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ABSTRACT

Efficient clinical trial recruitment and personalized treatment depend on the ability
to predict future disease progression from medical images. However, often there
is a lack of well-defined biomarkers that can predict future disease development
and a wide inter-subject variation in disease progression speed. We address these
issues in the context of predicting the onset of late dry Age-related Macular De-
generation (dAMD) from retinal OCT scans. To model the CDF of future dAMD
onset, we propose jointly training an AMD stage classifier with a Neural-ODE
that predicts the future disease trajectory. A temporal ordering is imposed that
inversely relates the distance from the decision hyperplane of the classifier to the
time-to-conversion. Furthermore, we ensure intra-subject temporal consistency by
incorporating pairs of longitudinal scans from the same eye during training. Our
method is evaluated on a longitudinal dataset comprising 235 eyes (3,534 OCT
scans), including 40 converters. The results demonstrate the efficacy of our ap-
proach, achieving an average eye-level AUROC of 0.83 in predicting conversion
within the next 6,12,18 and 24 months, outperforming several popular survival
analysis methods.

1 INTRODUCTION

Forecasting the risk of disease progression is crucial to prioritizing high risk patients for personalized
treatment, and recruitment in clinical trials. However, it is a challenging task due to: (i) lack of
well-established clinical biomarkers indicative of future disease progression; (ii) Data Censoring
leading to unknown time-to-conversion labels due to missing followups or non-conversion within
a limited study duration; (iii) Class imbalance as only a small proportion of the patients being
monitored actually convert, with all scans from the non-converter cases and scans from converter
patients before the conversion visit constituting the negative samples; (iv) Discretizing time into
bins to pose conversion prediction as a binary or multi-label classification results in imprecise labels
during training and inability to predict conversions at arbitrary continuous time during inference.

In this work, we aim to address these issues by considering Age-related Macular Degeneration
(AMD), a progressive retinal disease which is the leading cause of blindness among the elderly pop-
ulation. As AMD progresses through early and intermediate stages (iAMD) characterized by drusen,
it gradually progresses to a late-stage that is either dry (dAMD) or neovascular (nAMD), leading to
irreversible vision loss. dAMD is indicated by the onset of Geographic atrophy due to the loss of
the retinal pigment epithelium (RPE) layer while nAMD is marked by abnormal vessel growth that
leaks fluid into the retina. Longitudinal OCT imaging is routinely employed to montior AMD pro-
gression. Although dAMD is more prevalent, most existing work has focussed on predicting nAMD
onset, with few exceptions Rivail et al. (2019), Rivail et al. (2023). In contrast to handcrafted quanti-
tative biomarker based methods Sleiman et al. (2017); Schmidt-Erfurth et al. (2018); Banerjee et al.
(2020); de Sisternes et al. (2014); Lad et al. (2022), the recent deep learning (DL) models bypass the
need for automated segmentation of retinal layers/pathologies by directly utilizing the OCT scans
for end-to-end training. Temporal self-supervision has also been used to learn features from unla-
beled longitudinal datasets in Emre et al. (2022); Rivail et al. (2019). A hybrid approach using both
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biomarker and image features for predicting nAMD conversion is presented in Yim et al. (2020).
Few methods have explored survival analysis such as the discrete logistic hazard model in Rivail
et al. (2023) which utilizes OCT scans directly, while the linear Cox Proportional Hazards (CoxPH)
model was used with pre-extracted biomarkers in Schmidt-Erfurth et al. (2018).

In this work, we propose a Neural Ordinary Differential Equation (N-ODE) based solution to predict
dAMD onset. Our key contributions are: (i) Time-to-conversion from iAMD to dAMD is modeled
in continuous time, rather than discrete time-intervals as used in most existing methods. Our model
can therefore use actual continuous conversion times as ground-truths (GT) during training and also
predict conversion probabilities within arbitrary continuous times. (ii) We combine an AMD stage
classifier (iAMD vs. dAMD) with a N-ODE to predict the future trajectory of disease progression
in a shared embedding space. We directly model the Cumulative Distribution Function (CDF) of
the future conversion time in contrast to the existing methods Tang et al. (2022) that models the
cumulative hazard function. We extend the ODE-GRU architecture for the N-ODE by stacking
multiple layers, with multiple parallel heads in each layer. (iii) We employ a rank loss on the logits
of the linear AMD stage classifier to derive a risk score to stratify patients into different risk groups
relevant for personalized treatment. (iv) We incorporate intra-subject consistency by requiring the N-
ODE estimates of the feature and risk at future time-points to be consistent with the values obtained
using the actual OCT scan of the future visit by considering pair of visits per eye during training.

2 METHOD
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Figure 1: The same encoder and linear AMD stage classifier are used in both branches with shared
weights during training. Only the top branch (highlighted in blue) is used during inference.

An overview of our method is depicted in Fig 1. Each training batch comprises a set of image-pairs
from different eyes, where each random image-pair (Ij , Ik) are two OCT scans of the same eye,
acquired at different patient visits at time-points j and k with j < k. Following survival analysis,
the GT for each scan Ij is denoted by (Tj , Ej) where the binary event indicator Ej = 1 if the eye
to which Ij belongs, converts to dAMD during the duration of the study, else Ej = 0. Tj represents
time duration from the current visit to either the first visit of conversion (if Ej = 1) or the last
visit of the eye in the study (if Ej = 0). Both Ij , Ik are passed through an Encoder (ConvNeXt-
Tiny initialized with image-net pretrained weights Liu et al. (2022) was used), to obtain the features
fj ,fk respectively. They are fed to a linear, binary iAMD vs. dAMD stage classifier to obtain
the logits rj , rk and the corresponding prediction probabilities for conversion within time j (or k)
denoted by pj = σ(rj) (or pk) with the sigmoid activation (σ). Additionally, fj is evolved with a
N-ODE for the time-interval (j − k) as: df(t)

dt = v(f(t)), with the initial condition f(t = 0) = fj

to obtain an estimate of the future feature f̂k and the corresponding prediction p̂k directly from the
previous scan Ij . The instantaneous velocity v(f(t)) is modeled with a DL network as follows.

N-ODE architecture: GRU-ODE in De Brouwer et al. (2019) was extended by stacking 3 layers
and incorporating 12 parallel heads within each layer1. f(t) acts as the initial hidden state for each

1Pytorch code of our deep Multi-head GRU-ODE architecture is available at https://github.com/
arunava555/Multihead_GRU_ODE_based_Survival_Analysis
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layer, while the output from the previous layer is provided as an external input (except for the first
layer). Both the external input and the hidden state in each layer were projected to independent
64-dimensional sub-spaces for each head, to which a GRU-ODE cell with the reset and update gates
was employed. The outputs from all heads were conatenated (768 = 12 heads ×64 dimensions)
and passed through a fully connected layer. The output from the final layer v(f(t)) is unnormalized
(without activation) to ensure that it could take values in any range (even negative).

Training Losses The primary loss for training, Lcls = Lbce(y
c
i , pi) + Lbce(y

c
j , pj) + Lbce(y

c
j , p̂k)

is the classification loss, where Lbce denotes binary cross-entropy. The GT ycj indicates if Ij is
currently in the iAMD or dAMD stage (ycj = 1 if Ej = 1 & Tj ≤ 0, or 0 otherwise).

The learned feature embedding is regularized to ensure that the N-ODE learns meaningful future
trajectories of disease progression with intra-eye consistency between the features (Lcns−ftr) and
predictions (Lcns−rsk) with the loss terms Lcns−ftr = ||fk − f̂k||22 and Lcns−rsk = Lbce(pk, p̂k).

Finally, we impose a ranking loss Lrnk on the logits rj to use it as a risk score. Given, two arbitrary
scans Im, In (they can be scans from different eyes, unlike Ij , Ik) s.t. Im converts before In, then
their risk scores rm > rn. Since, rm is proportional to the distance of fm from the decision hyper-
plane separating iAMD and dAMD, the Lrnk loss ensures: (a) regularization of the feature manifold
to encourage temporal ordering, i.e., the iAMD samples closer to the decision hyperplane separating
iAMD and dAMD will have a smaller time-to-conversion and viceversa, and (b) the risk score can be
used to stratify eyes in different risk groups, enabling personalized treatment. Lrnk solves an addi-
tional logistic regression task with scalar input (rm−rn) to predict the probability pm>n of Im con-
verting before In as Lrnk = − 1

|Sm<n|+|Sm>n| .
[∑

Sm<n log (pm<n) +
∑

Sm>n
log (1− pm<n)

]
,

where Sm<n represents a subset of all possible image-pairs in a training batch where Im converts
before In for which ideally, pm<n ≈ 1. Similarly, Sm>n contains image-pairs where Im converts
after In and ideally, pm<n ≈ 0. The set Sm<n is defined by taking censoring into account as the
image-pairs for which (Tm < Tn) & either Em = 1 or Im, In are scans from different time-points
of the same eye. For image-pairs coming from different visits of the same eye, the risk for the scan
from a later visit Im (and hence a smaller time Tm from the last monitored visit) will always be
higher than the former visit In, even for censored cases, since AMD progression is irreversible and
can only increase with time. Similarly, Sm>n is defined as pairs where (Tm > Tn) & either En = 1
or Im, In come from the same eye. The relative weights of Lcls, Lcns−ftr, Lcns−rsk and Lrnk

are not handcrafted but dynamically adjusted during training using the Multi-Task ADAM optimizer
Malkiel & Wolf (2021) that normalizes the gradients from each loss term to a similar range.

3 RESULTS

Dataset: The proposed method was evaluated on a dataset comprising 3,534 OCT scans from
235 eyes (40 converters and 195 censored), collected at the Department of Ophthalmology, Medical
University of Vienna Schlanitz et al. (2017). The images were acquired with 49 B-scans (slices),
each of size 512 − 1024 × 496 pixels. The eyes were imaged every 3-6 months, with a follow-up
period of 2-7 years. The GT time-to-conversion was computed for each scan of a converter eye by
measuring the time interval between its acquisition and the first conversion visit.

Experiments: A stratified five-fold cross-validation was employed to reduce any bias due to a
train-test data split. Each fold was divided at an eye-level with 8 converter and 39 non-converter
cases with 667-707 OCT scans. The training set in each fold was further randomly divided where
80% was used to train and the remaining 20% for validation to track the best performing model
weights and perform early stopping. The average Area under the ROC curve (AUROC) for pre-
dicting the conversion to dAMD within 6, 12, 18 and 24 months was computed and Concordance
Index (CCI) was used to evaluate the risk score at an eye-level across the five-folds. An eye-level
bootstraping was employed which involved constructing multiple random re-samplings of the test
OCT scans. In each re-sampling, only one OCT scan was selected from each eye (by randomly se-
lecting one of the patient visits) in the test set. The average performance across the 1000 (bootstrap
re-samplings)×5(folds)=5000 sample estimates is reported in Table 3. Three consecutive central
B-scans around the macula were employed as RGB channels for input to the Encoder.

Results: We compared our performance against many popular Survival Analysis based methods.
The censored cross-entropy loss Wulczyn et al. (2020) and the logistic hazard model Rivail et al.
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(2023) are discrete-time survival models and employed 6-month time-interval bins. DeepSurv Katz-
man et al. (2018) extends CoxPH with DL, while SODEN Tang et al. (2022) is a Neural-ODE based
method, proposed for tabular data. These methods were also trained with ConvNeXt-Tiny as the en-
coder (similar to our method) but with modified classification layers and losses. Notably, all of these
methods do not employ intra-subject regularization, hence require training a single branch network.
The results in Table 3 demonstrate the superiority of our proposed method, which outperforms the
existing methods at all time-points. SODEN, another N-ODE-based method showed signs of over-
fitting with good performance on the validation set (used for selecting the best-performing models
in each fold) but led to a drastic drop in performance on the test sets across all folds.

Identifying risk groups: We calibrated the risk scores in each fold to lie in the [0, 1] by mapping
each value to its corresponding percentile with a bicubic interpolation. The test set predictions of
the calibrated risk scores were combined from the five folds to obtain a risk score for each OCT
scan. The scans were then stratified into 3 groups with low risk (0 ≤ r ≤ 0.33), moderate risk
(0.33 < r ≤ 0.67) and high risk (0.67 < r ≤ 1). A population-level survival function for these
groups is plotted in Fig. 2(a) using the Kaplan–Meier estimator on the GT conversion time. It depicts
the mean and standard deviation of the survival probability for each population group, computed
across 1000 re-samplings using eye-level bootstrapping. The survival curves for the three risk groups
show a clear separation, thereby demonstrating the effectiveness of the proposed risk score.

Qualitative Results: The UMAP visualization of the features is depicted in Fig. 2(b). The censored
OCT scans with unknown conversion time are shown in gray. The remaining scans are plotted
with a colormap transitioning from red (small time-to-conversion) to blue (long time-to-convert).
A smooth transition in conversion time is observed in the feature manifold. Grad-CAM maps for
two OCT scans are also presented in Fig. 2(c) corresponding to the risk score. The saliency maps
indicate the sensitivity of the proposed method towards irregularities around the RPE layer(top row)
and pathologies such as Hyper-reflective Foci (HRF) that have been linked to fast AMD progression.

Table 1: Eye-level performance (mean ± std. dev.) with best values highlighted column-wise.
AUROC

6 12 18 24 CCI

Proposed 0.863± 0.10 0.827± 0.10 0.808± 0.07 0.816± 0.07 0.769± 0.06

Cens. Cross-Entropy 0.775± 0.14 0.772± 0.103 0.773± 0.10 0.790± 0.08 0.762± 0.06

Logistic Hazard 0.769± 0.19 0.768± 0.12 0.763± 0.09 0.786± 0.08 0.749± 0.08

DeepSurv 0.769± 0.18 0.710± 0.16 0.712± 0.14 0.723± 0.14 0.752± 0.07

SODEN 0.675± 0.24 0.674± 0.17 0.673± 0.13 0.698± 0.11 0.673± 0.09
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Figure 2: (a) Kaplan-Meier curves for different risk groups; (b) UMAP plot of feature embedding
for one of the five folds. The censored scans are depicted with gray dots and the converters colored
by their time to conversion (red indicates fast conversion); (c) Grad-CAM maps for the risk score.
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4 CONCLUSION

In this work, we propose a novel framework that combines an AMD stage classifier with a Neural
ODE to forecast dAMD onset at continuous future times. To learn meaningful feature embedding
from limited data, it was regularized by enforcing intra-subject consistency between the predicted
features and risk scores over pairs of longitudinal visits. Furthermore, temporal ordering was also
imposed where a scan’s proximity to the AMD classifier’s decision hyperplane is inversely related
to its time-to-conversion. These constraints enabled our model to outperform several existing deep
survival analysis methods. Additionally, temporal ranking provides a scalar risk score to stratify
eyes into low and high risk groups. Our method has the potential to facilitate patient-specific disease
management and enrich clinical trial populations with high-risk patients.
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