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ABSTRACT

Retrieval-augmented generation (RAG) systems have shown promise in improving
task performance by leveraging external context, but realizing their full potential
depends on careful configuration. In this paper, we investigate how the choice of
retriever and reader models, context length, and context quality impact RAG per-
formance across different task types. Our findings reveal that while some readers
consistently benefit from additional context, others degrade when exposed to irrele-
vant information, highlighting the need for tuning based on reader sensitivity to
noise. Moreover, retriever improvements do not always translate into proportional
gains in reader results, particularly in open-domain questions. However, in spe-
cialized tasks, even small improvements in retrieval can significantly boost reader
results. These insights underscore the importance of optimizing RAG systems by
aligning configurations with task complexity and domain-specific needs. 1

1 INTRODUCTION

Retrieval-augmented generation (RAG) (Chen et al., 2017; Lewis et al., 2020) is a technique widely
applied to enhance the performance of top-performing LMs on knowledge-intensive generation tasks
like document-based question answering (Karpukhin et al., 2020). Given a question, the technique
uses a retriever model to obtain relevant passages from a corpus. These passages are then inputted to
a reader model as context for answering a given question.

Although using RAG supposedly helps LMs generate “more specific and factually accurate responses”
(Lewis et al., 2020), we show that, in practice, achieving the greatest benefits from RAG requires
careful configuration of all components in the RAG pipeline. Existing literature provides mixed, even
contradictory, suggestions for configuring RAG. While some early works suggest that providing more
retrieved passages results in strictly better outputs (Izacard & Grave, 2021), others find there is a
limit to that phenomenon as model performance saturates after some number of contexts (Liu et al.,
2023). In fact, some find that providing a select set of passages (Asai et al., 2022), sentences (Wang
et al., 2023), or tokens (Berchansky et al., 2023) outperforms providing as many contexts as possible.
Others find that reader model performance declines (Cuconasu et al., 2024; Jiang et al., 2024) as the
number of contexts gets too large. The complexity of choosing the number of passages is only one
aspect of RAG configuration among many that we cover in our analysis framework.

To provide more concrete suggestions of the best practices under various cases, we introduce an anal-
ysis framework, RAGGED, short for “retrieval augmented generation generalized evaluation device”,
to study RAG configurations on a suite of representative document-based question-answering (DBQA)
tasks, including open-domain datasets that are single-hop and multi-hop questions (Kwiatkowski
et al., 2019; Yang et al., 2018), and special-domain questions from the biomedical domain. We cover
a broad range of models to ensure a comprehensive analysis: for retrievers, we incorporate both
sparse and dense retrievers; for readers, we cover proprietary API models such as GPT (Brown et al.,
2020) and CLAUDE (Enis & Hopkins, 2024), as well as open-checkpoint models including FLAN
(Chung et al., 2022; Tay et al., 2023), LLAMA (Touvron et al., 2023b) families.

In this paper, we address the following key research questions (Figure 1):

R1: When does RAG improve performance over the no-context baseline?(§4) We explore whether
RAG consistently enhances reader performance across different reader models and datasets. This

1Code and data for our RAGGED framework is available at https://anonymous.4open.science/r/ragged-05BD
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irrelevant information §6

Figure 1: Roadmap of what our framework RAGGED analyses across the RAG pipeline.

analysis seeks to identify the specific scenarios — such as particular readers or question types —
where RAG provides a clear advantage over closed-book generation, or whether its benefits are more
situational.
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Figure 2: While some readers exhibit ‘peak-then-
decline’ (left), others exhibit ‘improve-then-plateau’
behavior (right) with increasing number of contexts.

R2: How do reader models respond to
an increasing number of context docu-
ments?(§5) Building on R1, we investigate
how reader performance is affected by the
amount of context provided. Specifically,
we examine whether adding more context
passages improves model accuracy, leads to
diminishing returns, or even degradation in
performance due to too much noisy informa-
tion (Figure 2).

R3: How robust are reader models to ir-
relevant information when relevant infor-
mation is present or absent?(§6) While R2
examines the effect of increasing context, it
does not account for the quality of the context provided. In real-world scenarios, retrieved documents
often contain both relevant and irrelevant information. We assess how reader models perform on data
slices where relevant information is present and on slices where it is absent. This analysis is crucial
for understanding model robustness to irrelevant information.

R4: How does retriever choice impact reader performance across question types and do-
mains?(§7) To understand the impact of context quality from another perspective, we evaluate the
effect of retriever model choice (i.e., sparse or dense) on reader performance across different question
types (e.g., single-hop, multi-hop, and domain-specific questions). This investigation aims to identify
the retriever-reader combinations that yield the best results depending on the task and domain.

In summary, our study provides actionable insights into when and how RAG can be effectively
applied, offering guidance for configuring RAG systems to maximize their advantages. We introduce
a reusable framework that can easily be used to analyze new retriever and reader models as they evolve.
We release our full dataset and code, aiming to provide the community with a deeper understanding
of the nuanced interplay between context quantity, quality, and model architecture in RAG systems.

2 THE RAGGED FRAMEWORK

In our analysis, we vary three key aspects:

1. RAG system components: We use three retrieval approaches: (1) BM25 (Robertson et al., 2009),
a sparse retriever based on lexical matching; (2) ColBERT (Santhanam et al., 2021), a dense
retriever using neural embeddings; and (3) Contriever (Izacard et al., 2022), an unsupervised dense
retriever leveraging contrastive learning for efficient document retrieval. For readers, we examine
closed-source models from the GPT and CLAUDE families, and open-source models from the
FLAN, LLAMA2, and LLAMA3 families.
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2. Number of retrieved passages (k): We vary the number of retrieved passages from 1 to 50, with
most insightful variations occurring before k = 30.

3. Data slices based on retrieved passage quality: Passage quality refers to the presence of “gold”
passages, i.e., ground-truth passages, in the top-k retrieved set.

We share the exact prompt in Appendix B.

3 EXPERIMENTAL SETUP

In this section, we describe the experimental setup, including the retriever and reader models, datasets,
and evaluation metrics used to assess the performance of different RAG configurations.

3.1 RETRIEVER

We experiment with: (1) a sparse, lexical retriever and (2) a dense, semantic retriever.

BM25 BM25 (Robertson et al., 2009) is a probabilistic retrieval model that estimates passage
relevance via term weighting and passage length normalization. It relies on term-matching and is
supposed to be relatively proficient at identifying lexical similarity, especially in special domains.

ColBERT One of the best-performing neural-based retrievers is ColBERT (Santhanam et al., 2021),
i.e., contextualized late interaction over BERT. ColBERT uses contextualized embeddings instead of
term-matching as in BM25, and is supposed to be relatively suited for identifying semantic similarities
between queries and passages.

Contriever Contriever (Izacard et al., 2022) is an unupservised, dense retrieval model. Contriever,
like ColBERT, is also a dense retriever, but focuses more on overall semantic similarity instead of
fine-grained matching by operating at the document level instead of the token level.

3.2 READER

We analyze closed-source models from the GPT and CLAUDE families and open-source models from
the FLAN and LLAMA families.2

FLAN The FLAN models are encoder-decoder models. We use the FLANT5-XXL (Chung et al.,
2022) with 11B parameters and FLAN-UL2 (Tay et al., 2023) with 20B parameters, both with a
context length of 2k tokens. FLANT5-XXL is an instruction-tuned variant of the T5 model (Raffel
et al., 2023). FLAN-UL2 (Tay et al., 2023) is an upgraded T5-based model that is trained with
Unifying Language Learning Paradigm, a pertaining process that uses a mixture-of-denoisers and
mode switching to improve the model’s adaptability to different scenarios.

LLAMA We use 7B and 70B LLAMA2 models (Touvron et al., 2023a;b) and the 8B and 70B
LLAMA3 models. The LLAMA2 models have a context length of 4k tokens while LLAMA3 models
have double the context length to 8k tokens. The LLAMA3 models have three major differences:
(1) They use grouped query attention, which groups query heads to understand similar information
better, (2) Their vocabulary size is four times larger than that of LLAMA2, (3) They are trained on a
seven times larger dataset than the LLAMA2 training corpus.

GPT We mainly use GPT-3.5-turbo model (Brown et al., 2020). This model has a context length
of 16k tokens and is a closed-source API model, so further details about model configurations are
unknown. We also evaluate GPT-4O which has a context length of 128,000 tokens. However, due to
the high cost, we only evaluate it on a small subset of experiments in Appendix K.

2While stronger LMs are available, we use ones with more affordable inference costs to allow for a large
number of experiments over long contexts.
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CLAUDE We use CLAUDE-3-HAIKU, which is Anthropic’s fastest and most compact model (Enis
& Hopkins, 2024). The context window of 200k tokens is the largest of all the models we compare in
this paper, but the model size is unknown since the model is closed-source.

3.3 DATASETS

We adopt three DBQA datasets from various domains (Wikipedia, biomedical) and of various
complexity (single-hop, multi-hop). More details are at Table 3 and Table 4.

Natural Questions We choose Natural Questions (NQ) (Kwiatkowski et al., 2019), a Wikipedia-
based dataset, to examine how models perform on generic, open-domain, single-hop questions. NQ
questions are actual user-search queries on Google. We adopt the KILT version (Petroni et al., 2021)
of the dataset, which provides one short phrase answer and at least one gold passage for each question.

HotpotQA We choose HotpotQA (Yang et al., 2018), a multi-hop, Wikipedia-based dataset,
to examine how effectively models can identify multiple signal passages and reason over them
simultaneously. Each question requires reasoning over at least two passages to answer.

BioASQ We choose BioASQ’s Task 11B (Krithara et al., 2023), a PubMed-based dataset, with
biomedical questions to examine how models perform on special-domain questions. Our evaluation
dataset is a compilation of the BioASQ Task 11B training and golden enriched set.

3.4 METRICS

Retriever Metric We evaluate retrieval performance using the recall@k metric, following Petroni
et al. (2021). Recall@k measures the fraction of ground-truth passages among the top-k retrieved
passages for a given query.

Reader Metric We use unigram F1, which quantifies the overlap of unigrams in the reader output
and gold answer(Petroni et al., 2021). For each query, we compute the F1 score of the reader output
against the list of gold answers and report the highest score. We also demonstrated a LLM-based,
semantic metric using Kim et al. (2024) to evaluate correctness on a small subset and find the trends
we observe using F1 still hold Appendix H.

4 WHEN DOES RAG SURPASS THE NO-CONTEXT BASELINE?

Although RAG can potentially help ground LMs’ generations in retrieved contexts, it is unclear how
much these contexts help downstream performance, especially compared to a no-context baseline.
While Lewis et al. (2020) achieve state-of-the-art results across several QA tasks by augmenting T5
model with a fixed k number of documents, we find that the answer to the question of “When does
RAG outperform no-context baseline” is more nuanced. To the best of our knowledge, we are the
first to comprehensively explore this question across RAG configurations and datasets to find that
while some readers always benefit from RAG, regardless of k, others benefit only if k is large enough
or small enough, then a few never do regardless of k (Table 1). We first emphasize key observations
in this section, then provide explanations in the latter sections.

Closed-source models marginally improves with RAG For instance, as shown in Table 1, GPT-
3.5 generally performs better with RAG, regardless of the context quantity k. However, its gains
over its no-context baseline are marginal. When averaged across values of k, GPT-3.5 only improves
by 1.1 F1 points, and its maximum gain is just 3.8 F1 points (Table 5, Table 6). On NQ in particular,
where GPT-3.5 already sets the no-context bar high at 52 F1 points, it requires at least 5 passages
to start benefitting from RAG with ColBERT. And in an extreme case, GPT-3.5, when paired with
BM25, always performs worse than its no-context baseline, regardless of k.

CLAUDE-3-HAIKU struggles to benefit from RAG and is, in fact, harmed by using RAG for single-
hop questions from both open-domain and special-domain (i.e., NQ, BioASQ). Even when it does
benefit from RAG on HotpotQA, it only does so marginally with a gain of < 4 F1 points.

4
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Dataset
ColBERT BM25

Dataset
ColBERT BM25

GPT-3.5-turbo Claude-3-haiku

NQ only for k ≥ 5 ✗ NQ ✗ ✗

HotpotQA ✓ ✓ HotpotQA only for k ≤ 2 ✓

BioASQ ✓ ✓ BioASQ ✗ ✗

FlanT5 FlanUL2

NQ ✓ ✓ NQ ✓ only for k > 3
HotpotQA ✓ ✓ HotpotQA ✓ ✓

BioASQ ✓ ✓ BioASQ ✓ ✓

Llama2 7B Llama2 70B

NQ only for k < 10 ✓ NQ only for k < 20 ✓

HotpotQA ✓ ✓ HotpotQA ✓ ✓

BioASQ ✓ ✓ BioASQ only for k < 20 only for k < 20

Llama3 8B Llama3 70B

NQ only for k = 2 ✗ NQ ✗ ✗

HotpotQA only for k ≤ 5 only for k ≤ 5 HotpotQA only for k ≤ 5 only for k ≤ 5

BioASQ only for k ≤ 2 only for k ≤ 2 BioASQ only for k = 1 ✗

Table 1: ✓ means the particular reader-retriever combination performs better than closed-book
generation for all k’s. On the other hand, ✗ signifies that the particular reader-retriever combination
consistently performs worse than closed-book generation, regardless of k. Otherwise, we describe the
k-condition for which the retriever-reader combination performs better than closed-book generation.

FLAN models greatly benefit from RAG FLANT5’s ability to use context effectively allows it to
significantly and consistently outperform closed-book generation across all datasets, retrievers, or k
number of contexts. Across the datasets, FLANT5 with RAG achieves an average gain of 16 to 30 F1

points, closely matching its optimal-k gain (18 to 33 F1 points), showing that it consistently benefits
from using RAG. In fact, FLANT5 can use retrieved contexts so well that even though it ranks among
the bottom three readers in terms of no-context performance, it ranks among the top-3 models in
terms of optimal-k RAG performance.

LLAMA2 and LLAMA3 exhibit varied RAG abilities LLAMA2 models also often benefit from
using RAG, but their performance is more sensitive to k. They often require a small enough k to
even benefit from using RAG, since a larger k may introduce too much distracting information. Their
sensitivity to k is reflected in the large difference between their average gains (5 to 7 F1 points) and
optimal gains (8 to 12 F1 points).

On the other hand, LLAMA3 models show minimal improvement, if any, from RAG. In many cases,
they fail to outperform closed-book generation, regardless of k.

Across question types and domains Among the datasets, performance on the multi-hop dataset
consistently shows the highest gains from RAG in terms of average and optimal performance.
One hypothesis is that language models often rely on memorized facts from pretraining for single-
hop questions, making retrieval-augmented generation (RAG) less beneficial. In contrast, multi-
hop questions require synthesizing information from multiple sources, which is less likely to be
internalized during pretraining. Therefore, RAG could be more helpful for multi-hop tasks by
providing disparate pieces of information that the model cannot generate from memory alone.

While Kandpal et al. (2023) do not explicitly compare open-domain (e.g., NQ) and specialized-
domain (e.g., BioASQ) questions, they examine the effect of RAG relative to the number of relevant
pretraining documents, finding that RAG outperforms closed-book generation, particularly for rare
examples. Building on this, we hypothesize that open-domain questions may have more relevant
pretraining documents while specialized-domain questions have fewer. Using BM25, we indeed find

5
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that BioASQ enjoys a higher gain (4.31 F1 points) than NQ (0.75 F1 points). However, we find the
opposite trend with ColBERT — NQ shows a larger gain (9.44 F1) compared to BioASQ (7.26 F1).
This suggests that the question domain alone does not determine the relative optimal gain.

Key Takeaways: The benefits of RAG depend on the reader choice and their sensitivity to context
quantity and quality. For some readers, the number of context passages is critical for achieving
optimal performance. In such cases, a suboptimal RAG configuration can lead to worse performance
than not using RAG. In the next section, we explore the influence of context quantity on RAG
performance.

5 ARE MORE CONTEXTS ALWAYS BETTER?

In this section, we study how models perform with various amounts of retrieved passages in context.
While Liu et al. (2023) report that reader performance saturates as k increases, Cuconasu et al. (2024)
and Jiang et al. (2024) observe performance degradation with increasing k. Although these findings
appear contradictory, we argue that they are actually complementary, as each study focuses on a
limited range of retrievers, readers, and datasets. Our experiments, which span a wider variety of
retrievers, readers, and datasets, demonstrate that both saturation and degradation behaviors can occur
with the determining factor being the choice of reader model.

Re
ad

er
 F

1

NQ

ColBERT

k (# of context passages)

FlanT5

FlanUL2

LLaMa3 8B

LLaMa3 70B

GPT-3.5

Claude Haiku

LLaMa2 7B

LLaMa2 70B

Figure 3: Reader performance on the NQ dataset as k, the number of contexts retrieved by ColBERT,
varies. Colored circles indicate reader performance at the optimal k∗. We find similar trends apply
across retrievers (e.g., BM25, ColBERT, and Contriever) and datasets (e.g., NQ, HotpotQA, and
BioASQ) in Figure 11 and Figure 12.

We identify two distinct trends in reader performance in Figure 3.

Improve-then-plateau In the first, the FLAN models and GPT-3.5 steadily improve with increasing
k and then plateaus at around k = 10. For such improve-then-plateau models, we recommend
choosing a larger k for maximizing downstream performance.

Peak-then-decline In the second trend, models like the LLAMA models and CLAUDE-3-HAIKU
peak early (at around k < 5) and then degrade with increasing k. For such peak-then-decline models,
a small k is optimal, as larger values introduce irrelevant or distracting information that can act as
“noise” and harm performance.

Despite these trends, a reader’s response to increasing k does not fully determine its overall ranking.
For instance, while the improve-then-plateau models achieve the top F1 scores on NQ (55-56 F1 score),
peak-then-decline models like LLAMA2 70B still perform competitively (51 F1 score). However,
there still is a distinguishing benefit of improve-then-plateau models, which is their robustness to
changes in k, making them less sensitive to variations once k is sufficiently large. We have some
hypotheses relating the readers’ trends to their architectures and training details, but do not have
access to the details of the closed-source models, so we only briefly discuss this according to the
open-source models in Appendix E.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Key Takeaways: The choice of reader model is critical in optimizing RAG performance, as
different models readers exhibit different sensitive to k. To efficiently explore RAG configurations,
practitioners should start with a larger k (e.g., k ≥ 20) for improve-then-plateau models and a smaller
k (e.g., k ≤ 10) for peak-then-decline models.

6 READER ROBUSTNESS TO NOISE IN RETRIEVED CONTEXTS

In this section, we take a deeper look at reader behaviors by studying how readers react to noise under
contexts with (§6.1) and without gold passages (§6.2).

We analyze the reader model’s performance on two slices of instances representing different qualities
of retrieved contexts. In §6.1, we analyze the slice where the k retrieved passages include at least one
gold passage to mimic the scenario where sufficient context information is provided to answer the
question. In this slice, we compare how the reader performs with (1) the top-k passages, (2) only the
gold passages in the top-k passages (top-gold), and (3) no context. In §6.2, we analyze the slice of
instances where none of the top-k retrieved passages are gold passages. This represents the scenario
where the retrieved context is insufficient to answer the question.

6.1 WITH GOLD PASSAGES

For each model, we take the slice of examples with at least one gold passage in top-k retrieval.
We compare the top-k performance with two baselines: (1) To study the adversarial effect of noisy
context, we compare top-k with top-gold performance where only the gold passages in top-k retrieval
are included in context; and (2) to study the benefit of mixed quality documents, we compare top-k
and the no-context baseline where no documents are added to the context.

Re
ad

er
 F

1

k (# of retrieved passages)

no-contexttop-ktop-gold

Gold found - colbert - nq

FlanT5 FlanUL2 LLaMa3 8B LLaMa3 70BGPT-3.5 Claude 
Haiku

LLaMa2 7B LLaMa2 70B

Figure 4: NQ results when sufficient information (at least one gold passage) is present in the top-k
passages. ‘Top-gold’ refers to the context containing only the gold passages from the top-k passages.

No-context is Not Always a Lower Bound for RAG, even with Context Signal Reader models
with only gold passages expectedly serve as an upper bound for their top-k performance (Figure 4).
However, it is notable that the no-context performance does not always represent a lower bound for
RAG. Whether it is a lower bound depends on the reader’s ability to filter out irrelevant information
while leveraging helpful context information.

For NQ instances where gold passages are in the top-k retrieved passages, GPT-3.5 and FLAN
models consistently outperform their no-context baselines, effectively identifying and using relevant
information. In contrast, models like CLAUDE-3-HAIKU and the LLAMA models struggle more
with noise. CLAUDE-3-HAIKU and the LLAMA2 models fall below their no-context performance at
k ≤ 5 and LLAMA3 models do so at k = 10. This illustrates how suboptimal RAG configurations
can be not only less helpful but even damaging, even when sufficient information is present.

Multi-hop Signal Delays Performance Decline In HotpotQA, the LLAMA2 models maintain
performance above the no-context baseline longer than in NQ, with LLAMA2 7B dipping below at
k = 25 instead of at k = 15 and LLAMA2 70B dropping below the no-context baseline at k ≥ 30
instead of at k = 25 (Figure 6). Similarly, CLAUDE drops below the baseline at k > 5 instead of
k ≤ 5. This could suggest that tasks requiring multiple signal passages provide more “anchor points”
for the model, helping it withstand more noise.

7
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Domain-specific Jargon Enables Easier Signal Extraction for Readers For BioASQ, all readers’
gaps between their top-pos and top-k performances are smaller than their gaps on open-domain
datasets (Figure 7), indicating better signal extraction likely due to the specialized domain jargon
making relevant documents more distinct. We attribute the smaller gap primarily to the reader instead
of the retriever since the retrieval quality for BioASQ is strictly worse than NQ (Table 8). Also of
note is that CLAUDE-3-HAIKU and LLAMA3 70B still fall below their no-context baselines even
with gold passages, showing that they struggle particularly with specialized domains. In these cases,
the models often generate nonsensical outputs as k increases.

6.2 WITHOUT GOLD PASSAGES

Re
ad

er
 F

1

Gold found - colbert - nq

FlanT5 FlanUL2 LLaMa3 8B LLaMa3 70BGPT-3.5 Claude 
Haiku

LLaMa2 7B LLaMa2 70B

k (# of retrieved passages)

no-contexttop-k

Figure 5: NQ results with no gold passages.

We conduct a similar analysis with examples retrieved with only non-gold passages. For NQ (Figure 5)
and HotpotQA (Figure 8), most models perform worse with RAG than without. This is expected
since these slices the models are prompted to rely on do not contain any signal (i.e., gold passages).

FLAN Outperforms Baseline with Partially Relevant Non-gold Passages In contrast, FLAN
models consistently outperform their no-context baselines even with non-gold contexts. One potential
explanation is that the non-gold passages may still provide partially relevant information despite
insufficient information. In particular, FLAN models seem better than other readers at processing
the information from these non-gold passages. For example, on NQ with k = 5, the FLAN models
achieve 20% accuracy when no gold paragraphs are retrieved but paragraphs from the gold Wikipedia
pages are present. This is notably higher than the performances from LLAMA2 (8%) LLAMA3
models (4%), GPT-3.5 (10%), and CLAUDE-3-HAIKU (3%).

Another anomaly is that for BioASQ, GPT and LLAMA2 7B’s top-k performances both exceed their
no-context baselines at select ranges of k (Figure 9). This contrasts with how their top-k performance
is consistently worse than their no-context performance on the open-domain datasets, regardless of k.
This suggests these models potentially have stronger guardrails for handling irrelevant information in
specialized-domain questions.

Key Takeaways: Reader performance in RAG systems depends heavily on handling noisy or
irrelevant contexts, which is critical for real-world applications where retrieval is imperfect. Robust
models are better suited for production systems with variable retrieval quality, ensuring stable
performance. For models sensitive to irrelevant information, noise-filtering techniques are essential
to maintain performance. These findings highlight the need to tailor RAG configurations by selecting
models with strong noise-handling capabilities and adapting retrieval strategies appropriately.

7 IMPACT OF RETRIEVER CHOICE

We examine the impact of retriever choice on RAG performance by comparing BM25 and ColBERT
across two metrics. First, we evaluate the average difference, which is the mean difference between
F1 scores when the reader is paired with top-k documents from ColBERT v. BM25, averaged across
k = 1 to 50. The optimal F1 difference measures the difference in the optimal-k F1 score for

8
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each reader when paired with ColBERT v. BM25. The first quantity describes how consistently
ColBERT’s downstream advantage is over BM25, and the latter describes ColBERT’s advantage
when both retrievers perform at their optimal k (Table 2). While we mainly study the impact of
retriever choice here, we also include reranker results in Appendix L and find the observed reader
trends remain.

Model
Average Difference (across k) Difference in Optimal Performance

NQ HotpotQA BioASQ NQ HotpotQA BioASQ

GPT-3.5 8.6 2.0 1.1 6 1 0
Claude Haiku 3.9 4.0 2.4 12 3 6
FlanT5 12.6 10.5 4.2 9 3 4
FlanUL2 12.9 2.0 1.9 9 2 3
LLaMa2 7B 3.6 0.9 -0.3 10 4 1
LLaMa2 70B 2.6 0.7 -0.2 4 2 0
LLaMa3 8B -0.7 -2.2 1.4 6 2 1
LLaMa3 70B -1.9 -2.7 1.5 8 6 4

Average 5.2 1.9 1.5 8 2.9 2.4

Table 2: For each reader, the average difference and optimal difference in F1 scores between ColBERT
and BM25 are reported. (See the main text above for detailed definitions.)

Better Retriever ̸= Better RAG Performance If a retriever has better recall@k for a specific k, it
typically leads to better reader performance at that k. However, for less robust, peak-then-decline
models (e.g., LLaMA 2 and 3), we observe that the reader F1 score with ColBERT can still be lower
than with BM25 at larger k’s even when ColBERT achieves higher recall@k than BM25 across all
k’s. This is reflected in the negative average reader F1 difference in Table 2.

One potential reason this discrepancy arises is that the content retrieved beyond the gold paragraphs
plays a critical role, particularly at higher k’s. Neural retrievers like ColBERT may introduce more
semantically complex or noisy content, which can overwhelm noise-sensitive readers. In contrast,
BM25, as a lexical retriever, often provides simpler or less distracting context, aligning better with
these readers’ preferences despite retrieving fewer gold paragraphs overall.

Large Retriever Gains only deliver Modest Gains for Open-domain Questions While ColBERT
delivers substantial improvements in recall for open-domain questions (21.3 recall@k gain for NQ
and 14.6 for HotpotQA) , the corresponding reader performance gains are more modest — 5.2 and
1.9 F1 points, respectively. In fact, the ratio of reader gain to retriever recall improvement is quite low
for HotpotQA (0.13) than NQ (0.24), indicating that a significant improvement in retriever may not
yield an equally significant reader performance boost for open-domain questions.

Small Retriever Gains yield Large Reader Gains for Specialized Domains In contrast, BioASQ’s
ratio of reader F1 gain to retriever recall gain is much higher at 2.08. Although ColBERT’s recall
improvement over BM25 for BioASQ is small (0.7 vs. 14.6 for HotpotQA), the reader performance
gains are comparable across both datasets. This suggests that in specialized domains, even a small
improvement in retriever performance can have an outsized impact on reader results.

Computational Trade-offs Given how 1) ColBERT only results in small optimal reader gains for
HotpotQA and BioASQ and 2) BM25 is less computationally expensive to use, it may be tempting to
claim BM25 is the obvious pick for RAG, computationally speaking. However, another important
factor to consider is the difference in optimal k — the optimal k with BM25 performance is 2
to 3 times that of the optimal k for ColBERT (Table 7). This means BM25’s higher k shifts the
computational burden from the retriever to the reader, where the cost of inference is scaled with k.

Key Takeaways: Using a neural retriever instead of a lexical one does not always lead to better
reader performance, especially for less robust models and higher k’s. This highlights the importance
of understanding the retriever-reader compatibility, and not just evaluating the retriever components
independently and assuming aligned reader performance.

9
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Nevertheless, we find that despite smaller retriever gains in specialized domains, we observe that
the downstream reader performance is more significantly amplified. Even marginal improvements in
retrieval can be highly valuable for domain-specific applications.

8 RELATED WORK

Impact of Varying Number and Quality of Contexts When deciding the number of retrieved
contexts to input into the reader model, existing findings provide seemingly contradicting findings.
Izacard & Grave (2021) find that increasing the number of contexts provides strictly better results,
while Liu et al. (2023) find the initial improvement is followed by performance saturation. On the
other hand, some find that carefully selecting a subset of passages (Asai et al., 2022), sentences
(Wang et al., 2023), or tokens (Berchansky et al., 2023) can outperform inputting maximal contexts.
In fact, Cuconasu et al. (2024); Jiang et al. (2024) find that performance degrades with increasing k.
Although existing findings seem contradictory, we think that they are actually complementary but
restricted by their limited experiments. We experiment with a wider variety of configurations and
datasets and arrive at a more nuanced conclusion: both the behavior of improve-then-plateau and
peak-then-decline exist, and the primary deciding factor is the choice of reader.

Domain Influence on Downstream Performance It is crucial to know when LMs benefit from
including retrieved passages in context, especially for special domains, which are of particular interest
in practice. Mallen et al. (2023) and Kandpal et al. (2023) both find that RAG helps for rare or
long-tail knowledge. However, Mallen et al. (2023) find that retrieving contexts may be unnecessary
and even detrimental when asking about common knowledge, while Kandpal et al. (2023) find using
RAG generally improves model performance. From extensively experimenting with various RAG
configurations and datasets, we provide a more nuanced view: performance gain on special domains
is not necessarily always larger than the gain on open domains, and instead largely depends on the
retriever-reader combination.

Impact of Retriever Choice Lewis et al. (2020) show that dense retrievers like DPR outperform
sparse retrievers (BM25) in open-domain tasks and help readers achieve better downstream perfor-
mance on an open-domain dataset (i.e., NQ). Finardi et al. (2024) similarly find a positive correlation
between retriever and reader performance, though their study is limited to a single, special-domain
dataset. Both works demonstrate that dense retrievers lead to better reader outputs. In contrast,
our extensive experiments show that better-performing retrievers do not necessarily lead to better
downstream reader performance. We also comment on how important retriever choice — we find that
although the ratio of the reader gain to retriever gain is positive for all datasets, it is much larger for
specialized domains than for open-domain questions.

9 CONCLUSION

We propose RAGGED, a framework designed to assist researchers and practitioners in making
informed decisions about designing RAG systems, focusing on three key aspects: the number of
contexts, the reader model, and the retriever model.

Using the framework, we demonstrate that while retrieval-augmented generation (RAG) systems
offer significant potential, their effectiveness depends on careful configuration. We find that some
readers benefit from additional context, while others degrade when exposed to irrelevant information,
underscoring the need for tuning based on reader behavior. Additionally, retriever improvements
do not always lead to proportional gains in reader performance, particularly in open-domain tasks
requiring multi-step reasoning. However, in specialized tasks, even minor improvements in retrieval
can substantially boost reader performance.

These findings highlight the importance of task-specific RAG configurations and suggest that future
research should focus on refining the interaction between retrievers and readers, improving model ro-
bustness to noisy contexts, and optimizing for domain-specific applications. We hope that researchers
and practitioners can use our framework to unlock the full potential of RAG systems in various
applications.
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A READER IMPLEMENTATION DETAILS

We truncate the context to make sure the the rest of the prompt still fits within a reader’s context limit.
Specifically, when using FLANT5 and FLANUL2 readers, we use T5Tokenizer to truncate sequences
to up to 2k tokens; when using LLAMA models, we apply the LlamaTokenizer and truncate sequences
by 4k tokens for LLAMA2 and 8k for LLAMA3. For closed-source models, we spent around $300.
Subsequently, we incorporate a concise question-and-answer format that segments the query using
"Question:" and cues the model’s response with "Answer:", ensuring precise and targeted answers.

For our reader decoding strategy, we used greedy decoding with a beam size of 1 and temperature
of 1, selecting the most probable next word at each step without sampling. The output generation
was configured to produce responses with 10 tokens. The experiments were conducted on NVIDIA
A6000 GPUs, supported by an environment with 60GB RAM. The average response time was ∼1.1s
per query when processing with a batch size of 50.

B PROMPT

For all experiments, we use the following prompt:

Instruction: Give simple short one phrase answers for the questions based on the context
Context: [passage1, passage2, · · · , passagek]
Question: [the question of the current example]
Answer:

.

C DATASET DETAILS

All corpus and datasets use English.

For NQ and HotpotQA datasets in the open domain, we use the Wikipedia paragraphs corpus provided
by the KILT benchmark (Petroni et al., 2021). For BioASQ, we use the PubMed Annual Baseline
Repository for 2023 (of Medicine, 2023), where each passage is either a title or an abstract of PubMed
papers. Dataset sizes are in Table 4.

The Medline Corpus is from of Medicine (2023) provided by the National Library of Medicine.

Corpus # of par # of doc Avg # of doc

Wikipedia 111M 5M 18.9
Medline 58M 34M 1.7

Table 3: Retrieval corpus information

For NQ and HotpotQA, we use KILT’s dev set versions of the datasets, allowed under the MIT
License (Petroni et al., 2021). For BioASQ (Krithara et al., 2023), we use Task 11B, distributed under
CC BY 2.5 license.

Dataset # of Queries

NQ 2837
HotpotQA 5600
BioASQ 3837

Table 4: Dataset information

D COMPARISON WITH NO-CONTEXT PERFORMANCE

We include additional reader results comparing ColBERT and BM25 at Table 5 and Table 6.
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Model NQ HotpotQA BioASQ
ColBERT BM25 ColBERT BM25 ColBERT BM25

GPT-3.5 1.1 -8.0 7.7 5.1 8.9 7.4
CLAUDE Haiku -15.7 -22.5 -6.5 -10.2 -21.7 -25.9
FlanT5 28.9 12.6 20.9 13.5 16.6 11.9
FlanUL2 21.5 4.9 18.9 15.7 5.3 2.8
LLAMA 2 7B 1.4 -4.5 10.4 8.2 6.4 5.9
LLAMA 2 70B -0.1 -7.6 11.2 9.2 4.4 3.9
LLAMA 3 8B -13.3 -14.9 -6.7 -5.7 -12.1 -14.9
LLAMA 3 70B -24.9 -26.2 -12.0 -11.3 -18.0 -21.4
Average (per dataset) -0.1 -8.3 5.5 3.06 -1.3 -3.8

Table 5: The average difference between the F1 score of RAG with k passages from ColBERT or
BM25 and the F1 score of no-context generation, calculated across k values from 1 to 50 for each
dataset. Each value represents the difference between the F1 score of the reader+retriever combination
and the F1 score of the reader alone (without RAG or context).

Model NQ HotpotQA BioASQ
ColBERT BM25 ColBERT BM25 ColBERT BM25

GPT-3.5 3.8 -3.1 8.8 7.3 10.9 10.6
CLAUDE Haiku -2.4 -14.9 3.9 0.7 -1.7 -8.2
FlanT5 32.5 22.6 23.5 20.4 18.0 13.0
FlanUL2 24.4 14.8 22.0 19.7 7.1 3.4
LLAMA 2 7B 9.7 -0.5 15.2 11.0 8.5 6.9
LLAMA 2 70B 4.3 -0.3 14.0 11.4 7.3 6.8
LLAMA 3 8B 3.9 -3.0 11.2 8.4 3.6 1.7
LLAMA 3 70B -0.7 -9.6 14.9 8.1 4.4 0.3
Average (per dataset) 9.44 0.8 14.2 10.9 7.3 4.3

Table 6: The difference between the F1 score of RAG optimal k∗ from ColBERT or BM25 and the
F1 score of no-context generation. Each value represents the difference between the F1 score of the
reader+retriever combination at optimal k∗ and the F1 score of the reader alone (without RAG or
context).

E RELATING READER TRENDS TO READER ARCHITECTURES AND TRAINING
DETAILS

There are two primary types of readers observed in our experiments:

• Peak-then-Decline Behavior: Models including those from the LLAMA and CLAUDE
families show sensitivity to noisy documents, leading to performance degradation as the
number of retrieved passages (k) increases beyond a certain point.

• Improve-then-Plateau Behavior: Models including those from the GPT and FLAN families
are more robust to noise, continuing to benefit from additional context until performance
plateaus.

Since we do not have access to the details of the closed-source models, we will focus on providing
hypotheses according to the open-source model (LLAMA belonging to the peak-then-decline behavior
and the FLAN models belonging to the improve-then-plateau family).

On one hand, FLAN, an improve-then-plateau model family, incorporates additional strategies
explicitly designed to handle noisy or diverse contexts. It employs denoising strategies, such as a
mixture-of-denoisers, during training to improve its robustness to irrelevant or noisy contexts. These
enhancements enable it to filter out noise more effectively.
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On the other hand, LLAMA ’s training predominantly relies on next-token prediction with limited
exposure to noisy or retrieval-specific scenarios, making it sensitive to noise at higher k.

We also note that there are some model architecture features that alone do not determine reader
behavior:

• Context window size: Models with longer context limits like LLAMA 2 (4k tokens) don’t
necessarily process a larger number of contexts better than models with smaller context
limits like FLAN (2k tokens).

• Encoder-decoder v. decoder: LLAMA is a decoder-only model that displays peak-then-
decline behavior, but GPT models are also decoder-only and instead display improve-then
plateau behavior.

F SLICE ANALYSIS ON OTHER DATASETS

We include with-gold-passages results for HotpotQA at Figure 6 and for BioASQ at Figure 7.
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Figure 6: HotpotQA results when there is sufficient information (all gold passages) included in the
top-k passages to answer the question. For multi-hop questions, we select examples retrieved with all
gold passages within the top-k passages since all passages are necessary to answer the question.
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Figure 7: BioASQ results when there is sufficient information (at least one gold passage) included in
the top-k passages to answer the question.
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We include without-gold-passages results for HotpotQA at Figure 8 and for BioASQ at Figure 9.ColBERT no 
gold found - 
nq

no-ctxtop-k

k (# of retrieved passages)

Re
ad

er
 P

er
fo

rm
an

ce
 (F

1)

FlanT5

FlanUL2

LLaMa3 8B

LLaMa3 70B

GPT-3.5

Claude 
Haiku

LLaMa2 7B

LLaMa2 70B

Figure 8: HotpotQA results when there are no gold passages included in the top-k passages to answer
the question. ColBERT no 
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Figure 9: BioASQ results when there are no gold passages included in the top-k passages to answer
the question.
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G COMPARING OPTIMAL K VALUES

We include the optimal k for ColBERT and BM25 in Table 7.

Model NQ HotpotQA BioASQ Average (per reader)
BM25 ColBERT BM25 ColBERT BM25 ColBERT BM25 ColBERT

GPT-3.5 50 20 50 20 20 20 40 20
CLAUDE Haiku 1 1 1 1 1 1 1 1
FlanT5 50 20 10 10 50 1 36.67 10.33
FlanUL2 50 10 20 10 2 1 24 7
LLAMA 2 7B 1 1 2 2 2 1 1.67 1.33
LLAMA 2 70B 10 5 10 2 5 5 8.33 4
LLAMA 3 8B 1 1 1 1 1 1 1 1
LLAMA 3 70B 1 1 1 1 1 1 1 1
Average (per dataset) 20.5 7.38 11.88 5.88 10.25 3.88 14.21 5.71

Table 7: Optimal k∗ for BM25 and ColBERT (NQ, HotpotQA, and BioASQ).

H LLM-BASED EVALUATION

While we chose F1 for its simplicity and alignment with prior work, we agree that it may not fully
reflect nuanced semantic equivalence. To address this, we ran an LLM-based evaluation of the models
for the NQ dataset using Prometheus (Kim et al., 2024), specifically the Prometheus-7b-v2.0 model.
We find that the conclusions about reader trends do not change: the same reader trends apply to the
same models (peak-then-decline v. improve-then-plateau). We use Prometheus-7b-v2.0 to evaluate
the correctness of the generated answer against the gold answer on a 5-point scale, where 1 is the
least correct and 5 is the most correct Figure 10.
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Figure 10: Reader Performance on NQ dataset as evaluated by Prometheus on a 5-point scale where
1 is the least correct and 5 the the most correct.

I COMPARING READER TRENDS WHEN USING COLBERT V. BM25

We include the top-k performance for ColBERT, BM25 Figure 11.

J COMPARING NEURAL RETRIEVERS

We compare the top-k performance of ColBERT and Contriever at Figure 12.
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(a) Performance when top-k passages are from ColBERT.
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Figure 11: Top-k performance on NQ, HotpotQA, and BioASQ. Colored circles mark the reader
performance at optimal k∗.
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Figure 12: Example of how reader response to increasing context applies across neural retrievers
(e.g., ColBERT and Contriever) and datasets. We choose one reader model from each trend for
demonstration — LLAMA2 7B for peak-then-decline and FLANT5 for improve-then-plateau.
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K COMPARING GPT-3.5 AND GPT-4O

We compare how GPT-3.5 and GPT-4O perform, and find that they both display the same reader
trend of improve-then-plateau, with the main difference being GPT-4O’s reader performance is
shifted up (Figure 13).
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Figure 13: Comparison of GPT-3.5 and GPT-4O performance on NQ.

L EFFECT OF RERANKER

We use bge-reranker-large, which is currently the most downloaded reranker on Hugging Face (Xiao
et al., 2024). We demonstrate the effect of reranker on ColBERT, the better-performing retriever in
our experiments, and choose one open-source model from each reader robustness type (LLAMA 2 7b
from peak-then-decline and FLAN T5 from improve-then-plateau). Of the top 50 documents from
ColBERT, we apply the reranker to reassign scores, then get the new top-k documents to feed to the
readers. The result is that each of these models still displays the same reader trends, except the scores
are shifted up. We present the F1 scores across k’s in Figure 14
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Figure 14: Comparison of reader performance with and without bge-large reranker on the NQ dataset.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

M RETRIEVER PERFORMANCE

We include the retriever performance at select k’s at Table 8.

Retriever Recall@k
1 2 5 10 20 50

NQ

BM25 2.7 4.4 8.0 11.5 16.3 22.8
10.3 16.3 27.8 36.8 47.7 53.2

ColBERT 12.3 18.0 25.7 32.1 38.1 41.8
27.2 38.8 54.4 65.0 72.9 77.2

Contriever 4.65 6.91 11.14 15.17 20.19 28.46
24.0 32.3 44.9 53.2 62.1 72.0

HotpotQA

BM25 19.1 25.9 34.6 41.1 46.8 54.2
23.3 31.2 42.7 52.1 59.1 62.8

ColBERT 31.1 40.1 49.9 56.2 61.9 64.9
34.2 44.7 56.3 63.6 69.9 73.1

Contriever 2.35 4.44 8.14 11.75 15.46 20.79
22.39 29.54 39.39 45.71 51.51 59.08

BioASQ

BM25 8.8 12.9 19.6 25.8 33.3 37.8
12.4 16.4 23.9 30.6 38.7 43.6

ColBERT 8.8 13.5 20.7 27.1 34.3 38.6
14.2 18.2 25.6 32.2 39.8 44.2

Contriever 3.82 5.87 9.55 12.95 17.48 24.58
7.91 10.55 15.36 19.61 24.89 33.03

Table 8: Retriever performance (recall@k). For the Wikipedia-based dataset, the top row indicates
recall@k at the retrieval unit of Wikipedia paragraph and the bottom row for the unit of Wikipedia
page. For BioASQ, the top row indicates recall@k at the unit of title or abstract of a PubMed article
and the bottom row at the unit of the article itself.
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