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Abstract001

Document parsing involves layout element002
detection and recognition, essential for an-003
alyzing complex structures and extracting004
key information. However, existing methods005
often employ multiple models for these tasks,006
leading to increased system complexity and007
maintenance overhead. While some models008
attempt to unify detection and recognition, they009
often fail to address the intrinsic differences010
in data representations, thereby limiting perfor-011
mance in document processing. Our research012
reveals that recognition relies on discrete013
tokens, whereas detection relies on continuous014
coordinates, leading to challenges in gradient015
updates and optimization. To bridge this016
gap, we propose the Gaussian-Kernel Cross-017
Entropy Loss (GK-CEL), enabling generative018
frameworks to handle both tasks simultane-019
ously. Building upon GK-CEL, we propose020
DocFusion, a unified document parsing model021
with only 0.28B parameters. Additionally, we022
construct the DocLatex-1.6M dataset to provide023
high-quality training support. Experimental024
results demonstrate that DocFusion leverage025
GK-CEL effectively exploits the benefits of026
multi-task learning and achieves state-of-the-027
art performance across four key tasks.028

1 Introduction029

Document parsing plays a significant role in ex-030

tracting structured data from documents, making it031

foundational for various downstream applications.032

For example, in Retrieval-Augmented Generation033

(RAG) workflows (Ren et al., 2023; Zhang et al.,034

2022), extracting well-organized and contextually035

rich information from documents can improve the036

performance of large language models (LLMs)037

(Jiang et al., 2023; Zhao et al., 2024a; Gao et al.,038

2024). However, real-world documents often039

embed information in complex structures, such040

as hierarchical layouts, mathematical expressions,041

and tables, which pose considerable challenges for042

automated parsing.043

Tool Type Size DLA MER TR OCR

System
open-parse (2024) - ✓ ✗ ✓ ✓

LlamaParse (2024) - ✓ ✓ ✓ ✓

DeepDoc (2024) - ✓ ✗ ✓ ✓

MinerU (2024) - ✓ ✓ ✓ ✓

Model
DocYOLO(2024c) 20M ✓ ✗ ✗ ✗

ViTLP (2024) 253M ✓ ✗ ✓ ✓

UniMER (2024b) 325M ✗ ✓ ✗ ✗

Nougat (2023) 350M ✗ ✓ ✓ ✓

GOT (2024) 580M ✗ ✓ ✓ ✓

StructTable (2024) 938M ✗ ✗ ✓ ✗

DocFusion(Ours) 289M ✓ ✓ ✓ ✓

Table 1: Capabilities of document parsing tools. Model
refers to a single model, while System integrates multi-
ple models. DLA: Document Layout Analysis. MER:
Math Expression Recognition. TR: Table Recognition.
OCR: Optical Character Recognition. Compare with
multi-model systems, DocFusion achieves all four tasks
within a single model, requiring only 289M parameters.

Existing methods can be categorized into two 044

main approaches: multi-module pipeline systems 045

and end-to-end page-level OCR models. Multi- 046

module pipeline systems decompose document 047

parsing tasks into independent modules, allowing 048

each module to adopt the best model. For example, 049

DocLayout-YOLO (Zhao et al., 2024c) has demon- 050

strated excellent performance in Layout analysis, 051

while UniMERNet (Wang et al., 2024b) achieves 052

SOTA results in Math Expression Recognition. 053

Although this approach improves performance 054

for specific tasks, integrating multiple models 055

into a single system increases overall complexity. 056

Moreover, these systems fail to fully exploit task- 057

level collaboration, leading to inefficiencies in 058

parameter usage. In contrast, end-to-end page- 059

level OCR models, such as Nougat (Blecher 060

et al., 2023) and GOT (Wei et al., 2024), can 061

seamlessly integrate multiple recognition tasks. 062
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While the outputs of these models demonstrate063

a well-organized logical structure, the models064

lack the ability to generate bounding boxes for065

layout elements. As a result, they fail to preserve066

the spatial relationships between documents and067

their layouts, which is crucial for interpretability068

in RAG workflows. Additionally, while these069

models perform well on page-level images, it070

struggles with specific layout elements, limiting071

their flexibility in application. To address these072

issues, this research focused on four key tasks:073

document layout analysis (DLA), mathematical074

expression recognition (MER), table recognition075

(TR), and optical character recognition (OCR).076

Several studies have attempted to apply genera-077

tive frameworks to integrate object detection and078

content recognition, achieving promising results079

on natural images (Xiao et al., 2023). However,080

extending such frameworks to document images081

presents significant challenges due to the inherent082

structural and representational differences between083

these domains. Through experiments, we identify084

the primary issue as the fundamental conflict085

between the continuous nature of coordinate data086

and the discrete nature of token generation, which087

disrupts gradient updates during multi-task training088

(discussed in Section 3.2). In natural scene089

images, small deviations in coordinates and text are090

generally tolerable. However, in document parsing,091

even minor errors in LaTeX code can critically092

impact compilation success rates. This imposes093

stricter accuracy requirements when applying such094

frameworks to document understanding tasks. To095

address these challenges, we propose Gaussian-096

Kernel Cross-Entropy Loss (GK-CEL), an im-097

proved objective function designed to mitigate the098

inconsistencies between discrete and continuous099

data representations, enhancing the performance of100

generative frameworks in document parsing.101

MER and TR are essential for LaTeX-based102

document processing, but existing datasets suf-103

fer from inconsistent formatting and redundant104

characters, where different writing styles generate105

identical compiled outputs, introducing noise106

that hinders model training and generalization107

(details are provided in Appendix A.3). To108

address this, we propose DocLatex-1.6M, a large-109

scale, high-quality dataset that enhances annotation110

consistency and improves model training efficiency.111

Experiments demonstrate that DocFusion trained112

on this dataset outperforms task-specific models113

with fewer parameters.114

Our contributions are summarized as follows: 115

• We propose DocFusion, a unified generative 116

multi-task model that standardizes task for- 117

mulations and achieves SOTA performance 118

across four key document parsing tasks. 119

• We propose GK-CEL to resolve the conflict 120

between continuous coordinate and discrete 121

token in the generative framework, enhancing 122

document parsing and offering a reference for 123

similar frameworks in other domains. 124

• Experimental results demonstrate that incor- 125

porating multi-task data significantly outper- 126

forms single-task setups, providing insights 127

into the benefits of multi-task learning in 128

document parsing. 129

• We constructed DocLatex-1.6M, a large- 130

scale, high-quality dataset with 1.5M LaTeX- 131

annotated math expressions and 100K tables, 132

offering a valuable resource for advancing 133

document parsing research. 134

2 Related Work 135

Document Parsing Models. Document parsing 136

models have seen remarkable progress across 137

various tasks. DLA has evolved from vision-based 138

methods (Wick and Puppe, 2018; Bao et al., 2021) 139

to multimodal approaches integrating textual 140

features (Xu et al., 2022; Huang et al., 2022). OCR 141

has transitioned from template matching (Smith, 142

2007) to deep learning-based solutions (Bušta 143

et al., 2017; Chen et al., 2021; Mosbah et al., 2024). 144

MER progressed from symbol segmentation 145

(Miller and Viola, 1998) to CNN-RNN hybrids (Le 146

et al., 2019) and Transformer-based models (Wang 147

et al., 2024b). Similarly, TR now employs methods 148

like grid segmentation and image-to-sequence 149

techniques to reconstruct structured data (Qasim 150

et al., 2019; Huang et al., 2023; Xia et al., 2024). 151

Page-level end-to-end OCR models like Nougat 152

(Blecher et al., 2023) and GOT (Wei et al., 153

2024) simplify workflows by integrating multi 154

recognition tasks. 155

156

Modular Pipeline Systems. The advancements 157

in task-specific models have driven the develop- 158

ment of modular pipeline systems, which process 159

complex document structures through specialized 160

modules. For instance, Open-Parse(Filimonov, 161
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<DLA>

<MER>

<OCR>

<TR>

Header<loc_897><loc_
122><loc_89><loc_928>
Text<loc_77><loc_32>
<loc_189><loc_56>
<loc_77><loc_32>
<loc_189><loc_56> ......

H=H_{\mathrm{DHM}}+H_{E}+H_{\Gamma}\,.

\begin{tabular}{|c|r|r|r|r|r|} 
\hline \hline $t$ & \ \ $t^{\perp}$ & \ \ $U$ & \ \
$\Gamma$ \ \ & \ \ $T_{\rm IMT}({\rm VO}_2)$ \ \ &
\ \ $E_{\rm IMT}({\rm VO}_2)$ \ \ \\\hline $0.25$ & 

$0.3$ & $2.5$ & $10^{-3}$ & $2.9 \times 10^{-2}$ 
& $10^{-3}$ - 10^{-2}$ \\ \hline
\end{tabular}

We consider a correlated insulator driven out of equi-
librium by a DC electric field and coupled to a heat sink. 
The total Hamiltonian of the electronic many-body sys-
tem, its non-equilibrium drive, and its dissipative envi-
ronment reads

DocFusion
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Figure 1: The model comprises three key components: a visual encoder, a text embedding layer and a Transformer
decoder. The image features extracted by the visual encoder and the instruction embeddings are combined and then
passed to the Transformer decoder, which produces the final output sequence.

2024) performs well in incrementally parsing162

complex layouts but lacks support for MER. Other163

systems, such as DeepDoc(Yu, 2024) and Llama-164

Parse(Liu, 2024), extend the scope of modular165

pipelines to handle more diverse tasks. In166

particular, MinerU(Zhao et al., 2024b) stands out167

by supporting advanced features such as complex168

layout parsing and Markdown conversion.169

3 Method170

We introduce the model architecture (3.1) and171

explain how detection tasks are represented into172

the generative framework. Then, we discuss the173

challenges (3.2) of detection tasks within this174

framework. Next, we explain the Gaussian-Kernel175

Cross-Entropy Loss(3.3)176

3.1 Architecture177

As shown in Figure 1, the architecture of Doc-178

Fusion consists of three main components: a179

vision encoder, a text embedding layer, and a180

Transformer decoder. Since the task instructions181

are limited and predefined, no Transformer encoder182

is included, task-specific prompts are directly183

embedded, simplifying the architecture.184

To unify the representation of object detection185

and text recognition tasks, we adopt a coordinate186

quantization representation (Xiao et al., 2023).187

Specifically, images are quantized into a fixed188

resolution (e.g., 1000×1000), and coordinates 189

are represented as discrete tokens (e.g., <loc_1>, 190

<loc_2>, ..., <loc_1000>). This approach en- 191

ables the use of a unified generative framework 192

for detection tasks. To address the challenges 193

posed by densely structured content, the vision 194

encoder incorporates a Dual Attention mechanism 195

(Ding et al., 2022), which captures interactions 196

across channel and spatial dimensions, enhancing 197

feature extraction for intricate document layouts. 198

Additionally, the traditional feed-forward network 199

(FFN) is removed, reducing both parameter count 200

and computational cost, further improving model 201

efficiency. 202

The vision encoder processes input images I ∈ 203

RH×W×3 into visual features, flattened as token 204

embeddings V ∈ RNv×Dv . These embeddings 205

are projected to Dt, resulting in V′ ∈ RNv×Dt , 206

to match the task-specific prompt embeddings 207

Tprompt ∈ RNt×Dt . The combined input X = 208

[V′;Tprompt] is then passed to the Transformer 209

decoder to generate predictions. 210

3.2 Challenges and Motivations 211

While representing object detection as text gener- 212

ation enables joint training of layout analysis and 213

page element recognition under a unified cross- 214

entropy-based framework, it inherently forces con- 215

tinuous coordinates into discrete token spaces. This 216
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Figure 2: The distribution of logits for a target token
after the loss has stabilized when using the Common
CE Loss.

mismatch creates several challenges, especially in217

fine-tuning small coordinate adjustments, where218

the model struggles to produce accurate gradients,219

reducing training stability. As shown in Figure 2,220

small unavoidable deviations in coordinate labels221

smooth out the softmax distribution, preventing222

the target token’s probability from forming a223

sharp peak. This makes it harder for the model224

to escape local optima and limits its learning225

capacity. Additionally, traditional cross-entropy226

loss, which is designed for discrete classification227

tasks, does not handle continuous changes well,228

further increasing inaccuracies during training.229

In multi-task settings, these issues become230

even more challenging. The conflict between231

discrete loss functions and continuous coordinate232

optimization can skew gradients, causing one233

task to dominate at the cost of others. This234

imbalance reduces performance in other tasks and235

harms the model’s ability to predict coordinates236

accurately, limiting its overall effectiveness in237

complex document parsing tasks. Solving these238

problems is critical to improving both localization239

accuracy and training stability across tasks.240

3.3 Gaussian-Kernel Design241

To address these challenges, we propose the242

Gaussian-Kernel Cross-Entropy Loss (GK-CEL).243

As shown in Figure 3, it applies a one-dimensional244

convolution with Gaussian-distributed weights245

over the probability distribution, fine-tuning the246

model’s sensitivity to small coordinate changes247

while preserving the discrete treatment of cross-248

entropy. This approach alleviates the mismatch249

between discrete tokens and continuous coordi-250

……

……

Probability distribution

Common token probability distribution Position Index probability distribution

……
Convolved Probability Distribution

Figure 3: Illustration of Gaussian-Kernel Cross-Entropy
Loss.

nates, improves gradient quality, and prevents the 251

coordinate prediction task from dominating the 252

optimization process. As a result, it enhances 253

localization accuracy and supports stable multi-task 254

training. 255

Let the model’s output logits be denoted as 256

Z ∈ RB×L×V , where B is the batch size, L is 257

the sequence length, and V is the vocabulary size. 258

The target labels are denoted as T ∈ NB×L. The 259

range of indices corresponding to coordinate tokens 260

is defined as [s, e], representing their positions in 261

the vocabulary. 262

The standard softmax probability distribution is 263

first computed as: 264

P = softmax(Z) (1) 265

A mask is then applied to zero out probabilities 266

outside the range [s, e], creating a modified 267

probability tensor P′: 268

P′
ijk =

{
Pijk, if k ∈ [s, e]

0, otherwise
(2) 269

where i represents the batch index, j represents 270

the sequence position, and k represents the vocabu- 271

lary index. 272

Next, a one-dimensional convolution kernel 273

K ∈ R1×1×n is constructed based on a Gaussian 274

distribution, where n is the kernel size (an odd 275

integer greater than 1), σ is the standard deviation 276

and p represents the position of each element in 277

the convolution kernel, measured as the offset from 278

the center, where the center is located at n+1
2 . The 279

range of p ∈ [1, n]. The kernel weights of each 280

index are computed as: 281

Kp = exp

(
−
(p− n+1

2 )2

2σ2

)
(3) 282
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The kernel is then applied to P′ via one-283

dimensional convolution:284

C = conv1d(P′,K) (4)285

The convolution result C is integrated back286

into the original probability distribution P within287

the index range [s, e], while retaining the original288

probabilities outside this range:289

P′′
ijk =

{
Cijk, if k ∈ [s, e]

Pijk, otherwise
(5)290

The final objective function is computed as:291

L = − 1

N

B∑
i=1

L∑
j=1

Mij logP
′′
ijTij

(6)292

where Mij is a mask matrix that indicates whether293

the target label at position (i, j) should contribute294

to the loss calculation.The normalization factor N295

is defined as the total number of valid targets.296

4 Experiments297

4.1 Training Datasets298

In the training phase, the DLA task uses the299

DocLayNet (Pfitzmann et al., 2022) dataset, which300

contains 80,863 pages from 7 document types301

and is manually annotated with 11 categories.302

The images are split into 69,103/6,481/4,999303

for training/validation/testing, respectively. The304

OCR dataset is also sourced from DocLayNet,305

which offers comprehensive annotations for layout306

elements and their corresponding text, and is307

widely regarded as a reliable resource in the308

academic community. For the TR and MER tasks,309

we used the DocLatex-1.6M dataset, which was310

constructed in this work. Additionally, although311

this work primarily focuses on document images,312

we introduced the HME100K(Yuan et al., 2022),313

a handwritten math expression dataset to enhance314

the generalization ability of the MER task.315

4.2 Evaluation Metrics316

4.2.1 Evaluation Metrics for Recognition317

We employ BLEU (Papineni et al., 2001) and318

Edit Distance (Levenshtein, 1966) to evaluate319

sequences. Additionally, CDM (Wang et al., 2024c)320

and CSR were used to better assess the quality of321

LaTeX-based outputs.322

BLEU is used for evaluating generated text,323

measuring n-gram overlap with reference texts. 324

Edit distance measures the minimum number of 325

operations insertions, deletions, or substitutions 326

required to transform one string into another. 327

CSR refers to the percentage of generated LaTeX 328

outputs that can be successfully compiled into PDF. 329

ExpRate (Li et al., 2022) measures the proportion 330

of samples where the predicted text matches the 331

reference text without any errors. 332

CDM evaluates MER by comparing image- 333

rendered expression at the character level with 334

spatial localization, ensuring fairness and accuracy 335

over text-based metrics like BLEU. 336

4.2.2 Evaluation Metrics for Detection 337

Since DocFusion adopts a novel approach in the 338

DLA task without relying on confidence scores, we 339

did not use the widely adopted Average Precision 340

but instead focus on the following metrics: 341

Precision measures the proportion of correctly 342

identified positive instances among all predicted 343

positives. 344

Recall measures the proportion of correctly identi- 345

fied positive instances among all actual positives. 346

F1-score balances precision and recall, serving as 347

their harmonic mean. 348

FPS measures the number of frames processed by 349

the model per second. 350

4.3 Selection of Baseline Models 351

For the MER task, we selected UniMERNet (Wang 352

et al., 2024b), the current state-of-the-art (SOTA) 353

model, and Texify (Paruchuri, 2023), which has 354

shown strong competitive performance in recent 355

evaluations. In the OCR task, we compared 356

several models, including the large-scale model 357

TextMonkey (Liu et al., 2024) and smaller models 358

such as Nougat (Blecher et al., 2023), for a multi- 359

scale evaluation. For the TR task, we evaluated 360

our approach against StructEqTable (Xia et al., 361

2024), one of the most representative models in 362

current Table-to-Sequence methods. In the DLA 363

task, we compared our method with two major 364

object detection frameworks, YOLO and DETR 365

(e.g., DocLayout-YOLO (Zhao et al., 2024c), 366

Deformable-DETR (Zhu et al., 2020)). Although 367

GOT (Wei et al., 2024) is not capable of handling 368

the DLA task, it performs well in the other three 369

recognition tasks, making it a relevant model for 370

comparison. 371
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Model size OCR MER TR

BLEU↑ EditDis↓ CDM↑ ExpRate↑ CSR↑ F1↑ CSR↑
UReader (2023) 7B 38.6 47.3 - - - - -
LLaVA-NeXT (2024) 34B 69.1 27.2 - - - - -
Nougat (2023) 250M 71.6 21.4 - - - - -
TextMonkey (2024) 7B 73.3 21.9 - - - - -
Qwen-VL-MAX (2023) >72B 94.7 3.9 - - - - -
Qwen-VL-OCR (2023) - 95.9 4.1 - - - - -
Pix2tex (2022) - - - 76.5 41.7 95.9 - -
Texify (2023) 312M - - 88.6 71.7 97.8 - -
Mathpix - - - 88.9 79.1 98.3 - -
UniMERNet (2024b) 325M - - 99.0 89.5 99.7 - -
MixTex (2024) 85M - - - - - 46.2 27.4
StructEqTable (2024) 938M - - - - - 90.6 93.2
GOT (2024) 580M 96.8 2.2 87.7 67.3 97.8 86.9 81.6
DocFusion(Ours) 289M 97.4 1.8 98.7 94.2 99.8 92.1 92.5

Table 2: Comparison of DocFusion with other models on three recognition tasks in the document scene. Specifically,
DocLaynet(Pfitzmann et al., 2022) was used for OCR, DocGenome(Xia et al., 2024) for TR, and UniMER-1M(Wang
et al., 2024b) for MER. More details on the TR experiments can be found in Appendix B.2. Note: Nougat is primarily
designed for full-page recognition and tends to underperform on isolated tables or mathematical expressions.

Model Size DocLayNet DocLayNet-Scientific
FPS↑ NMS Conf

Precision↑ Recall↑ F1↑ Precision↑ Recall↑ F1↑
YOLOv10m (2024a) 16M 90.1 86.9 88.4 94.3 94.5 94.4 93.6 ✓ ✗

YOLOv11m (2024) 20M 90.5 87.4 88.9 95.1 94.9 95.0 100.8 ✗ ✗

YOLO-DocLayout (2024c) 20M 90.9 87.1 89.0 95.5 94.4 95.0 55.2 ✗ ✗

DETR (2020) 41M 84.7 87.1 85.8 92.2 92.0 92.1 17.6 ✓ ✗

DETR-Deformable (2020) 41M 91.6 87.1 89.3 96.2 95.9 96.0 18.8 ✓ ✗

DocFusion(Ours) 289M 88.9 89.3 89.1 96.8 96.2 96.4 11.4 ✓ ✓

Table 3: The performance of the models on DLA, where DocLayNet-Scientific refers to the scientific document
subset of DocLayNet. NMS indicates that Non-Maximum Suppression is not required, while Conf means no
confidence adjustment is needed. Note: The results of DETR and YOLO-series models in this table are computed at
multiple confidence levels, with the highest F1 score selected as the final result.

4.4 Implementation Details372

We conducted our experiments using the PyTorch373

framework on eight NVIDIA H100 GPUs, with an374

initial learning rate of 1e-5, a per-GPU batch size of375

12, and employing a cosine learning rate scheduler376

to progressively adjust the model parameters.377

4.5 Main Results378

4.5.1 MER performance379

We use the open-source UniMER-1M (Wang et al.,380

2024b) as the evaluation dataset to assess the per-381

formance on MER. Since DocFusion is specifically382

designed for processing printed documents, the383

primary evaluation focuses on the Simple Printed384

Expression (SPE) and Complex Printed Expression385

(CPE) subsets of UniMER-1M. As shown in386

Table 2, DocFusion performs exceptionally well 387

across multiple evaluation metrics, particularly 388

in CSR and ExpRate. Notably, its ExpRate 389

surpasses the second-ranked UniMERNet by 5.2%, 390

demonstrating superior reliability in real-world 391

document parsing. The results presented here 392

merge the performance of both SPE and CPE, 393

with detailed separate results and handwritten 394

expressions provided in B.1. 395

4.5.2 TR performance 396

We selected DocGenome (Xia et al., 2024) as 397

the evaluation dataset because it offers a compre- 398

hensive collection of 500K scientific documents 399

across various disciplines, covering a wide range 400

of document-oriented tasks. From this dataset, we 401

extracted 3,000 LaTeX-based table samples as the 402
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Train Dataset
OCR MER TR DLA

BLEU↑ EditDis↓ CDM↑ CSRMER↑ F1↑ CSRTR↑ F1↑

Task-Specific 96.7 2.2 98.5 99.8 91.2 92.7 87.8

OCR+DLA 96.1 2.4 - - - - 88.9

OCR+MER+TR 97.1 1.8 98.9 99.9 92.3 94.6 -

Table 4: Ablation experiments on task collaboration, comparison of task performance when using Task-specific
training, where each task is trained independently, and other joint multi-task strategies.

test set. Using LatexNodes2Text, we extracted the403

content of each table cell to compute F1 scores.404

As shown in Table 2, DocFusion excels on this405

benchmark, achieving F1 scores that surpass those406

of the second-ranked model by 1.6%, while having407

less than one-third of its parameter count. Note:408

In this work, in order to maintain consistency with409

MER and explore multi-task collaboration, we also410

chose Latex as the output format for our TR task.411

However, in the past, Latex was not mainstream412

in Table-to-Sequence tasks, so there are fewer413

models available for comparison. To provide more414

comprehensive reference information, we have415

included the F1 scores of other models that output416

in HTML in the appendix B.2.417

4.5.3 OCR performance418

As mentioned in 4.1, DocLayNet (Pfitzmann et al.,419

2022) supports not only DLA but also OCR eval-420

uation. We selected 3,000 English image samples421

from the dataset as the test set. As shown in Table 2,422

DocFusion achieves exceptional performance in423

both BLEU and EditDis. This outstanding result is424

primarily attributed to DocFusion’s joint training425

on three recognition tasks, which enhances its426

efficiency and effectiveness in handling complex427

document structures.428

4.5.4 DLA performance429

We use the test set from DocLayNet(Pfitzmann430

et al., 2022) to evaluate the DLA task. In431

terms of FPS, while DocFusion exhibits a slight432

disadvantage in processing speed, it offers an out-433

of-the-box solution that eliminates the need for hy-434

perparameter tuning in practical applications. This435

enables the model to achieve optimal performance436

directly, without requiring further adjustments,437

thereby compensating for its lower speed.438

Regarding accuracy, DocFusion generates layout439

element labels and coordinates by sequentially440

predicting tokens without relying on confidence441

scores. Given that the commonly used Average 442

Precision (AP) metric in object detection is based 443

on confidence scores, it is not directly applicable in 444

this evaluation. To ensure a fair comparison with 445

confidence-based models, we adopt an alternative 446

evaluation methodology. Specifically, for these 447

models, we compute Precision, Recall, and F1- 448

score at various thresholds and select the maxi- 449

mum F1-score across all thresholds as the final 450

evaluation metric. As shown in Table 3, DocFusion 451

demonstrates strong performance in the domain of 452

scientific document detection. 453

4.6 Ablation Study 454

4.6.1 OCR-Driven Enhancement of DLA 455

This section explores the impact of OCR on DLA 456

performance. As shown in Table 4, the results in 457

the DLA column from the first and second rows 458

indicate that adding the OCR task improves DLA 459

performance, with an F1 increase of up to 1.3%. 460

This result demonstrates the effectiveness of using 461

textual information in joint training. Compared 462

to independent training that relies only on visual 463

features, OCR significantly enhances the model’s 464

robustness. For example, tables and mathematical 465

expressions have distinct visual features, which can 466

often be effectively recognized by DLA models. 467

In contrast, text or titles have less distinctive 468

visual features, making it challenging to predict 469

their labels based on visual information alone. 470

By providing complementary textual information, 471

OCR strengthens the collaboration between visual 472

and semantic features, resulting in better overall 473

performance. 474

4.6.2 Collaboration of Recognition Tasks 475

In this section, we explore the collaboration among 476

the recognition tasks OCR, TR, and MER. As 477

shown in Table 4, the experimental results from the 478

first and third rows demonstrate that joint training 479

yields better performance compared to training 480

7



Objective
Function

OCR MER TR DLA

BLEU↑ EditDis↓ CDM↑ CSRMER↑ F1↑ CSRTR↑ F1↑

CE 96.5 2.3 97.8 96.5 90.2 89.1 87.9

GK-CEL 97.4 1.8 98.7 99.8 92.1 92.5 89.1

Table 5: Ablation analysis of Gaussian-Kernel Cross-Entropy Loss was conducted on the same dataset across four
tasks: OCR, MER, TR, and DLA. CE represents training with the standard cross-entropy loss, while GK-CEL
denotes training with Gaussian-Kernel Cross-Entropy Loss.

Figure 4: Validation loss curves under identical
hyperparameter settings, where the only variation is
the choice of the objective function.

each task individually. Specifically, OCR achieves481

a 0.3% improvement in BLEU score, MER sees482

increases of 0.4% in CDM and 0.1% in CSR,483

and TR benefits most significantly, with a 2.1%484

improvement in F1 score for cell parsing and a485

2.0% increase in CSR. This collaboration enables486

the model to leverage shared information across487

tasks, enhancing individual task performance and488

improving overall document parsing capabilities.489

These results demonstrate that multi-task col-490

laboration effectively enhances performance by491

leveraging shared information.492

4.6.3 Results of improved objective function493

In this section, we compared the original cross-494

entropy and Gaussian-Kernel Cross-Entropy Loss495

(Gk-CEL) in recognition and detection tasks. As496

shown in Table 5, the results demonstrate that Gk-497

CEL led to significant performance gains across498

both task categories. In recognition tasks, the499

BLEU score in the OCR task saw an improvement500

of 1.8%. Additionally, the CDM metric in the MER501

task increased by 0.9%, while the F1 score in the502

TR task rose by 2.1%. Notably, for the CSR metric,503

which assesses LaTeX compilation success, the 504

MER and TR tasks achieved gains of 3.3% and 505

3.8%, respectively, highlighting enhanced usability 506

and correctness of the LaTeX outputs. For the de- 507

tection task, the F1 score of the DLA task increased 508

by 0.34%. This improvement can be attributed 509

to Gk-CEL, which alleviates the issue of coor- 510

dinate token errors dominating the gradient. By 511

addressing this imbalance, the objective function 512

not only enhances the performance of recognition 513

tasks but also improves the accuracy of predicting 514

layout element categories in the detection task 515

itself. These results collectively show that Gk- 516

CEL effectively addresses key challenges in loss 517

minimization, ensuring that tasks such as DLA can 518

operate within a generative framework. It avoids 519

gradient dominance issues while achieving better 520

task balance in a multi-task learning setup. 521

5 Conclusion 522

In this work, we introduced DocFusion, the first ap- 523

proach to integrate the four modules of a document 524

parsing pipeline into a unified model by designing 525

Gaussian-Kernel Cross-Entropy Loss tailored to 526

handle diverse data types across tasks. Our 527

method achieved SOTA performance on multiple 528

benchmarks. To enable downstream applications, 529

we re-annotated the widely used DocLayNet 530

dataset and constructed a large-scale formula-to- 531

LaTeX dataset, applying a unified standardization 532

process. Through detailed analysis, we observed 533

that DocFusion, as a lightweight model with 534

fewer parameters, effectively integrates multiple 535

tasks into a single framework, demonstrating both 536

efficiency and versatility in handling complex 537

document parsing challenges. In the future, we 538

aim to extend DocFusion to larger models and 539

further improve dataset standardization to enhance 540

its performance and applicability across broader 541

tasks and domains. 542

8



Limitations543

While this study primarily focuses on three recogni-544

tion tasks using standard PDF screenshots, we have545

enhanced the model’s generalization capabilities546

by incorporating handwritten mathematical expres-547

sions. However, the model still has limitations548

in handling handwritten or other non-standard549

table formats. For the detection task, although550

the model demonstrates competitive performance551

in both accuracy and usability, its processing552

speed presents challenges for real-time or high-553

throughput applications. This highlights the need554

for further optimization in computational efficiency555

to better meet diverse application demands.556
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A Details of Datasets752

A.1 DLA Dataset Reconstruction753

Figure 5: The corresponding numbers were removed
from the annotated data for mathematical expression
detection.

In DocLaynet and other similar datasets, the754

annotation of mathematical formulas has certain755

limitations, as show in figure 5, the content of math756

expression and numbering are typically annotated757

within the same bounding box. This annotation758

approach introduces noise in subsequent Mathe-759

matical Expression Recognition (MER) tasks.760

To address this issue, we extracted formulas761

from arXiv LaTeX source files using regular ex-762

pressions and assigned unique colors and bounding763

boxes to each element. Then, we employed a fuzzy764

matching algorithm to ensure annotation accuracy765

and eliminate overlaps. Finally, we trained a766

lightweight detection model and, combined with767

manual verification, re-annotated pages contain-768

ing formulas. These improvements significantly769

enhance the dataset’s applicability to subsequent770

MER tasks.771

A.2 MER and TR Dataset772

MER Dataset. The UniMER-1M (Wang et al.,773

2024b) has significantly advanced MER research774

but contains many redundant spaces in LaTeX775

code. Although some spaces are syntactically776

necessary, most are unnecessary, increasing777

output length and computational overhead. To778

address this, we constructed a new dataset by779

extracting content from LaTeX files, normalizing780

style variations and verifying accuracy through781

re-rendering. Models trained on our dataset782

produce LaTeX code that is approximately 34.2%783

shorter for complex expressions and 37.5% shorter784

for simple expressions on the UniMER-1M test set,785

demonstrating improved efficiency.786

787

TR Dataset. In the TR task of DocFusion, 788

we adopted LaTeX as the output format for two 789

main reasons: (1) to ensure consistency with 790

the MER task’s output format, enabling better 791

multi-task collaboration; and (2) because LaTeX 792

facilitates both the extraction of cell content and 793

the restoration of the original table layout. Existing 794

LaTeX-based TR datasets either lack sufficient 795

scale or fail to separate tables from captions, 796

conflicting with our DLA task. To overcome these 797

limitations, we constructed a high-quality TR 798

dataset with 100K samples by following a similar 799

approach to the MER dataset. 800

801

A.3 Latex-based data standardization 802

Issue Original Standardized
Bracket \{ \lbrace
Subsup a^1_2 a_2^1
Prime a′ a^{\prime}
Fraction \over \frac
Space \tabular{l c} \tabular{lc}

Table 6: Examples of LaTeX standardization for various
symbols and expressions.

We chose to standardize the output format as 803

LaTeX for two recognition tasks involving non- 804

plain-text elements. For MER, converting to LaTeX 805

was essential as it provides a precise representation 806

of mathematical formulas. For TR, in addition 807

to ensuring format consistency, converting to 808

LaTeX also allows for the restoration of the 809

original content through compilation, and enables 810

the extraction of cell elements using tools such 811

as LatexNodes2Text, thus enhancing processing 812

flexibility. 813

We used regular expressions to extract relevant 814

content from the LaTeX source files of research 815

papers. However, due to variations in author 816

writing styles, the same formula or table may 817

appear in multiple forms, increasing the complexity 818

of training. As show in table 6 , we analyzed 819

these different representations, standardized them 820

to eliminate ambiguities and ensured consistency. 821

To verify the accuracy of the standardized LaTeX 822

code, we re-rendered it into images, creating a high- 823

quality dataset that aligns with the actual input- 824

output content. 825
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Model size SPE CPE HWE

CDM↑ ExpRate↑ CSR↑ CDM↑ ExpRate↑ CSR↑ CDM↑ ExpRate↑ CSR↑
Pix2tex (2022) - 92.1 59.0 99.8 45.2 7.2 88.1 24.7 8.1 16.3
Texify (2023) 312M 98.7 89.8 99.8 69.8 35.6 94.3 49.9 21.3 25.8
GOT (2024) 580M 95.0 82.7 98.6 73.3 36.4 96.4 31.2 17.7 10.2
UniMERNet (2024b) 325M 99.7 95.6 99.9 97.6 77.4 99.2 94.7 65.3 98.1
DocFusion(Ours) 289M 99.7 97.3 99.9 96.9 88.1 99.5 94.1 72.1 99.3

Table 7: Supplementary details of MER. SPE refers to simple printed mathematical expressions, CPE refers to
complex printed mathematical expressions, and HWE refers to handwritten mathematical expressions.

B Other supplementary experiments826

B.1 Details of MER Performance827

we provide a detailed presentation of the main828

experimental results for MER, showing the per-829

formance of the relevant models on simple, com-830

plex, and non-standard handwritten mathematical831

expressions. For specifics, please refer to Table 7.832

B.2 Other Table-to-Sequence Method833

Methods F1 CSR
surya 37.4 -
ppstructure_table 78.1 -
Deepdoctection 53.7 -
RapidTable 87.9 -
MixTex 46.2 27.4
GOT 86.9 81.6
StructEqTable 90.6 93.2
DocFusion 92.1 92.5

Table 8: Due to differences in the method of extracting
cell contents, the fairness of the experiment cannot be
guaranteed, therefore, it is provided for reference only.

This study aims to explore multi-task collab-834

oration, and therefore, the TR task also adopts835

Latex as the output format to maintain consistency836

with MER. However, Latex has not been the837

mainstream approach for TR tasks in recent times,838

resulting in a limited number of TR models839

available for comparison in the main experiment.840

To address this limitation, we incorporated other841

methods based on HTML as the output format.842

However, due to differences in sequence ex-843

traction methods, ensuring a fair comparison844

is challenging. Therefore, we have included845

the supplementary experimental results in the846

appendix for reference.847

C Other optimization methods 848

The challenge of this experiment lies in effectively 849

optimizing continuous coordinate-type data within 850

a discrete generative framework. Since there are 851

inherent errors in coordinate annotations, these 852

errors are further amplified when training the 853

generative framework using cross-entropy loss, 854

especially when the framework performs multiple 855

tasks, which exacerbates the issue. To address 856

this problem, in addition to the Gaussian-Kernel 857

Cross-Entropy Loss introduced in the main text, 858

we employed several other optimization strategies, 859

including the basic adjustments of data ratios or 860

loss weights, as well as using soft-argmax to 861

continuously map discrete coordinate tokens. 862

C.1 Hyperparameters Adjustment Strategies 863

The root cause of the training difficulty lies in 864

the fact that the discrete coordinate tokens do 865

not effectively dominate the loss during training, 866

leading to poor gradient propagation and inefficient 867

parameter updates. To address this, one possible 868

solution is to adjust the data ratios or the loss 869

weights across different task types. However, while 870

this approach can improve training stability to some 871

extent, it is overly engineering-driven and does 872

not fundamentally solve the underlying issue of 873

inadequate gradient flow caused by the discrete 874

nature of the coordinate tokens. 875

C.2 Soft-argmax Strategies 876

The core issue lies in the fact that while multi- 877

task frameworks need to be discrete, coordinates 878

are inherently continuous. A natural solution to 879

this problem is to "smooth" the coordinate loss, 880

effectively making it continuous. This approach 881

offers an intuitive way to handle the challenge, 882

and we primarily use the soft-argmax technique to 883

obtain the position coordinates while maintaining 884

the gradient flow, followed by the computation of 885

the loss via Mean Squared Error (MSE). 886
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Figure 6: Soft-argmax Loss

However, the difficulty arises during multi-task887

training: after calculating the MSE, we need to888

ensure that it remains within the same range as889

other cross-entropy (CE) losses. The challenge890

here is to maintain balance and prevent the MSE891

loss from overwhelming the CE losses. Moreover,892

if the hyperparameters of the soft-argmax are not893

set appropriately, it can easily lead to gradient894

explosion during training, further complicating the895

optimization process.896

Although this method aims to address the issue at897

its core by making the coordinate loss continuous,898

it still relies heavily on the correct setting of hyper-899

parameters. Furthermore, it presents generalization900

issues when applied to different tasks or datasets.901

In comparison, the Gaussian-Kernel Cross-Entropy902

Loss (GK-CEL) offers a more robust solution, as it903

reduces the dependency on hyperparameters while904

improving generalization performance.905
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Figure 7: DLA Effect Presentation

14



Input image：

Rendered 
Output Effect：

Figure 8: MER Effect Presentation
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Input image：

Rendered 
Output Effect：

Figure 9: TR Effect Presentation
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