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Abstract

Knowledge graphs (KGs) have emerged as a pow-
erful tool for organizing and integrating complex
information, making it a suitable format for sci-
entific knowledge. However, translating scientific
knowledge into KGs is challenging as a wide va-
riety of styles and elements to present data and
ideas is used. Although efforts for KG extraction
(KGE) from scientific documents exist, evalua-
tion remains challenging and field-dependent; and
existing benchmarks do not focuse on scientific
information. Furthermore, establishing a general
benchmark for this task is challenging as not all
scientific knowledge has a ground-truth KG repre-
sentation, making any benchmark prone to ambi-
guity. Here we propose Graph of Organic Synthe-
sis Benchmark (GOSyBench), a benchmark for
KG extraction from scientific documents in chem-
istry, that leverages the native KG-like structure
of synthetic routes in organic chemistry. We de-
velop KG-extraction algorithms based on LLMs
(GPT-4, Claude, Mistral) and VLMs (GPT-4o),
the best of which reaches 73% recovery accuracy
and 59% precision, leaving a lot of room for im-
provement. We expect GOSyBench can serve as
a valuable resource for evaluating and advancing
KGE methods in the scientific domain, ultimately
facilitating better organization, integration, and
discovery of scientific knowledge.

1. Introduction
Knowledge graphs (KGs) have emerged as a powerful tool
for representing and organizing complex information, en-
abling efficient storage, retrieval, and analysis of data across
various domains (Hogan et al., 2021). The extraction of
knowledge graphs from unstructured data sources, such as
text documents, has gained significant attention in recent
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years due to its potential to unlock valuable insights and
facilitate knowledge discovery. KGs have also recently been
used in Retrieval-Augmented Generation (RAG) pipelines
(Abu-Rasheed et al., 2024), as a strategy to ground text gen-
eration from large language models (LLMs) with domain-
specific facts, thus improving performance across tasks
(Khattab et al., 2023; Khattab & Zaharia, 2020).

1.1. Extraction of Knowledge Graphs

The field of Knowledge Graph Extraction (KGE) has wit-
nessed substantial progress, with numerous approaches be-
ing developed to automatically construct KGs from textual
data. These methods range from rule-based systems to ma-
chine learning-based techniques, and more recently, LLM-
driven extraction (Meyer et al., 2023; Shu et al., 2024). Sev-
eral benchmarks have been proposed to evaluate the perfor-
mance of KGE systems, from open-domain ones like Open
Graph Benchmark (Hu et al., 2020) and Text2KGBbench
(Mihindukulasooriya et al., 2023), to more field specific
ones like PharmaKG for biomedical data mining (Zheng
et al., 2020). These benchmarks focus on evaluating al-
gorithms on the extraction of specific facts from short
sentences or paragraphs, while extraction from complete
documents, and specially scientific ones, remains largely
untested.

Scientific literature contains a wealth of knowledge that
can be represented in KGs, the extraction of which would
enable more efficient knowledge integration and facilitate
discovery. Excellent efforts have been made to extract spe-
cific types of scientific information, such as entities and
relations in chemical literature (Lowe & Sayle, 2013; Swain
& Cole, 2016; Mavračić et al., 2021). While these advances
have enabled the extraction of influential reaction datasets
(Lowe, 2012), they are tailored to patents, which have a
more standardized format and contain less scientific details
as journal papers do. Moreover, these methods focus on ex-
tracting single reactions or short sequences, mostly ignoring
the underlying network of objects and concepts originally
expressed in the texts.

The lack of benchmarks specifically designed for evaluating
KGE in science poses a challenge, as the diverse nature of
scientific knowledge and the absence of ground-truth KGs
make it difficult to establish a standardized evaluation frame-
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Figure 1. Example Knowledge Graph and evaluation strategy. a. Shows the data representation used for the task, where each node Si
in the directed graph represents abstractly a substance, and each edge V (i → j) expresses that substance Sj is used in a reaction that has
substance Si as a product. The goal of the KG is to accurately represent the information presented in the paper. b. Evaluation methodology
followed in this work. c. Summary statistics of the resulting dataset. These highlight aspects critical to graph complexity, like number of
substances (nodes), maximum path length, number of head nodes (indegree(Si) = 0), among others. d. Algorithm developed for KGE.

work. The heterogeneity of scientific literature, with its wide
range of domains, writing styles, and presentation formats,
further complicates the development of a comprehensive
benchmark.

1.2. KGs in Organic Chemistry

A knowledge graph is defined generally as a graph of data,
intended to convey knowledge. Here, nodes represent enti-
ties of interest and edges represent relations between these
entities (Hogan et al., 2021). As such, synthetic sequences
in Organic Chemistry are susceptible of being represented
under such a structure.

Research in synthetic organic chemistry (OC) focuses very
generally on the synthesis of organic compounds through
a suitable sequence of reactions. Under this conception,
substances are concepts that are connected through reactions
as relationships. Each substance may serve as product or
reactant for a multitude of different reactions, leading to the
natural definition of networks of chemical reactions. This
has previously been studied under different models with
different levels of depth (Fialkowski et al., 2005). This bare

abstraction defines the backbone of a KG, and is this native
KG-like structure makes OC an ideal domain for exploring
KGE techniques.

But reactions –defined as an experimentally executed trans-
formation that leads from one substance to another– are
not the only type of relationships that may exist between
substances. In research works in OC, substances are synthe-
sized not only because they will be directly used as building
blocks for the synthetic targets, but some are synthesized
also to serve as model systems for more complex and valu-
able structures, some are synthesized but paths need to be
abandoned due to unsuccessful reactions, and sometimes
even substances are synthesized to facilitate structural eluci-
dation of their precursors. Indeed, many more relationships
are built on top of the reaction-graph backbone, that are
of interest for organic chemists: these go beyond to in-
form about strategic aspects of synthesis and multi-level
chemistry-driven decision processes.

This work focuses mainly on the extraction of the main
backbone from research papers. These are typically given
in papers’ Supporting Information (SI) files, and contain
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detailed descriptions of synthetic routes and experimental
procedures. These documents exhibit a wide variety of
representations, designs, and conventions, making it chal-
lenging to extract consistent and comprehensive KGs, see
Appendix A for examples. Despite the heterogeneity in
the representation of OC knowledge, the underlying struc-
ture remains the same: a network of chemical reactions
and synthetic plans. This property allows for the definition
of a ground-truth KG, making OC a suitable domain for
developing and evaluating KGE methods in science.

In this paper, we propose GOSyBench, a benchmark for
KGE from scientific documents in the domain of organic
chemistry. By leveraging the native KG-like structure of
synthetic routes, we aim to provide a standardized eval-
uation framework for assessing the performance of KGE
algorithms in extracting scientific knowledge. Our KG on-
tology defines substances as entities, with reference key and
substance name as properties, that are connected by reac-
tions as relationships. Furthermore, we develop novel KGE
algorithms based on LLMs, and conduct extensive exper-
iments and ablation studies to validate their effectiveness
using our proposed benchmark.

2. Methods
2.1. Guidance / structured output generation

Despite their usefulness in various domains, one of the lim-
itations of LLMs is their incapacity to generate consistent
and controllable outputs that fit use-case specific guidelines.
Recent research has focused in steering LLM generation
through the enforcement of grammars in the resulting gen-
erations (Rebedea et al., 2023; Khattab et al., 2023). This
not only helps steer models towards non-harmful outcomes,
but also enables tool usage in agent-like scenarios (Boiko
et al., 2023; M. Bran et al., 2024) and facilitates parsing of
the results and integration in existing software (Liu, 2024).

2.2. Benchmark dataset curation

The dataset curation pipeline used involved a combination of
automated knowledge extraction and expert human labeling.
Initially, 24 Supplementary Information files (SIs) on total
synthesis were manually selected from the Journal of the
American Chemical Society (JACS), with the format and
content of their SI used as a criterion. The SIs were selected
such that the obtained sample represents a wide variety of
text formatting, varying use of visual elements, order and
location of relevant sections, among others, see Appendix
A for examples.

The SIs were then processed using the KGE method pre-
sented in Section 2.3, resulting in a collection of 24 knowl-
edge graphs, where each contains an approximation to the
complete network of chemical reactions expressed in the SI.

The processed then continued with manual curation, which
generally involved node relabeling, node creation/removal,
and edge creation/removal. The resulting objects are di-
rected graphs, with individual substances as nodes, and
reactions as edges. Some statistics of the dataset are de-
scribed in Figure 1, which highlights the size and overall
complexity of the KGs being extracted.

2.3. KGE method

The Knowledge Graph Extraction method developed for this
work has several steps, as shown in Figure 1d. Initially, the
SI PDF is pre-processed to select the relevant sections de-
scribing the reaction procedures, as explained in more detail
in Appendix B. This aims to lower the amount of text that
needs to be processed in the steps following, and prevents
errors by erroneous addition of spurious nodes to the graph.
The PDF is then processed into text and split into single text
segments describing chemical reactions. Two methods were
tested for this: one based in rule-based text parsing from
PDF, and one based in Vision-Language Models (VLMs),
namely the recent GPT-4o by OpenAI. The latter method
was implemented in view of the variability of representa-
tions and interleaved use of visual elements observed in SIs,
as shown in Appendix A.

Resulting reaction blocks are then each processed individu-
ally by an LLM-powered generation pipeline, that detects
and extracts all the substances declared in the input reac-
tion. Each of these substances is represented as a struc-
tured object containing three main properties: reference key,
substance name, and role in reaction. Each collection of
substances is converted into a reaction unit, a structured
object resembling a node in a tree, where the head node
is the product of the reaction and the children are all the
substances with a role different than product.

Finally, a graph is constructed by connecting all the different
reaction unit objects, using each substance’s reference key
as the node label.

The reported benchmark was used to perform ablations on
3 of the design choices for the algorithm, namely to test the
effect of SI preprocessing to select relevant sections, the use
of rule-based or vision-based PDF parsing, and the choice
of LLM used for structured object generation. The results
are shown in Figure 2.

2.4. PDF Parsing methods

Two parsing methods have been tested in this work. One is a
simple, rule-based algorithm that is based on general obser-
vations from the structure of SIs in organic chemistry papers,
while the other is fully driven by a Vision-Language Model
(VLM), which aims to recover information by directly pro-
cessing documents as humans would read it, without loss of
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visual elements.

2.4.1. RULE-BASED — TEXT

This approach consists of parsing the input PDF file using
the PyMuPDF package (noa), which yields the complete
text from the PDF, including titles and paragraphs, but also
formatting details such as bold letters. Unfortunately it also
includes spurious formatting details like page numbers and
side notes from journals. Using this information, the text
is split using ”long sequences of bold letters” as a splitting
criteria, which leads to a list of text segments. The idea
behind this parsing is that most authors state products in
bold font with the name of the product (IUPAC, or simply
a reference name), followed by a reference key, and then
proceed with the description of the reaction procedure in
normal font (see Appendix A). This pattern is somewhat
consistent and in some cases leads to very nicely parsed
documents.

2.4.2. IMAGE-BASED — VISION

The effectiveness of the rule-based method above is endan-
gered by the variety of formats and representation styles
that authors decide to use in their papers, as shown in the
Appendix A. Understanding of these documents is heavily
dependent on the reader’s ability to interpret the visuals
and contrast them and connect them with the text, thus the
purely rule-based method falls short in some cases.

Leveraging the recent advances in VLM research, we pro-
pose directly using one such model for this task. In partic-
ular, we use the recently released GPT-4o, one of the most
powerful end-to-end Large Multimodal Models (LMMs)
from OpenAI.

The pipeline starts with the conversion of the input PDF
into a suitable format, and for this we simply convert each
page from the PDF into a png image using the pdf2image
package (Belval, 2024). The images are then processed into
overlapping batches of images, each batch in a single VLM
call. This process ensures that the VLM sees a more global
structure of the paper and thus has better context to give an
appropriate response.

The VLM is then queried with all the images from a batch
and a prompt with instructions (see Appendix C). The ex-
pected output of this is a summary of the relevant informa-
tion for each reaction the VLM can identify in the image
context; each reaction separated by a given separator token.

2.5. Evaluation metrics

A wealth of methods exist to compare graphs, each suitable
for certain sets of use cases (Thompson et al., 2022; Shi-
mada et al., 2016; Hartle et al., 2020). These include direct
comparison of the node or edge sets, subgraph matching,

spectral analysis, and the use of graph kernels, among oth-
ers. In this work, we take an approach based on subgraph
matching, that aims to capture the similarities relevant to
synthetic routes in organic chemistry.

Appealing to the specific structure of the types of graphs
used in this work, namely directed graphs with mostly a
tree-like structure, we use 3 metrics based on the ratio of
paths shared between the compared graphs, as shown in
Equation 1.

S(G,G′) =
1

|G|
∑

p∈PS(G)

∑
p′∈PS(G′)

1p=p′ (1)

Where PS(G) defines the set of all the linear paths p in G,
and the 1p = p′ operator is defined as 1 if the condition
p = p′ is met, 0 otherwise. The key difference between
the methods used here is the definition of the equivalence
operator =, which can take multiple forms depending on the
property of interest. In particular, two options are defined:
exact match and preservation of partial order. Exact match
directly compares the two paths based on the exact sequence
of nodes defined by each. This method thus directly mea-
sures to what extent the exact KG is reconstructed from
documents.

The second method aims to capture a more nuanced struc-
ture in the retrieved KGs, through a slightly less strict com-
parison metric based on ordered sets. In this method, two
paths are considered equivalent if the order relationships
defined by each path are preserved in the other. Take for
example the following two paths

p0 = 6 → S2 → 7

p1 = 6 → 7

Where p0 defines the order 6 ≻ S2 ≻ 7. In this example,
p0 ̸= p1 under exact match, however they are under the PO
equivalence as the order relationship 6 ≻ 7 exists in both
paths. Such a less strict definition is particularly relevant
in our case as it is typical in SIs to describe the formation
of an intermediate and continue using it ”without further
purification”. In these cases, the complete sequence p0 with
intermediate S2 may be reduced by the extraction models
to p1, which is not necessarily incorrect however missing
some information.

A last method is used, which uses exact match as equiv-
alence operator, but both G and G′ are preprocessed to
remove the leaves (nodes with outdegree(n) = 0), thus
only comparing the backbone of the synthetic tree without
considering reagents. Figure 1b shows such removed nodes
in yellow, and the nodes belonging to the backbone in red.
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3. Results
The proposed benchmark was used to perform ablations
on 3 of the components of the KGE algorithm described
in Section 2.3. Namely, we assess the effect of SI prepro-
cessing (Appendix B), the parsing of PDFs using a rule-
based approach, or directly through Vision-Language Mod-
els (VLMs), and the choice of LLM for parsing of reaction
descriptions into formatted reaction units. In addition, we
evaluate the performance of multiple LLMs from different
providers on the latter task across multiple metrics using a
more specific benchmark, aimed at selecting suitable LLMs
for this task, without the need to execute the whole extrac-
tion pipeline.

3.1. KGE Benchmark

The aim of these experiments is to determine the effectivity
of a given system at extracting a KG in the required for-
mat, not only at assessing the capabilities of LLMs, hence
2 binary variables are ablated that deal with document pre-
processing, parsing and chunking. The latter is the LLM
used, however here we have restricted ourselves to only test-
ing models provided by OpenAI, mainly due to rate limit
constraints from the other providers.

In Figure 2 we display the per-paper performance for each
variation of the system in Figure 1d, across six metrics, all
different forms of accuracy (left column=) and precision
(right column) of synthetic path recovery. The upper row
shows the results on exact path reconstruction, middle row a
more relaxed version of this based on comparing the orders
defined by each path, and bottom row compares the pruned
graphs, assessing the similarity between the tree backbones;
see Section 2.5 for details.

For each comparison method, S(GEX , GGT ) measures the
system’s ability to reconstruct Ground Truth paths — highly
important for organic chemistry as it defines the specific
sequence of reactions, while S(GGT , GExtracted) measures
the precision or ”purity” of the resulting graphs, thus also
accounting for erroneous introduction of nodes or edges in
the extraction process.

The results show that the overall performance varies widely
as a function of the paper, which is to be expected given
the high variability in styles and formats used in these docu-
ments (see Appendix A). A systematic difference is found
between the 2 models tested, with a clear advantage for
GPT-4-turbo, the most advanced model, especially on re-
construction accuracy. The gap is nevertheless reduced in
reconstruction precision which, as will be shown in the next
section, can be attributed to the smaller model being better
at detecting wrong inputs, thus introducing less noise into
the extracted KG.

Interestingly, comparing the pruned graphs demonstrates

GPT-3.5’s poor performance on precision, with most values
below 0.1, however the corresponding accuracy is relatively
high, even surpassing GPT-4 based methods on the same
metric. Such results imply that smaller models perform
poorly in general conditions, however the information re-
covered by these is typically valid. More advanced models
seem not to have a strong filter and generate valid struc-
tured outputs despite noisy filters, which in turns generate
accurate but noisy KGs. These observations will be further
elaborated in the following section.
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Figure 2. Results from Knowledge Graph Extraction bench-
mark. System performance on GOSyBench for multiple system
ablations. The two main columns show accuracy (left) and preci-
sion (right). Each sub column shows the result for PDF parsing
methods text-based (left) and vision-based (right). Rows present
different metrics used for graph comparison, and the color distin-
guishes between SI pre-processing methods.

From the results presented here it seems that using vision
models like GPT-4o (columns in Figure 2), or preprocessing
the document before to select the most relevant parts of the
SI (colors in Figure) do not improve the system’s perfor-
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mance. Vision only helps slightly improve the accuracy of
the system when a smaller model is used, however such
system still underperforms relative to the larger GPT-4.

A more in-depth exploration of the results is needed to
determine how to best leverage vision models for this task.

3.2. LLM Performance across tasks

To assess the effect of the choice of LLM in the KGE
method developed in this work, another benchmark with
a narrower scope was produced. The benchmark aims to
assess LLM’s abilities to recover specific information from
reaction description text samples. This involved the creation
of 3 smaller datasets, each designed to test the models at
specific tasks, namely ability to recognize and retrieve the
correct product and reactant sets, ability to produce empty
responses whenever a non-reaction text is given, and the
ability to correctly retrieve the reference key of substances.

All of these are elements of utmost importance for the al-
gorithm’s success at reconstructing a paper’s KG, as failure
to correctly perform these contaminates the resulting KG
with spurious nodes and edges, and leads to the loss of real
nodes and edges.

For the sake of completeness and ease of implementation,
we have tested LLMs from 3 API providers, namely OpenAI,
Anthropic and Mistral. Moreover, the models tested span a
wide range of sizes and scores on standard benchmarks ().
As shown in Figure 3, the top-performing model in terms of
product and reactants retrieval accuracy is gpt-4-turbo, on
of the most advanced models as shown by benchmarks, in
terms of reasoning capabilities. Nevertheless, other models,
some smaller and far cheaper, perform almost on-par with
gpt-4 on this metric (mistral small and medium, mixtral
8x7b, all claude models).

Surprisingly, the ”smarter” models do not perform as good
on other tasks, particularly ”Wrong inp” and ”Key exact”.
Smaller, less poweful models, like mistral-small, mixtral-
8x7b and gpt-3.5-turbo do better in rejecting wrong inputs
than their more advanced counterparts despite their less
developed reasoning capabilities. An important observation
is that, when given a non-reaction text, smaller models give
an error as they fail to find the requested information and
fail to produce an answer in the requested format, thus being
caught as exception during model validation. In counterpart,
larger models tend to give a response, despite the input text
not containing the desired information, typically through
hallucinations.

In spite of these observations, the ablations in Section 3.1
have been performed only with OpenAI models as we had
higher rate limits, allowing us to perform multiple experi-
ments concurrently.

LLM Performance on individual tasks

Figure 3. Capability-specific benchmark for LLMs. The perfor-
mance of multiple LLM across multiple scales and providers is
shown. Models are evaluated on 4 metrics: Prod ret evaluates
the accuracy of retrieving the correct product name from an input
paragraph (which involves separating product name from its refer-
ence key), React ret evaluates the same, for retrieval of reactants
used in the described reaction, Wrong inp assesses how good
the models are at rejecting inputs that do not describe a chemical
reaction, and Key exact evaluates the ability of models to output
the exact reference key for products.

4. Conclusions
We have proposed a novel benchmark for knowledge graph
extraction in science from full papers. We exploit the native
KG-like structure of synthetic organic chemistry and pro-
pose a benchmark with 24 manually curated papers. This
benchmark is continuously growing to incorporate more
high quality samples of challenging papers. We developed
an LLM-based algorithm for KGE and evaluate each indi-
vidual part using a small, handcrafted benchmark to test
the capabilities of LLMs for each specific task, and find
that advanced models have better recall of input context,
however smaller models are advantageous to detect text that
can not be identified as a reaction, thus not contaminating
the generated KG with spurious nodes. Finally, we per-
form ablations on our algorithm and show that the usage
of Language-Vision Models (LVMs) does not directly im-
prove the system’s performance, despite having empirical
reasons to believe so. Overall, there is still a lot of room for
improvement as our algorithms reach a maximum of 73%
average in accuracy, and 59.7% in precision. More work
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needs to go into desiging and optimizing algorithms for this
task, however we believe the release of GOSyBench sets
the field into the right direction by providing a challenging,
diverse and high-quality dataset for benchmarking.

5. Future work and outlook
The efforts presented here deal with the extraction and evalu-
ation of the reaction networks from chemistry papers, which
is only the backbone structure of a much richer KG for
organic chemistry. However as discussed in Section 1.2, ad-
ditional relationship types between substances are implicitly
reported in papers, such as failed reactions and abandoned
synthetic plans, use of substances as model systems, among
others. All these are important details that describe not only
a successful route to a target substance, but encode also
the difficulties, lessons, and other valuable insights that are
reported in chemistry papers. From early experiments, we
have found that extracting such new connections is possible
with LLMs thanks to their summarizing and reasoning ca-
pabilities. Achieving such a milestone has the potential to
unlock promising advances in reaction search and chemical
knowledge retrieval in general.

In addition to this, the currently presented ontology can
further be enhanced with additional substance properties
reported in papers. Starting with extraction of the SMILES
strings for each molecule (Mavračić et al., 2021; Rajan et al.,
2021; 2023), along with yields, scalability, and analytical
results, the resulting KGs can continuously be populated
with more substance-specific details to better represent the
knowledge in papers.

Additionally, papers report multiple visualizations that dis-
play different views, or highlight different aspects of the
molecules and reactions in question. The interplay between
text and image modalities is strong in papers, and leverag-
ing VLMs will be an essential step towards better KGE in
chemistry, as has been shown in this work.
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A. Supplementary Information Files
A typical practice in organic chemistry publishing is having
Supplementary Information files (SIs) where all information
regarding experimental procedures, analytical results, and
sometimes computational and theoretical predictions, are
reported. In these documents, which all share a general
underlying structure, reactions are described with references
to other substances in the same document, with a notation
shared between the SI and the main manuscript. Hence, a
numeration scheme exists for the substances in each paper
that can be followed to find the experimental procedure
for the preparation of any compound synthesized as part
of the research work. Despite of this homogeneity, large
differences are noticeable, as is evident from figures 4, 5
and 6.

As these examples show, representations and formats are
far from standardized. The SI displayed in Figure 4 shows
a common format: compound name and reference in bold,
accompanied by the molecular structure of the product sub-
stance, and followed by the reaction procedure. Notice
however that a subsequent reaction is described directly in
the same paragraph, without announcing the next product.

Figure 5 shows an SI with a heavier use of visual elements,
where colored marbles are used to reference individual steps
in a short reaction sequence. The marbles are then used
throughout to refer to specific intermediates, with no refer-
ence in text to the products’ reference keys. Lastly, Figure
6 shows another example where the product is not directly
announced in the text, but rather a new reaction procedure
is presented after a graphical depiction of the reaction in
question, making it impossible for a text parser to grasp this
information.

B. SI Preprocessing
SIs in chemistry research papers contain many sections,
however the one of interest for this work is the part on
Experimental Methods. For our purposes, it may make
sense to extract the most relevant parts of the document
and process only that, however no naming convention or
guidelines exist for this, making it difficult to identify and
isolate the specific sections.

To address this, we develop a simple rule-based method to
identify the relevant sections, partially inspired by ?. For
this, we rely on the observation that reaction descriptions
typically follow the pattern ”reaction setup → workup →
analytics”, as the example below. As can be seen, the analyt-
ics section has a higher ratio of certain special and numeric
characters relative to other parts of the text.

To a solution of alkene 5 (266 mg, 0.92 mmol,
1.0 equiv.) in DCM (30 mL) was bubbled ozone

Figure 4. Example of an SI. Taken from https://pubs.acs.
org/doi/10.1021/ja074300t. This example shows

(40mixture was purged with air at -78 °C followed
by addition of PPh3 (250 mg, 0.95 mmol, 1.0
equiv.). The mixture was warmed up to room
temperature slowly, and stirred at the same tem-
perature for 12 h. After removal of the solvent,
the residue was purified by a flash column chro-
matography on silica gel (hexane/EtOAc = 5 : 1
to 3 : 1) to give compound 6 as a colorless oil
(173 mg, 65inconsequential 1.05: 1 mixture.
Rf = 0.25 (hexane/EtOAc = 8:1, PMA); [α]21
D = - 4.44 (c 1.31, CHCl3); 1H NMR (400 MHz,
CDCl3) δ 9.77 – 9.70 (m, 1.69H, overlap), 2.63 –
2.48 (m, 2.21H, overlap), 2.42 – 2.18 (m, 9.27H,
overlap), 2.18 – 2.06 (m, 3.58H, overlap), 2.00 –
1.82 (m, 5.93H, overlap), 1.82 – 1.72 (m, 4.72H,
overlap), 1.71 – 1.60 (m, 3.95H, overlap), 1.58 –
1.49

To leverage this, we split the complete document into sen-
tences, and then calculate the ratio of special characters to
normal letters for each. Plotting the values of these ratio
with the line index in the x-axis, patterns like those in Figure
7 are apparent. An alogrithm is also applied for smoothing
and performing selection by selecting the longest region
with a prominent signal as the ”relevant” SI. We find that
this strategy generally leads to an accurate selection of the
relevant parts.
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Figure 5. Example of an SI. Taken from https://pubs.acs.
org/doi/10.1021/jacs.1c01356. This example shows

C. VLM
The following prompt was used as a template to pass the im-
ages to GPT-4o for the vision-based parsing method exposed
in Figure 1.

These are some pages from the SI of an or-
ganic chemistry paper. Describe all the reac-
tions shown there, if any. Separate each reac-
tion with {SEPARATOR}, describe products and
reactants for each reaction. Ignore all characteri-
zation data. Consider work-up and purification as
part of the same reaction. Use the following for-
mat to represent the products and main reactants:
{SUBSTANCE FORMAT}. Do not rewrite the
reaction procedures, just describe the substances
involved.

Figure 6. Example of an SI. Taken from https://pubs.acs.
org/doi/10.1021/jacs.3c01991. This example shows

Figure 7. SIs were processed like this. Based on the frequency
of special characters etc. Based on the observation that, most
commonly, text-summaries of analytical data are given after the
end of each reaction, giving a distinctive signal to each line in the
document, producing more or less a spectrum that can then be
analysed and processed.
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