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Abstract

In recent years, many studies proposed to generate solutions for Directed Acyclic
Graph (DAG) scheduling problem in one shot by combining reinforcement learning
and list scheduling heuristic. However, these existing methods suffer from biased
estimation of sampling probabilities and inefficient guidance in training, due to
redundant comparisons among node priorities and the sparse reward challenge. To
address these issues, we analyze of the limitations of these existing methods, and
propose a novel one-shot DAG scheduling method with comparability identification
and dense reward signal, based on the policy gradient framework. In our method,
a comparable antichain identification mechanism is proposed to eliminate the
problem of redundant nodewise priority comparison. We also propose a dense
reward signal for node level decision-making optimization in training, effectively
addressing the sparse reward challenge. The experimental results show that the
proposed method can yield superior results of scheduling objectives compared to
other learning-based DAG scheduling methods.

1 Introduction

The Directed Acyclic Graph (DAG) scheduling problem is a class of NP-hard [Kan, 2012] Com-
binatorial Optimization Problems (COP). DAG scheduling problem arises in the emerging cloud
manufacturing and distributed computing, involving production and computation workflow schedul-
ing. The jobs, operations, or tasks are modeled into nodes of DAG, and the directed edges represent
the precedence constraints among them. The goal is to achieve the best possible performance by
determining an optimal node execution order and allocating resources accordingly.

DAG scheduling has attracted extensive research attention, with many heuristic, metaheuristic and
Reinforcement Learning (RL) methods proposed to solve it. Among them, RL has already shown
promise in solving generic COPs [Kwon et al., 2020, Hottung et al., 2022, Choo et al., 2022, Zhang
et al., 2023, Wang et al., 2025]. Specifically for DAG scheduling, early studies tended construct the
solution (i.e., the order of node execution) incrementally [Mao et al., 2019, Zhou et al., 2022, Song
et al., 2023]. They utilized graph neural networks (GNN) to guide the policy network to select the
optimal schedulable node at each step, until the complete solution is constructed.

Considering that the incremental solution construction methods are computation consuming and less
efficient in training, some studies proposed RL-based one-shot DAG learning, which is motivated by
list scheduling [Lee et al., 2020, 2021, Jeon et al., 2023]. They attempted to enable network to learn
to infer the entire solution through a single forward propagation process. List scheduling is a classic
and effective heuristic rule for DAG scheduling. As shown in Fig.1a, they generate a full schedule of
the DAG by leveraging GNN to assign fixed priority values for all task nodes in one single step, and
iteratively learn to optimize the network based on the obtained objective cost as the feedback reward.
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(a) Existing method. (b) Our proposed method.

Figure 1: The comparison of existing one-shot DAG scheduling method and ours.

Compared to the incremental construction methods, such one-shot scheduling approaches generally
yields better results and requires less computation.

However, as we will analyze in detail in section 3, the existing RL-based one-shot scheduling
approaches involve excessive node priority comparisons and sparse reward signals, leading to unstable
training and suboptimal results. They unnecessarily compare node priorities in pairwise, rather than
accurately representing the distribution of execution order. Moreover, the sparse reward problem
remains a challenge in the one-shot approaches. The agent has to optimize the entire priority list with
a limited amount of global reward signal.

To address these issues, as shown in Fig. 1b, based on our analysis, we propose a novel RL-based
one-shot DAG scheduling method with comparability identification and dense reward signal. (We
define ’comparable’ to distinguish the task pairs that would influence the priority-induced execution
orders.) For the redundant node priority comparison problem in the existing RL-based one-shot
scheduling approaches, we propose a comparable antichain identification mechanism to eliminate the
problem of redundant nodewise priority comparison. In this way, we can derive the formulation of the
nodewise sampling probability corresponding to the generated solution, thereby avoiding inaccurate
probability estimation and improving training stability. Besides, compared to the existing methods
suffering from sparse reward, we design a dense reward for one-shot RL-based DAG scheduling
methods to guide node-level optimization, enabling the scheduling results to closely converge to
the optimum. We modify the key components in the existing RL-based one-shot DAG scheduling
method, while retaining the other components that have proven effective. The key contributions of
this study are as follows:

1. We analyze the limitations of existing RL-based one-shot methods in DAG scheduling, including
the redundant nodewise priority comparison problem and the sparse reward challenge.

2. Based on the analysis, we propose a novel RL-based one-shot solution generation method for DAG
scheduling. In our method, a comparable antichain identification mechanism is proposed to eliminate
the problem of redundant nodewise priority comparison. We also propose a dense reward signal
for node level decision-making optimization in training, effectively addressing the sparse reward
challenge.

3. Comprehensive comparative and ablation experiments conducted on various DAG scheduling tasks
demonstrate the superiority of our method in terms of solution quality.

2 Preliminaries

DAG scheduling. We define a DAG G = (V,E) , where the node set V = {v1, v2, ..., vn}
represents task in the real-world DAG scheduling problem, and the directed edge set E ⊆ V × V
denotes the precedence constraints among the tasks. If (vi, vj) ∈ E, task vj cannot start until vi is
completed. That is to say, a task node can be ready only after all its predecessors is finished. Each
task vi is typically associated with a processing time di, and di might be related to the processor
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where the task is allocated. The scheduler needs to determine a feasible task node execution order,
and processor allocation if in multi-processor environments. The goal is to optimize the target cost
metric evaluated after completing the DAG execution, such as makespan.

List scheduling heuristic for DAG scheduling. In list scheduling, according to a certain ranking
rule σ : {1, 2, ..., n} −→ {1, 2, ..., n}, a list of priority rank Rank(V ) = [vσ(1), vσ(2), ..., vσ(n)] for
each node in V is generated. The ready task with the highest priority rank is selected to be scheduled
in each step.

Policy gradient. In a typical policy gradient framework, the gradient to update the network parame-
ters θ is formulated as Equation (1). pθ(at|st) is the probability for the RL network with parameters
θ to sample at according to the current st. Rt is the cumulative single-step reward r starting from t.

∇θJ(θ) = Epθ

[
T∑

t=1

∇θlog pθ(at|st) ·Rt

]
(1)

One-shot DAG scheduling. The existing approaches [Lee et al., 2021, Jeon et al., 2023] follow
the paradigm of list scheduling and policy gradient. But instead of making stepwise decisions, they
define the action space as the priority rank of all task nodes in the DAG. As shown in Fig. 1a, the
DAG scheduling problem instance is fed into the RL network θ, which consists a GNN encoder and
a policy network, outputting logits list for each node. The logits are treated as the priority values
of each task node. The corresponding ranking rule σθ is performing a descending sort on the logits
of each task node. In this way, the priority rank Rank(V ; θ) = [vσθ(1), vσθ(2), ..., vσθ(n)] can be
sampled. Sampling such a descending sort can essentially be interpreted as iteratively selecting the
maximum element from the remaining unselected ones, which involves pairwise priority comparison.
At each selection step, the sampling probability can be calculated by performing softmax operation
over the current candidates V − {vσθ(1), ..., vσθ(t−1)}, as shown in Equation (2). The probability of
the entire rank can be calculated as Equation (3). In one-shot DAG scheduling, Equation (1) can be
modified to Equation (4). where C(G,Rank(V ; θ)) is the value of optimization goal when applying
the sampled priority rank Rank(V ; θ) on G.

pθ(vσθ(t)|[vσθ(1), ..., vσθ(t−1)]) =
exp(logitsθ(vσθ(t)))∑

v∈V−{vσθ(1),...,vσθ(t−1)} exp(logitsθ(v))
(2)

P (Rank(V ; θ)) =

n∏
t=1

exp(logitsθ(vσθ(t)))∑
v∈V−{vσθ(1),...,vσθ(t−1)} exp(logitsθ(v))

(3)

∇θJ(θ) = EP (Rank(V ;θ)) [∇θlog P (Rank(V ; θ)) · C(G,Rank(V ; θ))] (4)

3 Analysis of the one-shot schedule approaches

3.1 Redundant priority comparison and biased sampling probability estimation

We observe that the current methods’ action space inconsistent with the actual scheduling solutions.
The existing methods directly regard the output priority rank Rank(V ; θ) as the action of RL. How-
ever, multiple priority ranks Rank1, Rank2, . . . may correspond to a same node execution sequence
Solution(G) = [vπ(1), vπ(2), ..., vπ(n)]. Some heuristic-based priority generating approaches, such
as Topcuoglu et al. [2002], Djigal et al. [2021], are designed to ensure that the obtained node priority
rank is also the node execution order, but the logits output by a neural network cannot inherently
guarantee such consistency. (For example, in Fig. 2, both Rank(V ; θ1) and Rank(V ; θ2) result in the
same node execution order for the graph on the left.) The total probability of sampling that solution
should be Equation (5). So, if only a single rank list’s probability P (Rankj) is used to approximate
P (Solution(G)), this introduces underestimation. This increases entropy and the variance of the
policy gradient.

P (Solution(G)) = P (Rank1 ∪Rank2 ∪ . . . ) (5)
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Figure 2: The examples of different priority rank that which can be mapped to a same node execution
order, and the impact of inaccurate probability estimation on training.

Such inconsistency causes redundant comparison. Given a one-shot RL network θ, the solution
Solution(G; θ) is a priority topological sort of G based on Rank(V ; θ). This sort is constrained by
both the priority ranks and the directed edges E. E are hard constraints, while the priority ranks only
serve as soft constraints. If there exists a path from u to v , then u is guaranteed to precede v in any
valid Solution(G), regardless of their priority. The priority comparison of nodes located on the same
path is unnecessary. But when constructing a priority rank, existing methods iteratively select the
node with the maximum priority by comparing it with all unselected nodes, including the nodes that
are on the same path of the selected node. These comparisons are thus redundant or invalid, as they
do not affect the resulting topological order. Treating them as candidate actions introduces irrelevant
logits into the softmax distribution, distorting the sampling probability.

Redundant priority comparison and biased sampling probability estimation may lead to unstable
training and suboptimal results. Under pairwise priority comparison, the model may tend to equally
optimize the pairwise ordering of all node pairs, rather than focusing on those node pairs that actually
influence the final schedule. The model might spend unnecessary effort on optimizing the rank
of nodes on the same paths. As a result, the training can become less efficient. Taking Fig. 2 for
example, the final node execution order is solely determined by the relative priorities between v3
and v4. If the optimization objective cost C(G,Rank(V ; θ1)) obtained from Rank(V ; θ1) achieves
better than C(G,Rank(V ; θ3)), the model might mistakenly attribute the improvement to v2’s being
higher-ranked than v1. However, since v1 and v2 lie on the same path, their relative priorities have no
influence on the result. Similarly, the model may spend unnecessary effort optimizing other node
pairs that are irrelevant to the outcome, such as < v1, v3 >, < v1, v4 >.

3.2 Sparse reward challenge

In addition to the Redundant priority comparison, we also need to address the sparse reward challenge
in the one-shot solution generation methods. Specifically, the global reward is generated only once in
the whole decision-making process, which cannot effectively reflect the specific contribution of each
local decision (the priority assignment of each task node) to the final result, thus seriously limiting
the effective guidance of policy gradient algorithm for network parameters. This sparsity not only
makes the training, but also may cause the model to get trapped in a local optimum. Therefore,
designing a denser and more decomposable reward signal to guide local decision-making is a key
issue to improve the training efficiency and stability of one-shot method.

In conclusion, the biased sampling probability estimation caused by redundant priority comparison,
together with the sparse reward challenge, would constraint the performance of RL-based one-shot
DAG scheduling. We will address these two issues in the next section.

4 Proposed method

4.1 Motivation

To address the issue of redundant priority comparison, according to the analysis in the previous
section, we need to distinguish the nodes that has necessity to compare. Removing those invalid
nodes in each step aligns the actual sampling distribution closer to the true P (Solution(G)). It can
produce lower-entropy distributions and reduced policy gradient variance, which is beneficial to the
convergence for RL model [Huang and Ontañón, 2020]in practice, compared to sparse reward settings
(where only the final cost is used), our dense reward reduces the variance of policy gradient estimates,
because each node’s policy update receives a targeted reward signal rather than sharing a single scalar.
Also, it helps the model differentiate good and bad actions early in training.. Clearly, there is no need
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to compare the priorities of node pairs lying on the same path. Only mutually unreachable node pairs
(i.e., those belonging to the same antichain) require comparisons. However, since a node may appear
in multiple different antichains, it is necessary to determine which antichain comparisons are relevant.
For example, assume that {v, u1} and {v, u2} are respectively two antichains in a graph, with a path
between u1 and u2. If v is prior to u1 in Rank(V ), v is guaranteed to precede u2 in Solution(G),
no matter which one in v1 and v2 is prior. This makes the priority comparison between u1 and v2
unnecessary. But if u1 is prior to v, the comparison between v1 and v2 remains essential to determine
the final order of v and u2 in Solution(G).

Although it is challenging to define a meaningful stepwise reward for DAG scheduling problems, it is
still practical to estimate the cumulative reward Rt in one-shot scheduling. The cumulative reward
at each step reflects the difference between the contribution of the current/local decision and the
global objective. Since the objective value associated with each task node can be obtained during the
simulation-based evaluation of the overall scheduling result, the cumulative reward can be estimated
accordingly.

In this section, we propose a one-shot solution generation method for DAG scheduling based on
policy gradient algorithm framework that can address the above-mentioned problems. Specifically,
we first propose a comparable antichain identification method for each node during the process of
priority topological sorting. This enables us to compute nodewise sampling probabilities and obtain
an execution sequence as the solution. The simulated or evaluated cost of each node in the resulting
schedule is then compared with a heuristic-derived advantage baseline to generate node level dense
reward signals. These dense rewards, along with the sampling probabilities, are used to calculated the
policy gradient. The overview figure of the proposed method is illustrated in Appendix A.

Our framework adopts a GNN-based encoder and a multi-layer perceptron policy (MLP) policy
network to handle the DAG scheduling problem instance to produce priority logits for all nodes,
following the common setup in prior work. The encoder is implemented using the Graphormer [Ying
et al., 2021], whose effectiveness in encoding directed graph data has been widely validated. Check
Appendix C for more details about the implementation about our method.

4.2 Comparable antichain identification

We define a pair of nodes as comparable if their relative priorities affect the resulting execution
order, as formally stated in Definition 1. Based on this definition, we further define the comparable
antichain of a node in Definition 2.

Definition 1 (Comparable node pair): Given task nodes v and u in a DAG scheduling problem,
a priority rank Rank(V ), and the node execution sequence Solution(G) derived from Rank(V ).
Without loss of generality, assume that u is higher-ranked than v (i.e., u is before v in Rank(V )).
Remove and reinsert both u and v into any position in Rank(V ) while guaranteeing u is now after
v, obtaining a Rank′(V ). If, for any Rank′(V ), the relative ordering of u and v in Solution′(G)
derived from Rank′(V ) is always the reserve of that in Solution(G), we say that < u, v > is
comparable in Rank(V ).

Definition 2 (Comparable antichain): The set that contains v and the comparable nodes of v in
Rank(V ).

We propose a straightforward comparable antichain identification method based on the priority
topological sorting process, which aims to eliminate redundant priority comparisons between incom-
parable nodes and accurately reflect the nodewise sampling probability corresponding to the sampled
specific node execution sequence. Recalling the process of priority topological sorting: given a
DAG G, iteratively remove the already sorted nodes from G in each step t, obtaining a subgraph Gt.
Then in Gt, identify the set of nodes with 0 in-degree V in=0

t , and select the node vπ(t) with hightest
priority rank from the 0-in-degree set V in=0

t , and append it to St(G).

Clearly, the 0-in-degree set V in=0
t in each step forms an antichain of G, since the node removal

operations do not remove edges between the remaining nodes and the nodes with 0 in-degree is
guaranteed to be mutually unreachable. According to lemma 1 and lemma 2, we can track the
comparable antichain of each vπ(t) by merely using V in=0

t .

Lemma 1: V in=0
t is a comparable antichain of vπ(t).
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Proof: By construction, vπ(t) is higher-ranked than any u ∈ V in=0
t , so vπ(t) appears before each such

u in the resulting Solution(G). Now suppose to re-insert the priority rank so that u is higher-ranked
to vπ(t). Then either u is selected before step t, or u is select instead of vπ(t) at t. In both cases, u
would now be before vπ(t) in the resulting Solution′(G). Therefore, V in=0

t forms a comparable
antichain of vπ(t).

Lemma 2: For any u ∈ V in=0
t , none of its successors is comparable antichain with vπ(t).

Proof: By construction, vπ(t) is higher-ranked than any u ∈ V in=0
t and vπ(t) appears before each

u in Solution(G). u′, a successor of u, is guaranteed to appear after u in Solution(G) due to the
precedence constraints, it must also appear after vπ(t) in any valid Solution′(G) by re-inserting vπ(t)
and u′ in the priority rank. Thus, regardless of how the relative priorities between vπ(t) and u′ are
changed, their positions in Solution′(G) remain fixed.

In this way, the nodewise sampling probability corresponding to Solution(G), together with the
probability of Solution(G) can be precisely obtained. The procedure of "selecting vπ(t) from
V in=0
t " can be interpreted as performing an argmax operation in V in=0

t . Similar with Jeon et al.
[2023], instead of performing argmax on the original logits of V in=0

t , we use the gumbel-perturbed
logits[Kool et al., 2019] of V in=0

t . Therefore, the sampled rank sequence becomes more aligned with
the underlying probability distribution. Given the logits generated by the policy network in one shot,
the softmax-based nodewise sampling probability can be calculated in Equation (6).

pθ(vπθ(t)|St−1(G; θ) = [vπθ(1), ..., vπθ(t−1)]) =
exp(logitsθ(vπθ(t)))∑
v∈V in=0

t
exp(logitsθ(v))

(6)

4.3 Dense reward

We further propose a dense reward signal for RL-based one-shot DAG scheduling, providing nodewise
reward signal to guide the optimization of local decisions. For each scheduled node, we define its
dense reward signal based on its distance to the final objective, thus approximating the node’s value
estimation. Such design also makes one-shot DAG scheduling more interpretable. Specifically,
the nodewise decisions, sampling probabilities and dense reward signals can be regarded as an
entire sampling trajectory in RL (like the trajectory by Monte Carlo sampling). This makes the
interpretability of our methods closer to MDP-based incremental approaches than those one-shot
methods with sparse reward signal signal C(G,Solution(G; θ)) or C(G,Rank(G; θ)).

Considering Equation (1), we regard the selection of the hightest priority node from V in=0
t at each

step t as the "action", instead of treating the generation of the whole priority rank or execution
order as the single action. The sampling probability of each step can be calculated in Equation (6).
Therefore, Equation (1) can be modified into Equation (7).

∇θJ(θ) =
1

n

n∑
t=1

∇θlog pθ(vπθ(t)|St−1(G; θ)) ·Rt (7)

We estimate Rt by Equation (8). Here, C(St(G; θ)) is the objective cost function value corresponding
to the current subsequence St(G; θ). For instance ,if the optimization goal is to minimizing the
DAG’s makespan, then C(St(G; θ)) indicates the latest completion time among all scheduled nodes
when vπθ(t) is finished. The value of C(St(G; θ)) can be obtained during the simulation process
when computing C(Solution(G; θ)).

Rt = C(Solution(G; θ))− C(St(G; θ)) (8)

We further consider introducing advantage baseline to Rt, in order to stabilize the training. The
advantage baseline is computed by a heuristic algorithm (e.g., critical path method). Specifically,
before training on DAG scheduling problem G, we schedule G using the heuristic baseline, and
record the objective cost value upon the completion of each node vi, denoted as Ch(vi). Based on
this, we can define the advantage function At as shown in Equation (9). At can be further normalized
in batch-wise into A

normalized(j)
t . In this way, Equation (7) can be modified into Equation (10), where
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B is the batch size. The detailed procedure of calculating dense reward signal is demonstrated in
Appendix D.

At = Rt − baseline = Ch(vπθ(t))− C(St(G; θ)) (9)

∇θJ(θ) =
1

B

1

n

B∑
j=1

n∑
t=1

∇θlog pθ(vπ
θ(j)

(t)|St−1(G; θ(j))) ·Anormalized(j)
t (10)

In practice, compared to sparse reward settings (where only the final cost is used), our dense reward
reduces the variance of policy gradient estimates, because each node’s policy update receives a
targeted reward signal rather than sharing a single scalar. Also, it helps the model differentiate good
and bad actions early in training.

5 Related work

RL has demonstrated significant potential in solving DAG scheduling problems in an end-to-end
manner. A typical RL DAG scheduler consists of a GNN encoder extracting graph features, and
a policy network making scheduling decisions [Mao et al., 2019, Zhou et al., 2022, Song et al.,
2023]. There are already some GNN variants for general DAG-structured applications [Yu et al.,
2019, Thost and Chen, 2021, Luo et al., 2023]. Some focused on modifying GNNs specially for
DAG scheduling [Gagrani et al., 2022, Zhang et al., 2024]. The other studies paid attention to
improving the decision-making, including modifying the policy network or action space. From the
viewpoint of decision-making in RL-based DAG scheduling, existing literature can be categorized
into incremental solution construction, one-shot schedule generation, and edge-generation
approaches.

Incremental solution construction. The agents follow Markov Decision Process (MDP) to select
a candidate task node at each step, constructing the whole solution incrementally [Yang et al., 2019,
Yu et al., 2023, Dong et al., 2023, Qi et al., 2024]. These methods faces two major limitations, which
cause inefficient exploration and training. The first is the sparse reward challenge. Some works
[Chen et al., 2023, Wang et al., 2025, Nasuta et al., 2024] tried to overcome this challenge only in
specific application domains, rather than providing general solutions. Second, these methods require
to re-encode the entire graph instance in each step, leading to excessive computation.

One-shot schedule generation. Inspired by the list scheduling heuristic, some studies learn to
generate DAG schedules in one shot. Lee et al. [2020, 2021] proposed to use sequence learning
technique to generate a global fixed priority list for all task nodes in one single step. Jeon et al. [2023]
proposed a node prioritization method based on the Gumbel-max-k trick [Kool et al., 2019], which
enables efficient sampling of node priority values. One-shot scheduling avoids repeatedly extracting
graph features and reduces the exploration space. However, the one-shot methods exhibit lower
interpretability compared to incremental construction methods for not following MDP [Darvariu
et al., 2024] . Moreover, when applied to large-scale instances, one-shot methods is still limited by
sparse reward challenge.

Edge generation. Some studies attempt to prioritize task nodes indirectly by modifying the DAG’s
topological structure, rather than directly generating solutions. Wang et al. [2021] and EGS proposed
by Sun et al. [2024] leverages the property of DAG scheduling problem that a solution to remains
valid after adding new edges. They iteratively generate edges using RL, aiming to improve the
solution obtained by traditional heuristics. However, as we will later demonstrate, these approaches
often suffer from an excessively large search space.

6 Experiments

In this section, we report the experimental results to evaluate both the individual contributions of
our proposed modules and the overall performance of our method compared with existing baselines.
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Most of the training, simulation and evaluation of the experiments are conducted on a machine with
an Intel Gold 6226R CPU, 256 GB of RAM and NVIDIA RTX 3090 (24G) GPU.

Benchmarks setup. In order to emphasize that our method is a general method for DAG scheduling
rather than being tied to a specific problem, we evaluate our method on three benchmarks with unique
environment settings, reflecting the method’s adaptability to diverse scenarios. These benchmarks are
Pegasus, TPC-H , and a job shop scheduling problem (JSSP) benchmark generated by Zhang et al.
[2020] . Pegasus is a scientific workflow scheduling tracing dataset with heterogeneous multiprocessor
setting [Deelman et al., 2015]. We use earliest-finish-time greedy rule to allocate processors. The
classic Heterogeneous Earliest Finish Time (HEFT) [Topcuoglu et al., 2002] algorithm is adopted as
the advantage baseline for Pegasus benchmark in our experiments when estimating the dense reward.
TPC-H represents the DAG workflow scheduling task under homogeneous resource environment.
We use the TPC-H benchmark generated by Wang et al. [2021] in the experiments. Shortest First
Time (SFT) is adopted as the heuristic baseline for TPC-H. JSSP is a special case of DAG scheduling
under multi-machine settings. Shortest Processing Time (SPT) is adopted as the heuristic baseline for
JSSP. Check Appendix B for more details about thees benchmarks. Evaluation metrics include the
optimization objective, gap to heuristic baseline, and run time of the algorithm.

Baselines. Our approach is compared against the following baselines: (1) The heuristic algorithms
used as advantage baselines in our method; (2) Jeon et al. [2023], a state-of-the-art RL-based one-shot
DAG scheduling method; (3) EGS [Sun et al., 2024], a DAG scheduling approach based on edge
generation; (4) POMO-DAG, our adapted implementation of the POMO [Kwon et al., 2020] for
DAG scheduling, serving as a incremental solution construction method. See Appendix C for more
details about these baselines. Additionally, we conduct ablation studies to assess the contribution
of each proposed component in section 4, including: (5) Ours without CAI, our method without
conducting comparable antichain identification (CAI); (6) Ours without DR, our method without
estimating gradient with dense reward (DR), but sparse reward. The results are presented in Tab. 1, 2
and 3. More results on other workflows in the Pegasus benchmark is presented in Appendix F.

Ablation studies. From the perspective of scheduling performance in optimization objective, we
observe that removing the comparable antichain identification module generally results in a larger
degradation compared to removing the dense reward module. This suggests that redundant pairwise
node priority comparisons are more detrimental to solution quality, while the dense reward acts more
like a "fine-tuning". Note that the results of our full method on the TPC-H in Tab. 2 do not always
outperform either the variant without comparable antichain identification or Jeon et al. [2023]’s
one-shot approach. A possible explanation is that the DAGs in each problem of TPC-H are small and
less interconnected. In this situation, the network may have difficulty learning the node priorities
across the DAG, and since CAI has masked out many non-comparable nodes, this further increases
the difficulty of learning in such cases. In terms of runtime, incorporating comparable antichain
identification, which is based on the priority topological sorting process, slightly increases the overall
run time. This is because priority topological sorting introduces additional computation with a time
complexity of O(nlog n + |E|), which is higher than ranking via argsort operation (O(nlog n)).
Furthermore, priority topological sorting involves loops that, unlike argsort, cannot be parallelized
using GPU-accelerated libraries. Nevertheless, the additional runtime overhead remains within an
acceptable range. In summary, both comparable antichain identification and dense reward make
contributions to the overall performance, with comparable antichain identification playing a more
critical role.

Comparison experiments. Our method achieves better performance than Jeon et al. [2023] in
most cases. But it incurs slightly longer runtime, as explained in the ablation study. When compared
with POMO-DAG, our method consistently yields better results in most scenarios. In a few small-
scale cases such as JSSP-20-10 in Tab. 3, our method performs slightly worse. We attribute this to
the simple disjunctive DAG structure of JSSP, where the advantage of comparability identification
becomes less significant. Nonetheless, our approach demonstrates a substantial advantage in run time,
because POMO is an incremental solution generation method that relies on repeatedly re-encode the
entire instance across multiple sampling rounds, making it more computation consuming. Compared
to EGS, our method achieves similar or even better solution quality. EGS leverages a heuristic
algorithm to solve subgraphs induced by edge generation, which provides a strong upper bound in
optimization. However, EGS cannot guarantee superior performance, because the search space is

8



Table 1: Experimental results on SIPHT dataset in Pegasus, with 5 different problem instance sizes
(100, 200, 300, 400, and 1000 task nodes). The evaluation metrics include the optimization objective
(Makespan), the gap relative to the heuristic baseline (HEFT), and the run time.

Method SIPHT-100 SIPHT-200 SIPHT-300 SIPHT-400 SIPHT-1000

MS Gap/% Time/s MS Gap/% Time/s MS Gap/% Time/s MS Gap/% Time/s MS Gap/% Time/s

HEFT (baseline) 227.0 - 0.005 357.8 - 0.018 543.0 - 0.024 714.8 - 0.044 1821.4 - 0.196

Jeon et al. [2023] 218.5 -3.74 0.07 352.2 -1.57 0.15 550.6 1.40 0.26 712.7 -0.29 0.43 1898.1 4.21 2.44
POMO-DAG 214.0 -5.74 13.4 367.5 2.72 20.8 575.8 6.05 27.5 741.9 3.80 34.3 1875.1 2.95 50.6
EGS 200.6 -11.63 1.02 346.3 -3.21 2.35 542.8 -0.04 4.04 710.2 -0.42 10.2 1821.0 -0.02 64.5

Ours 196.9 -13.3 0.61 338.4 -5.42 0.97 541.6 -0.25 1.17 708.3 -0.62 1.22 1819.2 -0.13 2.59
Ours w/o DR 213.2 -6.07 0.35 345.6 -3.41 0.67 542.2 -0.14 1.38 710.3 -0.62 1.88 1818.9 -0.13 2.83
Ours w/o CAI 214.4 -5.55 0.11 345.8 -3.07 0.21 542.5 -0.09 0.34 710.4 -0.61 0.46 1867.7 2.54 2.22

Table 2: Experimental results on TPC-H benchmark, with 3 different problem instance sizes (50, 100
and 150 sub-DAGs). The evaluation metrics include the optimization objective makespan (MS), the
gap relative to the heuristic baseline (STF), and the run time.

Method TPC-H 50 TPC-H 100 TPC-H 150

MS Gap/% Time/s MS Gap/% Time/s MS Gap/% Time/s

STF (baseline) 24.97 - 0.010 42.85 - 0.027 69.76 - 0.038

Jeon et al. [2023] 23.73 -4.95 0.23 41.22 -3.81 0.44 74.02 6.11 0.76
POMO-DAG 46.90 87.8 24.3 90.30 110.74 27.4 141.90 103.43 33.2
EGS 24.58 -1.55 10.8 42.18 -1.56 51.2 68.99 -1.10 156.8

Ours 20.49 -17.73 0.51 39.22 -8.47 0.82 73.47 5.32 1.49
Ours w/o DR 24.10 -3.47 0.59 39.68 -7.40 0.86 70.14 0.54 1.19
Ours w/o CAI 22.47 -10.00 0.23 42.96 0.16 0.43 67.91 -2.65 0.78

significantly large, making it prone to local optima. Furthermore, EGS exhibits longer runtime due to
its iterative edge resampling and repeated graph encoding. In summary, our method demonstrates
consistent advantages over existing approaches in both solution quality and runtime efficiency across
various DAG scheduling tasks.

7 Conclusion

In this paper, we present a novel one-shot solution generation method for DAG scheduling based on the
policy gradient algorithm. In our method, propose to identify the comparable antichain for each node
during the topological sorting process, eliminating redundant comparisons and sampling computations,
enabling more accurate gradient estimation. Furthermore, we design a dense reward that significantly
improves training efficiency by mitigating the reward sparsity problem commonly observed in
learning-based DAG scheduling. Experimental results across diverse scenarios demonstrate that
our method achieves superior scheduling quality compared to existing DAG scheduling approaches.
This suggest that our method have potential for further extension and optimization in large-scale or
dynamic environments, like scientific workflow management. As future work, we will expand this

Table 3: Experimental results on JSSP.

Method JSSP 20*10 JSSP 20*20 JSSP 30*10 JSSP 30*20

MS Gap/% Time/s MS Gap/% Time/s MS Gap/% Time/s MS Gap/% Time/s

SPT (Baseline) 516.7 - <0.001 1096.2 - <0.001 845.9 - <0.001 1692.0 - <0.002

Jeon et al. [2023] 445.2 -13.84 0.12 964.0 -12.06 0.15 7356 -13.04 0.24 1548.6 -8.48 0.15
POMO-DAG 341.6 -33.88 3.0 9362.6 -14.59 5.3 971.3 -6.45 4.2 1458.0 -13.83 6.7
EGS 465.9 -9.83 1.8 1034.5 -5.63 3.5 837.5 -0.99 6.7 1604.1 -5.20 17.0

Ours 397.3 -23.11 0.32 813.8 -25.76 0.41 571.3 -32.46 0.37 1426.0 -15.72 0.45
Ours w/o DR 394.7 -23.61 0.36 928.6 -15.29 0.41 661.1 -21.85 0.32 1481.9 -12.42 0.44
Ours w/o CAI 436.8 -15.46 0.12 939.2 -14.32 0.16 718.2 -15.10 0.12 1505.3 -11.03 0.14
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foundational study to more specific applications by considering domain knowledge and optimization
objectives.

Limitations. Although the experiment results present effectiveness of our method across various
DAG scheduling tasks, the proposed comparable antichain identification approach is primarily
designed to handle precedence constraints. Since our study is a continuation of prior foundational
researches, we primarily focus on optimizing makespan objective. Extending our study to specific
application by considering domain-specific objectives would be a promising direction. Moreover, for
the scheduling problems involving domain-specific constraints, such as the deadline constraints in
real-time systems, adaptations would be necessary. Additionally, our approach remains within the list
scheduling paradigm. Exploring sequence-agnostic alternatives, such as one-shot edge generation for
node prioritization, may be a promising direction.
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A Illustration of our method

Our proposed framework is illustrated in Figure 3a, comprising two key components: comparable
antichain identification (top-right) and dense reward estimation (bottom-left). The comparable
antichain identification module constructs a complete global solution in the form of a node execution
order, and estimates the sampling probability for each node. This solution is then simulated and
evaluated to obtain nodewise cost values. By subtracting these with the cost values from a heuristic
baseline solution and conducting normalization operation, we obtain nodewise reward signals. Figure
3b further provides a detailed illustration of the comparable antichain identification and sampling
probability estimation process. At each step of the priority topological sorting, the set of zero in-
degree nodes in the current subgraph is identified as a comparable antichain. Within this antichain, the
node with the highest perturbed logits is selected for scheduling. The original logits are then passed
through a softmax operation to compute sampling probabilities. This process continues iteratively to
construct the full execution order along with the sampling probabilities for all nodes.

Note that the entire procedure requires only a single forward pass of the reinforcement learning
network on the DAG scheduling problem instance, from which all logits are obtained in one shot.

(a) Illustration of the overall framework.

(b) Illustration of comparable antichain identification and sampling probability estimation.

Figure 3: Illustration of the proposed method.
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B More information about the benchmarks

B.1 Pegasus

Pegasus [Deelman et al., 2015] 2 provides an open-source workflow trace data generated from various
scientific computing applications. We adopt it as the benchmark for DAG workflow scheduling under
the heterogeneous multiprocessor setting. Under such setting, the attributes of task node vi include
the computational workload ci and the output data size bi . For each processor m, the key attribute is
its computational capacity fm. Assuming that task node vi is assigned to processor m, the processing
time di (as described in section 2) can be calculated as Equation (11).

di =
ci
fm

(11)

Besides, Pegasus benchmark requires to consider the transmission time zi between processors: a task
node cannot begin execution until all of its predecessor nodes have completed both their computation,
and the transmission of their output data to the processor on which it is scheduled. Specifically, if
a task node vi and its successor vj are assigned to different processors, then a transmission time is
related to the output data size of vi and the bandwidth of computing environment. If both vi and vj
are assigned to the same processor, the transmission time is considered negligible. This definition of
zi is formalized in Equation (12).

zi =

{
bi

bandwidth , if vi and vj are on different processors
0, if vi and vj are on the same processor

(12)

Our proposed method outputs only the execution order of the nodes, while the assignment of each
node to a processor is determined using the Earliest Finish Time (EFT)-greedy rule. Specifically, for a
given node to be scheduled, which is determined by the RL network, the EFT-greedy rule dispatches
it to the processor that results in the earliest possible finish time. We adopt HEFT [Topcuoglu et al.,
2002] as the advantage baseline for scheduling workflows in the Pegasus benchmark, as a part of the
dense reward estimation. HEFT is a classic list-based heuristic algorithm for DAG scheduling on
heterogeneous processors. It computes the priority (rank-up) of each node based on the average finish
time of its successor nodes, and then assigns each node to a processor using the EFT-greedy rule.

B.2 TPC-H

We adopt TPC-H as the benchmark for DAG workflow scheduling under the homogeneous single-
processor setting. There is no need to dispatch tasks to specific processors in such setting. Each task
node vi has a fixed processing time di and computation resource requirement qi. The total resource
consumption of concurrently running tasks must not exceed the system’s maximum resource capacity.
We use the open source code 3 implemented by Wang et al. [2021] to generate TPC-H instances.
Shortest Time First (STF) heuristic is adopted as the advantage baseline for TPC-H in our research.
At each decision point, the STF rule selects the task with the shortest processing time.

B.3 JSSP

The JSSP is a typical COP where each job consists of a sequence of operations. The operations within
a job must follow a predefined order, forming precedence constraints, which can be modeled into a
DAG. Different from the above-mentioned problem setting, each operation in JSSP must be processed
on a specific machine for a specified duration. The scheduler needs to determine the execution order
of operations that require the same machine but belong to different jobs. Consequently, JSSP is a
special case of DAG scheduling problem. JSSP is often used as a standardized benchmark scenario
for evaluating the performance of DAG scheduling methods, serving to validate their effectiveness on
structurally constrained tasks. We use the code by Zhang et al. [2020] 4 to generate JSSP instances.

Similar with other DAG scheduling tasks, list scheduling can be applied to JSSP. By assigning each
operation a priority value (or priority rank), the execution order of operations that require the same

2https://pegasus.isi.edu/workflow_gallery/
3https://github.com/Thinklab-SJTU/PPO-BiHyb/tree/main/dag_data/tpch
4https://github.com/zcaicaros/L2D/blob/main/DataGen/
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machine can be determined. That is, if multiple operations compete for the same machine, the one
with higher priority is selected to be executed first.

Shortest Processing Time (SPT) heuristic is adopted as the advantage baseline for JSSP. At each
decision point, the SPT rule selects the operation with the shortest processing duration, and it would
start on its designated machine at the earliest feasible time.

C Implementation details

C.1 Input of network

A DAG scheduling problem instance consists of a DAG G = (V,E) and a set of node attributes.
These attributes typically include processing time di, resource or machine requirements, in-degree
and out-degree, among others. Specifically, for DAG workflow scheduling under heterogeneous
multiprocessors environments(as in the Pegasus benchmark), additional attributes include the required
computation workload ci, output data size bi of each node, and the computational capacity of each
processor. For each task node vi, we pack and normalize all these attributes into a vector xi as the
raw feature of vi, which is then fed into the GNN encoder.

C.2 Neural network and hyper parameter settings

We used a Graphormer[Ying et al., 2021] with 4 layers and 4 attention heads. It outputs 64-dimension
node embeddings for each task nodes. The policy network is a 64*64*1 MLP with ReLU activation
function. We train each benchmark for at most 1000 epochs, and the batch size is 16. The logits
regularization rate is 0.001. The Adam optimizer is employed with learning rate 5× 10−4.

C.3 Perturbed logits

We follow Jeon et al. [2023] to introduce Gumbel trick [Kool et al., 2019] when sampling the node
execution order. Instead of treating the original logits output by the policy network as the priority
values of the task nodes, the argmax sampling operation is performed over the comparable antichain
V in=0
t on perturbed logits (formulated in Equation (13)), which follows on Gumbel distribution

(formulated in Equation (14)). Therefore, the sampling becomes more aligned with the underlying
probability distribution formulated in Equation (6).

perturbed_logits(vi) = logits(vi) + Z(vi) (13)

Z(v) = −log(−log p), p ∼ Uniform(0, 1) (14)

C.4 Simulation and evaluation environment

To evaluate the generated scheduling solutions and obtain both the overall optimization objective and
node-level dense rewards, we implemented a DAG workflow simulation environment based on the
open-source SimPy 5 platform based on Python language. This simulator is further wrapped into
an OpenAI Gym6 environment to integrate with reinforcement learning frameworks. It is capable
to simulate all three aforementioned benchmarks, and can be extended to support other scheduling
scenarios if necessary.

D Dense reward signal calculation procedure

Our dense reward is constructed by simulating the entire one-shot generated schedule, and evaluating
the global cost (e.g., makespan). Then, we compute a node-level reward for each scheduled node,
based on its distance to the final cost. Specifically:

5https://simpy.readthedocs.io/en/
6https://github.com/openai/gym
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1. Given a DAG scheduling problem G, we conduct the heuristic advantage baseline algorithm on G,
obtaining each task node’s individual baseline cost Ch(vi).

2. For a sampled solution Solution(G; θ) (i.e., an execution order), we simulate it using a SimPy-
based simulator. and obtain the overall makespan C(Solution(G; θ)) in practice. For each task node
vπ(t), we obtain its individual cost C(St(G; θ)) (e.g., its finish time) through simulation.

3. We obtain the return-like dense reward signal Rt of each task node vπ(t) by comparing the global
objective C(Solution(G; θ)) with individual cost C(St(G; θ)), according to Equation (8).

4. To derive the advantage-like feedback At, we further substract each baseline from Rt, according
to Equation (9).

E Baseline algorithms

Jeon et al. [2023]. Although the original authors did not fully release their source code, the idea
described in their paper is sufficiently clear and straightforward to reproduce. So we implemented
their approach accordingly.

POMO-DAG. We build POMO-DAG upon the POMO 7 proposed by Kwon et al. [2020], adapting
its problem instance encoder to a Graphormer-based GNN[Ying et al., 2021] so that it can process
DAG scheduling problems. The model generates a ranked list of nodes as the scheduling solution.

EGS. For EGS [Sun et al., 2024], the basic framework of the original code is publicly available8.
We retained the original structure and implemented the missing policy network and training procedure
that were not released.

F Additional results on Pegasus benchmark

Due to page limits, additional experimental results on the Pegasus benchmark are presented here in
the appendix, specifically for the LIGO and GENOME datasets (see Table 4 and Table 5, respectively).
Similar to the results on SIPHT presented in section 6, we selected 5 different problem instances
of each dataset (100, 200, 300, 400, and 1000 task nodes). The evaluation metrics include the
optimization objective (makespan, or MS in short), the gap relative to the heuristic baseline (HEFT),
and the run time.

In the LIGO-1000 case, neither our method nor the neural baselines outperformed the heuristic
algorithm. We attribute this to the fact that the result (2373.5) obtained by the heuristic method is
already close to the lower bound of the optimization objective, leaving little room for improvement.

G The impact of heuristic advantage baseline selection

Considering that the selection of heuristic algorithm for advantage baseline might influence the effec-
tiveness of dense reward signal, we conducted experiments comparing multiple heuristic advantage
baselines, including the previously used HEFT, and Critical Path on a Processor (CPOP), Shortest
Finish Time (SFT). The results of the gap related to HEFT in percentage is shown in the following
Table 6, as a complement to Table 1. The results show that our method with different advantage
baseline still outperforms existing methods, and the performance of our method with different heuris-
tic advantage baseline is comparable. We believe this is because the heuristic algorithm provide
constant estimates for each DAG scheduling problem instance, ensuring the advantage estimation is
unbiased. Additionally, these heuristics are near-optimal in many cases, leading to similar schedules.
As a result, the variance reduction benefit is preserved, while introducing little bias.

7https://github.com/yd-kwon/POMO
8https://github.com/binqi-sun/egs
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Table 4: Experimental results on LIGO dataset in Pegasus.

Method LIGO-100 LIGO-200 LIGO-300 LIGO-400 LIGO-1000

MS Gap/% Time/s MS Gap/% Time/s MS Gap/% Time/s MS Gap/% Time/s MS Gap/% Time/s

HEFT (baseline) 217.5 - 0.005 462.9 - 0.014 670.3 - 0.026 959.3 - 0.043 2373.5 - 0.221

Jeon et al. [2023] 217.0 -0.23 0.08 465.1 0.47 0.16 670.8 0.07 0.26 962.8 0.36 0.43 2376.7 0.13 2.39
POMO-DAG 216.7 -0.37 11.43 473.8 2.35 17.50 675.3 0.75 23.04 969.1 1.02 28.48 2382.0 0.36 50.56
EGS 214.2 -1.52 0.98 462.5 -0.09 3.07 669.9 -0.06 5.34 956.9 -0.25 8.75 2373.5 0 55.14

Ours 214.0 -1.61 0.62 462.1 -0.17 0.99 668.8 -0.22 1.20 956.6 -0.28 1.26 2373.5 0 2.59
Ours w/o DR 214.0 -1.56 0.36 464.5 0.34 0.70 670.0 -0.04 1.45 957.9 -0.14 1.93 2375.5 0 2.96
Ours w/o CAI 215.9 -0.94 0.10 462.7 -0.04 0.25 672.1 0.13 0.32 960.4 0.11 0.48 2377.6 0.17 2.12

Table 5: Experimental results on GENOME dataset in Pegasus.

Method GENOME-100 GENOME-200 GENOME-300 GENOME-400 GENOME-1000

MS Gap/% Time/s MS Gap/% Time/s MS Gap/% Time/s MS Gap/% Time/s MS Gap/% Time/s

HEFT (baseline) 2553.1 - 0.005 2373.4 - 0.013 4751.9 - 0.028 3453.2 - 0.043 15016.8 - 0.239

Jeon et al. [2023] 2511.4 -1.63 0.08 2369.9 -0.15 0.15 4755.3 0.07 0.27 3483.2 0.87 0.46 15001.9 -0.10 2.58
POMO-DAG 2472.0 -3.18 11.32 2367.2 -0.26 17.42 4783.2 0.66 22.83 3527.6 2.16 29.04 15005.7 -0.07 50.55
EGS 2475.6 -3.04 0.94 2356.2 -0.72 4.05 4730.0 -0.46 6.43 3453.0 -0.01 9.08 14970.4 -0.31 71.90

Ours 2468.2 -3.32 0.61 2350.5 -0.96 1.00 4728.4 -0.49 1.20 3453.0 -0.01 1.29 14955.8 -0.41 2.79
Ours w/o DR 2507.6 -1.78 0.36 2350.5 -0.96 0.70 4744.1 -0.16 1.45 3453.2 0 1.93 14978.3 -0.26 2.96
Ours w/o CAI 2495.6 -2.25 0.11 2358.6 -0.62 0.22 4734.9 -0.36 0.34 3453.2 0 0.49 14984.2 -0.22 2.37

Table 6: Experimental results on heuristic advantage baseline selection.
Heuristic Method SIPHT-100 SIPHT-200 SIPHT-300 SIPHT-400
ours + HEFT -13.3 -5.42 -0.25 -0.62
ours + CPOP -12.2 -5.42 -0.20 -0.62
ours + SFT -12.8 -4.83 -0.22 -0.62

H Convergence guarantee analysis

Since the optimization of our approach is based on policy gradient, it inherits the theoretical conver-
gence properties of the classical policy gradient framework. Although the convergence performance
in actual usage might be not as perfectly good as that of the classic policy gradient under ideal
conditions, several designs in our method could enhance the stability and convergence behavior in
practice:

• 1. Nodewise dense rewards signal provides a closer approximation of value/advantage estimation
at each decision step.

• 2. The CAI module improves the quality of nodewise decision probability estimation, obtaining
more accurate gradients and hence improved convergence behavior.

• 3. For a given DAG scheduling instance, the results generated by the heuristic advantage baseline
algorithm is fixed across training epochs. This ensures that the advantage estimation is unbiased.

While these designs do not provide formal theoretical bounds, they provide empirical support for
training stability and convergence, as reflected in the performance across diverse testbenches.

I Interpretability analysis

Darvariu et al. [2024] pointed out that one-shot RL methods for combinatorial optimization problems
tend to be less interpretable than incremental solution construction approaches, as they do not strictly
follow the Markov decision process and do not satisfy the Bellman equation in value evaluation.
However, by introducing the dense reward signal, our method improves the interpretability of one-shot
approaches to some extent. Specifically, the nodewise decisions, sampling probabilities and dense
reward signals can be regarded as an entire MDP sampling trajectory in RL (like a trajectory by
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Monte Carlo sampling). This makes the interpretability of one-shot learning closer to MDP-based
incremental approaches than those one-shot methods with sparse rewards.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions of the paper can be found in sections 1, 3 and 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the proposed method in Appendix G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The theoretical proofs are provided in section 4 "proposed method".
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the experiment details in section 6 and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code and how to use it in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe the experimental settings and details in section 6 and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the experimental results in the tables in section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the compute resources in section 6. More details in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and followed the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Potential positive impacts include improved efficiency in computing systems,
as discussed in section 1 and 7. No known negative societal impacts are anticipated at this
stage.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk dataset, code or model is used in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Original papers and codes are cited in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper used LLM only for editing and formatting purpose.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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