
Utilizing Null Space in Overactuated Systems
vs

Avoiding Null Space in Underactuated Systems
Xiangyu Chu

Department of Mechanical and Automation Engineering
The Chinese University of Hong Kong

Email: xychu@mae.cuhk.edu.hk

Abstract—In this retrospective, a high-level principle to
guide controller design for underactuated systems based on
different treatment on null space will be disclosed, which is
inspired by [4]. Firstly, we will show what is avoiding null
space in underactuated systems. Secondly, we will introduce
how this principle evolves. Thirdly, we will show the tricks
that were used in the development. Finally, the limitations
in [4] and corresponding extensions will be presented.

I. WHAT IS AVOIDING NULL SPACE?

Over the years, the principle of utilizing the null space
in overactuated (redundant) systems has inspired and
guided researchers to create many systematic and uni-
fied methods to address multiple task control problems,
where the lower task objectives can be projected into
the null space of higher task objectives. In underactuated
systems, there is no null space that can be found directly
due to the absence of redundant Degree of Freedom
(DoF). Lacking a high-level principle like the null space
utilization, many controllers for underactuated systems
were complex and non-intuitive, and more often were
designed for specific systems or specific class of sys-
tems. There are only very few unified robust feedback
controllers for a wide range of underactuated systems.

Unlike the built-in null space in redundant systems,
the null space in underactauted system is created inten-
tionally by us so that we can create a corresponding
high-level principle to control underactuated systems.
In this sense, the principle of solving an underactuated
control problem becomes more tractable or predictable.
Specifically, the null space in underactuated systems
occurs when one considers the control problem from
the inverse perspective. Let us consider a control-affine
nonlinear system of the form

9x “ fpxq `
m
ÿ

i“1

gipxqui, (1)

where x P Rn is the generalized coordinate vector,
g1pxq, ¨ ¨ ¨ , gmpxq can be expressed as a mapping ma-
trix Jpxq P Rnˆm, acting as a kind of Jacobian (m ă n),
and fpxq P Rn is the drift vector field. The goal
is to design the control u “ ru1, u2, ¨ ¨ ¨ , ums

T such
that the system evolves from any initail state x0 to
the desired state xd. It is challenging since m control
inputs have to control n state variables, especially for
stabilization tasks. For one of the simplest underactuated
robots - unicycle, two control inputs, including linear
velocity and angular velocity, are supposed to control
Cartesian position and orientation. Taking the inverse of
(1) mathematically, we have

u “ J`
pxqr 9x´ fpxqs, (2)

where p‚q` denotes the left pseudoinverse such that
J`

“ pJTJq´1JT . Note that J`
P Rmˆn has a non-

trivial null space with the dimension of pn ´ mq if J
is full rank. Such a non-trivial null space may nullify
u even though 9x ´ fpxq is non-zero. An intuitive idea
is to prevent the vector 9x ´ fpxq from falling into the
null space of J`, i.e., avoiding null space, which is the
high-level principle for underactuated system control.

To visualize the null space in underactuated systems,
we use a unicycle model without drift to show it. As
shown in Fig. 1, the unicycle is expected to stabilize the
position (x, y) and the steering angle (θ) to r0, 0, π3 s

T

by controlling the linear drive velocity and angular
steering velocity. Red circles, red squares, and the blue
line denote a family of initial states with the initial
steering angle equal to π

2 , the terminal state of each
trajectory, and the null space, respectively. Unfortunately,
the unicycle mostly converged to the null space (the blue
line), instead of the zero equilibrium point.

In [4], we have firstly implemented the idea of avoid-
ing null space in a tailed robot, where the implemen-
tation was inspired by the tail movement. Later on, we
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Figure 1: Visualization of the one-dimensional manifold or
null space at the steady state when solely applying the stan-
dard kinematics controllers (such as Jacobian pseudoinverse
method) to the unicycle.

generalized this idea to a high-level principle available
for multiple underactuated robotic systems (e.g., [5]).
To show the effectiveness, we used the generalized
controller to solve the trapping problem caused by the
non-trivial null space. As shown in Fig. 2, the unicycle
can converged to the desired state for all given initial
states.
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Figure 2: Successful stabilization of the unicycle using our
generalized controller.

One thing worth mentioning is that the resulting
controller for the stabilization control of underactuated
systems is almost-continuous, time-invariant and state-
feedback. Its discontinuity only occurs at the initial
moment. If the system is exactly in the null space, a
switching is necessary to help the system escape from
the null space. After that, the control will be contin-
uous without any switching. This contribution is not

trivial since there always exists a fundamental obstruc-
tion (Brockett’s necessary condition [1]) on designing
a continuous, time-invariant, and state-feedback control
for underactuated systems.

In [2], Brockett also raised a classic question for
underactuated system control, “What is the closest one
can come to a smooth stabilizing feedback when no
smooth feedback control exists?” To our best knowledge,
our analytical solution to underactuated control may
serve as one of potential solutions to the closest one
that can come to a smooth stabilizing feedback when no
smooth feedback control exists.

We will omit the details about the implementation of
avoiding null space. [4] is a good published paper for
illustrating the initial idea of avoiding null space, so the
reader is strongly recommended to read Section IV of
this paper.

II. HOW AVOIDING NULL SPACE EVOLVES?

To our best knowledge, avoiding null space is firstly
suggested by Prof. Nakamura when they were trying
to plan the motion of underactuated space robots [7].
However, they did not provide any effective controllers
and just presented a vision.

[3] gave us lots of inspiration in how to specifically
avoid null space. In [3], they used “shape control” (a
least squares method) to solve the 3-DoF orientation
control by using a 2-DoF actuated tail. Furthermore, they
discovered that the tail configuration would affect the er-
ror in the “shape control”, thus an augmented controller,
“perpendicular method”, was designed to adjust the tail
configuration accordingly to minimize the error.

With the above knowledge, we developed the null-
space-avoidance-based algorithm in [4]. Specifically, the
“shape control” is the subset of our standard kinematics
control; the augmented “perpendicular method” is the
subset of our null space avoidance control.

In summary, [4] is the combination of [7] and [3]. [7]
provides a guideline of how to solve the stabilization
control of underactuated systems, while [3] provides
an effective implementation for a specific underactuated
system. Proper combination and reasoning allow us to
solve the stabilization control in a systematic manner.
Currently, the idea of avoiding null space is really
implemented in physical robots, rather than only being
on the paper.

III. TRICKS

The reader may feel that the control algorithm in [4]
is kind of simple. What we want to say is YES! We
were challenged a lot since we did not present complex
control algorithms to solve challenging underactuated
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control problems. The simple but effective controller is
beneficial from some tricks.

A. Selection of t vector

To show our respect to [3], we still use t to represent
this key vector in [4]. In [3], t denoted the direction of
the tail, which was obtained by observation (see “This
vector is the first column of (2) and it can be easily
confirmed through inspection” in [3]). Moreover, the t
in [3] depended on a simplified model and its existence
would be denied if the original system model was
considered. Such a t significantly limits the extension
to a general case.

Our t vector is more general and can be obtained
systematically. It denotes the direction of the null space.
More specifically, it is the third left-singular vector of
the Jacobian-like matrix if we only consider a 3-state
and 2-input underactuated system (see some examples

in [4]).

B. Relation between Cross Product and Skew-symmetric
Matrix

Unlike [3], [4] provides a rigorous stability proof. This
is attributed to the cross product used in the null space
avoidance controller and the conversion between cross
product and skew-symmetric matrix. The quadratic form
of skew-symmetric matrices is zero, which is a good
property while analyzing the derivative of a Lyapunov
function.

If the reader pays attention to (25) in [4], you will
find that the part of null space avoidance controller is
eliminated, as shown in (3)-(9) in this retrospective.
One property worth mentioning is JθφJ`

θφSpt
M1q “

SptM1q, where Sp‚q is the skew-symmetric matrix form
of a vector and tM1 is the third left-singular vector of
Jθφ. If not tM1, this property may not exist.

9V “ ´eTθK
M1T 9θ (3)

“ ´λM1TJθφ 9φð substituting the kinematics equation and λM1
“KM1eθ (4)

“ ´λM1TJθφpk
KM1 9φ

K,M1

comm ` k
NM1 9φ

N,M1

commq ð substituting the proposed controller (5)

“ ´λM1TJθφJ
`
θφpk

KM1λM1
` kNM1γ

λM1
ˆ tM1

||λM1
ˆ tM1||

q ð substituting subcontrollers (6)

“ ´λM1TJθφJ
`
θφrk

KM1I3ˆ3 ` k
NM11

SptM1qsλM1
ð rearranging (7)

“ ´kKM1λM1TJθφJ
`
θφλ

M1
ð using JθφJ`

θφSpt
M1q “ SptM1q and λM1TSptM1qλM1

“ 0 (8)

ď 0, (9)

IV. LIMITATIONS AND EXTENSIONS

A. Limitations

Although [4] firstly implemented the principle of
avoiding null space, the work in [4] suffers some limi-
tations:

1) Drift Term
We assumed the initial angular momentum of
the tailed robot in flight phase to be zero, thus
the discussed system became a driftless system,
similar to the unicycle model. However, this case
is too ideal in practice and the drift term normally
exists.

2) Constrained Input
Since the method in [4] is a simple feedback
control, there is no any constraint involved. In real
robots, motors normally show limited capability
and the control command may not be satisfied at
each moment.

3) Cross Product

Although cross product helps us design a simple
and provable stabilization controller, on the other
hand, it limits us to extend the principle of avoid-
ing null space to systems with the dimension of
greater than three.

B. Extensions

To overcome these limitations, we have generalized
and extended the work in [4], as follows:

1) Drift Term
The drift term can be integrated into the standard
kinematics part without much modification (the
drift term is not limited to be non-zero angular
momentum anymore). The rest of design can be
similar to that of the driftless case. To show the
performance, we take an example of the unicycle-
like underwater vehicle and the current plays the
role of the drift term. As shown in Fig. 3, the
proposed stabilization controller for the drift case
can stabilize the vehicle into a bounded area of the
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Figure 3: 2D trajectories of an underwater vehicle generated
by two controllers: Inverse Kinematics Control (IKC) and
Proposed Stabilization Control (PSC).

desired state. Note that it is intractable to stabilize
the drift system to a desired state precisely and
ultimately if the drift is non-vanishing.

2) Constrained Input
Since our method keeps the architecture of the
standard kinematics control, we are allowed to
integrate it into the Quadratic Programming (QP).
Thus, we can include input constraints into the
stabilization of underactuated systems. We want
to emphasize that the involvement of the QP into
the stabilization control of underactuated systems
is not trivial and our method is the first solution
to our best knowledge. In Fig. 4, we used one ex-
ample to demonstrate the effectiveness (see black
thin lines).

3) Cross Product
[6] has proved that cross product survives not
only in 3D space but also in 7D space. Thus,
our principle can be applied to a class of 7-
state and 6-input underactuated systems (see Fig.
4). Besides, inspired by [8], we directly applied
the operation of skew-symmetric matrix into the
controller, instead of cross product. This idea fa-
cilitates the adaption of our principle to the system
not in 3D/7D space, which has been verified in
an example of 4-state and 3-input underactuated
systems (see Fig. 5).

Our principle is insightful for the control of underac-
tuated systems and shows its capability to a wide range
of underactuated systems, such as nonholonomic mobile
robots, legged robots in flight phase, underactuated ax-
isymmetric spacecrafts, microswimmers, underactuated
ships, and parallel robots. Once having their Jacobian-
like mapping matrices, we can intentionally create the
null space and apply our principle of avoiding null space

to achieve system stabilization. The principle of avoiding
null space opens up a wide range of opportunities
for the control of underactuated systems. Besides, the
resulting controllers are robust to the drift, which can
be rigorously proved. This drift can be interpreted as
external disturbance, natural dynamics, and error terms
in trajectory tracking tasks.

Overall, we believe that avoiding null space is a
fundamental property in underactuated systems and it
can guide us to design underactuated system controller
systematically. On the one hand, our method can provide
lots of underactuated systems with lightweight but effec-
tive solutions. On the other hand, the effectiveness of the
QP-based methods implies that the principle of avoiding
null space can interplay in both analytical and numerical
domains. It may be able to be applied to nonlinear
optimization like nonlinear Model Predictive Control
(MPC) in the sense of cost functions and constraints in
the future.
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