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Drag4D: Align Your Motion with Text-Driven 3D Scene Generation
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A smoky grey kitchen with modern accents, small garden-facing
windows, Bauhaus furniture, high ceilings, and a pastel beige-blue-
salmon palette. Cozy atmosphere with a basket of produce, water

bottle, magazine-style wall decor, and wooden parq
- b2 o=

flooring.

An elegant dining room featuring a long polished table set with fine
china, crystal glasses, and a chandelier, with ornate chairs and side
tables adorned with decorative items.

Figure 1. We propose Drag4D, a comprehensive user-interactive framework for 4D-controllable video generation, de-
signed to achieve spatial and temporal alignment of a target instance within a text-driven 3D background. For example,
this framework allows users to create a high-quality 3D scene from a text description (middle section), seamlessly inte-
grate target instances (left section), and precisely control motion following a user-defined 3D trajectory (right section).

Abstract

We introduce Drag4D, an interactive framework
that integrates object motion control within text-
driven 3D scene generation. This framework
enables user to define 3D trajectory for the
360°objects generated from a single image, seam-

* Equal contribution.
1 This work was partially conducted while at KAIST.

lessly integrating them into a high-quality 3D back-
ground. Our Drag4D pipeline consists of three
stages. First, we enhance text-to-3D background
generation by applying 2D Gaussian Splatting with
panoramic images and inpainted novel views, re-
sulting in dense and visually complete 3D recon-
structions. In the second stage, given a refer-
ence image of the target object, we introduce a 3D
copy-and-paste approach: the target instance is ex-
tracted in a full 360° representation using an off-
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the-shelf image-to-3D model and seamlessly com-
posited into the generated 3D scene. The object
mesh is then positioned within the 3D scene via
our physics-aware object position learning, ensur-
ing precise spatial alignment. Lastly, the spa-
tially aligned object is temporally animated along
a user-defined 3D trajectory. To mitigate motion
hallucination and ensure view-consistent temporal
alignment, we develop a part-augmented, motion-
conditioned video diffusion model that processes
multiview image pairs together with their projected
2D trajectories. We demonstrate the effectiveness
of our unified architecture through evaluations at
each stage and in the final results, showcasing
the harmonized alignment of user-controlled object
motion within high-quality 3D background.

1. Introduction

The importance of user experience in computer vi-
sion has grown significantly. It has been driven
by the rapid advancement of applications in vari-
ous domains, specifically in VR/AR [33]. Enhanc-
ing user experience lies the ability to control and
manipulate digital environments intuitively and in-
teractively. One area where this control is particu-
larly transformative is in video content, where users
seek to generate their own videos with text descrip-
tions [3, 17, 21, 29]. Due to the ambiguity of user-
intention in text prompt, video model with user-
given trajectory [16, 48] has recently emerged to
allow users to effectively direct and modify the ob-
jects within videos. The another area is 3D content
generation [11, 20, 30, 39, 57, 58]. It can construct
3D space, enabling users to engage with generat-
ing objects [30, 39] or/and scenes [11, 20, 57] in a
fully immersive manner with unconstrained multi-
ple camera views. The module designed for con-
trollable video generation with trajectory and text-
to-3D generation are not only evolving over time,
but also becoming very distinct. Consequently, it is
infeasible to easily adapt temporal controllability
to text-to-3D (and vice versa). Particularly, current
2D trajectory-based video generation [ 16, 48] lacks
the capability to scale up to multi-views, while text-
to-3D method [5, 20, 58] can suffer from misalign-

Table 1. Our approach, Drag4D, seamlessly unifies three
key components required for 4D controllable video gen-
eration: (1) generating a 3D scene from a text prompt,
(2) composing objects into the generated 3D background,
and (3) conditioning video motion to manipulate an ob-
ject’s trajectory naturally within the 3D space. No prior
work has achieved this level of integration.

Method 3D Scene Generation Object Composition Motion Conditioned Video
LucidDreamer [5] X
SceneDreamer360 [20] X

Layout3D [58] X
DragAnything [48] O (2D Video)
DragdD O (4D Video)

O|x X 0O
Of% O X %

ment of user-given moving objects with generated
3D scenes as shown in Tab. 1. The need for this
scenario-specific design results in degrading the
quality of user experience. A natural question thus
emerges: Is it feasible to develop a unified frame-
work capable of achieving controllable 4D environ-
ments, where user can manipulate the trajectory of
360° object while synthesizing 3D background?

To answer the question, we present a unified
user-interactive framework, DragdD, which aims
to align your motions with text-to-3D generation.
Our pipeline incorporates three key stages. First, in
order to construct a basis for 3D background scene,
we employ off-the-shelf text-driven panoramic im-
age generation model [53]. Then, we extract depth
and normal information from the panoramic image
using a depth estimator [14], providing essential
priors (point cloud) for 3D scene reconstruction.
In constrast to SceneDreamer360 [20, 39], which
directly augments training set with novel view im-
ages projected from point cloud, our approach in-
tegrates image inpainting model [6] to refine these
novel views like HoloDreamer [57]. This inpaint-
ing process effectively addresses occlusions from
different camera views, seamlessly filling in miss-
ing regions to enhance the visual coherence in the
reconstructed 3D scene. Our framework departs
from HoloDreamer [57] by employing efficient 2D
Gaussian Splatting [15] to be optimized jointly
with panoramic image set and inpainted novel view
images. Specifically, we enhance the joint learn-
ing by proposing a pixel-level adaptive weighting
mechanism using depth-normal similarity, which
can mitigate the influence of noisy areas in aug-



mented views. Secondly, to extract the instance
from user-provided reference image and compos-
ite it into the generated 3D background, we pro-
pose a 3D copy-and-paste approach. We employ
an image-to-3D model [49] to scale up the area
of foreground mask to 360°object (“3D copy”).
Then, it is spatially aligned with the surrounding
3D background through physics-aware object po-
sition learning (“3D paste”), which can be imple-
mented via collision and gravity loss. In the final
stage, we input multiple views of the spatially com-
posited scene-object and the corresponding trajec-
tories (derived from a user-provided 3D path) into
motion-conditioned video diffusion model. Unlike
a previous model [48], which controls the motion
of an entire instance with a single global feature,
we introduce a part-augmented motion-conditioned
video generator where local feature is co-utilized
with global feature. We coin this approach, Local-
Global DragAnything. We observe that this ap-
proach effectively prevents local motion halluci-
nations within the target instance, which is es-
sential for precise motion alignment. We rigor-
ously validate our design choices and methodology
through comprehensive experiments presented in
this paper. Given the limited availability of datasets
specifically targeting moving objects within 3D
scenes, we introduce a custom dataset, DragdD-30,
to showcase the enhanced performance of our ap-
proach compared to baseline methods.

2. Method

The meta architecture of Drag4D aims to design 4D
controllable video generation, which align and ma-
nipulate object within 3D scene background gen-
eration. This process unfolds across three seam-
lessly integrated stages. The first stage, detailed
in [Sec. 2.3], generates a 3D background scene by
transforming given text prompt into high-quality
panoramic image. In the second stage, described in
[Sec. 2.4], a user-defined object is extracted from
a reference view in a 360°manner and spatially
composited into the generated 3D background. Fi-
nally, the third stage, covered in [Sec. 2.5], tem-
porally aligns the user-specified 3D trajectory with
the object, maintaining seamless composition with

the surrounding background.

2.1. Preliminaries

Diffusion Models Diffusion probabilistic models
(DPMs), first introduced by [41] and further refined
by [10], constitute a type of generative model that
reconstructs a target data distribution, denoted as g,
through a staged denoising process. The process
begins with an image zr that is initially Gaussian-
distributed as zr ~ N(0, I). Containing indepen-
dent and identically distributed noise. The diffu-
sion model, represented by €y , then progressively
reduces this noise, transforming the image step-by-
step until it arrives at a clean version, xy drawn
from the target distribution q.

3D Gaussian Splatting (3D-GS) Kerbl et al. [18]
introduce a method for representing 3D scenes us-
ing 3D Gaussian primitives and rendering images
through differentiable volume splatting. In this ap-
proach, 3D-GS explicitly defines Gaussian primi-
tives by specifying their 3D covariance matrix X
and spatial location py:

6(p) = exp (~5(0 - p) =0 p0) ) )

Here, the covariance matrix ¥ is decomposed
into a scaling matrix S and a rotation matrix R,
such that ¥ = RSSTRT. To render an image, the
3D Gaussian is transformed to the camera’s coor-
dinate system using a world-to-camera transforma-
tion matrix 1/, and then projected onto the image
plane via a local affine transformation. This results
in a modified covariance matrix:

Y = JWEW ' JT )
2.2. Problem Setting

Our pipeline utilizes multiple user prompts across
different stages to fully capture and reflect user’s
intentions. In the first stage, a detailed and long
text prompt ¢ is provided to generate high-quality
3D background scene. In the subsequent stage,
a single reference image, x, with an foreground
mask (m,) is supplied to extract the target object,



Prompt : “A kitchen with an island, bar stools, hanging cabinets, built-in
oven and microwave, and some kitchen utensils on the countertop.”
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Figure 2. The proposed Drag4D comprises three key stages. First, we conduct text-to-3D scene generation. Here, we use
2D Gaussian Splatting to process panoramic and inpainted augmented view images, generating high-quality 3D scenes
with diffuion features (DIFT). Next, given reference image with target instance, a 360°object mesh is extracted from
a reference image using an Image-to-3D model and composited into the 3D background based on scene configuration
(e.g., 3D bounding boxes). A physics-aware object-scene composition method including collision loss and gravity loss
ensures accurate spatial alignment of the target instance. In final stage, with the composited 3D scene and a user-
defined 3D trajectory, the LG-DragAnything motion-conditioned video model enables view-consistent multi-view video

generation, achieving high-quality 3D motion alignment.

which is then transformed into 360°object. After-
wards, it is scaled and positioned within generated
3D background scene according to a user-defined
3D bounding box configuration, Bsp , which spec-
ifies center coordinates, dimensions and rotation.
Finally, user can manipulate the object within the
3D space using a sequence of 3D trajectory points,
(Pz, Py, Pz)i=1...n, Where N denotes the number of
points defining the trajectory path.

2.3. 1st Stage: Generating Text-to-3D Scene

Panoramic Image Generation for 3D Scene The
objective of the panoramic image generator is to
construct high-quality 360-degree scenes guided
by text input ¢, serving as a critical prior for
reconstructing 3D backgrounds. To this end,
we employ a diffusion model [53] for generat-

ing panoramic images. To effectively handle ex-
tended text prompts and generate high-resolution
panoramic images, we incorporate LoRA [13] fine-
tuning and super-resolution [46] techniques, fol-
lowing SceneDreamer360 [20]. Then, we can ob-
tain the panoramic image I, along with its corre-
sponding depth D, using a pre-trained metric depth
estimator, Metric3D [51]. Given panoramic im-
age I, with corresponding depth D,,, we can obtain
point cloud, P, utilizing 'inverse equirectangular
projection, E~! as below:

P =E"'(I,,Dp) 3)

, which serves as the initialization for reconstruct-
ing a dense 3D background. To obtain a series

"Mapping function to transform 2D pixel coordinates of
panorama image into 3D coordinates.



of perspective images used as supervision for 3D
reconstruction, we first can derive a high-quality
set of base images by projecting from point cloud
P using cameras positioned at the center of the
panoramic sphere. Specifically, using shared intrin-
sic K and multiple center-positioned extrinsics Ej,
base images can be obtained with following equa-
tion:

I, = ®(P, K, E;) )

Let ® denote the projection function from 3D point
cloud to the corresponding 2D pixel coordinate.
Image Inpainting for Novel Views However, 3D
reconstruction with the supervision of the base im-
ages I; may result in poor rendering quality due to
the limited range of camera poses. In our DragdD
scenario, where a dense 3D background is essen-
tial, this limitation can lead to the emergence of
significant visual artifacts. To address this, we aug-
ment extrinsics (£;) of the base images, adjust-
ing camera positions away from the center of the
panoramic sphere as follows:

Aug(l;) = [®(P, K, Ejj)|j=1..7 )

, which corresponds 7" number of augmented views
from ith base image. Yet, we observe significant
artifacts near object boundaries in the augmented
views due to depth instability. Thus, we filter out
these areas based on a depth gradient threshold and
fill them in using pretrained stable diffusion model,
SD [6]. The process of image inpainting for aug-
mented views are as follows:

PaintAug(L;); = SD(®(P, K, Ey;), Mi;)  (6)

Here, M;; stems from mask filtered out from depth
gradient threshold. We can then obtain a pair
of base images and inpainting augmented images,
[Ii,PaintAug(Ii)j].

One-stage 2D-GS Optimization For improved 3D
reconstruction, we replace 3D Gaussian primitives
with 2D primitives [15]. It has been demonstrated
that 2D-GS provides faster and more consistent
multi-view consistency evaluations than 3D-GS, a
crucial for efficient and accurate 3D reconstruction.
It is easily implemented by skipping the third row

and column of ¥’ and deriving normal primitive
from orthogonal of two tangential vectors. Fol-
lowing the training procedure of 2D-GS [15], we
can optimize our model from an initial sparse point
cloud P using our panoramic base image I; with
following objective:

Liase = L(Go(P, K, E;), I) @)

Here, L represents an integration of the reconstruc-
tion loss [18], two regularizers [15] (e.g., depth dis-
tortion loss and depth-normal consistency loss). G
denotes Gaussian model with 6 parameter. Further-
more, to fully leverage the inpainted augmented
views PaintAug(l;); while preventing the model
from being constrained by noisy regions, we apply
depth-normal similarity as a weighting factor for
the inpainted areas of PaintAug(l;);. We simplify
the corresponding equation using rendered image
of augmented view Ry, = Go(P, K, E;;) as be-
low:

Laug = L((l — Mij)Raug+CijMinaug,PaintAug(]i)j)
®

Cj; denotes depth-normal similarity value.

Finally, we embed semantic features including
DINO [28] and DIFT [43] in 3D geometry to be
utilized as prior for semantic-level motion-based
video generation in Stage3 of Sec. 2.5. Inspired by
3DitScene [56] and LangSplat [31], we apply fea-
ture distillation loss, Lgiin, between rasterized fea-
tures of the Gaussian Splats and the semantic fea-
tures constrained by the SAM?2 [34] mask, both on
base and augmented images. Therefore, total ob-
jective loss is expressed as following:

Lscene = Liase + Laug + Lisin (&)

We skip the summation of loss for simplicity.
This approach allows for joint optimization of 2D-
GS on base images and augmented images with
learning 3D geometry, which contrasts with Holo-
Dreamer [57], where complex multi-stage 3DGS
optimization process was introduced. We show that
our method can reconstruct an accurate 3D scene in
Fig. 4.



Naive Stitching + Object Position Learning

Figure 3. Our object-scene composition pipeline. It be-
gins with naive stitching between 3D background and the
position-learned object mesh, which serves as an initial-
ization for 2D-GS optimization. To refine the composi-
tion, we apply a photometric reconstruction loss to learn
the opacity and spherical harmonic (SH) coefficients of
the foreground object, while the background is optimized
using the SDS loss [30].

2.4. 2nd Stage: Spatial Alignment of Object

The second stage begins with a user-provided ref-
erence image. It extracts the target instance in 3D
from this image and integrates it with the gener-
ated scene from Ist stage using our proposed 3D
copy-and-paste approach. For 3D copy, we first
extract the target instance from a reference image
with a foreground mask. Then, we leverage off-
the-shelf instance-to-3D model [49] to generate a
full 3D object of the target instance. Specifically,
this model use a multi-view diffusion model [38] to
synthesize six novel views at fixed camera poses.
These generated multi-view images are then fed
into a transformer-based sparse-view reconstruc-
tion model to create a high-quality 3D mesh. Next,
to perform 3D paste accurately, we take two se-
quential learning stages. First, we find the floor
plane of the scene and roughly locate our object
on the plane. We can observe that this naive way
of stitching often results in unreliable poses of ob-
ject as shown in the first column of Fig. 5. To
achieve accurate placement of composited objects,
we design a physics-aware object-scene composi-
tion framework with two regularizers: 1) collision
loss, which minimize the collision area between ob-
ject and scene, and 2) gravity loss, which enforce
the object to be grounded within the scene. Our

loss term for this process is as follows:

Lphysics = Lcollision + Lgravity

=3 > =mny) (I —all <167

peO qes

1
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Here, O is the point cloud of the object, S is the
point cloud of the scene, g is gravitational accelera-
tion, and m,, is the vertex mass of the object. Grav-
ity loss penalized the gravity positional energy rela-
tive to the closest floor plane of the scene. Collision
loss enforces normal consistency between points
that come into contact within a distance below the
threshold. This optimization stage yields well-
aligned object—scene composited point clouds.

In the next stage, we initialize 2D-GS with the
well-aligned object—scene composited point clouds
and jointly optimize the integrated object—scene
representation, as illustrated in Fig. 3. Consistent
with the first stage, semantic features are also em-
bedded into 2D-GS. Specifically, we reuse the se-
mantic features of the background scene and intro-
duce new features for the foreground object. For
the latter, DINO features are employed to pro-
vide a part-level semantic prior of the target in-
stance, thereby enabling part-level control in stage
3. While optimizing 2D-GS of the object and the
scene together, we use SDS loss [30] Lgps, to
seemingly generate the occluded area of the back-
ground. Our total loss to optimize the scene-object
composited 2D-GS is as follows:

Lscene-object = Lbase + Ldistill + ALSDS (1 1)

Here, we use \ as 0.01.

2.5. 3rd Stage: Temporal Alignment for 4D

Motion Conditioned Video Generation At this
stage, we aim to manipulate spatially aligned ob-
jects based on a user-defined 3D trajectory path
of (pe,py,Pz)i=1..n. We begin by generating
multi-view images projected from P, by set-
ting different azimuth and elevation angles for the
camera views. For example, we define azimuth



Table 2. Comparison of Methods on Various Quality Metrics on Drag4D-30 dataset.

Method

Image Quality (Novel View)

Render Quality

CLIP-Score T Sharp T Colorful T Quality T

PSNR 1T SSIM 1

LucidDreamer [5]
SceneDreamer360 [20]
Ours

0.656 0.961 0.603 0.704
0.773 0.970 0.760 0.736
0.782 0.973 0.740 0.747

24.59
25.74

0.857
0.885

range as [0°, 90°, 180°, 270°] and elevation range
as [0°, 30°], offering users unconstrained multi-
views. The 3D trajectory is then reprojected for
each view, yielding total 8 pairs of multi-view im-
ages and corresponding 2D trajectories. We repre-
sent those pairs as (V;, T;),_, g, where V; denotes
each view image and 7j; its corresponding 2D tra-
jectory. To generate video from image V' following
a specified trajectory 7', we opt DragAnything [48]
as a motion-conditioned video model. We train the
model on large-scale video dataset, VIPSeg [23],
using ControlNet [54] to condition trajectory fol-
lowing DIFT features. Specifically, the DIFT fea-
tures of the video’s first frame are pooled based
on each mask, allowing us to obtain an entity rep-
resentation £ € RF*WxC along with a gaussian
heatmap h. They are mapped to the following
frames according to the trajectory path. The ob-
jective to condition the motion into video diffusion
model can be simplified to:

Lo = XL: He — €0 (Zage(ﬁ]i)fe(hi)) Hz (12)
=1

where latent feature of first frame (z) and encoded
trajectory features (Sg(ﬁ)i),é’g(hi)) with encoder
& are added to the denoised features in diffusion
model. However, as shown in the first row of the
second box in Fig. 6, we observe motion hallucina-
tion in a local part of the moving object. To address
this, we augment the current DIFT features from
the instance mask with a part-level DIFT feature
derived from the part mask of each instance. For
VIPSeg, consistent with the previous stage, we use
DINOv2 [28] and apply k-means clustering within
the instance mask to obtain the part mask. This
enables us to extract part features, which are then
concatenated with the global feature and their re-

Table 3. Ablation Studies of Object Scene Composition.
There is trade-off between geometric quality and image
quality depending on usage of SDS loss and joint learn-
ing of background.

Method SDS Normal. C w/o BG Rasterize | CLIP-Score T Sharp 1 | Align |
(0] 0.643 0.971 | 0.134
2) 0.661 0.973 | 0.265
3) 0.753 0.977 | 0.545
) 0.775
(5) 0.775

ENENENENEN
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RN NN

spective trajectories, represented as EF*" and AP,
Consequently, Eq. (12) can be modified as follows:

L
Lo=>_

i=1

N 2 art 2
€ — e (z, 9 (E4), Eg(hi), Eo (BPAL,), £o (RPN )) H2

13)

This modified objective serves as the over-
all training goal for our part-augmented, motion-
conditioned video generation. As the model aims
to align motion by considering both local and
global features of instances, we refer to it as Local-
Global DragAnything. Given the pretrained LG-
DragAnything and desired trajectory from users,
we generate both global- and part-level trajectory
features from (V;,T;, F;), enabling the synthesis
of eight motion-conditioned videos with a single
model. Here, F; represents the DIFT feature map,
partitioned at the part and instance levels. From
the optimized object—scene composited 2D-GS, we
rasterize (V;,T;, F;) for each view and leverage
these priors to produce spatially and temporally co-
herent 4D videos with LG-DragAnything.

3. Experiments

In this section, we evaluate Drag4D across three
key tasks: Text-to-3D Generation (Sec. 3.1),



Object-Scene Composition (Sec. 3.2), and Motion-
Conditioned Video Generation (Sec. 3.3), each
aligning with one of Drag4D’s distinct stages. We
provide the details of baselines used for those three
tasks, main quantitative and qualitative results, and
ablation studies.

Datasets Due to the absence of publicly available
datasets for validating 4D environments with mo-
tion guidance, we created our own dataset, named
Drag4D-30. The dataset comprises 30 complex
and extended text prompts designed to synthesize
corresponding 3D scenes, demonstrating the effec-
tiveness of Drag4D compared to other baselines in
1st stage. Additionally, it includes 4 object-centric
images, each containing a target instance. These
images are used for evaluating the 2nd stage and
3rd stage, where they are paired with the 30 text
prompts to assess the spatial and motion alignment
of the object within the 30 3D scenes. We will
provide the details of Drag4D-30 in supplementary
material.

3.1. Text-to-3D Generation

Baselines As 1st stage of our Drag4D aims to re-
construct 3D scene from text prompt, we compare
our approach with two recent methods. 1) Lu-
cidDreamer [5], employs a technique where out-
painted RGBD images are mapped onto a point
cloud, which is then used to guide the optimiza-
tion of 3DGS by projecting various images derived
from this point cloud. However, as LucidDreamer
lacks the capability to directly produce 3D scenes
from textual prompts, we address this limitation by
leveraging a diffusion model to create conditional
images, enabling the generation of 3D scenes based
on text input. 2) SceneDreamer360° [20], utilizes
a text-driven panoramic image generation model,
fine-tuned with a three-stage enhancement pro-
cess, to produce high-resolution panoramas. These
panoramas are integrated into 3D space using 3D-
GS, ensuring multi-view consistency.

Main Results To assess the fidelity of the gener-
ated 3D scenes to the text prompts, we calculate
the CLIP-Score [9]. Additionally, we use CLIP-
IQA [45] to evaluate visual sharpness, colorfulness,
and quality. Both metrics leverage the pre-trained

Table 4. Performance comparison of motion-conditioned
video generation on VIPSeg validation set. Our proposed
LG-DragAnything with part augmentation surpasses the
baseline across both image-based metrics (FID, PSNR,
SSIM) and video-based metrics (FVD and ObjMC).
Notably, higher values indicate better performance for
PSNR and SSIM, while lower values are preferable for
FID, FVD, and ObjMC. Results marked with * indicates
that we reproduce better score from baseline, DragAny-
thing [48].

Method FID | FVD| PSNR?T SSIM?T ObjMC |
+*DragAnything [48] | 34.45 288.68 18.41 0.57 19.9
LG-DragAnything | 32.79 272.02 19.02 0.59 17.6

Table 5. Comparison between the DragAnything [48]
and our LG-DragAnything on Drag4D-30 dataset.

Method CLIP-Score T Quality T  Colorful T
«DragAnything [48] 0.805 0.48 0.71
LG-DragAnything 0.814 0.51 0.75

CLIP-B/32 model [32]. Furthermore, PSNR and
SSIM are employed to measure rendering quality.
As presented in Tab. 2, Drag4D surpasses the base-
lines in both image quality and rendering quality.
The qualitative results in Fig. 4 demonstrate that
Drag4D produces visually complete and less dis-
torted 3D scenes, attributed to our joint training
with base images and inpainting-augmented views.

3.2. Object-Scene Composition

Baselines and Main Results Since there is previ-
ous baseline in object-scene composition, we con-
struct our self-baseline as summarized in Tab. 3.
We can observe that using SDS loss and normal
consistency loss help to increase both CLIP-Score
and Sharpness. Additionally, according to Fig. 5,
we can easily find out that using both collision loss
and gravity loss help to position the object accu-
rately.

3.3. Motion-Conditioned Video Generation

Baselines We chose DragAnything [48] as a rep-
resentative baseline to evaluate motion-conditioned
video generation. It proposes a framework for con-
trollable video generation that uses entity repre-
sentationhs for motion control of any object. It



Figure 4. Qualitative Results on the 1st Stage with
DragdD dataset. We show rendered color images in
novel viewpoint and mesh reconstructed from (a) Lucid-
Dreamer [5] (b) SceneDreamer360 [20], and (c) ours.
Our method can effectively handle unseen viewpoints
due to our adaptive inpainting strategy. It is best viewed
in color and high resolution; please zoom in .

Figure 5. Ablation study of physics-aware position learn-
ing used in object-scene composition

enables trajectory-based interaction, removing the
need for additional guidance signals like masks or
depth maps. Our proposed Drag4D introduces part
augmentation strategy on top of DragAnything.
Both methods are trained with VIPSeg [23] train-
ing datasets.

Main Results We evaluate the motion alignment
of our part augmentation method compared to Dra-
gAnything in two scenarios: 1) motion alignment
in 2D videos: Using the VIPSeg validation set,
we assess performance based on image metrics
(e.g., FID, PSNR, and SSIM) and video metrics
(e.g., FVD and ObjMC). As shown in Tab. 4, part
augmentation demonstrates improved performance
across these metrics. 2) motion alignment in 4D

Part Augmented
VIPSeg dataset

DragAnything

P AGN o
LG-DragAnything \ = \

Figure 6. Qualitative Results on the 3rd Stage with
VIPSeg dataset [23]. We adapt the VIPSeg dataset by
annotating it with part segmentation, achieved through
feature clustering from DINOv2 [28]. This modified
dataset is then used to train a part-augmented, motion-
conditioned video model as described in Eq. (13). Our
results show that LG-DragAnything with part augmenta-
tion effectively reduces motion hallucination by account-
ing for motion at both global and part levels. Best viewed
in color and high resolution; please zoom in for finer de-
tails.

videos: We measure CLIP-Score to evaluate text
fidelity and utilize CLIP-IQA metrics, including
quality and colorfulness, to assess the quality of
multi-view videos on Drag4D-30 dataset. We sum-
marize the quantitative result in Tab. 5. Fig. 6
shows visual impact of LG-DragAnything in the
first scenario, while Fig. 7 and Fig. 8 correspond
to the second scenario. The results from these
two scenarios demonstrate that our proposed part-
augmentation in motion-conditioned video genera-
tion effectively reduces local hallucinations while
improving fidelity to the text prompt.

4. Conclusion

We introduce DragdD, a comprehensive interac-
tive pipeline designed to align user-defined 3D ob-
ject motion with text-driven 3D background scene
generation. In the first stage, DragdD generates
a high-fidelity 3D scene by optimizing 2D Gaus-
sian representations on panoramic images and their



Figure 7. Qualitative Results on the 3rd Stage, which is our multi-view generated video result. Left is from DragAny-
thing and right is from our LG-DragAnything. Part guidance leads to clear and intended results.

Figure 8. Qualitative Results on the 3rd Stage, which is our multi-view generated video result. Left is from DragAny-
thing and right is from our LG-DragAnything. Part guidance leads to clear and intended results.

augmented views, surpassing previous state-of-the- into a full 360° object that is spatially aligned with
art models in 3D scene generation. In the sec- the generated 3D scene using our proposed 3D
ond stage, Drag4D extracts the target instance from Copy-and-Paste method. The final stage further en-
a user-provided reference image, transforming it hances user experience, allowing temporal manip-
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ulation of the 3D object within the 3D scene using
a part-augmented motion-conditioned video gener-
ator and 4D Gaussian representations. We antici-
pate significant societal benefits from Drag4D, as it
performs robustly across diverse user prompts, of-
fering potential applications in fields such as enter-
tainment, video synthesis and AR/VR.
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Supplementary Material
A. Related Works

3D Scene Generation. 3D Scene generation has been actively studied due to the rapid development of
image generation. Early studies [4, 24-26, 37] utilize Generative Adversarial Networks (GANs) and im-
plicit neural networks to represent 3D objects with texture. However, these methods have limited ability
to generate diverse categories of objects and scenes due to GAN’s inherent difficulty of learning and lim-
ited 3D representation. Advanced recent studies [5, 12, 30, 56] generate large 3D scenes from either text
prompts or a single image from the user by incorporating advanced diffusion-based image generation tech-
niques [36, 42]. These methods use Neural Radiance Fields (NeRFs) [12, 30] to represent 3D scenes or
3D Gaussian Splatting [5, 40, 56] for creating high-fidelity results and efficient generation. To generate 3D
scene with a large field of view, these methods use diffusion prior to progressively outpaint the unseen part of
the scene and integrate it to get the full 3D scene. The combined 3D scene from these outpainting steps often
suffers from multi-view inconsistencies, as diffusion priors struggle to maintain coherence across different
camera viewpoints. To alleviate this limitation, some recent methods [20, 22, 57, 59] generate panoramic
images from text prompt and learn to reconstruct 3D scene using 3D Gaussian Splatting. Compared to these
recent methods, our method utilizes 2D Surfel Gaussian, takes advantage of high-quality geometry recon-
struction, and also inpaints unseen parts of augmented viewpoints in the training stage so that our method
shows robustness under unseen novel viewpoints as well.

Object Scene Composition. Given the desired 3D layout positions of multiple objects, there have been
several attempts to generate these objects together within a cohesive scene. CG3D [44] enables physically
realistic composition and generation of multiple objects by using physics-inspired losses. GraphDreamer [7]
employs scene graphs to represent relationships between multiple objects, ensuring the generated scene fol-
lows these relational constraints. More recent studies [19, 55] have explored compositing scenes and objects
derived from text-to-3D models. However, the textures produced by these methods often lack realism due to
their heavy dependence on diffusion models or CLIP priors. Moreover, we employ two-stage optimization
inspired by [58], first optimizing the object’s position using physics prior and jointly training positioned
objects with a pre-trained scene for the natural composition.

Controllable Video Generation. With advancements in diffusion models significantly improving video
generation performance, there has been a growing interest in controllable video generation. While numer-
ous existing studies focus on generation conditioned on text, images, depth, or skeletal data, our work is
specifically aligned with video generation conditioned by either camera movement or motion trajectories.
DragNUWA [50] proposes a multi-scale trajectory encoding approach that integrates trajectory condition-
ing into a video diffusion model, along with adaptive training to effectively learn from dense optical flow
to more intuitive, user-friendly motion. DragAnything [48] introduces an entity representation to enable
instance-level motion guidance, effectively mitigating distortions and undesired deformations often associ-
ated with point-based trajectories. Building on these approaches, CameraCtrl [8] use Pliicker coordinates
to precisely control camera trajectories, while MotionCtrl [47] goes further by decomposed control of both
camera and object trajectories. Our work builds upon DragAnything [48], extending it to allow part-based
instance control. We observed that controlling only at the instance level is insufficient for articulated objects
and often leads to hallucinations in the generated result.

B. Implementation Details

In this section, we aim to elaborate on the details of Stage 1 and Stage 2, which were not fully covered in
the manuscript.
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Figure 9. Viewpoint Augmentation in Stage 1: We describe our viewpoint augmentation strategy adapted in stagel to
reconstruct 3D scene from given panorama image. First, the point cloud is projected onto four augmented viewpoints,
where the consistency of the projected depth and normals is evaluated. A geometric uncertainty map derived from this
evaluation guides the inpainting process, addressing unseen and distorted pixels.

Stage 1. 3D Scene Generation. Given the panoramic image generated from the text, we follow our
baselines [20, 57] to augment viewpoints additional to the sphere projected images from the panorama.
This is because the projected images only offer very limited camera viewpoints, leading the reconstructed
scene to be overfitted to that viewpoint and significantly distorted when viewed from novel perspectives.
Unlike previous works [20, 57], our approach directly generates images at augmented viewpoints through a
combination of view projection and inpainting steps depicted in Fig. 9. Specifically, we begin by projecting
the globally aligned point cloud, obtained using methods from [35, 51] and following the projection process
in [57], to create a projected image with holes. Next, we use content-aware filling [1] to fill these holes.
To evaluate consistency, we calculate the cosine similarity between the projected depth and normals derived
from the point cloud. Finally, we define an uncertainty mask for regions with similarity below 0.75 and
in-paint pixels within these uncertain areas.

Stage 2. Object Scene Composition. We show our physics-aware object-scene composition framework’s
effectiveness in Fig. 10.

Hyperparameters. When we train 2D-GS in stage 1, we use the same parameters as Scene-
Dreamer360 [20] and train 4000 iterations in total. We use the learning rate of object position learning
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Before Object Position Learning After Object Position Learning

Figure 10. Object Position Learning in Stage 2: In stage 2, object position learning is crucial in aligning the object’s
position to seamlessly fit within the given scene. We demonstrate the visual difference between including this learning
step and not.

as 0.001.

C. Drag4D-30 Dataset

Our Drag4D-30 Dataset features 30 distinct 3D scenes, each containing four different objects: “teddy bear,”
“batman,” “rabbit,” and “robot.” To obtain these object assets, we generate 3D textured meshes from single
images using InstantMesh [49] and DALLE3 [2]. For constructing the 3D scenes, we first generate 30
different panoramic images and corresponding text prompts using ChatGPT-4o0 [27] and PanFusion [52].
Subsequently, we reconstruct 3D scene using 2D-GS [15], described in stage 1 of the manuscript, to produce
complete 3D scenes from these panoramic images. Finally, we visualize some samples of our DragdD-30
dataset including text prompt, panorama image, and a mesh of the generated scene with aligned 4 objects
(result after stage 1 training is finished), in Fig. 11.

D. Additional Results

We present additional qualitative comparisons between our final 4D dragged video generated by Dra-
gAnything (baseline) and our Local-Global DragAnything (LG-DragAnything) in Figs. 12 and 13. LG-
DragAnything successfully models both part-level and global motion, enabling the video diffusion model to
move objects more accurately along the input trajectory while minimizing visual artifacts or hallucinations.
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A rustic cabin living space
with wooden beams, a stone
fireplace, cozy sofas with
plaid blankets, a fur rug, and
large windows with a forest
view, creating a warm,
inviting atmosphere.

A dining area with round
tables with chairs, a pendant
light, and a sideboard with
decorative items and plants.

An indoor garden room with
abundant plants, wicker
furniture, fairy lights, large
windows letting in natural
light, and decorative items
creating a peaceful, green
ambiance.

A minimalist meditation
space with a gentle waterfall
on a stone wall, surrounded
by moss and candles. Floor
cushions invite quiet, and the
air is filled with sandalwood.

A kitchen with an island, bar
stools, hanging cabinets,

built-in oven and microwave,
and some kitchen utensils on =
the countertop.

Text Prompt Panorama Image “Batman” “Rabbit” “Robot” “Teddy Bear”

Figure 11. Drag4D-30 Dataset: We visualize some of our aligned 3D scenes with objects in 3D. Our scene is generated
and reconstructed from the following text prompts. Thanks to our physically plausible object position learning step, our
object is well-composited with the reconstructed scene. Please take a closer look to observe the finer details.

We also demonstrate that our objects move naturally along the given 3D path within the scene by showing
multi-view rendered moving objects in Figs. 14 to 18.

E. Discussions and Limitations

Our research focuses on 3D object motion control within a scene, therefore, modeling the object’s texture
under natural scene lighting is beyond the scope of our paper. However, leveraging the provided DragdD-30
dataset to model realistic object textures within a generated environment under non-Lambertian assumptions
presents an interesting direction for future work. In our current work, we identify two interesting failure
cases, as illustrated in Fig. 19. First, due to the inherent reliance on 2D trajectories as a condition for
our video generation model, motion parallel to the camera view introduces ambiguity (depicted in case
1). For future research, we aim to resolve this issue by introducing a new 3D representation for trajectory
conditions. Second, our model faces challenges in handling fast, drastic movements (depicted in case 2).
This limitation, commonly observed in recent trajectory-conditioned video generation methods, represents
a promising future research direction.
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F. Asset License

The licenses of the assets used in the experiments are denoted as follows:
Datasets:

* VIP-Seg (Miao et al., 2022): https://github.com/VIPSeg-Dataset/VIPSeg-Dataset
Codes:

* 2D Gaussian Splatting (Huang et al., 2024): https://github.com/hbbl/2d-gaussian—
splatting

* InstantMesh (Xu et al., 2024): https://github.com/TencentARC/InstantMesh

* Stable Video Diffusion (Blattmann et al., 2023): https://huggingface.co/stabilityai/
stable-video-diffusion-img2vid-xt

e ThreeStudio (Guo et al.,, 2023): https://github.com/threestudio-project/
threestudio

* PanoFusion (Zhang et al., 2024): https://github.com/chengzhag/PanFusion
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Drag Anything (Baseline) Local Global Drag Anything (Ours)

Figure 12. Further qualitative comparisons between our baseline and LG-DragAnything are provided. We denote
and global motion for the reader’s understanding. Our method effectively guides both global and part move-
ments, ensuring strict compliance with the given trajectory without hallucination and distortion.
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Drag Anthing (Baseline) Local Global Drag Anything (Ours)

Figure 13. Further qualitative comparisons between our baseline and LG-DragAnything are provided. We denote
and global motion for the reader’s understanding. Our method effectively guides both global and part move-
ments, ensuring strict compliance with the given trajectory without hallucination and distortion.
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Figure 15. A multi-view generated sequence of a moving robot moving in the ’garden room’ scene.
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Figure 17. A multi-view generated sequence of four different objects jumping in the 'room’ scene.
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Figure 18. A multi-view generated sequence of four different objects moving in the ’playroom’ scene.

Failure Case 1: Parallel Motion to Viewpoint Failure Case 2: Drastic Motion Control

Figure 19. Failure Cases: Our method struggles with the motion moving parallel to the viewpoint because of the
projected 2D trajectory’s ambiguity (Case 1) and drastic motion control (Case 2) which is a common unsolved problem
for trajectory-conditioned video generation studies.

24



	Introduction
	Method
	Preliminaries
	Problem Setting
	1st Stage: Generating Text-to-3D Scene
	2nd Stage: Spatial Alignment of Object
	3rd Stage: Temporal Alignment for 4D

	Experiments
	Text-to-3D Generation
	Object-Scene Composition
	Motion-Conditioned Video Generation

	Conclusion
	Related Works
	Implementation Details
	Drag4D-30 Dataset
	Additional Results
	Discussions and Limitations
	Asset License

