data and ensures that the models adhere to the
necessary structural requirements, as exemplified in Figure 8.

Verification We rigorously assess the validity of each model-answer pair. We execute the code
representations during the model simulation and answer generation phase; only those that run with-
out errors are considered valid. Additionally, in the word problem generation stage, we employ an
LLM-based verifier to ensure the optimization components in the code and their corresponding ele-
ments in the word problems are precisely matched. Experts in operations research further validated
this and removed problematic instances from our dataset.

Through our controlled generation and thorough verification, we maintain high data quality and
accuracy standards, ensuring the reliability and robustness of our benchmark for evaluating the ca-
pabilities of large language models in operations research modeling.

4 EVALUATION PARADIGM

4.1 EVALUATION PRINCIPAL

To evaluate if the LLM gives the correct answer for optimization modeling, we combine their gen-
eration with problem data to form a test modeling instance and compare the test instance with the
corresponding standard instance in our benchmark.

In general, it is challenging to check whether two optimization problem instances are “equal”. For
example, variables can be named in different notations or presented in different orders, resulting in
a set of not exactly the same but equivalent modeling. To fill this gap, we propose a new evalua-
tion paradigm, which identifies the correctness of optimization modeling by detecting whether the
inherent structure of the test instance is equivalent to that of the standard instance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We first establish the correctness for MILP and LP model formulation based on the following three
principles: (1) Variables should reflect real-world entities. (2) Objectives should clearly align with
their descriptions, and (3) Constraints should represent real-world limitations without redundancy.

A model following the above principles should be regarded as correct. We further introduce the
notion of equivalence between two model instances. Specifically, the equivalence allows model
instances to change the notations of variables and rearrange their variables/constraints without losing
essential information. We denote that two instances P1 and P2 are model-equivalent by P1 ⇠ P2; a
formal definition is provided in Appendix A.2.

Our concept of model-wise equivalence aligns with the isomorphism in graphs, allowing nodes to
be re-indexed or rearranged without changing the graph structure. This motivates us to incorporate
tools in graph theory to evaluate model equivalence. Following existing work in the field of learning
to optimize Gasse et al. (2019); Chen et al. (2022b), we represent an LP/MILP model realization
with a bipartite graph (Figure 1). We proved that detecting the model equivalence can be reduced to
testing graph isomorphic; See Appendix A.4 for a formal demonstration.

4.2 EVALUATION METHOD

Based on our equivalence metric, we evaluate modeling result in two steps:

Create test and standard graphs As in Figure 1, we represent MILP/LP instances as bipartite
graphs. In such graphs, nodes can be divided into two groups– variable nodes and constraint nodes.
All nodes are equipped with the necessary features. Each constraint node connects with all associ-
ated variable nodes. We follow the formal notation from Chen et al. (2022b); the detailed definition
is presented in Appendix A.3.

Isomorphism testing Graph isomorphism testing is a challenging problem, with no known
polynomial-time algorithm to date Garey & Johnson (1979); Babai (2016). Except for some corner
cases Cai et al. (1992), the Weisfeiler-Lehman (WL) test of graph isomorphism Leman & Weis-
feiler (1968) is an effective and computationally efficient method for distinguishing a wide range
of graphs. Typically, one may determine that two graphs are non-isomorphic if the WL test algo-
rithm produces different coloring distributions. However, if the WL test yields the same distribution
for two graphs, it does not guarantee that the graphs are isomorphic. To prevent misjudgment, we
propose a modified isomorphism testing algorithm for equivalence detection; see Algorithm 1.

Algorithm 1 Modeling Equivalence Detection
Require: Two graph instances (Gk, Hk) 2 G

k
m,n ⇥ H

V
m ⇥ H

W
n and adjacency matrix Ak, k = 1, 2; iterate

limit L > 0.
1: Color nodes in two graphs using WL-test Algorithm for MILP/LP, get two coloring multi-sets Ck =n

{{C
k,V
i }}

m
i=0, {{C

k,W
j }}

n
j=0}

o
, k = 1, 2 for coloring G1 and G2.

2: Derive set of unique elements in Ck, denote as set Ak, 8k = 1, 2.
3: if C1 6= C2 then

4: return Not same
5: else if len(A1) = len(C1) & len(A2) = len(C2) then . Check sufficient condition 1
6: return Same
7: else if len(A1) 6= len(C1) then

8: if G1 is symmetric decomposable 1
then . Check sufficient condition 2

9: return Same
10: else

11: return Not Same
12: end if

13: end if

This algorithm involves running a WL-test for MILP in the first step, we use the same implementa-
tion as Chen et al. (2022b); See Algorithm 2. After getting the coloring distribution from the WL
test, the algorithm checks whether the two instances satisfy any sufficient conditions, such that these
graphs can be discriminated directly through the coloring distribution; see Algorithm 3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We proved that our modeling equivalence detection algorithm can test isomorphism for all graph
instances in our benchmark. In addition, in our benchmark, the time complexity to distinguish tested
problem instances from the standard instances with m variables and n nodes is at most O(mn +
n log n), this is far better than complexity for exhausted isomorphism testing; detailed complexity
analysis can be found in Appendix A.7.

4.3 THEORETICAL GUARANTEE

Though the WL-test is widely used for isomorphism testing, it may fail to distinguish non-
isomorphic graphs in certain exceptional cases; counter-examples are presented in Appendix A.11
Chen et al. (2022b).

In previous work, Chen et al. (2022b) characterized one sufficient condition of problem instances,
say unfoldable, that can be accurately distinguished by WL-Test. Yet it is too strict for many MILP
problems. For example, graphs for bin-packing instances are typically not unfoldable; see Appendix
A.11 for an example. We extend the sufficient conditions to cover more cases, which benefits the
problems encountered in our benchmark.

To clarify the sufficient conditions for WL test in our evaluation paradigm, we define a class of
WL-determinable and decomposable symmetric problem instances.

Definition 4.1 (WL-Determinable Instance) We say a model instance P is WL-determinable if
WL test outputs distinct colors for different nodes in its graph representation.

This definition aligns with the definition of unfoldable graphs.

Definition 4.2 (Decomposable Symmetric Instance) We say a modeling instance P is decompos-
able symmetric if, after WL test coloring on its representation graph, the following conditions hold:

1. Excluding nodes that have distinct colors from all other nodes, the remaining nodes can
be divided into groups, denoted by I1, I2, · · · , Ik, each containing at least two nodes. All
nodes in the same group share the same color.

2. For any pair of groups Ii, Ij , either Ii and Ij are disconnected, or the nodes in Ii and Ij

form a perfect matching. Specifically, a perfect matching means that every node in Ii is
connected to exactly one node in Ij , and every node in Ij is connected to exactly one node
in Ii.

One example of a decomposable symmetric instance can be found in Figure 10.

In the following theorem, we showed that if the standard instance satisfies either of the two sufficient
conditions: being WL-determinable or decomposable symmetric, then Algorithm 1 can be reliably
used for detecting whether a test instance is model-equivalent to the standard instance. Rigorous
proof can be found in Appendix A.8.

Theorem 4.1 Denote Algorithm 1 by A(Gtest,Gstandard). Suppose Pstandard is WL-determinable
or decomposable symmetric, then 8Ptest, we have A(Gtest,Gstandard) == True () Ptest ⇠
Pstandard.

Generality of WL-determinable and Symmetric Decomposable Instances Many operations
research models, such as assignment problems and traveling salesman problems, are almost surely
to get a WL-determinable instance by random sampling problem data, we provide a theorem in
Appendix A.9 to characterize this property. Our algorithm can determine whether a problem is
WL-determinable or Symmetric Decomposable by definition. Empirically, although we did not
intentionally select models and problem data for our benchmark, we found that almost all instances
in our benchmarks are either WL-determinable or symmetric-decomposable.

5 EXPERIMENT AND ANALYSIS

Experiment Setting To assess the capabilities of LLMs in optimization modeling, we conducted
a comprehensive evaluation using the OptiBench benchmark. Our evaluation focused on top-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

performing LLMs via direct prompting, including closed-sourced models such as GPT-4o OpenAI
et al. (2023), o1-preview, o1-mini OpenAI (2024), Claude-3.5-sonnet Anthropic (2024a), Claude-3-
opus Anthropic (2024b), and the open-sourced LLM Llama-3-70b-instruct Dubey et al. (2024). We
also deployed the Chain of Expert modeling agent Xiao et al. (2023). Each LLM was tested across
all 816 OptiBench questions to ensure a thorough and consistent assessment of their optimization
modeling abilities. The main evaluation result is listed in Table 1

Table 1: Evaluation Results on OptiBench. The “Overall” modeling accuracy is the accuracy
weighted by question count. The SOTA in each category is marked in red.

Modeling Accuracy

LP MILP
LLMs

Structured Unstructured Structured Unstructured
Overall

Direct Prompting

gpt-4o 56.87 42.18 56.85 41.62 49.39
o1-preview 47.87 32.70 43.65 30.46 38.73
o1-mini 45.97 35.55 43.15 32.99 39.46
claude-3-5-sonnet 45.97 33.18 51.78 39.59 42.52
claude-3-opus 52.61 39.34 51.78 34.52 44.61
llama3-70b-instruct 42.65 24.17 39.09 29.44 33.82

LLM-based Agent

Chain-of-Experts 48.82 37.91 51.27 30.47 43.50

Comparing Performance Across Different LLMs and Prompting Methods Among the evalu-
ated models, GPT-4o achieved the highest overall performance, securing an accuracy rate of 45.38%
across all problem categories. Surprisingly, both the o1-preview and o1-mini models underper-
formed GPT-4o. Claude-3.5-sonnet outperformed both o1-preview and o1-mini in MILPs, while
Claude-3-opus surpassed o1-preview and o1-mini across all tested settings.

Furthermore, the application of the Chain of Expert agents, intended to enhance problem-solving
through multi-agent collaboration and extensive reasoning paths, inadvertently reduced the perfor-
mance of GPT-4o to 39.98%. The intended multi-step reasoning in both o1 and LLM-based agents
may have introduced inconsistencies in the generated code, which decreased the code pass rate.
Additionally, the accumulation of hallucinations—incorrect or fabricated information—further ex-
acerbated performance degradation, ultimately lowering the overall accuracy.

Note that we also explored the performance of the OptiMUS model AhmadiTeshnizi et al. (2024).
Initially, OptiMUS showed extremely bad performance due to several reasons. First, OptiMUS
requires extracting optimization entities during the initial modeling phase. However, the extrac-
tion accuracy on OptiBench is below 50%, which stops the agent from moving toward subsequent
modeling steps.(We monitor the sanity check and OptiMUS’s early interruption primarily due to
parameter names or dimensions mismatches. To mitigate this issue, we designed an improved ex-
traction agent tailored for OptiMUS. However, despite this enhancement, the overall code pass rate
remained below 10%, leading to an overall accuracy below this threshold.

Comparing Performance Across Different Dimensions of Complexity Our analysis revealed
significant variations in LLM performance based on the complexity dimensions of the OR prob-
lems. Specifically, MILPs were consistently more challenging for the LLMs compared to LPs. This
increased difficulty is likely due to the combinatorial nature and higher computational complex-
ity inherent in MILPs formulations. Furthermore, unstructured problems posed a more significant
challenge than structured ones, indicating that LLMs struggle more with tasks that lack clear for-
matting or predefined frameworks. Both Llama-3-70b-instruct and Claude-3.5-sonnet demonstrated
comparable performance levels on the unstructured versions of LP and MILP tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: Performance Across Different Classes

Comparing Performance Across Different Problem Classes Beyond the primary performance
metrics, we also examined the modeling accuracy across various classes of OR problems to identify
potential biases in LLM knowledge bases. The results indicated a pronounced bias, with relatively
high accuracy observed in solving knapsack problems (MILP), assignment problems (MILP), and
diet problems (LP). These areas likely benefit from the simplicity of problem model and more ex-
tensive representation in training data. Conversely, the models exhibited relatively low accuracy in
addressing cutting stock problems (MILP) and near-zero accuracy for traveling salesman problem
and vehicle routing problem. These findings underscore significant gaps in LLMs’ capabilities, par-
ticularly in handling specialized and highly complex OR problems. The observed biases suggest
that while LLMs are proficient in certain well-represented problem classes, their effectiveness di-
minishes in less common or more intricate problem spaces, highlighting areas for future research
and training improvement.

6 CONCLUSION

In this work, we introduced OptiBench, a novel benchmark to evaluate the ability of LLMs in
optimization modeling tasks. OptiBench uniquely incorporates multi-dimensional complexity in a
model-data-separated manner, allowing a more structured and flexible evaluation process. To facil-
itate a comprehensive assessment of LLMs’ optimization capabilities, we formalized an evaluation
paradigm based on equivalence detection, ensuring accurate and meaningful comparisons between
models. We also theoretically proved the efficiency of our proposed method. By benchmarking
over OptiBench, GPT-4o demonstrated superior performance in the direct prompting setting, out-
performing all other LLMs and agents. In contrast, the latest model, o1-preview, and the existing
modeling agent surprisingly underperformed compared to GPT-4o. This underperformance might be
attributed to the snowball effect of hallucination, especially prevalent during longer reasoning paths
when tackling complex tasks. Our results suggest that while current LLMs possess a foundational
capability in optimization modeling, there remains significant room for improvement. We plan to
develop a specialized modeling agent to address these gaps, incorporating a curated reasoning skele-
ton tailored specifically for optimization and operational research. In addition, we intend to extend
our hierarchical reverse data evolution method to create fine-tuning datasets for optimization tasks
and broader logical reasoning tasks. Through these efforts, we aim to push the boundaries of LLMs’
operational research and optimization modeling capabilities, ultimately fostering advancements in
AI research and practical applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. Optimus: Scalable optimization modeling
with (mi) lp solvers and large language models. arXiv preprint arXiv:2402.10172, 2024.

AIMMS. 16th aimms-mopta optimization modeling competition.
https://coral.ise.lehigh.edu/ mopta/competition, 2024.

Marie Anastacio and Holger H Hoos. Combining sequential model-based algorithm cons-
ingh2012overviewuration with default-guided probabilistic sampling. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference Companion, pp. 301–302, 2020.

Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. A gender-based genetic algorithm for the
automatic consingh2012overviewuration of algorithms. In International Conference on Princi-
ples and Practice of Constraint Programming, pp. 142–157. Springer, 2009.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-5-sonnet, 2024a.

Anthropic. Introducing the next generation of claude. https://www.anthropic.com/news/claude-3-
family, 2024b.

Team ApIO, Santiago Ramı́rez Palacio, Mariana Escallón Barrios, and Daniel López Cornejo.
9th aimms-mopta optimization modeling competition (2017) production and delivery of radio-
pharmaceuticals to medical imaging centers.

László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp. 684–697, 2016.

David Bergman, Teng Huang, Philip Brooks, Andrea Lodi, and Arvind U Raghunathan. Janos: an
integrated predictive and prescriptive modeling framework. INFORMS Journal on Computing,
34(2):807–816, 2022.

Daniel G Bobrow. A question-answering system for high school algebra word problems. In Pro-
ceedings of the October 27-29, 1964, fall joint computer conference, part I, pp. 591–614, 1964.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022a.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear pro-
grams by graph neural networks. arXiv preprint arXiv:2209.12288, 2022b.

Cheng Chi, Amine Aboussalah, Elias Khalil, Juyoung Wang, and Zoha Sherkat-Masoumi. A deep
reinforcement learning framework for column generation. Advances in Neural Information Pro-
cessing Systems, 35:9633–9644, 2022.

Denise Dellarosa. A computer simulation of children’s arithmetic word-problem solving. Behavior
Research Methods, Instruments, & Computers, 18(2):147–154, 1986.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68(1):
9–26, 2022.

Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman San
Francisco, 1979.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xi-
aodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
arXiv preprint arXiv:2302.05636, 2023.

Frederick S Hillier and Gerald J Lieberman. Introduction to operations research. McGraw-Hill,
2015.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Mamo: a mathematical
modeling benchmark with solvers. arXiv preprint arXiv:2405.13144, 2024.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learning to automatically
solve algebra word problems. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 271–281, 2014.

Andrei Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Car-
olin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian opti-
mization package for hyperparameter optimization. Journal of Machine Learning Research, 23
(54):1–9, 2022.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong Duan, Zhiwei Fei, Fengzhe Zhou, Wen-
wei Zhang, Songyang Zhang, Dahua Lin, and Kai Chen. Mathbench: Evaluating the theory
and application proficiency of llms with a hierarchical mathematics benchmark. arXiv preprint
arXiv:2405.12209, 2024.

Donato Maragno, Holly Wiberg, Dimitris Bertsimas, Ş İlker Birbil, Dick den Hertog, and Ade-
juyigbe O Fajemisin. Mixed-integer optimization with constraint learning. Operations Research,
2023.

Mitesh Miyani, Smit Doshi, and Jay Jain. Word problem solver system using artificial intelligence.
Procedia Computer Science, 45:800–807, 2015.

OpenAI. Openai o1 system card. https://openai.com/index/
openai-o1-system-card/, 2024.

R OpenAI et al. Gpt-4 technical report. ArXiv, 2303:08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jayant Rajgopal. Principles and applications of operations research. Maynard’s Industrial Engi-
neering Handbook.–2004.–P, pp. 11–27, 2004.

Rindranirina Ramamonjison, Haley Li, Timothy T Yu, Shiqi He, Vishnu Rengan, Amin Banitalebi-
Dehkordi, Zirui Zhou, and Yong Zhang. Augmenting operations research with auto-formulation
of optimization models from problem descriptions. arXiv preprint arXiv:2209.15565, 2022a.

12

https://openai.com/index/openai-o1-system-card/
https://openai.com/index/openai-o1-system-card/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghad-
dar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang.
Nl4opt competition: Formulating optimization problems based on their natural language descrip-
tions. In Marco Ciccone, Gustavo Stolovitzky, and Jacob Albrecht (eds.), Proceedings of the
NeurIPS 2022 Competitions Track, volume 220 of Proceedings of Machine Learning Research,
pp. 189–203. PMLR, 28 Nov–09 Dec 2022b. URL https://proceedings.mlr.press/
v220/ramamonjison23a.html.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla, Pranav Tadepalli, Paula Vidas, Alexander
Kranias, John J Nay, Kshitij Gupta, and Aran Komatsuzaki. Arb: Advanced reasoning benchmark
for large language models. arXiv preprint arXiv:2307.13692, 2023.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots
for theorem proving in lean. arXiv preprint arXiv:2404.12534, 2024.

Sowmya S Sundaram and Deepak Khemani. Natural language processing for solving simple word
problems. In Proceedings of the 12th international conference on natural language processing,
pp. 394–402, 2015.

EG Talbi. Metaheuristics: From design to implementation. John Wiley & Sons google schola, 2:
268–308, 2009.

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi Hu, Zizhuo Wang, Dongdong Ge, and Benyou
Wang. Orlm: Training large language models for optimization modeling. arXiv preprint
arXiv:2405.17743, 2024.

GR Vineetha and CR Shiyas. Optimization models in supply chain management: A critical re-
view. INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH, 8
(1):297–303, 2020.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and log-
ical reasoning using a differentiable satisfiability solver. In International Conference on Machine
Learning, pp. 6545–6554. PMLR, 2019.

Wayne L Winston. Operations research: applications and algorithm. Thomson Learning, Inc.,
2004.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex opera-
tions research problems. In The Twelfth International Conference on Learning Representations,
2023.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models, 2023. URL https://arxiv.org/abs/2306.15626.

Zhicheng Yang, Yinya Huang, Wei Shi, Liang Feng, Linqi Song, Yiwei Wang, Xiaodan Liang, and
Jing Tang. Benchmarking llms for optimization modeling and enhancing reasoning via reverse
socratic synthesis. arXiv preprint arXiv:2407.09887, 2024.

Sihan Zeng, Alyssa Kody, Youngdae Kim, Kibaek Kim, and Daniel K Molzahn. A reinforcement
learning approach to parameter selection for distributed optimal power flow. Electric Power Sys-
tems Research, 212:108546, 2022.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI open, 1:57–81, 2020.

Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu, Jindong Wang, Derek F Wong, Xiaowei Huang,
Qiufeng Wang, and Kaizhu Huang. Is your model really a good math reasoner? evaluating
mathematical reasoning with checklist. arXiv preprint arXiv:2407.08733, 2024.

13

https://proceedings.mlr.press/v220/ramamonjison23a.html
https://proceedings.mlr.press/v220/ramamonjison23a.html
https://arxiv.org/abs/2306.15626

	Introduction
	Background and related work
	Background
	Related Work

	OptiBench
	Model-Data Separation
	Multi-dimensional Complexity
	Quality control

	Evaluation Paradigm
	Evaluation Principal
	Evaluation Method
	Theoretical Guarantee

	Experiment and Analysis
	Conclusion
	Appendix
	Dataset
	Model Equivalence Class
	Weighted Bipartite Graph for Representing MILP/LP
	Connection between Model Equivalence and Graph Isomorphism
	Proof of lemma A.1:
	Algorithms
	Complexity Analysis
	Proof for Theorem 4.1
	Randomly sampling suffices to obtain WL-determinable instance
	Proof of Theorem A.2
	Examples
	Error Analysis

