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Abstract

Recent probing studies reveal that large language models exhibit linear subspaces1

that separate true from false statements, yet the mechanism behind their emergence2

is unclear. We introduce a transparent, one-layer transformer toy model that3

reproduces such truth subspaces end-to-end and exposes one concrete route by4

which they can arise. We study one simple setting in which truth encoding can5

emerge: a data distribution where factual statements co-occur with other factual6

statements (and vice-versa), encouraging the model to learn this distinction in order7

to lower the LM loss on future tokens. We corroborate this pattern with experiments8

in pretrained language models. Finally, in the toy setting we observe a two-phase9

learning dynamic: networks first memorize individual factual associations in a10

few steps, then—over a longer horizon—learn to linearly separate true from false,11

which in turn lowers language-modeling loss. Together, these results provide both12

a mechanistic demonstration and an empirical motivation for how and why linear13

truth representations can emerge in language models.14

1 Introduction15

Recent observations suggest that large language models (LMs) often encode a low-rank linear16

subspace that distinguishes true from false statements across a wide range of domains [Azaria and17

Mitchell, 2023, Burns et al., 2022, Li et al., 2024b, Marks and Tegmark, 2024, Bürger et al., 2025,18

Orgad et al., 2025]. Specifically, in many layers of the residual stream representation in transformer-19

based LMs, a linear separation emerges between representations corresponding to true versus false20

assertions. Moreover, this separation generalizes across domains: there exists a single separating21

subspace such that statements like “2+ 2 = 4” (true) and “The capital city of France is Rome” (false)22

fall on opposite sides of the same separating plane. These findings have sparked interest among23

practitioners, because they may aid in mitigating hallucinations [Li et al., 2024b, Orgad et al., 2025].24

We investigate the emergence of a unified “truth subspace”—a low-dimensional linear manifold that25

cleanly separates true from false statements. Prior work shows (i) that truth-encoding directions26

generalize remarkably well across diverse tasks and prompts, and (ii) that causal interventions along27

those directions can steer LMs toward factual or counter-factual completions [e.g. Meng et al., 2022].28

Yet we still lack a satisfying answer to two fundamental questions: why do such subspaces arise29

during training, and how are they actually computed at inference time?30

We address both questions in a single theoretical and empirical framework. For the how, we build on31

the growing understanding of key–value associative memories in transformers. Geva et al. [2021]32

showed that the first linear layer produces key matches—e.g. aligning the prefix “The capital city of33

France is” with an internal query—while the second linear layer retrieves the associated value, such34

as the hidden representation of Paris.” Subsequent studies refined the mathematical description of this35

mechanism and demonstrated its causal role in factual recall and reasoning [Geva et al., 2022b, Bietti36
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et al., 2023, Cabannes et al., 2024a,b, Nichani et al., 2024]. We hypothesize that a linear truth code37

takes advantage of the memorized factual associations: it emerges as a result of the model contrasting38

the internal prediction it built with the observed attribute. This results in a different pattern when the39

two match or mismatch, and is translated into a linearly separable signal.40

For the why, we propose the Truth Co-occurrence Hypothesis (TCH): in naturally occurring text,41

true statements are statistically more likely to co-occur with other true statements, and falsehoods42

with other falsehoods. This assumption is closely related to recent “persona” explanations of factual43

inconsistency in LMs [Li et al., 2023a, Joshi et al., 2024]: the claim that LMs learn to model certain44

personas in the data distribution, some truthful and some not. TCH offers a very simple way to45

quantify the persona hypothesis and provably characterize its influence. Under the TCH, inferring a46

latent truth variable is loss-reducing: if the model recognizes that “It’s well known that the moon47

landing was a hoax” is false, it can raise the probability of a continuation such as “and that the Earth48

is flat,” which is likewise false.49

We test the truth-co-occurrence hypothesis (TCH) in the minimal transformer, with a single self-50

attention layer, one head, and a normalization layer. Under our simplified generative story, “truth” is51

identified with the attribute that is frequent in the training data. Training examples are four-token52

sequences x y x′ y′ with subjects x, x′ (“The capital city of France”; “Churchill’s nationality”)53

and attributes y, y′ (“Paris”; “British”); with probability ρ, the attributes y, y′ are both the correct54

attribute; otherwise, they are replaced with a random one. After the key–value lookup circuit forms,55

gradient descent pushes hidden states toward a linear separator that clusters true vs. false contexts,56

and the model uses it to predict y′ from x′. Training shows two phases: rapid key–value acquisition57

followed by slower emergence of linear encoding. Although our toy model is far simpler than natural58

training data (see Appendix A), it predicts the observed sensitivity to false context (Section 5.3),59

where false prefixes bias later predictions (supporting TCH), and reproduces the way normalization60

layers regulates confidence [Stolfo et al., 2024]. Taken together, we show that linear truth encoding61

can arise without any built-in semantics.62

2 Related work63

A growing body of work shows that pretrained LMs linearly encode a simple notion of “truth”—-64

consistency with the majority of examples in the training data—in both hidden states and individual65

MLP/attention outputs [Azaria and Mitchell, 2023, Burns et al., 2022, Li et al., 2024b, Bürger66

et al., 2025]. This feature is generally robust for frequent atomic facts, though its subspace can67

shift in the presence of negation [Marks and Tegmark, 2024] and may by biased to dataset-specific68

features [Orgad et al., 2025]. The encoded truth dimension is behaviorally relevant: intervening on it69

nudges the model toward truthful completions [Li et al., 2024b] although the model’s predictions70

sometimes do not agree with the latent encoding [Liu et al., 2023]. Yet the mechanism behind71

this encoding remains unclear. Extending the persona hypothesis of Li et al. [2023a], Joshi et al.72

[2024], Ghandeharioun et al. [2024] link truthful behavior to lexical “personas”—for instance, the73

formal, encyclopedic style typical of Wikipedia versus the more casual tone common in social-media74

post. We show that, given sufficient training, LMs also acquire a lexicon-independent abstract truth75

dimension that emerges more slowly.76

The line of work on truth encoding is closely related to findings suggesting that models encode77

different aspects related to their knowledge and confidence. It was shown that it is possible to decode78

“latent” knowledge from the model Gekhman et al. [2025], and that measures of uncertainty can be79

decoded from hidden states [Slobodkin et al., 2023, Farquhar et al., 2024, Ferrando et al., 2025]. Our80

work is related to, but distinct form, works on mechanistic understanding of hallucinations [Yu et al.,81

2024]; while both rely on the associative memory used by the model [Geva et al., 2021, 2022a,b,82

Bietti et al., 2023, Cabannes et al., 2023], we focus on the emergence of separation between true and83

false assertions, and come up with a toy model that allows us to analyze its properties.84

3 The Truth Co-occurrence Hypothesis85

We previously described the TCH, the assertion that false statements tend to co-occur. To quantify86

that, we use the MAVEN-FACT corpus [Li et al., 2024a], where annotators assign a FactBank-87

style factuality label to every event mention inside a news article. After discarding all but certain88
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judgments, each mention is labeled CERTAIN-TRUE or CERTAIN-FALSE and grouped by the document89

in which it appears.1 We find the following: (i) the overall certain-false rate is p = 0.0209;90

(ii) the chance that two event mentions from the same article are both certain-false is 0.0009,91

exceeding the independence baseline p2 = 0.00044 by a factor of ≈ 2; and (iii) the clustering92

ratio— Varobs(p̂i)/Varbinom = 1.23— shows 23 % extra article-to-article heterogeneity. A χ2 test93

of independence confirms the association (χ2 = 4.17× 103, p ≈ 9× 10−49).94

This shows that false assertions are not sprinkled at random but tend to cluster on the same article.95

For a language model, tracking a latent truth bit is therefore loss-reducing: once a page provides96

evidence that one statement is refuted, the conditional probability that a subsequent claim is also97

refuted increases. This motivates the design of a simple data-generating process that instantiates the98

hypothesis and tests whether it gives rise to truth encoding.99

3.1 Data Generating Process100

Natural text confounds truth with stylistic cues, topic priors, and corpus frequency [Orgad et al.,101

2025]. Therefore, Consequently, if we probe LMs on raw text, we risk discovering features that102

merely track these proxies. To uncover minimal conditions that force an LM to represent truth, we103

build a toy world in which:104

1. Every subject pair has exactly one canonical attribute (ground truth).105

2. A small, controllable fraction of examples are corrupted by uniform noise (the attribute is106

replaced with another attribute).107

3. importantly, the truthfulness of neighboring sequences correlates; this models the tendency108

of speakers to consistently be less or more truthful [Joshi et al., 2024].109

Despite its simplicity, this environment reproduces the linear-separability we see in large-scale LMs110

(§5).111

Truth as a latent variable. Let T ∈ {0, 1} denote whether an example is sampled from the112

TRUE or FALSE branch of the mixture. As predicting the second attribute token is easier when T is113

known, an LM can lower its language-model loss by internally inferring T early in the sequence and114

propagating that bit forward.115

Consider the conditional distribution over the second attribute token y= a2 given the prefix x =116

(s1a1):117

Pr(y = a⋆ | x) = ρ+ 1−ρ
|V| , Pr(y ̸= a⋆ | x) = 1−ρ

|V| . (1)

An LM ignorant of T cannot distinguish these cases.118

Assume the LM has capacity to memorize a⋆ and (optionally) infer T perfectly. Let L¬T be its119

per-token cross-entropy if it does not access T and LT the loss if it embeds T internally. Then, in the120

|V|→∞ limit, L¬T −LT = H2(ρ), the binary entropy of ρ. Hence representing a single bit yields121

maximal benefit at ρ=0.5, where H2 is largest. In practice, we experiment with lower values, to122

simulate a more realistic setting.123

Data format. Each training example is a sequence s1 a1 s2 a2 with subjects s ∈ S and attributes124

a ∈ A. We interchangeably refer to the sequence as x y x′ y′.125

For every s there exists a unique ground-truth attribute a⋆(s) memorized by the data generator.126

Examples are corrupted as follows: Sample T ∼ Bernoulli(ρ) once per example, such that127

TRUE If T=1, set ai = a⋆(si) for both attribute positions.128

FALSE If T=0, draw each ai independently and uniformly from A.129

4 Analysis on a Toy Model130

In this section, we study the emergence of truth directions in a simplified one-layer setup with131

orthogonal embeddings. Empirically, we find that this minimal setup already captures the mechanism132

1Data-handling details are deferred to App. B.
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Figure 1: Visualization of the value matrix for the one-layer model at different training steps. We
see that the ex → ug(x) block is learned first, along with the pt → ū block. Later the ex → −ex
and ey → −uy blocks, and finally the ey → eg−1(y) block.

of a truth direction, and leverages layer-norm to adjust confidence for the second attribute depending133

on truthfulness of the first one. Our empirical and theoretical analysis shows that this happens in134

phases, and that layer-norm is crucial to provide the relevant structure in the gradients. Furthermore,135

such a truth direction can already emerge when there are only true sequences.136

Setup. Consider the following one-hot token embedding, positional embedding, and unembedding137

vectors in Rd with embedding dimension d = 4N + 3, where z ∈ [2N ] is an input or output token138

(input tokens x are in [N ] while outputs y are in [N + 1, 2N ]), and t ∈ [3] a position:139

[ez]i = 1{i = z}
[pt]i = 1{i = 2N + t}
[uz]i = 1{i = 2N + 3 + z}.

We consider a one-layer transformer with uniform causal attention, and a basic layer-norm operation.140

Concretely, for an input sequence z1:3 = (x, y, x′) and position t ∈ [3], define:141

FW (z1:t)t = U · N

(
ezt + pt +

1

t

t∑
s=1

W (ezs + ps)

)
, (2)

where W denotes the value matrix, U = u⊤
1:2N = [0; I2N ] ∈ R2N×d is a projection on the unem-142

bedding dimensions, and N(v) = v/∥v∥ is a layer-norm operation. The predicted probabilities are143

then given by p̂(zt+1 = ·|z1:t) = Sβ(F (z1:t)), where Sβ denotes the softmax operation with inverse144

temperature β. Our experiments use β =
√
d, due to the use of RMS norm in layer-norm over145

embeddings of dimension d.146

We assume here that x, x′ ∼ Unif([N ]) i.i.d., and conditioned on these as well as on a truth random147

variable T ∼ Ber(ρ), we have y = g(x) and y′ = g(x′) when T = 1, and y, y′ ∼ Unif([N +1, 2N ])148

otherwise. Denoting z1:4 = (x, y, x′, y′), the population loss then takes the form149

L(W ) =

3∑
t=1

Li(W ) =

3∑
t=1

Ez1:t+1

[
− logSβ(FW (z1:t))zt+1

]
. (3)

Probing the mechanism and its emergence. Figure 1 shows a visualization of the value matrix W150

in our toy model, at different steps of training, with N = 20, ρ = 0.8 and batch size 16. We see that a151

clear block-structure emerges in the matrix W , with different blocks arising in different phases. Some152

blocks show a negative identity structure, while others show a permutation structure according to the153

“knowledge” mapping g. Positional embeddings show more uniform patterns across unembeddings,154

with different signs depending on whether the next token is an input or label. In Figure 2, we show the155

representations at the x′ token for examples of true and false sequences, before and after layernorm,156

as well as the probabilities obtained after projecting to the unembedding space and applying softmax.157

We notice large spikes in the input embedding dimensions (1-20) that cancel out for true sequences,158

and a similar behavior on unembedding dimensions (65-84) at smaller scales. The cancellation leads159
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Figure 2: Visualization of representations on true (top) and false (bottom) sequences. The plots show
representations before (left) and after (center) layer-norm, as well as predicted probabilities (right).

to a smaller norm on true sequences, which in turn causes an amplification of the logits, and finally a160

spike distribution on true sequences, versus a flatter one on false sequences (though we still some161

lower confidence spikes on g(x) and g(x′)).162

Structure of the value matrix W . We now study a construction that resembles the one observed163

empirically in Figure 1. Later we will provide a theoretical justification for this structure and its164

emergence in phases by analyzing training dynamics.165

The leftmost column of the W matrix maps ex to its corresponding label ug(x), while also subtract-166

ing ex itself:167

Wex = −α1ex + β1ug(x), (4)
with α1, β1 > 0. The second column has the following symmetric behavior:168

Wey = α2eg−1(y) − β2uy. (5)

Finally, the third column maps the different positional embeddings to mixtures of uniform distributions169

over the inputs or labels:170

Wp1 = γ1(
∑
y

uy −
∑
x

ux) (6)

Wp2 = −γ2(
∑
y

uy −
∑
x

ux) (7)

Wp3 = γ3(
∑
y

uy −
∑
x

ux). (8)

In the statements above, we assume all the coefficients α1/2, β1/2, γ1/2/3 to be positive.171

Linear separation and sharpening mechanism. One important consequence of the structure172

above is that any token that attends to both x and y (this could be either y or x′) has the following173

quantity in its residual stream:174

ζ(x, y) := W (ex + ey) = −α1ex + α2eg−1(y) + β1ug(x) − β2uy. (9)

We then have175

∥ζ(x, g(x))∥2 = ∥ζ(x, y)∥2 − 2α1α2 − 2β1β2, for y ̸= g(x).

Since α1, α2, β1, β2 > 0, the norm of ζ on a true sequence is always smaller than on a false sequence,176

leading to a useful feature for detecting truth. Combined with the layer-norm operation, this provides177

a mechanism for sharpening the prediction of y′ towards g(x′) when the model detects a true sentence,178

by adjusting the temperature in the softmax via inverse norm scaling.179

Theorem 1 (Sharpening of y′ predictions). Suppose we have a solution that satisfies Eqs. (4)-(8).180

Denote by c := 2 +
γ̄2(2N−2)+2α2

1+β2
1

9 For any x, x′ and y ̸= g(x), we have:181

F (x, g(x), x′)g(x′) − max
k ̸=g(x′)

F (x, g(x), x′)k ≥ β1 −max(0, β1 − β2)

3
√
c+ (β1 − β2 + γ̄)2 + (β1 + γ̄)2

F (x, y, x′)g(x′) − max
k ̸=g(x′)

F (x, y, x′)k = 0
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The proof is in Appendix F. This shows that the structure of W along with layer-norm provide182

a simple mechanism to make the model more confident about its knowledge when the context is183

truthful. For false sequences, the zero gap comes from the fact that logits for g(x) and g(x′) are tied,184

as we show empirically in Figure 2. This aligns with previous interpretability work on confidence185

neurons [Stolfo et al., 2024]. Beyond improving prediction performance, we now show that this186

model provides a linear encoding of truth in the representations after layer-norm.187

Theorem 2 (Linear truth direction). Suppose we train the model in (2) as explained above, and reach188

a solution for W that satisfies Eqs. (4)-(8). Then, we have the following:189

1. If the model in (2) does not contain N, then its output on the y token does not admit a linear190

separator for true and false samples.191

2. If the model in (2) contains N and 2α1α2+2β1β2 ̸= 0, then its output on the y token admits192

a linear separation for true and false samples. Moreover, if γ1 = γ2, α1 = α2, β1 = β2193

then the margin is at least δ = 1
2
√
2

(
1− 1√

1+α2+β2

)
.194

Theoretical analysis of training dynamics. We now study how such a structure in W emerges195

from training dynamics in a simplified setting.196

Theorem 3 (Sequential gradient learning). In a simplified model with no positional embeddings,197

taking two gradient steps on L1 followed by one on L3, all with step-size Θ(N), leads to the desired198

structure for W as in Eqs. (4)-(5), up to negligible O(1/N) terms.199

This result shows that gradient dynamics in our model can quickly lead to the block structure observed200

in Figure 1, despite the non-convexity induced by normalization. In fact, the analysis reveals that the201

layer-norm operation is crucial here to obtain many of the desired blocks other than the ex → ug(x).202

Interestingly, our theory shows that this structure arises even when ρ = 1, and empirically we found203

that both sharpening and linear separation indeed happen in this setting, demonstrating an emergent204

out-of-distribution generalization to false sequences. We note, however, that this may not happen in a205

more expressive model: we empirically found that if we also train the key-query matrix with ρ = 1,206

the model quickly learns to focus its attention to the current token, which makes information from207

the context inaccessible from the residual stream. While this may improve predictions of g(x′) on208

true sequences by removing noise in the residual stream coming from (x, y), this also results in a209

failure to handle false sequences.210

5 Experiments211

5.1 Synthetic Setting212

Setup. We train transformer-based LMs on the synthetic dataset described above. The model213

contains l self-attention layers with a single attention head, followed by layer normalization, with214

no feedforward network. See Appendix C for more details. In this setting, in contrast to the toy215

model described above, we train all parameters, including the dense embeddings and the attention216

module.2 Each training example is a a concatenation of a subject (x), an attribute (y), an additional,217

uniformly-sampled subject (x′), and an additional attribute (y′). The attributes y, y′ are either sampled218

uniformly or taken to be the correct attributes g(x), g(x′), according to the true probability ρ. In line219

with the Truth Co-occurrence Hypothesis, we aim to measure whether in this training setting the220

model is able to recover the latent truthfulness of the first sequence (verifying whether y = g(x)) and221

use it to decrease LM loss on the second attribute y′.222

We experiment with true-attributes rates ρ, and with l ∈ {1, 2, 3} layers, and assume a perfect223

correlation between the truthfulness of the first and second attributes (that is, y = g(X) if, and only224

if, y′ = g(x′)). Along training, we fit logistic-regression classifiers on all hidden states to predict225

whether or not the sequence is false (a binary classification problem). We fit individual classifiers226

both the first attribute position (y), as well as on the second subject position (x′), from which the227

second attribute y′ is predicted. While in training the LM we use a varying true-attribute rate ρ, the228

linear classifiers are always trained and evaluated on a balanced set, containing 50% true sequences.229

2We release the code in the supplementary material.

6



We report mean results over 5 runs with different random seeds. Unless specified otherwise, we230

present here results for l = 1 and ρ = 0.99, |A| = |S| = 512 and dmodel = 256; results for other231

settings are deferred to Appendix E.232
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Figure 3: Truth linear classification results alongside probability assigned by the LM to the true
attribute on false sequences.

5.2 Results233

Two-phase dynamics. In Figure 3a we show the linear truthfulness classification AUC as a function234

of training steps, on the second subject. for a 1−layer model with true-attribute probability ρ = 0.99.235

Additionally, we plot the probability the LM assigned to the correct attribute on false sequences236

(P (y′ = g(x′) | y ̸= g(x)); Figure 6b). When this probability is minimized, the model improves its237

loss on false sequences.238

In line with the toy model, we detect distinct phases in training.239

1. Memorization. As can be seen in Figure 6b, memorization happens rapidly—within the first240

1000 batches—as the model converges to a probability of around 1 to g(x′) on both true and false241

examples. Indeed, the model predicts the correct attributes on over 99% of the true sequences.242

2. Truth encoding. The model does learn to linearly encode the truth latent variable. This encoding243

emerges abruptly, after around 7,500 batches, during which the model saw around 1 million244

examples, relatively long after the model achieves perfect memorization.245

The model learns to decrease the probability it assigns to the correct attribute on the second attribute246

position P (g(x′) = y′) roughly at the same time linear classification emerges.247

Truth circuit. We aim to understand how the linear truth subspace is being computed. While it has248

been empirically shown that LM linearly encode many human-interpretable concepts [Bolukbasi249

et al., 2016, Vargas and Cotterell, 2020, Ravfogel et al., 2022], it is not well-understood why linear250

representations emerge in hidden layers [Park et al., 2024, Jiang et al., 2024]. The toy model we251

propose allows us to empirically study the origins of the linear signal, and the way it is being used to252

decrease LM loss on the second attribute.253

The truth encoding appears in a 1-layer model (classification accuracy in the input embeddings layer254

is at majority level). As can be seen in the first layer attention pattern in (Figure 4b), this attention255

head calculates an approximate mean of the embeddings of x and y, after application of the V,O self256

attention matrices, in line with the uniform attention assumed in the toy model. One key difference is257

that here, we learn the input embeddings. Interestingly, inspecting the PCA of the input subject and258

attribute tokens (Figure 4c) reveals that approximately, ex = −eg(x) on the first principal component.259

This explains why both the true and false representations tend to cluster around the origin.260

Following the attention averaging, we apply RMSNorm. We find that linear classification emerges261

only after normalization; classification accuracy is at majority level before it. Indeed, a PCA plot262

(Figure 4) shows that, as predicted by the toy model, the TRUE class is centered around the origin, with263
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Figure 4: Truth-linear-classification results and LM probability for the true attribute on false se-
quences.

a larger variance for the TRUE class than the FALSE class. Normalization induces linear separability,264

that is also evident in the first 2 PCA components.3265

Additional settings. So far we have analyzed a single-layer transformer—either with one-hot266

embeddings, or with trainable dense embeddings and ρ = 0.99. Results for other configurations267

appear in Appendix E; here we outline the main trends. The patterns in Figures 3a and 6b persist268

across layer counts l, noise levels ρ, and corpus sizes |S|, |A|. Higher ρ delays (but does not prevent)269

the onset of linear separability, which still emerges at ρ = 0.999 (Figure 7a at the appendix); only270

the degenerate case ρ = 1.0 shows no emergence, contrary to the toy model. We discover similar271

structures to Figure 1 also when training with frozen dense embeddings and when learning the KV272

matrices instead of using fixed attention. We leave the understanding of this setting to future work.273

With additional layers the model sometimes encodes truth in the first attribute y, then copies it to x′274

before predicting y′; in other runs it reverts to the single-layer strategy where x′ attends directly to x275

and y′. This influences whether we see linear encoding on both y and x′, or on x′ alone (Figure 7b in276

the appendix).277

5.3 Testing the TCH in a Real LM278

The theory we specified relies on a set of assumptions and architecture that do not exist in pretrained279

transformers (those have, for instance, MLP layers in addition to the attention layer; have multiple280

attention heads; and are trained primarily on natural language distributions). Below, we (i) train281

“regular” transformer models on a natural language data that instantiates the truth co-occurrence282

hypothesis; (ii) assess to what extent aspects of the mechanism we propose exist in pretrained LLMs.283

We provide results on instantiating the hypothesis in natural language data in appendix D. Below, we284

examine aspects of the TCH in “real”, pretrained LMs.285

5.3.1 The TCH in Pretrained LLMs286

The mechanism proposed above assumes a very specific data generating process, and a simplified287

transformer model. As such, it is not likely that the same mechanism applies to real LMs; we see the288

toy model as a proof of concept, and aim to study more complicated models in future work. Yet, in289

this section, we compare the predictions following from our hypothesis with pretrained LMs in these290

aspects: (1) the sensitivity of the model’s predictions to preceding false sentences, in line with the291

truth co-occurrence hypothesis; (2) the behavioral relevance of the linear truth encoding in a situation292

where a sentence follows misleading false sentences.293

3The PCA is faithful to the high-dimensional representations in this regard; in the original space, the means
of the TRUE and FALSE classes (across all dimensions and data points) are 0.0073 and 0.0385, and the standard
deviations are 0.468 vs. 1.817, respectively.
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(a)

We experiment with a LLAMA3-8B model [Grattafiori et al., 2024] and the CounterFact dataset294

(SPEAKSLANGUAGE relation). We let the model predict the first token of the last word of a sentence,295

when it is (i) preceded by n false sentences; or (ii) preceded by n true sentences. In line of the296

hypothesis, we expect to see a decrease in the probability of the correct answer.297

Model’s predictions are sensitive to preceding false sentences. The results, over 128 n−tuples,298

are presented in Figure 5a (light bars) and are in line with our hypothesis; for instance, in the two299

leftmost box plots, we see that preceding the sentence with two false sentences (FF) yields higher300

negative likelihood (smaller probability) to the correct attribute compared with when preceding it301

with one true sentence (TT). The difference in negative log likelihood is 1.52, corresponding to 4.55×302

decrease in the probability of the correct attribute.303

Intervention in the truth subspace. LLAMA3-8B encodes truthfulness linearly: a linear classifier304

reaches over 95% accuracy on all middle and last layers in separating true instances from the dataset305

from counterfactual ones. Our theory predicts that, in the presence of misleading context, the direction306

that distinguishes true from false vectors actively pulls the model away from the correct answer. To307

test that, we intervene in the truth subspace. Following previous work on linear steering [Li et al.,308

2023b, Singh et al., 2024], we calculate the mean vector of the TRUE and FALSE classes in the309

representation space, µT and µF , and add a steering vector α(µT − µF ) to all representations in the310

same layer with the goal of increasing the probability of the correct attribute. We choose layer l = 11311

based on preliminary experiments that showed that classification peaks at that layer, and α = 3.0.312

The results, presented in Figure 5a (darker bars), show that the models tend to increase the probability313

of the correct attribute post-intervention, even in the presence of false context.314

6 Conclusion315

We introduced a small transformer and a synthetic data-generation process that jointly suffice to yield316

a robust linear truth subspace. Our analytical and empirical results demonstrate a two-phase training317

dynamic: memorization followed by truth-code emergence. The key strength of our approach is its318

lexical agnosticism: unlike prior persona-based accounts, our mechanism does not rely on surface319

correlations between individual tokens and truthfulness. We believe the framework opens several320

promising avenues for future research, from multi-relation contextual memory to logic-aware training321

curricula.322
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Appendix442

A Discussion and Limitations443

Although our analysis was grounded in a deliberately minimalist transformer, it discovers a two–phase444

dynamic—rapid key–value memorization followed by the slower emergence of a linear truth encoding.445

The key prerequisite appears to be the presence of (i) an associative–memory circuit able to retrieve446

subject–attribute pairs and (ii) correlation among the truth values of adjacent clauses. While we447

replicate the core phenomena we witness in large LMs, we emphasize that this is one, and probably448

not a unique, mechanism that can induce truth encoding. A core advantage of the minimalist model449

is that it does not assume any lexical cues that help the model discern the truth latent variable. In that450

sense, this is a more challenging setting than the previously studied one [Joshi et al., 2024], where it451

is assumed that true and false assertions are associated with different lexical distributions.452

Several core differences exist between our simplified generative story and a real-world setting. Our453

synthetic corpus contains only one latent relation. A natural extension is to sample tuples from454

a set of heterogeneous relations—BORNIN, CAPITALOF, CURRENCYOF, . . . —while maintaining455

correlation in the latent truth bit. Doing so forces the model to contextualize its memory: the same456

subject embedding must participate in multiple key–value slots distinguished by the relation.457

Real corpora have logical and semantic dependencies that go far beyond pairwise subject–attribute458

pairs: transitivity (“A is in B” ∧ “B is in C” ⇒ “A is in C”), mutual exclusivity (“isAlive” vs.459

“IsDead”), and type constraints (“capitalOf” only applies to geopolitical entities). These constraints460

also greatly limit the range of plausible counterfactual variants we may see in the training data; while461

we assume a uniform corruption for simplicity, in practice false variants of factual claims come from462

a unique conditional distribution. In future work, we plan to extend the current framework to a more463

realistic setting by injecting some degree of semantics into the atomic facts we train on, and study the464

generalization of the generative story to a mixture of two arbitrary distributions.465

B Detailed MAVEN-FACT Analysis466

Data extraction. We use the train split of MAVEN-FACT v1.0 (73,939 event–mentions drawn467

from 2 913 news articles).4 Each mention carries a FactBank-style factuality code (CT++, CT+, CT-,468

CT–, PS±, PR±, CF±, U, NA, . . . ). We retain only certain judgments:469

certain-true = {CT++,CT+}, certain-false = {CT- -,CT-}.

All other codes are discarded, leaving N = 71, 274 labelled mentions.470

Grouping key. Mentions are grouped by their originating article ID (doc_id), giving M = 2, 913471

documents with at least two certain mentions (ni > 1). Let Zij ∈ {0, 1} indicate whether mention j472

in document i is certain-false.473

Statistics reported in the main text.474

• Corpus certain-false rate. p = 1
N

∑
i,j Zij = 0.0209.475

• Pairwise certain-false probability. Pr(Zj = Zk = 1 | same doc) =

∑
i

(
fi
2

)∑
i

(
ni

2

) =476

0.00090, where fi =
∑

j Zij .477

• Independence baseline. p2 = 0.00044.478

• Clustering ratio.
Varobs(p̂i)

Varbinom
=

1
M

∑
i(p̂i − p)2

1
M

∑
i p(1− p)/ni

= 1.23 , with p̂i = fi/ni.479

• χ2 test. The 2×M contingency table of {fi, ni − fi} yields χ2 = 4174 (p ≈ 9×10−49).480

4Available at https://github.com/THU-KEG/MAVEN-FACT.
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These figures show that certain-false events, though rare (2.1%), occur about twice as often as481

chance would predict when two events come from the same article, and the distribution of false rates482

across articles is 23 % more heterogeneous than a binomial model would permit—confirming the483

co-occurrence signal predicted by TCH.484

The MAVEN-ED dataset is released with CC BY-SA 4.0 license. The MAVEN-ARG and MAVEN-485

ERE are published with GPLv3 license.486

C Experimental Setup487

Model. We experiment with an attention-only transformer with a single attention head with a488

post-attention LN:489

X0 = E + P // E,P ∈ RV×d (token + positional embeddings)
(10)

Q(i) = X(i−1)W
(i)
Q ,K(i) = X(i−1)W

(i)
K , V (i) = X(i−1)W

(i)
V (11)

A(i) = softmax
(
Q(i)K(i)⊤

√
d

)
V (i) // attention mix A(i) ∈ Rd (12)

Ã(i) = A(i)W
(i)
O , W

(i)
O ∈ Rd×d // single-head attention output

(13)

X(i) = N
(
X(i−1) +A(i)

)
, i = 1, . . . , l // residual + normalization (14)

Z = X(l)WO + bO, WO ∈ Rd×V , bO ∈ RV (15)

Ŷ = softmax(Z) (16)

Experiments with one-hot models (section 4). The theoretical analysis is driven by experiments490

on models equipped with frozen, one-hot embeddings and uniform attention, the latter obtained by491

setting the attention-key matrix K to the zero matrix. Under these conditions the columns of the492

attention value–output product KV T map directly to individual vocabulary items, exposing a clear493

block structure in the matrix (fig. 1). As detailed in the main text, the vocabulary is organized so that494

indices 1–20 encode input subject embeddings, 21–40 input attribute embeddings, 41–44 positional495

embeddings, 45–64 output subject embeddings, and 65–84 output attribute embeddings.496

Methodology: interpreting one-hot embeddings. Figure 2 contrasts two sequences—a correct497

one (top row) and an incorrect one (bottom row)—by showing the final-layer activations before498

projecting to the logit space. The one-hot embeddings make the activation patterns in that layer499

interpretable. We display the activations for the raw representations (left), after layer normalization500

(middle), and after applying the unembedding matrix and the softmax transformation (right). Observe501

the differing y-axis scales: normalization substantially magnifies the component corresponding to the502

correct answer in the “true” sequence, while the effect is far less pronounced for the false sequence.503

The model that produced fig. 1 was trained with SGD, learning rate 1.0 and batch size 16. The output504

matrix was fixed to identity, and only the value matrix was learned, from zero initialization.505

Experiments with fully-trained models (section 5): In section 5, we train all components, including506

the input embeddings and the K attention matrix. The model is trained for 50,000 batches of size507

128 and is optimized with the Adam optimizer [Kingma and Ba, 2015] with a learning weight of 1e-4508

and a weight decay of 1e-5. We do not include biases in the attention modules, and use RMSNorm as509

layer normalization. We run all experiments on 4 NVIDIA GeForce GTX 1080 GPUs. Training a510

single model lasts up to half an hour.511

D Instantiating the TCH in Natural Language512

In section 5.1, we created a synthetic dataset that respects the TCH and showed that training an513

attention-only transformer on this data results in linear truth encoding. Here, we aim to assess whether514

the same thing happens when training “real” transformers on natural language data.515
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Figure 6: Truth linear classification results alongside probability assigned by the LM to the true
attribute on false sequences.

Setup. We evaluate on the CounterFact dataset [Meng et al., 2022], a collection of simple factual516

assertions spanning relations such as SPEAKSLANGUAGE and BORNIN. We select the 25 most517

frequent relations and, for each positive instance (x, r, a), construct a negative by replacing the518

attribute a with a different attribute from the same relation. To instantiate the TCH, we form paired519

examples by concatenating two randomly sampled instances that share the same truth label (both true520

or both false). We then train a small transformer with RMS normalization, 2 attention heads and a521

single MLP module per layer, hidden size d = 256, and depth l ∈ {2, 5, 9} on this corpus. We use522

ρ = 0.99. We train on data from a single relation at a time, and report mean and standard deviations523

over 5 random relations.5524

Results. Across all seeds and architectural choices, the training dynamics mirror those on synthetic525

data: rapid memorization, followed by the emergence of a linear encoding, and an increase in entropy526

on false sequences. In fig. 6, we show results for a single relation (WORKSIN; averaged over five527

random seeds). By the end of training, the final hidden layer is nearly perfectly separable by the truth528

label, and on false sequences the probability assigned to the memorized (“true”) attribute declines.529

Notably, the 1-layer model exhibits epoch-wise double descent: classification accuracy rises early,530

dips, and then rises again. Across the five seeds, relations, and model sizes, memorization proceeds531

at roughly the same rate; the main variance lies in how quickly the probability declines on false532

sequences.533

E Additional Experiments534

In the main text we concentrated on a single-layer model (l = 1) with a true-attribute probability of535

ρ = 0.99. Here we extend the analysis to additional settings.536

Our primary focus was the linear separability at the second-subject token, x′, where the model537

predicts the second attribute. This is the only position where the truth signal is behaviorally relevant.538

Nevertheless, the theory also predicts a linear truth encoding at the first-attribute token y, owing to the539

fixed attention pattern. When the attention KV matrix is learned, however, this need not occur—the540

model can rely exclusively on the attention paid to x′ and leave y uninformative. The same theory541

further implies that a linear truth direction should eventually emerge for any true-sentence rate ρ,542

even though the gradient magnitude (and therefore the speed of emergence) does depend on ρ.543

Varying the true sentence rate, ρ. In fig. 7b we vary ρ across five random seeds and measure linear544

separability at both token positions. As predicted, when the attention pattern is learned, separability545

is much stronger at the second subject than at the first attribute. The time to emergence grows as ρ546

increases, yet linear encoding still appears even at the extreme setting of ρ = 0.999. Developing a547

theory that precisely predicts this ρ-dependent timing is left to future work.548

Dependency on dmodel and |S|. In fig. 8 we plot the linear separability at the final checkpoint, for549

different hidden sizes and number of facts to memorize (ρ = 0.99, l = 1 are fixed). With the exception550

5We leave the question of generalization between relations to a future work.
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Figure 7: Dependency of linear separability on ρ.
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Figure 8: Dependency of linear separability on dmodel and |S|.

of dmodel = 32, the separability persists over the second subject x′ for different combinations of these551

parameters.552
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Figure 9: attention patterns of a 3-layer model.

Additional layers. As we discuss in the main-text (section 5), in a model with a single self-attention553

layer, it is the second attribute (x′) token that attends to both x and y. With more layers, there are554

additional strategies. For instance, y may attend to both x and itself in the first layer, in the same way555

x′ attends to both x and y in the theoretical 1-layer model; then, in the next layer, x′ attends to y,556

copies the signal and create a linear separation that persists the last layer. This is the mechanism that557

emerges in 4/5 random initializations of a 3-layer model, and is clearly manifested in the attention558

patterns (fig. 9) and in the linear classification accuracy across layers (fig. 10).559
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Figure 10: Linear separability across layers for a 3-layer model; linear separability on the x′ token is
created after copying the signal from the y token in the second layer.

Bridging the gap between the fully-trainable model and the toy model. Our theoretical analysis560

(appendix F) is motivated by the structured patterns that emerge in the attention kernel—the OV561

matrix—when it is visualized (fig. 1). To test whether a comparable mechanism appears when we562

employ dense embeddings and allow the KV matrices to train freely (thus removing the enforced563

uniform attention over x, y), we train a model with a large hidden dimension but only a small set of564

facts to memorize (|S| = 32 and dmodel = 512). We freeze the randomly-initialized dense embeddings565

and train all other parameters. The limited number of subjects makes the memorization patterns566

easier to inspect, while the high dimensionality approximates the regime of mutually orthogonal567

embeddings required by the theory.568
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(a) EV OE⊤ with frozen dense embeddings
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(b) EV OE⊤ with trainable dense embeddings

Figure 11: Visualization of the attention matrix with dense embeddings.

Because the model now uses dense embeddings—so individual coordinates no longer correspond569

directly to vocabulary items—we do not expect an obvious block structure in the raw OV matrix.570

Instead, following Dar et al. [2023], we visualize EV OE⊤, where E concatenates the input and571

output embedding matrices. This operation computes the pairwise similarities between embeddings572

as induced by the V O transformation. Concretely, (EV OE⊤)ij = E⊤
i V,O,Ej measures how573

strongly the value vector elicited by symbol i aligns with the output direction that scores symbol574

j, so every cell again describes a relation between concrete symbols, exactly what the raw OV575

matrix showed when the embeddings were one-hot. The resulting heat-map (fig. 11a) exhibits a576

strikingly similar pattern to that observed with frozen one-hot embeddings and a fixed attention577

pattern, suggesting that the dense model converges to a similar underlying mechanism. In contrast,578

when we do train the embeddings, the pattern partially disappears, as parts of the memorization can579
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Figure 12: Visualization of the attention matrix with dense embeddings.

Figure 13: Visualization of learned embeddings and value matrix for a model as in Section 4 with
learned embeddings, initialized to one-hot.

occur in the embeddings themselves (fig. 11b). In general, there is much more variability between580

runs and hyperparameters when training the embeddings, where some hyperparameter choices do not581

show a pattern that is highly similar to the idealized one.582

With a full set of |S| = dmodel = 512 tokens, the global pattern is hard to spot at first glance. If we583

instead sub-sample 28 x tokens, retain only their partners g(x), and then sort the rows/columns, the584

latent memorization re-emerges: the lower-left block collapses into a clear diagonal (the previously585

random pattern in the leftmost lower block in fig. 11a is transformed into a diagonal due to the sorting).586

This diagonal appears whether the embeddings are frozen or trainable (see figs. 12a and 12b).587

One possible circuit with learned embeddings. We now present one possible circuit that we found588

when initializing with the one-hot embeddings, in a simplified architecture with uniform attention589

as in Section 4. We still denote ex, ey, ux, uy the one-hot embeddings as in Section 4, which only590

refer to the initialization in this setting with learned embeddings. After training, we may visualize591

the learned embeddings and interpret them as linear combinations of the initial one-hot embeddings,592

as shown in Figure 13. Denoting ẽx, ẽy, ũx, ũy the embeddings after training, the circuit we found593
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looks as follows:594

ẽx = ex − eg(x)

ẽy = ey − eg−1(y)

ũx =
∑
x

ux −
∑
y

uy

ũy = uy + eg−1(y)

W =
∑
x

(ug(x) − ex)e
⊤
x −

∑
y

(ey + uy)e
⊤
y .

The approximation ẽx = ex − eg(x), for instance, follows from the two large positive and negative595

spikes in the left part of fig. 13, for indices 1 and 25/36. Similar to our analysis of Section 4, we596

compute the quantity W (ẽx+ ẽy), which appears in the residual stream for both token y and token x′:597

W (ẽx + ẽy) = ug(x) − ex + eg(x) + ug(x) − ey − uy − uy + eg−1(y)

We observe that this vanishes when y = g(x), suggesting that a similar mechanism as in the fixed598

embeddings case studied in Section 4 is at play, where layer-norm can lead to sharper predictions for599

true sequences, as well as provide a truth direction.600
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Figure 14: Structure of the value matrix W when training without positional embeddings.

F Theoretical analysis601

This section contains theoretical analysis and proofs for the results in Section 4.602

F.1 Training dynamics603

We now provide some theoretical insights on the training dynamics in the simple one-layer model of604

Section 4. We further simplify the model here by removing positional embeddings. Figure 14 shows605

that the model still learns the relevant blocks even without positional embeddings, though some of606

the uniform distributions on unembeddings are now absorbed in other blocks.607

The lemma below highlights the structure of the gradient for a softmax classification model consisting608

of a linear model followed by a layer-norm operation.609

Lemma 1. Consider the model FW (x) = U · N(ax +Wbx) ∈ R2N , with N(v) = v/∥v∥, and the610

following cross-entropy population loss on some distribution over (x, y):611

L(W ) = Ex,y[− logS(FW (x))y], (17)

where y is the label and S the softmax operation. The gradient with respect to W is then given by:612

∇L(W ) =

2N∑
k=1

Ex,y

[
S(U · N(vx))k − 1{y = k}

∥vx∥
P(vx/∥vx∥)ukb

⊤
x

]
, (18)

with vx = ax +Wbx and where Pθ = I − θθ⊤ is the projection onto the tangent space at θ ∈ Sd.613

Let us decompose the population loss as614

L(W ) = L1(W ) + L2(W ) + L3(W ), (19)

where Lt(W ) is the next-token prediction loss for predicting zt+1 from z1:t, with z1:4 = (x, y, x′, y′).615

We show the following result.616

Theorem 4. Consider the following algorithm, with step-size η = N/ρ, and initialization W0 = 0:617

1. Set W1 = W0 − η∇L1(W0)618

2. Set W2 = W1 − η∇L1(W1)619

3. Set W3 = W2 − η∇L3(W2)620

Then, we have621

W3 =

N∑
x=1

(
β1ug(x) − α1ex

)
e⊤x +

∑
y

(α2eg−1(y) − β2uy)e
⊤
y + o(1), (20)

where α1, α2, β1, β2 > 0 can be found in the proof.622
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Proof. Let us decompose each loss into contributions from true and false sequences, which follows623

from the fact that the data distribution is a mixture of the two:624

Li(W ) = ρLT
i (W ) + (1− ρ)LF

i (W ).

Step 1. In the first step, we take a gradient step only on the loss L1 for the prediction of the second625

token y at the first token x, starting from initialization W0 = 0. Recall that this model takes the626

form F (x) = U · N(ex +Wex), so that in the notation of Lemma 1 we have ax = bx = vx = ex.627

We begin with the gradient on true sequences:628

−η∇LT
1 (W0) = −η

2N∑
k=1

S(0)kukEx[e
⊤
x ] + ηEx[ug(x)e

⊤
x ]

=
η

N

N∑
x=1

ug(x)e
⊤
x − η

2N2

2N∑
z=1

N∑
x=1

uze
⊤
x

=
η

N

N∑
x=1

ug(x)e
⊤
x +O(η/N2).

On false sequences, we have629

−η∇LF
1 (W0) = −ηEx[

2N∑
k=1

S(0)kuke
⊤
x ] + ηEx,y[uye

⊤
x ]

=
η

N2

N∑
x=1

2N∑
y=N+1

uye
⊤
x −− η

2N2

2N∑
z=1

N∑
x=1

uz

= O(η/N2),

using the fact that x and y are independent. With η = N/ρ, we obtain630

W1 = W0 − η∇L1(W0) =

N∑
x=1

ug(x)e
⊤
x +O(1/N).

Step 2. For the second step taken at W = W1, we will assume vx = ex+ug(x), so that ∥vx∥ =
√
2.6631

We also denote σx,k := S(U ·N(vx))k, noting that we have σx,k = O(1/N) for all x and k. On true632

sequences, we have633

−η∇LT
1 (W1) =

η

N
√
2

N∑
x=1

(
ug(x)e

⊤
x − 1

2
(ex + ug(x))e

⊤
x

)
− η

N
√
2

N∑
x=1

2N∑
k=1

σx,k(uk −
δk,g(x)

2
vx)e

⊤
x

=
η

2
√
2N

N∑
x=1

(ug(x) − ex)e
⊤
x +O(η/N2),

where δk,g(x) = 1{k = g(x)} denotes the Kronecker delta. For false sequences, we have634

−η∇LF
1 (W1) =

η√
2
Ex,y[(I −

vxv
⊤
x

2
)uye

⊤
x ]−

η

N
√
2

N∑
x=1

2N∑
k=1

σx,k(uk −
δk,g(x)

2
vx)e

⊤
x

=
η

N2
√
2

N∑
x=1

2N∑
y=N+1

(uy −
δy,g(x)

2
vx)e

⊤
x − η

N
√
2

N∑
x=1

2N∑
k=1

σx,k(uk −
δk,g(x)

2
vx)e

⊤
x

= O(η/N2).

With η = N/ρ, this yields635

W2 = W1 − η∇L1(W1) =

N∑
x=1

(
αug(x) − ex

)
e⊤x +O(1/N),

with α = 1 + 1
2
√
2

.636

6This is true up to terms that vanish in the N → ∞ limit, but we will ignore them here for simplicity. We
note that with more care, these can be incorporated in the analysis, leading to the same block structure.
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Step 3. The third step takes one gradient step on the loss L3 at the third token, i.e., predicting y′637

from (x, y, x′). The model now takes the form F (x, y, x′) = U · N(ex′ + 1
3W (ex + ey + ex′)).638

The gradient of the loss on y′ is given as in (18), where we assume7639

vx,y,x′ = ex′ +
1

3
W2(ex + ey + ex′)

=
2

3
ex′ − 1

3
ex +

α

3
ug(x) +

α

3
ug(x′) =: vx,x′ .

We have ∥vx,x′∥ = 1
3

√
5 + 2α2 for x ̸= x′ and ∥vx,x′∥ = 1

3

√
1 + 2α2 for x = x′. Note that we640

once again have σx,y,x′,k := S(U · N(vx,y,x′))k = O(1/N). On true sequences, we have641

−η∇LT
3 (W2) = ηEx,x′

[
1

3∥vx,x′∥

(
I −

vx,x′v⊤x,x′

∥vx,x′∥2

)
ug(x′)(ex + eg(x) + ex′)⊤

]
(21)

− η

2N∑
k=1

Ex,x′

[
σx,g(x),x′,k

3∥vx,x′∥

(
I −

vx,x′v⊤x,x′

∥vx,x′∥2

)
uk(ex + eg(x) + ex′)⊤

]
(22)

It is easy to check that the second term is of order O(η/N2). For the first term, we have642

ηEx,x′

[
1

3∥vx,x′∥

(
I −

vx,x′v⊤x,x′

∥vx,x′∥2

)
ug(x′)(ex + eg(x) + ex′)⊤

]

= ηEx,x′

[
1

3∥vx,x′∥
ug(x′)e

⊤
x′

]
− ηEx,x′

[
α(1 + δg(x),g(x′))

9∥vx,x′∥3
vx,x′(ex + eg(x) + ex′)⊤

]
+O(η/N2)

=
ηβ1

N

N∑
x=1

ug(x)e
⊤
x − ηEx,x′

[
γx,x′vx,x′(ex + eg(x) + ex′)⊤

]
+O(η/N2),

with643

β1 = Ex[
1

3∥vx,1∥
] and γx,x′ =

α(1 + δg(x),g(x′))

9∥vx,x′∥3
.

We have644

−ηEx,x′
[
γx,x′vx,x′(ex + eg(x) + ex′)⊤

]
= −ηEx[Ex′ [γx,x′vx,x′ |x](ex + eg(x))

⊤]− ηEx′ [Ex[γx,x′vx,x′ |x′]e⊤x′ ]

=
ηβ2

N

N∑
x=1

(ex − αug(x))(ex + eg(x))
⊤ − ηβ2

N

N∑
x=1

(2ex + αug(x))e
⊤
x +O(η/N2)

= −ηβ2

N

N∑
x=1

exe
⊤
x +

ηβ2

N

2N∑
y=N+1

(eg−1(y) − αuy)e
⊤
y +O(η/N2),

with645

β2 =
1

3
Ex′ [γ1,x′ ] =

1

3
Ex[γx,1] =

1

3N
γ1,1 +

N − 1

3N
γ1,2.

We have thus shown646

−η∇LT
3 (W2) =

η

N

N∑
x=1

(β1ug(x) − β2ex)e
⊤
x +

ηβ2

N

2N∑
y=N+1

(eg−1(y) − αuy)e
⊤
y +O(η/N2). (23)

For false sequences, it can be checked that η∇LF
3 (W2) = O(η/N2). Thus, taking step-size η = N/ρ647

yields648

W3 = W2 − η∇L3(W2)

= (α+ β1)

N∑
x=1

ug(x)e
⊤
x − (1 + β2)

N∑
x=1

exe
⊤
x + β2

2N∑
y=N+1

(eg−1(y)− αuy)e
⊤
y +O(1/N).

649

7Once again, this is only true up to vanishing terms in N , which we ignore here for simplicity.
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F.2 Proof of Theorem 1650

Suppose we are given (x, y, x′), where we assume for simplicity that x ̸= x′ and g(x′) ̸= y. Denote651

by fW (z1:t) the output of the model in (2) before applying the LN and the unembedding layer. Then,652

we have that:653

fW (x, y, x′) = ex′ + p3 +
1

3
γ̄

(∑
y

uy −
∑
x

ux

)
+

+
1

3

(
−α1ex + β1ug(x) + α2eg−1(y) − β2uy − α1ex′ + β1ug(x′)

)
(24)

Denote by c1 := 2 +
γ̄2(2N−2)+2α2

1+β2
1

9 and c2 := 2 +
γ̄2(2N−3)+2α2

1+β2
1

9 . for a true sample where654

y = g(x) we have that:655

∥fW (x, g(x), x′)∥2 = c+ (β1 − β2 + γ̄)2 + (β1 + γ̄)2 .

Hence, after applying the LN and unembedding layer we have that:656

(FW (x, g(x), x′))g(x′) =
β1 + γ̄

3
√
c1 + (β1 − β2 + γ̄)2 + (β1 + γ̄)2

max
y′ ̸=g(x′)

(FW (x, g(x), x′))y′ =
γ̄ +max(0, β1 − β2)

3
√

c1 + (β1 − β2 + γ̄)2 + (β1 + γ̄)2

For a false sample where y ̸= g(x) we have that:657

∥fW (x, g(x), x′)∥2 = c2 + 2(β1 + γ̄)2 + (−β2 + γ̄)2 .

Hence, after applying the LN and unembedding layer we have that:658

(FW (x, y, x′))g(x′) =
β1 + γ̄

3
√

c2 + 2(β1 + γ̄)2 + (−β2 + γ̄)2

max
y′ ̸=g(x′)

(FW (x, y, x′))y′ =
β1 + γ̄

3
√

c2 + 2(β1 + γ̄)2 + (−β2 + γ̄)2
.

Plugging in these terms finishes the proof.659

F.3 Proof of Theorem 2660

Proof. We first describe the output of the model in (2) before applying LN. Denote by vT , vF ∈661

R4N+3 these outputs for true and false samples respectively. Recall that a true sample (x, y) is when662

y = g(x) and false otherwise. Then, we have that:663

vT = ey + p2 +
1

2

(
(α2 − α1)ex + (β1 − β2)uy + (γ1 − γ2) ·

(∑
y

uy −
∑
x

ux

))
(25)

vF = ey + p2 +
1

2

(
−α1ex + α2ug−1(y) + β1ug(x) − β2uy + (γ1 − γ2) ·

(∑
y

uy −
∑
x

ux

))
(26)

We will first show that without adding N the samples above cannot be separated for general x and y.664

Assume otherwise, that there exists a linear separator w =


w1

w2

w3

w4

w5

 with w1, . . . , w4 ∈ RN , w5 ∈ R3665

and bias term b ∈ R such that ⟨w, vT ⟩ − b ≥ 0 and ⟨w, vF ⟩ − b < 0 for every true or false sample666

23



respectively. We slightly abuse notation and write ⟨w1, ex⟩ as
〈(

w1

03N+3

)
, ex

〉
, and similarly when667

multiplying w2 by ey , w3 by ux, w4 by uy and w5 by pt.668

c :=
1

2

〈
(γ1 − γ2) ·

(∑
y

uy −
∑
x

ux

)
, w3 + w4

〉
+ ⟨w5, p2⟩

the terms in the inner products that are independent of the sample. Then, using the linear separator on669

these four samples we have:670

b ≤ (α2 − α1) ⟨exi
, w1⟩+ ⟨eyi

w2⟩+ (β1 − β2) ⟨uyi
, w4⟩+ c (27)

b ≤ (α2 − α1)
〈
exj

, w1

〉
+
〈
eyj

w2

〉
+ (β1 − β2)

〈
uyj

, w4

〉
+ c (28)

b ≥ α2 ⟨exi , w1⟩ − α1

〈
exj , w1

〉
+ ⟨eyi , w2⟩+ β1

〈
uyj , w4

〉
− β2 ⟨uyi , w4⟩+ c (29)

b ≥ α2

〈
exj

, w1

〉
− α1 ⟨exi

, w1⟩+
〈
eyj

, w2

〉
+ β1 ⟨uyi

, w4⟩ − β2

〈
uyj

, w4

〉
+ c . (30)

Adding up (29) and (30) we have that:671

2b− 2c ≥ (α2 − α1)
〈
exj

, w1

〉
+
〈
eyj

w2

〉
+ (β1 − β2)

〈
uyj

, w4

〉
+ (31)

+ (α2 − α1) ⟨exi , w1⟩+ ⟨eyiw2⟩+ (β1 − β2) ⟨uyi , w4⟩ , (32)

which is a contradiction to (27) and (28). This means that there is no linear separator, regardless of672

the values of the parameters, which proves the first item.673

Assume there is layer normalization after the prediction as in (2). This means that the output of the674

model is v
∥v∥ . Consider the linear predictor w = p2, and a bias term b that will be determined later.675

Then, the output of the linear predictor is exactly ⟨w, v⟩ = 1
∥v∥ .676

We will now calculate the norm of both true and false samples. For a true sample (x, g(x)) we have677

that:678

∥vT ∥2 = 2 + (α2 − α1)
2 + (γ1 − γ2)

2 · (2N − 1) + (γ1 − γ2 + β1 − β2)
2
. (33)

For a negative sample (x, y) with g(x) ̸= y we have:679

∥vF ∥2 = 2 + α2
1 + α2

2 + (γ1 − γ2)
2 · (2N − 2) + (γ1 − γ2 + β1)

2 + (γ1 − γ2 − β2)
2 . (34)

There exists a linear separator as long as 1
∥vF ∥ − 1

∥vT ∥ ̸= 0. Since the vectors vT and vF are both680

non-zero, this is equivalent to ∥vT ∥2 ̸= ∥vF ∥2. By the above calculation, we have that:681

∥vF ∥2 − ∥vT ∥2

= α2
1 + α2

2 − (α1 − α2)
2 − (γ1 − γ2)

2 + (γ1 − γ2 + β1)
2 + (γ1 − γ2 − β2)

2 − (γ1 − γ2 + β1 − β2)
2

= 2α1α2 + 2β1β2 .

This shows that if 2α1α2 + 2β1β2 ̸= 0 then we have a linear separation between true and false682

samples.683

Further assuming that α1 = α2, β1 = β2, γ1 = γ2 we have that ∥vT ∥2 = 2 and ∥vF ∥2 =684

2 + 2α2 + 2β2. To find the optimal margin for this predictor we pick:685

b =
1

2
·
(

1

∥vT ∥
− 1

∥vF ∥

)
=

1

2
√
2

(
1− 1√

1 + α2 + β2

)
.

We will now prove that there is linear separation after predicting the x′ token. Using the output of the686

model as in (2) we get:687

vT = C +
1

3

(
(α2 − α1)ex + (β1 − β2)uy − α1ex′ + β1ug(x′)

)
(35)

vF = C +
1

3

(
−α1ex + α2ug−1(y) + β1ug(x) − β2uy +−α1ex′ + β1ug(x′)

)
, (36)
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where C = ex′ + p3 +
γ̂
3 ·
(∑

y uy −
∑

x ux

)
. We can now calculate:688

∥vT ∥2 = 2 +
1

9

(
(α2 − α1)

2 + (β1 − β2 + γ̄)2 + α2
1 + (β1 + γ̄)2 + (2N − 2)γ̄2

)
(37)

∥vF ∥2 = 2 +
1

9

(
2α2

1 + α2
2 + 2(β1 + γ̄)2 + (γ̄ − β2)

2 + (2N − 3)γ̄2
)
. (38)

We now have that:689

∥vF ∥2 − ∥vT ∥2 =
1

9
·
(
α2
1 + α2

2 + (β1 + γ̄)2 + (γ̄ − β2)
2 − (α2 − α1)

2 − (β1 − β2 + γ̄)2 − γ̄2
)

=
2

9
(α1α2 + β1β2) .

By a similar argument to the previous case, if α1α2 + β1β2 ̸= 0 then there is linear separation690

between true and false samples. Further assuming that α1 = α2, β1 = β2 and γ̄ = 0, to find the691

optimal margin for the predictor we pick:692

b =
1

2
·
(

1

∥vT ∥
− 1

∥vF ∥

)
=

α2 + β2

9
√

4 + 8
9 (α

2 + β2) + 1
27 (α

2 + β2)2
.

693
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