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Abstract

Recent probing studies reveal that large language models exhibit linear subspaces
that separate true from false statements, yet the mechanism behind their emergence
is unclear. We introduce a transparent, one-layer transformer toy model that
reproduces such truth subspaces end-to-end and exposes one concrete route by
which they can arise. We study one simple setting in which truth encoding can
emerge: a data distribution where factual statements co-occur with other factual
statements (and vice-versa), encouraging the model to learn this distinction in order
to lower the LM loss on future tokens. We corroborate this pattern with experiments
in pretrained language models. Finally, in the toy setting we observe a two-phase
learning dynamic: networks first memorize individual factual associations in a
few steps, then—over a longer horizon—learn to linearly separate true from false,
which in turn lowers language-modeling loss. Together, these results provide both
a mechanistic demonstration and an empirical motivation for how and why linear
truth representations can emerge in language models.

1 Introduction

Recent observations suggest that large language models (LMs) often encode a low-rank linear
subspace that distinguishes true from false statements across a wide range of domains [Azaria and
Mitchell, 2023, Burns et al., 2022, Li et al., 2024b, Marks and Tegmark, 2024, Bürger et al., 2025,
Orgad et al., 2025]. Specifically, in many layers of the residual stream representation in transformer-
based LMs, a linear separation emerges between representations corresponding to true versus false
assertions. Moreover, this separation generalizes across domains: there exists a single separating
subspace such that statements like “2+ 2 = 4” (true) and “The capital city of France is Rome” (false)
fall on opposite sides of the same separating plane. These findings have sparked interest among
practitioners, because they may aid in mitigating hallucinations [Li et al., 2024b, Orgad et al., 2025].

We investigate the emergence of a unified “truth subspace”—a low-dimensional linear manifold that
cleanly separates true from false statements. Prior work shows (i) that truth-encoding directions
generalize remarkably well across diverse tasks and prompts, and (ii) that causal interventions along
those directions can steer LMs toward factual or counter-factual completions [e.g. Meng et al., 2022].
Yet we still lack a satisfying answer to two fundamental questions: why do such subspaces arise
during training, and how are they actually computed at inference time?

We address both questions in a single theoretical and empirical framework. For the how, we build on
the growing understanding of key–value associative memories in transformers. Geva et al. [2021]
showed that the first linear layer produces key matches—e.g. aligning the prefix “The capital city of
France is” with an internal query—while the second linear layer retrieves the associated value, such as
the hidden representation of “Paris”. Subsequent studies refined the mathematical description of this
mechanism and demonstrated its causal role in factual recall and reasoning [Geva et al., 2022b, Bietti
et al., 2023, Cabannes et al., 2024b, Nichani et al., 2025]. We hypothesize that a linear truth code
takes advantage of the memorized factual associations: it emerges as a result of the model contrasting
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the internal prediction it built with the observed attribute. This results in a different pattern when the
two match or mismatch, and is translated into a linearly separable signal.

For the why, we propose the Truth Co-occurrence Hypothesis (TCH): in naturally occurring text,
true statements are statistically more likely to co-occur with other true statements, and falsehoods
with other falsehoods. This assumption is closely related to recent “persona” explanations of factual
inconsistency in LMs [Li et al., 2023a, Joshi et al., 2024]: the claim that LMs learn to model certain
personas in the data distribution, some truthful and some not. TCH offers a very simple way to
quantify the persona hypothesis and provably characterize its influence. Under the TCH, inferring a
latent truth variable is loss-reducing: if the model recognizes that “It’s well known that the moon
landing was a hoax” is false, it can raise the probability of a continuation such as “and that the Earth
is flat,” which is likewise false.

We test the truth-co-occurrence hypothesis (TCH) in the minimal transformer, with a single self-
attention layer, one head, and a normalization layer. Training examples are four-token sequences
x y x′ y′ with subjects x, x′ (“The capital city of France”; “Churchill’s nationality”) and attributes
y, y′ (“Paris”; “British”); with probability ρ, the attributes y, y′ are both the correct attribute; with
probability 1− ρ, they are replaced with a random one. Under our simplified generative story, “truth”
is identified with the attribute that is frequent in the training data for a particular subject. When we
train transformer LMs on such dataset, we find that after the key–value lookup circuit forms, gradient
descent pushes hidden states toward a linear separator that clusters true vs. false contexts, and the
model uses it modify its confidence when predicting the attribute. Training shows two phases: rapid
key–value acquisition followed by slower emergence of linear encoding. Although our toy model
is far simpler than natural training data (see Section 6), it predicts the observed sensitivity to false
context (Section 5.3), where false prefixes bias later predictions (supporting TCH), and reproduces
the way normalization layers regulates confidence [Stolfo et al., 2024]. Taken together, we show that
linear truth encoding can arise without any built-in semantics.

2 Related work

A growing body of work shows that pretrained LMs linearly encode a simple notion of “truth”—-
consistency with the majority of examples in the training data—in both hidden states and individual
MLP/attention outputs [Azaria and Mitchell, 2023, Burns et al., 2022, Li et al., 2024b, Bürger
et al., 2025]. This feature is generally robust for frequent atomic facts, though its subspace can
shift in the presence of negation [Marks and Tegmark, 2024] and may by biased to dataset-specific
features [Orgad et al., 2025]. The encoded truth dimension is behaviorally relevant: intervening on it
nudges the model toward truthful completions [Li et al., 2024b] although the model’s predictions
sometimes do not agree with the latent encoding [Liu et al., 2023]. Yet the mechanism behind
this encoding remains unclear. Extending the persona hypothesis of Li et al. [2023a], Joshi et al.
[2024], Ghandeharioun et al. [2024] link truthful behavior to lexical “personas”—for instance, the
formal, encyclopedic style typical of Wikipedia versus the more casual tone common in social-media
post. We show that, given sufficient training, LMs also acquire a lexicon-independent abstract truth
dimension that emerges more slowly.

The line of work on truth encoding is closely related to findings suggesting that models encode
different aspects related to their knowledge and confidence. It was shown that it is possible to decode
“latent” knowledge from the model Gekhman et al. [2025], and that measures of uncertainty can be
decoded from hidden states [Slobodkin et al., 2023, Farquhar et al., 2024, Ferrando et al., 2025]. Our
work is related to, but distinct form, works on mechanistic understanding of hallucinations [Yu et al.,
2024]; while both rely on the associative memory used by the model [Geva et al., 2021, 2022a,b,
Bietti et al., 2023, Cabannes et al., 2024a], we focus on the emergence of separation between true
and false assertions, and come up with a toy model that allows us to analyze its properties.

3 The Truth Co-occurrence Hypothesis

We previously described the TCH, the assertion that false statements tend to co-occur. To quantify
that, we use the MAVEN-FACT corpus [Li et al., 2024a], where annotators assign a FactBank-
style factuality label to every event mention inside a news article. After discarding all but certain
judgments, each mention is labeled CERTAIN-TRUE or CERTAIN-FALSE and grouped by the document
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in which it appears.1 We find the following: (i) the overall certain-false rate is p = 0.0209;
(ii) the chance that two event mentions from the same article are both certain-false is 0.0009,
exceeding the independence baseline p2 = 0.00044 by a factor of ≈ 2; and (iii) the clustering
ratio— Varobs(p̂i)/Varbinom = 1.23— shows 23 % extra article-to-article heterogeneity. A χ2 test
of independence confirms the association (χ2 = 4.17× 103, p ≈ 9× 10−49). This shows that false
assertions are not sprinkled at random but tend to cluster on the same article. For a language model,
tracking a latent truth bit is therefore loss-reducing: once a page provides evidence that one statement
is refuted, the conditional probability that a subsequent claim is also refuted increases. This motivates
the design of a simple data-generating process that instantiates the hypothesis and tests whether it
gives rise to truth encoding.

3.1 Data Generating Process

Natural text confounds truth with stylistic cues, topic priors, and corpus frequency [Orgad et al.,
2025]. Therefore, Consequently, if we probe LMs on raw text, we risk discovering features that
merely track these proxies. To uncover minimal conditions that force an LM to represent truth, we
build a toy world in which:

1. Every subject pair has exactly one canonical attribute (ground truth).

2. A small, controllable fraction of examples are corrupted by uniform noise (the attribute is
replaced with another attribute).

3. importantly, the truthfulness of neighboring sequences correlates; this models the tendency
of speakers to consistently be less or more truthful [Joshi et al., 2024].

Despite its simplicity, this environment reproduces the linear-separability we see in large-scale LMs
(§5).

Data format. Each training example is a sequence x y x′ y′ with subjects x, x′ ∈ S and attributes
y, y′ ∈ A.

For every x there exists a unique ground-truth attribute g(x) memorized by the data generator.
Examples are corrupted as follows: Sample T ∼ Bernoulli(ρ) once per example, such that

TRUE If T=1, set yi = g(x), y′i = g(x′).

FALSE If T=0, draw each y, y′ independently and uniformly from A.

Truth as a latent variable. Because predicting the second attribute token y′ is easier when T is
known, an LM can lower its language-model loss by internally inferring T early in the sequence and
propagating that bit forward.

Without inferring T , the conditional distribution over the second attribute y′ given the prefix (x, y, x′)
is:

Pr
(
y′ = g(x′)

∣∣x, y, x′) = ρ+
1− ρ

|A|
, Pr

(
y′ = a ̸= g(x′)

∣∣x, y, x′) = 1− ρ

|A|
.

Assume the LM can memorize g and (optionally) infer T perfectly. Let L¬T be its per-token cross-
entropy for predicting y′ when it does not access T , and let LT be the loss when it embeds T internally.
Then, in the |A|→∞ limit, L¬T −LT = H2(ρ), the binary entropy of ρ. Hence representing a single
bit yields maximal benefit at ρ = 0.5, where H2 is largest (see appendix B for a complete derivation).

4 Analysis on a Toy Model

In this section, we study the emergence of truth directions in a simplified one-layer setup with orthog-
onal embeddings. Empirically, we find that this minimal setup already captures the mechanism of a
truth direction, and leverages layer-norm to adjust confidence for the second attribute depending on
truthfulness of the first one. Our empirical and theoretical analysis shows that this happens in phases,
and that layer-norm is crucial to provide the relevant structure in the gradients. Furthermore, such a

1Data-handling details are deferred to App. A.
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Figure 1: Visualization of the value matrix for the one-layer model at different training steps. We
see that the ex → ug(x) block is learned first, along with the pt → ū block. Later the ex → −ex
and ey → −uy blocks, and finally the ey → eg−1(y) block.

truth direction can already emerge when there are only true sequences. In appendix appendix D.1, we
discuss how these results may be extended to non-orthogonal and to learned embeddings.

Setup. Consider the following one-hot token embedding, positional embedding, and unembedding
vectors in Rd with embedding dimension d = 4N + 3, where z ∈ [2N ] is an input or output token
(input tokens x are in [N ] while outputs y are in [N + 1, 2N ]), and t ∈ [3] a position:

[ez]i = 1{i = z} (1)
[pt]i = 1{i = 2N + t} (2)
[uz]i = 1{i = 2N + 3 + z}. (3)

We consider a one-layer transformer with uniform causal attention, and a basic layer-norm operation.
Concretely, for an input sequence z1:3 = (x, y, x′) and position t ∈ [3], define:

FW (z1:t)t = U · N

(
ezt + pt +

1

t

t∑
s=1

W (ezs + ps)

)
, (4)

where W denotes the value matrix, U = u⊤
1:2N = [0; I2N ] ∈ R2N×d is a projection on the unem-

bedding dimensions, and N(v) = v/∥v∥ is a layer-norm operation. The predicted probabilities are
then given by p̂(zt+1 = ·|z1:t) = Sβ(F (z1:t)), where Sβ denotes the softmax operation with inverse
temperature β. Our experiments use β =

√
d, due to the use of RMS norm in layer-norm over

embeddings of dimension d.

We assume here that x, x′ ∼ Unif([N ]) i.i.d., and conditioned on these as well as on a truth random
variable T ∼ Ber(ρ), we have y = g(x) and y′ = g(x′) when T = 1, and y, y′ ∼ Unif([N +1, 2N ])
otherwise. Denoting z1:4 = (x, y, x′, y′), the population loss then takes the form

L(W ) =

3∑
t=1

Li(W ) =

3∑
t=1

Ez1:t+1

[
− logSβ(FW (z1:t))zt+1

]
. (5)

Probing the mechanism and its emergence. Figure 1 shows a visualization of the value matrix W
in our toy model, at different steps of training, with N = 20, ρ = 0.8 and batch size 16. We see that a
clear block-structure emerges in the matrix W , with different blocks arising in different phases. Some
blocks show a negative identity structure, while others show a permutation structure according to the
“knowledge” mapping g. Positional embeddings show more uniform patterns across unembeddings,
with different signs depending on whether the next token is an input or label. In Figure 2, we show the
representations at the x′ token for examples of true and false sequences, before and after layernorm,
as well as the probabilities obtained after projecting to the unembedding space and applying softmax.
In the false sequence (bottom plot), we notice large spikes in the input embedding dimensions (1-20)
at positions x = 5 and g−1(y) = 16. These do not exist in true sequences, since they cancel out. We
see a similar behavior on unembedding dimensions (65-84) at smaller scales. The cancellation leads
to a smaller norm on true sequences, which causes an amplification of the logits, and finally a spiked
distribution on true sequences, versus a flatter one on false sequences, though we still some lower
confidence spikes on g(x) and g(x′) (note the y-axis scale difference).
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Figure 2: Visualization of representations on true (top) and false (bottom) sequences. The plots show
representations before (left) and after (center) layer-norm, as well as predicted probabilities (right).

Structure of the value matrix W . We now study a construction that resembles the one observed
empirically in Figure 1. Later we will provide a theoretical justification for this structure and its
emergence in phases by analyzing training dynamics.

The leftmost column of the W matrix maps ex to its corresponding label ug(x), while also subtract-
ing ex itself:

Wex = −α1ex + β1ug(x), (6)
with α1, β1 > 0. The second column has the following symmetric behavior:

Wey = α2eg−1(y) − β2uy. (7)

Finally, the third column maps the different positional embeddings to mixtures of uniform distributions
over the inputs or labels:

Wp1 = γ1(
∑
y

uy −
∑
x

ux) (8)

Wp2 = −γ2(
∑
y

uy −
∑
x

ux) (9)

Wp3 = γ3(
∑
y

uy −
∑
x

ux). (10)

In the statements above, we assume all the coefficients α1/2, β1/2, γ1/2/3 to be positive.

Linear separation and sharpening mechanism. One important consequence of the structure
above is that any token that attends to both x and y (this could be either y or x′) has the following
quantity in its residual stream:

ζ(x, y) := W (ex + ey) = −α1ex + α2eg−1(y) + β1ug(x) − β2uy. (11)

We then have

∥ζ(x, g(x))∥2 = ∥ζ(x, y)∥2 − 2α1α2 − 2β1β2, for y ̸= g(x).

Since α1, α2, β1, β2 > 0, the norm of ζ on a true sequence is always smaller than on a false sequence,
leading to a useful feature for detecting truth (see illustration in fig. 16). Combined with the layer-
norm operation, this provides a mechanism for sharpening the prediction of y′ towards g(x′) when
the model detects a true sentence, by adjusting the temperature in the softmax via inverse norm
scaling.
Theorem 1 (Sharpening of y′ predictions). Suppose we have a solution that satisfies Eqs. (6)-(10).
Denote by c := 2 +

γ̄2(2N−2)+2α2
1+β2

1

9 For any x, x′ and y ̸= g(x), we have:

F (x, g(x), x′)g(x′) − max
k ̸=g(x′)

F (x, g(x), x′)k ≥ β1 −max(0, β1 − β2)

3
√
c+ (β1 − β2 + γ̄)2 + (β1 + γ̄)2

F (x, y, x′)g(x′) − max
k ̸=g(x′)

F (x, y, x′)k = 0
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The proof is in appendix E.2. This shows that the structure of W along with layer-norm provide
a simple mechanism to make the model more confident about its knowledge when the context is
truthful. For false sequences, the zero gap comes from the fact that logits for g(x) and g(x′) are tied,
as we show empirically in Figure 2. This aligns with previous interpretability work on confidence
neurons [Stolfo et al., 2024]. Beyond improving prediction performance, we now show that this
model provides a linear encoding of truth in the representations after layer-norm.

Theorem 2 (Linear truth direction). Suppose we train the model in (4) as explained above, and reach
a solution for W that satisfies Eqs. (6)-(10). Then, we have the following:

1. If the model in (4) does not contain N, then its output on the y token does not admit a linear
separator for true and false samples.

2. If the model in (4) contains N and 2α1α2+2β1β2 ̸= 0, then its output on the y token admits
a linear separation for true and false samples. Moreover, if γ1 = γ2, α1 = α2, β1 = β2

then the margin is at least δ = 1
2
√
2

(
1− 1√

1+α2+β2

)
.

The proof is in appendix E.3.

Theoretical analysis of training dynamics. We now study how such a structure in W emerges
from training dynamics in a simplified setting.

Theorem 3 (Sequential gradient learning; informal). In a simplified model with no positional
embeddings, taking two gradient steps on L1 followed by one on L3, all with step-size Θ(N), leads
to the desired structure for W as in Eqs. (6)-(7), up to negligible entry-wise O(1/N) terms.

See a formal statement and a proof in appendix E.1. This result shows that gradient dynamics in
our model can quickly lead to the block structure observed in Figure 1, despite the non-convexity
induced by normalization. In fact, the analysis reveals that the layer-norm operation is crucial here to
obtain many of the desired blocks other than the ex → ug(x). Interestingly, our theory shows that
this structure arises even when ρ = 1, and empirically we found that both sharpening and linear
separation indeed happen in this setting, demonstrating an emergent out-of-distribution generalization
to false sequences. We note, however, that this may not happen in a more expressive model: we
empirically found that if we also train the key-query matrix with ρ = 1, the model quickly learns to
focus its attention to the current token, which makes information from the context inaccessible from
the residual stream. While this may improve predictions of g(x′) on true sequences by removing
noise in the residual stream coming from (x, y), this also results in a failure to handle false sequences.

5 Experiments

5.1 Synthetic Setting

Setup. We train transformer-based LMs on the synthetic dataset described above. The model
contains l self-attention layers with a single attention head, followed by layer normalization, with
no feedforward network. See Appendix C for more details. In this setting, in contrast to the toy
model described above, we train all parameters, including the dense embeddings and the attention
module.2 Each training example is a a concatenation of a subject (x), an attribute (y), an additional,
uniformly-sampled subject (x′), and an additional attribute (y′). The attributes y, y′ are either sampled
uniformly or taken to be the correct attributes g(x), g(x′), according to the true probability ρ. In line
with the Truth Co-occurrence Hypothesis, we aim to measure whether in this training setting the
model is able to recover the latent truthfulness of the first sequence (verifying whether y = g(x)) and
use it to decrease LM loss on the second attribute y′.

We experiment with true-attributes rates ρ, and with l ∈ {1, 2, 3} layers, and assume a perfect
correlation between the truthfulness of the first and second attributes (that is, y = g(X) if, and only
if, y′ = g(x′)). Along training, we fit logistic-regression classifiers on all hidden states to predict
whether or not the sequence is false (a binary classification problem). We fit individual classifiers
both the first attribute position (y), as well as on the second subject position (x′), from which the

2We release the code in https://github.com/shauli-ravfogel/truth-encoding-neurips.
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second attribute y′ is predicted. While in training the LM we use a varying true-attribute rate ρ, the
linear classifiers are always trained and evaluated on a balanced set, containing 50% true sequences.
We report mean results over 5 runs with different random seeds. Unless specified otherwise, we
present here results for l = 1 and ρ = 0.99, |A| = |S| = 512 and dmodel = 256; results for other
settings are deferred to Appendix D.
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(a) Truth classification results, second subject x
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(b) P [g(x′)] on false sequences, for which y′ ̸= g(x′))

Figure 3: Truth linear classification results alongside probability assigned by the LM to the true
attribute on false sequences.

5.2 Results

Two-phase dynamics. In Figure 3a we show the linear truthfulness classification AUC as a function
of training steps, on the second subject. for a 1−layer model with true-attribute probability ρ = 0.99.
Additionally, we plot the probability the LM assigned to the correct attribute on false sequences
(P (y′ = g(x′) | y ̸= g(x)); Figure 5b). When this probability is minimized, the model improves its
loss on false sequences.

In line with the toy model, we detect distinct phases in training.

1. Memorization. As can be seen in Figure 5b, memorization happens rapidly—within the first
1000 batches—as the model converges to a probability of around 1 to g(x′) on both true and false
examples. Indeed, the model predicts the correct attributes on over 99% of the true sequences.

2. Truth encoding. The model does learn to linearly encode the truth latent variable. This encoding
emerges abruptly, after around 7,500 batches, during which the model saw around 1 million
examples, relatively long after the model achieves perfect memorization.

The model learns to decrease the probability it assigns to the correct attribute on the second attribute
position P (g(x′) = y′) roughly at the same time linear classification emerges.
Truth circuit. We aim to understand how the linear truth subspace is being computed. While it has
been empirically shown that LM linearly encode many human-interpretable concepts [Bolukbasi
et al., 2016, Vargas and Cotterell, 2020, Ravfogel et al., 2022], it is not well-understood why linear
representations emerge in hidden layers [Park et al., 2024, Jiang et al., 2024]. The toy model we
propose allows us to empirically study the origins of the linear signal, and the way it is being used to
decrease LM loss on the second attribute.

The truth encoding appears in a 1-layer model (classification accuracy in the input embeddings layer
is at majority level). As can be seen in the first layer attention pattern in (Figure 4b), this attention
head calculates an approximate mean of the embeddings of x and y, after application of the V,O self
attention matrices, in line with the uniform attention assumed in the toy model. One key difference is
that here, we learn the input embeddings. Interestingly, inspecting the PCA of the input subject and
attribute tokens (Figure 4c) reveals that approximately, ex = −eg(x) on the first principal component.
This explains why both the true and false representations tend to cluster around the origin. Following
the attention averaging, we apply RMSNorm. We find that linear classification emerges only after
normalization; classification accuracy is at majority level before it. Indeed, a PCA plot (Figure 4)
shows that, as predicted by the toy model, the TRUE class is centered around the origin, with a larger
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Figure 4: LM representations over false sequences.

variance for the TRUE class than the FALSE class. Normalization induces linear separability, that is
also evident in the first 2 PCA components.

Additional settings. So far we have analyzed a single-layer transformer—either with one-hot
embeddings, or with trainable dense embeddings and ρ = 0.99. Results for other configurations
appear in Appendix D; here we outline the main trends. The patterns in Figures 3a and 5b persist
across layer counts l, noise levels ρ, and corpus sizes |S|, |A|. Higher ρ delays (but does not prevent)
the onset of linear separability, which still emerges at ρ = 0.999 (Figure 7a at the appendix); only
the degenerate case ρ = 1.0 shows no emergence, contrary to the toy model. We discover similar
structures to Figure 1 also when training with frozen dense embeddings and when learning the
KV matrices instead of using fixed attention. A preliminary analysis of this setting is provided in
appendix D.1 and appendix E.1.1, and we leave a more complete understanding for future work. With
additional layers the model sometimes encodes truth in the first attribute y, then copies it to x′ before
predicting y′; in other runs it reverts to the single-layer strategy where x′ attends directly to x and y′.
This influences whether we see linear encoding on both y and x′, or on x′ alone (Figure 7b in the
appendix).

5.3 Testing the TCH in a Real LM

The theory we specified relies on a set of assumptions and architecture that do not exist in pretrained
transformers (those have, for instance, MLP layers in addition to the attention layer; have multiple
attention heads; and are trained primarily on natural language distributions). Below, we (i) train
“regular” transformer models on a natural language data that instantiates the truth co-occurrence
hypothesis; (ii) assess to what extent aspects of the mechanism we propose exist in pretrained LLMs.

5.3.1 Instantiating the TCH in Natural Language

In section 5.1, we created a synthetic dataset that respects the TCH and showed that training an
attention-only transformer on this data results in linear truth encoding. Here, we aim to assess whether
the same thing happens when training “real” transformers on natural language data.

Setup. We evaluate on the CounterFact dataset [Meng et al., 2022], a collection of simple factual
assertions spanning relations such as SPEAKSLANGUAGE and BORNIN. We select the 25 most
frequent relations and, for each positive instance (x, r, a), construct a negative by replacing the
attribute a with a different attribute from the same relation. To instantiate the TCH, we form paired
examples by concatenating two randomly sampled instances that share the same truth label (both true
or both false). We then train a small transformer with RMS normalization, 2 attention heads and a
single MLP module per layer, hidden size d = 256, and depth l ∈ {2, 5, 9} on this corpus. We use
ρ = 0.99. We train on data from a single relation at a time, and report mean and standard deviations
over 5 random relations.3

3We leave the question of generalization between relations to a future work.
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Figure 5: Truth linear classification results alongside probability assigned by the LM to the true
attribute on false sequences.

Results. Across all seeds and architectural choices, the training dynamics mirror those on synthetic
data: rapid memorization, followed by the emergence of a linear encoding, and an increase in entropy
on false sequences. In fig. 5, we show results for a single relation (WORKSIN; averaged over five
random seeds). By the end of training, the final hidden layer is nearly perfectly separable by the truth
label, and on false sequences the probability assigned to the memorized (“true”) attribute declines.
Notably, the 1-layer model exhibits epoch-wise double descent: classification accuracy rises early,
dips, and then rises again. Across the five seeds, relations, and model sizes, memorization proceeds
at roughly the same rate; the main variance lies in how quickly the probability declines on false
sequences.

5.3.2 The TCH in Pretrained LLMs

(a)

The mechanism proposed above assumes a very specific data generating process, and a simplified
transformer model. As such, it is not likely that the same mechanism applies to real LMs; we see
the toy model as a proof of concept, and aim to study more complicated models in future work. Yet,
in this section, we compare the predictions following from our hypothesis with pretrained LMs in
these aspects: (1) the sensitivity of the model’s predictions to preceding false sentences, in line with
the truth co-occurrence hypothesis; (2) the behavioral relevance of the linear truth encoding in a
situation where a sentence follows misleading false sentences. We experiment with a LLAMA3-8B
model [Grattafiori et al., 2024] and the CounterFact dataset (SPEAKSLANGUAGE relation). We let
the model predict the first token of the last word of a sentence, when it is (i) preceded by n false
sentences; or (ii) preceded by n true sentences. In line of the hypothesis, we expect to see a decrease
in the probability of the correct answer.

Model’s predictions are sensitive to preceding false sentences. The results, over 128 n−tuples,
are presented in Figure 6a (light bars) and are in line with our hypothesis; for instance, in the two
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leftmost box plots, we see that preceding the sentence with two false sentences (FF) yields higher
negative likelihood (smaller probability) to the correct attribute compared with when preceding it
with one true sentence (TT). The difference in negative log likelihood is 1.52, corresponding to 4.55×
decrease in the probability of the correct attribute.

Intervention in the truth subspace. LLAMA3-8B encodes truthfulness linearly: a linear classifier
reaches over 95% accuracy on all middle and last layers in separating true instances from the dataset
from counterfactual ones. Our theory predicts that, in the presence of misleading context, the direction
that distinguishes true from false vectors actively pulls the model away from the correct answer. To
test that, we intervene in the truth subspace. Following previous work on linear steering [Li et al.,
2023b, Singh et al., 2024], we calculate the mean vector of the TRUE and FALSE classes in the
representation space, µT and µF , and add a steering vector α(µT − µF ) to all representations in the
same layer with the goal of increasing the probability of the correct attribute. We choose layer l = 11
based on preliminary experiments that showed that classification peaks at that layer, and α = 3.0.
The results, presented in Figure 6a (darker bars), show that the models tend to increase the probability
of the correct attribute post-intervention, even in the presence of false context.

Emergence along training See appendix E.4 for a preliminary analysis of the emergence of truth
encoding along training.

6 Discussion and Limitations

Although our analysis was grounded in a deliberately minimalist transformer, it discovers a two–phase
dynamic—rapid key–value memorization followed by the slower emergence of a linear truth encoding.
The key prerequisite appears to be the presence of (i) an associative–memory circuit able to retrieve
subject–attribute pairs and (ii) correlation among the truth values of adjacent clauses. While we
replicate the core phenomena we witness in large LMs, we emphasize that this is one, and probably
not a unique, mechanism that can induce truth encoding. A core advantage of the minimalist model
is that it does not assume any lexical cues that help the model discern the truth latent variable. In that
sense, this is a more challenging setting than the previously studied one [Joshi et al., 2024], where it
is assumed that true and false assertions are associated with different lexical distributions.

Several core differences exist between our simplified generative story and a real-world setting. Our
synthetic corpus contains only one latent relation. A natural extension is to sample tuples from
a set of heterogeneous relations—BORNIN, CAPITALOF, CURRENCYOF, . . . —while maintaining
correlation in the latent truth bit. Doing so forces the model to contextualize its memory: the same
subject embedding must participate in multiple key–value slots distinguished by the relation. Real
corpora have logical and semantic dependencies that go far beyond pairwise subject–attribute pairs:
transitivity (“A is in B” ∧ “B is in C” ⇒ “A is in C”), mutual exclusivity (“isAlive” vs. “IsDead”),
and type constraints (“capitalOf” only applies to geopolitical entities). These constraints also greatly
limit the range of plausible counterfactual variants we may see in the training data; while we assume
a uniform corruption for simplicity, in practice false variants of factual claims come from a unique
conditional distribution.

7 Conclusion

We introduced a small transformer and a synthetic data-generation process that jointly suffice to yield
a robust linear truth subspace. Our analytical and empirical results demonstrate a two-phase training
dynamic: memorization followed by truth-code emergence. Unlike prior persona-based accounts, our
theory does not rely on surface correlations between individual tokens and truthfulness, and points
out to a possible mechanism behind the emergence of linear of the truth signal as a latent variable
inferred by the model.
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Appendix

A Detailed MAVEN-FACT Analysis

Data extraction. We use the train split of MAVEN-FACT v1.0 (73,939 event–mentions drawn
from 2 913 news articles).4 Each mention carries a FactBank-style factuality code (CT++, CT+, CT-,
CT–, PS±, PR±, CF±, U, NA, . . . ). We retain only certain judgments:

certain-true = {CT++,CT+}, certain-false = {CT- -,CT-}.
All other codes are discarded, leaving N = 71, 274 labelled mentions.

Grouping key. Mentions are grouped by their originating article ID (doc_id), giving M = 2, 913
documents with at least two certain mentions (ni > 1). Let Zij ∈ {0, 1} indicate whether mention j
in document i is certain-false.

Statistics reported in the main text.

• Corpus certain-false rate. p = 1
N

∑
i,j Zij = 0.0209.

• Pairwise certain-false probability. Pr(Zj = Zk = 1 | same doc) =

∑
i

(
fi
2

)∑
i

(
ni

2

) =

0.00090, where fi =
∑

j Zij .

• Independence baseline. p2 = 0.00044.

• Clustering ratio.
Varobs(p̂i)

Varbinom
=

1
M

∑
i(p̂i − p)2

1
M

∑
i p(1− p)/ni

= 1.23 , with p̂i = fi/ni.

• χ2 test. The 2×M contingency table of {fi, ni − fi} yields χ2 = 4174 (p ≈ 9×10−49).

These figures show that certain-false events, though rare (2.1%), occur about twice as often as
chance would predict when two events come from the same article, and the distribution of false rates
across articles is 23 % more heterogeneous than a binomial model would permit—confirming the
co-occurrence signal predicted by TCH.

The MAVEN-ED dataset is released with CC BY-SA 4.0 license. The MAVEN-ARG and MAVEN-
ERE are published with GPLv3 license.

B Entropy incentive

Setup. We consider sequences (x, y, x′, y′) with subjects x, x′ ∈ S and attributes y, y′ ∈ A. Let
g : S → A be the ground-truth attribute map. A latent bit T ∼ Bernoulli(ρ) governs whether
attributes are truthful (T=1) or random (T=0):

T = 1 : y = g(x), y′ = g(x′) (deterministic); T = 0 : y, y′
i.i.d.∼ Unif(A).

We study the optimal next-token loss for predicting y′ given the prefix (x, y, x′) under two cases: (i)
the model does not access T ; (ii) the model does access T (and can memorize g).

A. Predictive distribution of y′ without access to T

By the law of total probability over T and the generator above,
Pr
(
y′ = g(x′)

∣∣x, y, x′) = Pr(T=1 |x, y, x′) · 1 + Pr(T=0 |x, y, x′) · 1
|A| . (12)

When we say the model is “ignorant of T ,” we mean it does not exploit any posterior signal about T
from the prefix; thus we use the prior Pr(T=1 |x, y, x′) = ρ and Pr(T=0 |x, y, x′) = 1− ρ. Hence

Pr
(
y′ = g(x′)

∣∣x, y, x′) = ρ+
1− ρ

|A|
. (13)

For any specific wrong a∈A \ {g(x′)},

Pr
(
y′ = a

∣∣x, y, x′) = ρ · 0 + (1− ρ) · 1

|A|
=

1− ρ

|A|
. (14)

4Available at https://github.com/THU-KEG/MAVEN-FACT.
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B. Optimal per-token cross-entropy without T

Let α := ρ + 1−ρ
|A| and β := 1−ρ

|A| . The optimal model (that does not access T ) matches the true
conditional in (13)–(14), so its per-token cross-entropy equals the entropy of that distribution:

L¬T = H
(
α, β, . . . , β︸ ︷︷ ︸

|A|−1 times

)
= −α logα− (|A| − 1)β log β. (15)

C. Optimal per-token cross-entropy with access to T

If the model does access T (and has memorized g):
T = 1 : loss 0 (since y′ = g(x′) deterministically); T = 0 : loss log |A| (uniform on A).
Averaging over T gives

LT = (1− ρ) log |A|. (16)

D. The gap and its limit as |A| → ∞

Subtracting (16) from (15):
∆ := L¬T − LT = −α logα− (|A| − 1)β log β − (1− ρ) log |A|. (17)

Using β = 1−ρ
|A| ,

−(|A| − 1)β log β = −(1− ρ)
(
1− 1

|A|

)
log(1− ρ) + (1− ρ)

(
1− 1

|A|

)
log |A|.

Plugging into (17) and simplifying,

∆ = −α logα − (1− ρ)
(
1− 1

|A|

)
log(1− ρ) − 1− ρ

|A|
log |A|. (18)

Since α = ρ+ 1−ρ
|A| → ρ and the last term is O( log |A|

|A| ), we obtain the limit

∆ −−−−−→
|A|→∞

−ρ log ρ− (1− ρ) log(1− ρ) ≡ H2(ρ) (up to the log base). (19)

C Experimental Setup

Model. We experiment with an attention-only transformer with a single attention head with a
post-attention LN:

X0 = E + P // E,P ∈ RV×d (token + positional embeddings)
(20)

Q(i) = X(i−1)W
(i)
Q ,K(i) = X(i−1)W

(i)
K , V (i) = X(i−1)W

(i)
V (21)

A(i) = softmax
(
Q(i)K(i)⊤

√
d

)
V (i) // attention mix A(i) ∈ Rd (22)

Ã(i) = A(i)W
(i)
O , W

(i)
O ∈ Rd×d // single-head attention output

(23)

X(i) = N
(
X(i−1) +A(i)

)
, i = 1, . . . , l // residual + normalization (24)

Z = X(l)WO + bO, WO ∈ Rd×V , bO ∈ RV (25)

Ŷ = softmax(Z) (26)

Experiments with one-hot models (section 4). The theoretical analysis is driven by experiments
on models equipped with frozen, one-hot embeddings and uniform attention, the latter obtained by
setting the attention-key matrix K to the zero matrix. Under these conditions the columns of the
attention value–output product KV T map directly to individual vocabulary items, exposing a clear
block structure in the matrix (fig. 1). As detailed in the main text, the vocabulary is organized so that
indices 1–20 encode input subject embeddings, 21–40 input attribute embeddings, 41–44 positional
embeddings, 45–64 output subject embeddings, and 65–84 output attribute embeddings.
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Methodology: interpreting one-hot embeddings. Figure 2 contrasts two sequences—a correct
one (top row) and an incorrect one (bottom row)—by showing the final-layer activations before
projecting to the logit space. The one-hot embeddings make the activation patterns in that layer
interpretable. We display the activations for the raw representations (left), after layer normalization
(middle), and after applying the unembedding matrix and the softmax transformation (right). Observe
the differing y-axis scales: normalization substantially magnifies the component corresponding to the
correct answer in the “true” sequence, while the effect is far less pronounced for the false sequence.
The model that produced fig. 1 was trained with SGD, learning rate 1.0 and batch size 16. The output
matrix was fixed to identity, and only the value matrix was learned, from zero initialization.

Experiments with fully-trained models (section 5): In section 5, we train all components, including
the input embeddings and the K attention matrix. The model is trained for 50,000 batches of size
128 and is optimized with the Adam optimizer [Kingma and Ba, 2015] with a learning weight of 1e-4
and a weight decay of 1e-5. We do not include biases in the attention modules, and use RMSNorm as
layer normalization. We run all experiments on 4 NVIDIA GeForce GTX 1080 GPUs. Training a
single model lasts up to half an hour.

D Additional Experiments

In the main text we concentrated on a single-layer model (l = 1) with a true-attribute probability of
ρ = 0.99. Here we extend the analysis to additional settings.

Our primary focus was the linear separability at the second-subject token, x′, where the model
predicts the second attribute. This is the only position where the truth signal is behaviorally relevant.
Nevertheless, the theory also predicts a linear truth encoding at the first-attribute token y, owing to the
fixed attention pattern. When the attention KV matrix is learned, however, this need not occur—the
model can rely exclusively on the attention paid to x′ and leave y uninformative. The same theory
further implies that a linear truth direction should eventually emerge for any true-sentence rate ρ,
even though the gradient magnitude (and therefore the speed of emergence) does depend on ρ.

Varying the true sentence rate, ρ. In fig. 7b we vary ρ across five random seeds and measure linear
separability at both token positions. As predicted, when the attention pattern is learned, separability
is much stronger at the second subject than at the first attribute. The time to emergence grows as ρ
increases, yet linear encoding still appears even at the extreme setting of ρ = 0.999. Developing a
theory that precisely predicts this ρ-dependent timing is left to future work.
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Figure 7: Dependency of linear separability on ρ.

Dependency on dmodel and |S|. In fig. 8 we plot the linear separability at the final checkpoint, for
different hidden sizes and number of facts to memorize (ρ = 0.99, l = 1 are fixed). With the exception
of dmodel = 32, the separability persists over the second subject x′ for different combinations of these
parameters.

Additional layers. As we discuss in the main-text (section 5), in a model with a single self-attention
layer, it is the second attribute (x′) token that attends to both x and y. With more layers, there are
additional strategies. For instance, y may attend to both x and itself in the first layer, in the same way
x′ attends to both x and y in the theoretical 1-layer model; then, in the next layer, x′ attends to y,
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Figure 8: Dependency of linear separability on dmodel and |S|.
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Figure 9: attention patterns of a 3-layer model.
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Figure 10: Linear separability across layers for a 3-layer model; linear separability on the x′ token is
created after copying the signal from the y token in the second layer.
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copies the signal and create a linear separation that persists the last layer. This is the mechanism that
emerges in 4/5 random initializations of a 3-layer model, and is clearly manifested in the attention
patterns (fig. 9) and in the linear classification accuracy across layers (fig. 10).

D.1 Bridging the gap between the fully-trainable model and the toy model.

Our theoretical analysis (appendix E) is motivated by the structured patterns that emerge in the
attention kernel—the OV matrix—when it is visualized (fig. 1). To test whether a comparable
mechanism appears when we employ dense embeddings and allow the KV matrices to train freely
(thus removing the enforced uniform attention over x, y), we train a model with a large hidden
dimension but only a small set of facts to memorize (|S| = 32 and dmodel = 512). We freeze the
randomly-initialized dense embeddings and train all other parameters. The limited number of subjects
makes the memorization patterns easier to inspect, while the high dimensionality approximates the
regime of mutually orthogonal embeddings required by the theory.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

EWoWvET

4

3

2

1

0

1

2

3

4

(a) EV OE⊤ with frozen dense embeddings
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(b) EV OE⊤ with trainable dense embeddings

Figure 11: Visualization of the attention matrix with dense embeddings.

Because the model now uses dense embeddings—so individual coordinates no longer correspond
directly to vocabulary items—we do not expect an obvious block structure in the raw OV matrix.
Instead, following Dar et al. [2023], we visualize EV OE⊤, where E concatenates the input and
output embedding matrices. This operation computes the pairwise similarities between embeddings
as induced by the V O transformation. Concretely, (EV OE⊤)ij = E⊤

i V,O,Ej measures how
strongly the value vector elicited by symbol i aligns with the output direction that scores symbol
j, so every cell again describes a relation between concrete symbols, exactly what the raw OV
matrix showed when the embeddings were one-hot. The resulting heat-map (fig. 11a) exhibits a
strikingly similar pattern to that observed with frozen one-hot embeddings and a fixed attention
pattern, suggesting that the dense model converges to a similar underlying mechanism. In contrast,
when we do train the embeddings, the pattern partially disappears, as parts of the memorization can
occur in the embeddings themselves (fig. 11b). In general, there is much more variability between
runs and hyperparameters when training the embeddings, where some hyperparameter choices do not
show a pattern that is highly similar to the idealized one.

With a full set of |S| = dmodel = 512 tokens, the global pattern is hard to spot at first glance. If we
instead sub-sample 28 x tokens, retain only their partners g(x), and then sort the rows/columns, the
latent memorization re-emerges: the lower-left block collapses into a clear diagonal (the previously
random pattern in the leftmost lower block in fig. 11a is transformed into a diagonal due to the sorting).
This diagonal appears whether the embeddings are frozen or trainable (see figs. 12a and 12b).
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Figure 12: Visualization of the attention matrix with dense embeddings.

Figure 13: Visualization of learned embeddings and value matrix for a model as in Section 4 with
learned embeddings, initialized to one-hot.

One possible circuit with learned embeddings. We now present one possible circuit that we found
when initializing with the one-hot embeddings, in a simplified architecture with uniform attention
as in Section 4. We still denote ex, ey, ux, uy the one-hot embeddings as in Section 4, which only
refer to the initialization in this setting with learned embeddings. After training, we may visualize
the learned embeddings and interpret them as linear combinations of the initial one-hot embeddings,
as shown in Figure 13. Denoting ẽx, ẽy, ũx, ũy the embeddings after training, the circuit we found
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looks as follows:

ẽx = ex − eg(x)

ẽy = ey − eg−1(y)

ũx =
∑
x

ux −
∑
y

uy

ũy = uy + eg−1(y)

W =
∑
x

(ug(x) − ex)e
⊤
x −

∑
y

(ey + uy)e
⊤
y .

The approximation ẽx = ex − eg(x), for instance, follows from the two large positive and negative
spikes in the left part of fig. 13, for indices 1 and 25/36. Similar to our analysis of Section 4, we
compute the quantity W (ẽx+ ẽy), which appears in the residual stream for both token y and token x′:

W (ẽx + ẽy) = ug(x) − ex + eg(x) + ug(x) − ey − uy − uy + eg−1(y)

We observe that this vanishes when y = g(x), suggesting that a similar mechanism as in the fixed
embeddings case studied in Section 4 is at play, where layer-norm can lead to sharper predictions for
true sequences, as well as provide a truth direction.
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Figure 14: Structure of the value matrix W when training without positional embeddings.
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Figure 15: Structure of the value matrix W when training with euclidean normalization.

E Theoretical analysis

This section contains theoretical analysis and proofs for the results in Section 4.

E.1 Training dynamics

We now provide some theoretical insights on the training dynamics in the simple one-layer model of
Section 4. We further simplify the model here by removing positional embeddings. Figure 14 shows
that the model still learns the relevant blocks even without positional embeddings, though some of
the uniform distributions on unembeddings are now absorbed in other blocks.

The lemma below highlights the structure of the gradient for a softmax classification model consisting
of a linear model followed by a layer-norm operation.
Lemma 1. Consider the model FW (x) = U · N(ax +Wbx) ∈ R2N , with N(v) = v/∥v∥, and the
following cross-entropy population loss on some distribution over (x, y):

L(W ) = Ex,y[− logS(FW (x))y], (27)
where y is the label and S the softmax operation. The gradient with respect to W is then given by:

∇L(W ) =

2N∑
k=1

Ex,y

[
S(U · N(vx))k − 1{y = k}

∥vx∥
P(vx/∥vx∥)ukb

⊤
x

]
, (28)
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with vx = ax +Wbx and where Pθ = I − θθ⊤ is the projection onto the tangent space at θ ∈ Sd.

Let us decompose the population loss as

L(W ) = L1(W ) + L2(W ) + L3(W ), (29)

where Lt(W ) is the next-token prediction loss for predicting zt+1 from z1:t, with z1:4 = (x, y, x′, y′).
We show the following result.

Theorem 3. Consider the following algorithm, with step-size η = N/ρ, and initialization W0 = 0:

1. Set W1 = W0 − η∇L1(W0)

2. Set W2 = W1 − η∇L1(W1)

3. Set W3 = W2 − η∇L3(W2)

Then, we have

W3 =

N∑
x=1

(
β1ug(x) − α1ex

)
e⊤x +

∑
y

(α2eg−1(y) − β2uy)e
⊤
y +O∞(1/N), (30)

where α1, α2, β1, β2 > 0 can be found in the proof, and O∞(1/N) is a matrix where all entries
are O(1/N).

Comment: Euclidean norm vs. RMS Norm. The updates in this section are derived under
Euclidean layer-norm N(v) = v/∥v∥2, so the normalized scores entering the softmax are attenuated
(compared to our experiments which use inverse temperature β =

√
d = Θ(

√
N)) by a factor of

order 1/
√
N . Consequently, in the early regime with a fixed unembedding U and Θ(N) competing

classes, the correct-token probability σx,g(x) is O(1/N). In our implementation we use RMSNorm,
NRMS(v) =

√
d v

∥v∥2
, which is equivalent to keeping Euclidean LN but applying a softmax with

inverse temperature β =
√
d. Since d = Θ(N) (here d = 4N + 3), this multiplies every Euclidean

score difference by
√
d = Θ(

√
N), so relative advantages that were O(1/

√
N) become Θ(1). As a

result, in the same early regime the correct-token probability becomes Θ(1). Empirically, we see
similar structures emerge in the matrix during early training when using the euclidean norm instead
of the RMS norm (fig. 15).

Proof. Let us decompose each loss into contributions from true and false sequences, which follows
from the fact that the data distribution is a mixture of the two:

Li(W ) = ρLT
i (W ) + (1− ρ)LF

i (W ).

Step 1. In the first step, we take a gradient step only on the loss L1 for the prediction of the second
token y at the first token x, starting from initialization W0 = 0. Recall that this model takes the
form F (x) = U · N(ex +Wex), so that in the notation of Lemma 1 we have ax = bx = vx = ex
and Pvx/∥vx∥uk = uk. Note that since the logits are all zero, we have S(0)k = 1

2N .

We begin with the gradient on true sequences. Multiplying eq. (28) by −η and setting y = g(x) gives

−η∇LT
1 (W0) = ηEx[ug(x)e

⊤
x ]− η

2N∑
k=1

S(0)kukEx[e
⊤
x ]

=
η

N

N∑
x=1

ug(x)e
⊤
x − η

2N2

2N∑
z=1

N∑
x=1

uze
⊤
x

=
η

N

N∑
x=1

ug(x)e
⊤
x +O∞(η/N2).
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On false sequences, we have

−η∇LF
1 (W0) = −ηEx[

2N∑
k=1

S(0)kuke
⊤
x ] + ηEx,y[uye

⊤
x ]

=
η

N2

N∑
x=1

2N∑
y=N+1

uye
⊤
x − η

2N2

2N∑
z=1

N∑
x=1

uze
⊤
x

= O∞(η/N2),

using the fact that x and y are independent. With η = N/ρ, we obtain

W1 = W0 − η∇L1(W0) =

N∑
x=1

ug(x)e
⊤
x +O∞(1/N).

Step 2. The second step is taken at W = W1 =
∑N

x=1 ug(x)e
⊤
x +R, with ∥R∥∞ = O(1/N). Thus,

we have vx = ex +W1ex = ex + ug(x) + εx, with ∥εx∥∞ = O(1/N) since ex is one-hot, which
implies ∥εx∥2 = O(1/

√
N). We also denote σx,k := S(U ·N(vx))k, which satisfies σx,k = O(1/N)

for all x and k, since exp(u⊤
k N(vx)) = Θ(1) for all x and k. On true sequences, we have:

−η∇LT
1 (W1) =

η

N

N∑
x=1

1

∥vx∥2

(
I − vxv

⊤
x

∥vx∥22

)
ug(x)e

⊤
x − η

N

N∑
x=1

2N∑
k=1

σx,k

∥vx∥2

(
I − vxv

⊤
x

∥vx∥22

)
uke

⊤
x .

Note that we have

∥vx∥ =
√
2 + (ex + ug(x))⊤εx + ∥εx∥22 =

√
2 +O(1/N) =

√
2 +O(1/N).

by Taylor expansion. Then,

vx,k :=
1

∥vx∥2

(
I − vxv

⊤
x

∥vx∥22

)
uk =

1√
2 +O( 1

N )
uk +

δk,g(x) +O( 1
N )

2
√
2 +O( 1

N )
vx

=
1√
2
uk +

δk,g(x)

2
(ex + ug(x)) +O∞(1/N),

where O∞(1/N) is a vector with ℓ∞ norm O(1/N) and δk,g(x) = 1{k = g(x)} denotes the
Kronecker delta. Plugging back into the gradient above, we obtain

−η∇LT
1 (W1) =

η

N
√
2

N∑
x=1

(
ug(x) −

1

2
(ex + ug(x)) +O∞

(
1

N

))
e⊤x

− η

N
√
2

N∑
x=1

2N∑
k=1

σx,kvx,ke
⊤
x

=
η

2
√
2N

N∑
x=1

(ug(x) − ex)e
⊤
x +O∞(η/N2),

which follows by noticing that
∑2N

k=1 σx,kvx,k = O∞(1/N). For false sequences, we have

−η∇LF
1 (W1) = ηEx,y[vx,ye

⊤
x ]−

η

N

N∑
x=1

2N∑
k=1

σx,kvx,ke
⊤
x

=
η

N2

N∑
x=1

2N∑
y=N+1

vx,ye
⊤
x − η

N

N∑
x=1

2N∑
k=1

σx,kvx,ke
⊤
x

= O∞(η/N2).

This again follows by noticing that

1

N

2N∑
y=N+1

vx,y = O∞(1/N) and
2N∑
k=1

vx,k = O∞(1/N).
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With η = N/ρ, this yields

W2 = W1 − η∇L1(W1) =

N∑
t=1

(
αug(t) − et

)
e⊤t +O(1/N),

with α = 1 + 1
2
√
2

.

Step 3. The third step takes one gradient step on the loss L3 at the third token, i.e., predicting y′

from (x, y, x′). The model now takes the form F (x, y, x′) = U ·N(ex′ + 1
3W (ex + ey + ex′)), with

a uniform attention on the first three tokens.

We get the gradient of the loss on y′ from (28), giving5

vx,y,x′ = ex′ +
1

3
W2(ex + ey + ex′)

=
2

3
ex′ − 1

3
ex +

α

3
ug(x) +

α

3
ug(x′) + εx,y,x′ =: vx,x′ + εx,y,x′ ,

with ∥εx,y,x′∥∞ = O(1/N), since it is the sum of 3 columns of the O∞(1/N) term in W2. As in the
second step, we have ∥εx,y,x′∥22 = O(1/N) and v⊤x,x′εx,y,x′ = O(1/N), so that by Taylor expansion
we have ∥vx,y,x′∥ = ∥vx,x′∥ + O(1/N) = 1

3

√
5 + 2α2 + O(1/N) for x ̸= x′ and ∥vx,y,x′∥ =

∥vx,x′∥+O(1/N) = 1
3

√
1 + 2α2 +O(1/N) for x = x′. Note that we once again have σx,y,x′,k :=

S(U · N(vx,y,x′))k = O(1/N) due to the normalization. On true sequences, we have

−η∇LT
3 (W2) = ηEx,x′

[
1

3∥vx,y,x′∥

(
I −

vx,y,x′v⊤x,y,x′

∥vx,y,x′∥2

)
ug(x′)(ex + eg(x) + ex′)⊤

]

− η

2N∑
k=1

Ex,x′

[
σx,g(x),x′,k

3∥vx,y,x′∥

(
I −

vx,y,x′v⊤x,y,x′

∥vx,y,x′∥2

)
uk(ex + eg(x) + ex′)⊤

]
.

Let us first show that the error terms εx,y,x′ lead to negligible contributions to the gradient. Note that
we have

vx,y,x′,k :=
1

3∥vx,y,x′∥

(
I −

vx,y,x′v⊤x,y,x′

∥vx,y,x′∥2

)
uk

=
1

3(∥vx,x′∥+O( 1
N ))

(
I −

(vx,x′ +O∞( 1
N ))(v⊤x,x′ +O∞( 1

N ))

∥vx,x′∥2 +O( 1
N )

)
uk

=
1

3∥vx,x′∥

(
I − vx,x′vx,x′

∥vx,x′∥2

)
uk + εx,y,x′,k,

With ∥εx,y,x′,k∥∞ = O(1/N), where we used 1
a+ϵ = 1

a +O(ϵ) for a > 0, and (u+ ϵ)(uT + ϵ) =

uuT +O∞(1/N) for ϵ = O∞(1/N).

Then, taking expectations with respect to independent x, x′, it is easy to check that

Ex,x′ [εx,g(x),x′,g(x′)(ex + eg(x) + ex′)⊤] = O∞(1/N2)

Ex,x′ [σx,g(x),x′,kεx,g(x),x′,k(ex + eg(x) + ex′)⊤] = O∞(1/N3).

The gradient update can then be rewritten as

−η∇LT
3 (W2) = ηEx,x′

[
1

3∥vx,x′∥

(
I −

vx,x′v⊤x,x′

∥vx,x′∥2

)
ug(x′)(ex + eg(x) + ex′)⊤

]
(31)

− η

2N∑
k=1

Ex,x′

[
σx,g(x),x′,k

3∥vx,x′∥

(
I −

vx,x′v⊤x,x′

∥vx,x′∥2

)
uk(ex + eg(x) + ex′)⊤

]
(32)

+O∞(η/N2) (33)

5We use the fact W2et = αug(t) − et +O∞(1/N) for t ≤ N and O∞(1/N) otherwise.
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We now check that the second term is also of order O∞(η/N2). Indeed, the pro-

jector matrix 1
3∥vx,x′∥

(
I − vx,x′v⊤

x,x′

∥vx,x′∥2

)
is sparse with rows of bounded ℓ1 norm, and we

have
∑

k σx,g(x),x′,kuk = O∞(1/N), so that

2N∑
k=1

σx,g(x),x′,k

3∥vx,x′∥

(
I −

vx,x′v⊤x,x′

∥vx,x′∥2

)
uk =: ζx,x′ = O∞(1/N),

for all x, x′. We then have

2N∑
k=1

Ex,x′

[
σx,g(x),x′,k

3∥vx,x′∥

(
I −

vx,x′v⊤x,x′

∥vx,x′∥2

)
uk(ex + eg(x) + ex′)⊤

]
= Ex,x′ [ζx,x′(ex + eg(x) + ex′)⊤]

=
1

N

N∑
x=1

ζx,x′e⊤x +
1

N

N∑
x=1

ζx,x′e⊤g(x) +
1

N

N∑
x=1

ζx,x′e⊤x′ = O∞(1/N2).

For the first term (31), we have

ηEx,x′

[
1

3∥vx,x′∥

(
I −

vx,x′v⊤x,x′

∥vx,x′∥2

)
ug(x′)(ex + eg(x) + ex′)⊤

]
∗
= ηEx,x′

[
1

3∥vx,x′∥
ug(x′)e

⊤
x′

]
+O∞(η/N2)− ηEx,x′

[
α(1 + δg(x),g(x′))

9∥vx,x′∥3
vx,x′(ex + eg(x) + ex′)⊤

]
=

ηβ1

N

N∑
x=1

ug(x)e
⊤
x − ηEx,x′

[
γx,x′vx,x′(ex + eg(x) + ex′)⊤

]
+O∞(η/N2),

with

β1 = Ex[
1

3∥vx,1∥
] and γx,x′ =

α(1 + δg(x),g(x′))

9∥vx,x′∥3
.

In (∗) we used (i) that Ex,x′ [ 1
3∥vx,x′∥ug(x′)(ex + eg(x))

⊤] = O∞(1/N2) thanks to the independence

of x and x′; and (ii) the fact that uT
g(x′)vx,x′ = α

3 (1 + δg(x),g(x′)) by definition of vx,x′ and thanks to
orthogonality.

We have

−ηEx,x′
[
γx,x′vx,x′(ex + eg(x) + ex′)⊤

]
= −ηEx[Ex′ [γx,x′vx,x′ |x](ex + eg(x))

⊤]− ηEx′ [Ex[γx,x′vx,x′ |x′]e⊤x′ ]

∗
=

ηβ2

N

N∑
x=1

(ex − αug(x))(ex + eg(x))
⊤ − ηβ2

N

N∑
x=1

(2ex + αug(x))e
⊤
x +O(η/N2)

∗∗
= −ηβ2

N

N∑
x=1

exe
⊤
x +

ηβ2

N

2N∑
y=N+1

(eg−1(y) − αuy)e
⊤
y +O∞(η/N2),

with

β2 =
1

3
Ex′ [γ1,x′ ] =

1

3
Ex[γx,1] =

1

3N
γ1,1 +

N − 1

3N
γ1,2.

In (∗) we condition on x and decompose vx,x′ = A(x) + B(x′), where A(x) is independent of
x′; then linearity gives Ex′ [γx,x′vx,x′ | x] = A(x)Ex′ [γx,x′ ] + Ex′ [γx,x′B(x′)]. By permutation
symmetry of labels, Ex′ [γx,x′ ] = Ez[γ1,z] = 3β2, while the B(x′) part averages over a uniformly
random index and is O∞(1/N); the same holds with x and x′ swapped for the second bracket.
Substituting these two conditionals into the split expectation, replacing outer expectations by uniform
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sums, and renaming the dummy index yields the displayed (∗) line. In (∗∗) we perform change of
variables y = g(x). We have thus shown

−η∇LT
3 (W2) =

η

N

N∑
x=1

(β1ug(x)−β2ex)e
⊤
x +

ηβ2

N

2N∑
y=N+1

(eg−1(y)−αuy)e
⊤
y +O∞(η/N2). (34)

For false sequences, it can be checked that η∇LF
3 (W2) = O∞(η/N2). Thus, taking step-size η =

N/ρ yields

W3 = W2 − η∇L3(W2)

= (α+ β1)

N∑
x=1

ug(x)e
⊤
x − (1 + β2)

N∑
x=1

exe
⊤
x + β2

2N∑
y=N+1

(eg−1(y)− αuy)e
⊤
y +O∞(1/N).

E.1.1 Learning (positional) attention.

We now turn to learning the key–query matrix under positional attention, assuming that the value
matrix has already been learned with the structure described above. Specifically, we show that the
gradient of the key–query matrix on true sequences drives positional attention to focus on the x′

token, effectively causing the model to ignore the initial (x, y) pair. This observation may account
for the absence of emergence at ρ = 1, although it does not explain why emergence still occurs when
attention is trainable and ρ < 1.

For this part, assume a simple architecture of the following form for the prediction of the fourth token
logits given the first three tokens:

FWKQ
(z1:3) = U ·

3∑
t=1

exp(p⊤t WKQp3)∑3
t′=1 exp(p

⊤
t′WKQp3)

WV ezt ,

where z1:3 = (ex, ey, ex′), and p1:3 are the positional embeddings defined in (2).

We assume WV fixed to the the structure in (6)-(7), with β1 = β2 =: β for simplicity. We consider
the following population loss for WKQ on the last token for true sequences:

L(WKQ) = Ex,x′ [ℓ(g(x′), FWKQ
(x, g(x), x′))].

Then, the negative gradient direction at WKQ = 0 is given by

−∇L(WKQ) =
1

3

3∑
t=1

2N∑
k=1

Ex,x′ [(1{g(x′) = k} − p̂(k|x, x′))u⊤
k WV ezt(pt − p̄1:3)p

⊤
3 ], (35)

where we denote z1:3 = (x, g(x), x′) and p̄1:3 = 1
3 (p1 + p2 + p3), and p̂ are probability predictions

at WKQ = 0, which we assume satisfy the following, given the assumed structure on WV , for some
small ϵ:6

p̂(k|x, x′) =


(1− ϵ)/2, if k ∈ {g(x), g(x′)} and x ̸= x′,

1− ϵ, if k = g(x) and x = x′,

O(1/N), o/w.

Let us now write the update in (35) as

−∇L(WKQ) =
1

3

3∑
t=1

wt(pt − p̄1:3)p
⊤
3 ,

6This requires that we the early phase is run for long enough so that β is large enough, say O(logN).
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and study the values of the wt. For t = 1, we have

w1 =

2N∑
k=1

Ex,x′ [(1{g(x′) = k} − p̂(k|x, x′))u⊤
k WV ex]

= β

2N∑
k=1

Ex,x′ [(1{g(x′) = k} − p̂(k|x, x′))1{g(x) = k}]

= β

2N∑
k=N+1

Ex[1{g(x) = k}]Ex′ [1{g(x′) = k}]− βEx,x′ [p̂(g(x)|x, x′)]

=
β

N
− β

N
(1− ϵ)− β(N2 −N)

N2

1− ϵ

2
≤ −β

1− ϵ

2
+O(β/N).

For t = 2, we have

w2 =

2N∑
k=1

Ex,x′ [(1{g(x′) = k} − p̂(k|x, x′))u⊤
k WV eg(x)]

= −β

2N∑
k=1

Ex,x′ [(1{g(x′) = k} − p̂(k|x, x′))1{x = k}]

= 0 + βEx,x′ [p̂(x|x, x′)]

= O(β/N).

For t = 3, we have

w3 =

2N∑
k=1

Ex,x′ [(1{g(x′) = k} − p̂(k|x, x′))u⊤
k WV ex′ ]

= β

2N∑
k=1

Ex,x′ [(1{g(x′) = k} − p̂(k|x, x′))1{g(x′) = k}]

= β − Ex,x′ [p̂(g(x′)|x, x′)]

≥ β − β
1− ϵ

2
≥ β

2

Thus, when N ≫ β, we have w3 − w1, w3 − w2 ≥ β/2 + O(β/N). Taking W 1
KQ = −η∇L, the

gap in attention logits between t = 3 and t = 1, 2 is of order ηβ/6, so that for η large enough, the
attention mostly focuses on the third token x′.

E.2 Proof of Theorem 1

Suppose we are given (x, y, x′), where we assume for simplicity that x ̸= x′ and g(x′) ̸= y. Denote
by fW (z1:t) the output of the model in (4) before applying the LN and the unembedding layer. Then,
we have that:

fW (x, y, x′) = ex′ + p3 +
1

3
γ̄

(∑
y

uy −
∑
x

ux

)
+

+
1

3

(
−α1ex + β1ug(x) + α2eg−1(y) − β2uy − α1ex′ + β1ug(x′)

)
(36)

Denote by c1 := 2 +
γ̄2(2N−2)+2α2

1+β2
1

9 and c2 := 2 +
γ̄2(2N−3)+2α2

1+β2
1

9 . for a true sample where
y = g(x) we have that:

∥fW (x, g(x), x′)∥2 = c+ (β1 − β2 + γ̄)2 + (β1 + γ̄)2 .
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Hence, after applying the LN and unembedding layer we have that:

(FW (x, g(x), x′))g(x′) =
β1 + γ̄

3
√
c1 + (β1 − β2 + γ̄)2 + (β1 + γ̄)2

max
y′ ̸=g(x′)

(FW (x, g(x), x′))y′ =
γ̄ +max(0, β1 − β2)

3
√

c1 + (β1 − β2 + γ̄)2 + (β1 + γ̄)2

For a false sample where y ̸= g(x) we have that:

∥fW (x, g(x), x′)∥2 = c2 + 2(β1 + γ̄)2 + (−β2 + γ̄)2 .

Hence, after applying the LN and unembedding layer we have that:

(FW (x, y, x′))g(x′) =
β1 + γ̄

3
√

c2 + 2(β1 + γ̄)2 + (−β2 + γ̄)2

max
y′ ̸=g(x′)

(FW (x, y, x′))y′ =
β1 + γ̄

3
√

c2 + 2(β1 + γ̄)2 + (−β2 + γ̄)2
.

Plugging in these terms finishes the proof.

E.3 Proof of Theorem 2

Figure 16: Illustration for a LN-induced linear separability.

Proof. We first describe the output of the model in (4) before applying LN. Denote by vT , vF ∈
R4N+3 these outputs for true and false samples respectively. Recall that a true sample (x, y) is when
y = g(x) and false otherwise. Then, we have that:

vT = ey + p2 +
1

2

(
(α2 − α1)ex + (β1 − β2)uy + (γ1 − γ2) ·

(∑
y

uy −
∑
x

ux

))
(37)

vF = ey + p2 +
1

2

(
−α1ex + α2eg−1(y) + β1ug(x) − β2uy + (γ1 − γ2) ·

(∑
y

uy −
∑
x

ux

))
(38)

We will first show that without adding N the samples above cannot be separated for general x and y.

Assume otherwise, that there exists a linear separator w =


w1

w2

w3

w4

w5

 with w1, . . . , w4 ∈ RN , w5 ∈ R3

and bias term b ∈ R such that ⟨w, vT ⟩ − b ≥ 0 and ⟨w, vF ⟩ − b < 0 for every true or false sample
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respectively. We slightly abuse notation and write ⟨w1, ex⟩ as
〈(

w1

03N+3

)
, ex

〉
, and similarly when

multiplying w2 by ey , w3 by ux, w4 by uy and w5 by pt.

c :=
1

2

〈
(γ1 − γ2) ·

(∑
y

uy −
∑
x

ux

)
, w3 + w4

〉
+ ⟨w5, p2⟩

the terms in the inner products that are independent of the sample. Then, using the linear separator on
these four samples we have:

b ≤ (α2 − α1) ⟨exi
, w1⟩+ ⟨eyi

w2⟩+ (β1 − β2) ⟨uyi
, w4⟩+ c (39)

b ≤ (α2 − α1)
〈
exj

, w1

〉
+
〈
eyj

w2

〉
+ (β1 − β2)

〈
uyj

, w4

〉
+ c (40)

b ≥ α2 ⟨exi , w1⟩ − α1

〈
exj , w1

〉
+ ⟨eyi , w2⟩+ β1

〈
uyj , w4

〉
− β2 ⟨uyi , w4⟩+ c (41)

b ≥ α2

〈
exj

, w1

〉
− α1 ⟨exi

, w1⟩+
〈
eyj

, w2

〉
+ β1 ⟨uyi

, w4⟩ − β2

〈
uyj

, w4

〉
+ c . (42)

Adding up (41) and (42) we have that:

2b− 2c ≥ (α2 − α1)
〈
exj

, w1

〉
+
〈
eyj

w2

〉
+ (β1 − β2)

〈
uyj

, w4

〉
+ (43)

+ (α2 − α1) ⟨exi , w1⟩+ ⟨eyiw2⟩+ (β1 − β2) ⟨uyi , w4⟩ , (44)

which is a contradiction to (39) and (40). This means that there is no linear separator, regardless of
the values of the parameters, which proves the first item.

Assume there is layer normalization after the prediction as in (4). This means that the output of the
model is v

∥v∥ . Consider the linear predictor w = p2, and a bias term b that will be determined later.
Then, the output of the linear predictor is exactly ⟨w, v⟩ = 1

∥v∥ .

We will now calculate the norm of both true and false samples. For a true sample (x, g(x)) we have
that:

∥vT ∥2 = 2 + (α2 − α1)
2 + (γ1 − γ2)

2 · (2N − 1) + (γ1 − γ2 + β1 − β2)
2
. (45)

For a negative sample (x, y) with g(x) ̸= y we have:

∥vF ∥2 = 2 + α2
1 + α2

2 + (γ1 − γ2)
2 · (2N − 2) + (γ1 − γ2 + β1)

2 + (γ1 − γ2 − β2)
2 . (46)

There exists a linear separator as long as 1
∥vF ∥ − 1

∥vT ∥ ̸= 0. Since the vectors vT and vF are both

non-zero, this is equivalent to ∥vT ∥2 ̸= ∥vF ∥2. By the above calculation, we have that:

∥vF ∥2 − ∥vT ∥2

= α2
1 + α2

2 − (α1 − α2)
2 − (γ1 − γ2)

2 + (γ1 − γ2 + β1)
2 + (γ1 − γ2 − β2)

2 − (γ1 − γ2 + β1 − β2)
2

= 2α1α2 + 2β1β2 .

This shows that if 2α1α2 + 2β1β2 ̸= 0 then we have a linear separation between true and false
samples.

Further assuming that α1 = α2, β1 = β2, γ1 = γ2 we have that ∥vT ∥2 = 2 and ∥vF ∥2 =
2 + 2α2 + 2β2. To find the optimal margin for this predictor we pick:

b =
1

2
·
(

1

∥vT ∥
− 1

∥vF ∥

)
=

1

2
√
2

(
1− 1√

1 + α2 + β2

)
.

We will now prove that there is linear separation after predicting the x′ token. Using the output of the
model as in (4) we get:

vT = C +
1

3

(
(α2 − α1)ex + (β1 − β2)uy − α1ex′ + β1ug(x′)

)
(47)

vF = C +
1

3

(
−α1ex + α2ug−1(y) + β1ug(x) − β2uy +−α1ex′ + β1ug(x′)

)
, (48)
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where C = ex′ + p3 +
γ̂
3 ·
(∑

y uy −
∑

x ux

)
. We can now calculate:

∥vT ∥2 = 2 +
1

9

(
(α2 − α1)

2 + (β1 − β2 + γ̄)2 + α2
1 + (β1 + γ̄)2 + (2N − 2)γ̄2

)
(49)

∥vF ∥2 = 2 +
1

9

(
2α2

1 + α2
2 + 2(β1 + γ̄)2 + (γ̄ − β2)

2 + (2N − 3)γ̄2
)
. (50)

We now have that:

∥vF ∥2 − ∥vT ∥2 =
1

9
·
(
α2
1 + α2

2 + (β1 + γ̄)2 + (γ̄ − β2)
2 − (α2 − α1)

2 − (β1 − β2 + γ̄)2 − γ̄2
)

=
2

9
(α1α2 + β1β2) .

By a similar argument to the previous case, if α1α2 + β1β2 ̸= 0 then there is linear separation
between true and false samples. Further assuming that α1 = α2, β1 = β2 and γ̄ = 0, to find the
optimal margin for the predictor we pick:

b =
1

2
·
(

1

∥vT ∥
− 1

∥vF ∥

)
=

α2 + β2

9
√

4 + 8
9 (α

2 + β2) + 1
27 (α

2 + β2)2
.
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E.4 Evaluating checkpoints of a “real” LM

To test whether the two-phase dynamics also appear in a large model trained on open-web data, we
analyzed the Pythia-6.9B training checkpoints released by EleutherAI. Using the COUNTERFACT
dataset we construct each input by concatenating K = 4 factual statements whose preceding context
is either entirely true or entirely false, mirroring our previous setup. For every checkpoint we measure
three signals on the final statement:

• Memorization: percentage of cases where greedy decoding succeeds in completing the correct
token.

• Uncertainty: entropy of the model’s full-vocabulary distribution for predicting the last token; we
record the difference between true and false context.

• Linear separability: accuracy of a linear probe trained to classify the truth value of the surrounding
context.

Table 1: Pythia-6.9B metrics across training steps.
step ∆H memorization probe AUC

0 0.001 0.000 0.383
512 0.006 0.000 0.435

1000 0.005 0.006 0.467
3000 0.219 0.242 0.587
5000 0.217 0.435 0.648

10000 0.286 0.547 0.667
20000 0.355 0.655 0.754
40000 0.329 0.727 0.759
60000 0.421 0.772 0.802
80000 0.419 0.822 0.799

100000 0.479 0.835 0.818
110000 0.485 0.849 0.835
120000 0.536 0.842 0.835
130000 0.565 0.858 0.783
143000 0.518 0.875 0.831

Notes. ∆H denotes the entropy gap between matched prompt pairs presented with false versus true
context. The memorization rate is the share of instances in which the model’s output distribution places
the correct continuation token at the top-1 position. “Probe AUC” is the ROC-AUC of a linear classifier
trained to predict the surrounding context’s truth value from model activations.

Findings. Early training (≤1k steps). ∆H ≈ 0; the model memorizes indiscriminately.
Mid training (3k–80k). Memorization jumps, then plateaus, while ∆H and probe accuracy climb
steadily.
Late training (≥ 80k). Entropy separation continues to widen even after memorization saturates,
mirroring Phase 2 but over a longer horizon.

Overall, this echoes the two-phase pattern observed in simpler experiments: an initial jump in
memorization followed by a slower, steadier increase in entropy separation. Differences remain: the
second phase is more gradual, and classification and entropy increase even before memorization
stabilizes. We hypothesize this stems from continual exposure to new facts during training, unlike our
idealized setup where all facts are seen in a single gradient step. The modest terminal memorization
and classification scores are consistent with reports that the Pythia series is under-trained relative to
its capacity.

Finally, in Pythia-6.9B we do not find evidence that layer normalization itself induces linear sepa-
rability; rather, a linearly decodable truth signal emerges gradually with depth across many layers.
Our aim was to advance one plausible mechanism for the phenomenon observed in pretrained LMs,
not to claim uniqueness. Given the model’s deeper architecture—with numerous layers and MLP
blocks—and the richness of natural-language data, additional or distinct mechanisms are likely at
play. A systematic study of these mechanisms is an important direction for future work.
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