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ABSTRACT

Escaping from saddle points has become an important research topic in non-
convex optimization. In this paper, we study the case when calculations of explicit
gradients are expensive or even infeasible, and only function values are accessi-
ble. Currently, there have two types of gradient-free (zeroth-order) methods based
on random perturbation and negative curvature finding proposed to escape sad-
dle points efficiently and converge to an ϵ-approximate second-order stationary
point. Nesterov’s accelerated gradient descent (AGD) method can escape saddle
points faster than gradient descent (GD) which have been verified in first-order
algorithms. However, whether AGD could accelerate the gradient-free methods is
still unstudied. To unfold this mystery, in this paper, we propose two accelerated
variants for the two types of gradient-free methods of escaping saddle points. We
show that our algorithms can find an ϵ-approximate second-order stationary point
with Õ(1/ϵ1.75) iteration complexity and Õ(d/ϵ1.75) oracle complexity, where d
is the problem dimension. Thus, our methods achieve a comparable convergence
rate to their first-order counterparts and have smaller oracle complexity compared
to prior derivative-free methods for finding second-order stationary points.

1 INTRODUCTION

Non-convex optimization has received increasing attention in recent years because lots of modern
machine learning (ML) and deep learning (DL) tasks can be formulated as optimizing models with
non-convex loss functions. In this paper, we consider non-convex optimization with the following
general form:

min
x∈Rd

f(x), (1)

where f(x) is differentiable and has Lipschitz continuous gradient and Hessian.

In this paper, we focus on situations when first-order information (gradient) is not always directly ac-
cessible. Many machine learning and deep learning applications often encounter settings where the
calculation of explicit gradients is expensive or even infeasible, such as black-box adversarial attack
on deep neural networks (Papernot et al., 2017; Madry et al., 2018; Chen et al., 2017; Bhagoji et al.,
2018; Tu et al., 2019), policy search in reinforcement learning (Salimans et al., 2017; Choromanski
et al., 2018; Jing et al., 2021), hyper-parameter optimization (Bergstra & Bengio, 2012). There-
fore, zeroth-order optimization, which utilizes only the zeroth-order information (function value) to
optimize the non-convex problem Eq. (1), has gained increasing attention in machine learning.

In general, the goal of a non-convex optimization problem Eq. (1) is to find an ϵ-approximate first-
order stationary point (FOSP, see Definition 3), since finding the global minimum is NP-hard. Gra-
dient descent is proven to be an optimal first-order algorithm for finding an ϵ-approximate FOSP of
non-convex problem Eq. (1) under the gradient Lipschitz assumption (Carmon et al., 2020; 2021),
which needs a gradient query complexity of Θ( 1

ϵ2 ). However, for non-convex functions, FOSPs
can be local minima, global minima and saddle points. The ubiquity of saddle points makes high-
dimensional non-convex optimization problems extremely difficult and will lead to highly subopti-
mal solutions (Jain et al., 2017; Sun et al., 2018). Therefore, many recent research works have fo-
cused on escaping saddle points and studying properties of converging to an ϵ-approximate second-
order stationary point (SOSP, see Definition 4) using first-order methods.
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A recent line of work showed that first-order methods can efficiently escape saddle points and con-
verge to SOSPs. Specifically, Jin et al. (2017) proposed the perturbed gradient descent (PGD) al-
gorithm by adding uniform random perturbation into the standard gradient descent algorithm that
can find an ϵ-approximate SOSP in Õ(log4 d/ϵ2) gradient queries. Under the zeroth-order setting,
Jin et al. (2018a) proposed a zeroth-order perturbed stochastic gradient descent (ZPSGD) method,
which studied the power of Gaussian smoothing and stochastic perturbed gradient for finding lo-
cal minima. The role of Gaussian smoothing is to reduce zeroth-order optimization to a stochas-
tic first-order optimization of a Gaussian smoothed function of problem Eq. (1). They proved
their method can find an ϵ-approximate SOSP with a function query complexity of Õ

(
d2/ϵ5

)
.

Vlatakis-Gkaragkounis et al. (2019) proposed the perturbed approximate gradient descent (PAGD)
method using the forward difference of the coordinate-wise gradient estimators, which finds an ϵ-
approximate SOSP in Õ

(
d log4 d/ϵ2

)
function queries. Recently, Lucchi et al. (2021) proposed

a random search power iteration (RSPI) method, which alternatively runs the random search step
and zeroth-order power iteration step, and can find an (ϵ, ϵ2/3)-approximate SOSP (∥∇f(x)∥ ≤ ϵ,
λmin(∇2f(x)) ≥ −ϵ2/3) in O(d log d/ϵ 8

3 ) function queries. Zhang et al. (2022) proposed a zeroth-
order gradient descent method with zeroth-order negative curvature finding that can find an (ϵ, δ)-
approximate SOSP (∥∇f(x)∥ ≤ ϵ, λmin(∇2f(x)) ≥ −δ) in O( d

ϵ2 + d log d
δ3.5 ) function queries.

Table 1: Comparison of different zeroth-order methods for finding ϵ-approximate second-order sta-
tionary points.
Algorithm Reference Main Technique Function Queries

ZPSGD Jin et al. (2018a) Random perturbation Õ
(

d2

ϵ5

)
PAGD Vlatakis-Gkaragkounis et al. (2019) Random perturbation O

(
d log4 d

ϵ2

)
RSPI Lucchi et al. (2021) Negative curvature finding O(d log d

ϵ8/3
) ∗

ZO-GD-NCF Zhang et al. (2022) Negative curvature finding O( d
ϵ2 + d log d

δ3.5 ) ∗∗

Algorithm 1 Theorem 1 Random perturbation O
(

d log6 d
ϵ7/4

)
Algorithm 3 Theorem 2 Negative curvature finding O

(
d log d
ϵ7/4

)
∗ guarantees (ϵ, ϵ2/3)-approximate SOSPs; ∗∗ guarantees (ϵ, δ)-approximate SOSPs.

Although gradient descent has achieved an optimal convergence rate for finding FOSPs under gradi-
ent Lipschitz assumption, potential improvements are achievable under additional Hessian Lipschitz
assumption (Carmon et al., 2021). Nesterov’s AGD combined with some special mechanisms, has
been proved to be able to find ϵ-approximate FOSPs with less query complexity. Carmon et al.
(2017) proposed a variant of Nesterov’s AGD with a “convex until guilty” mechanism, which can
find an ϵ-approximate FOSP with gradient query complexity O( 1

ϵ7/4
log 1

ϵ ). Recently, Li & Lin
(2022) proposed a restarted accelerated gradient descent method that can find an ϵ-approximate
FOSP in gradient query complexity O( 1

ϵ7/4
), which adds a restart mechanism to Nesterov’s AGD.

On finding SOSPs, Nesterov’s AGD is also proved to be more efficient than GD. Jin et al. (2018b)
studied a variant of Nesterov’s AGD named perturbed AGD, and proved that it can find an ϵ-
approximate SOSP in Õ(log6 d/ϵ7/4) gradient queries. Their method added two algorithmic fea-
tures to Nesterov’s AGD: random perturbation and negative curvature exploitation, to ensure the
monotonic decrease of the Hamiltonian function (see Eq. (4)). Allen-Zhu & Li (2018) proposed
a first-order negative curvature finding framework named Neon2 that can find the most negative
curvature direction efficiently. Combining Neon2 with CDHS method of Carmon et al. (2018) can
find an ϵ-approximate SOSPs in Õ(log d/ϵ7/4) gradient queries, which improved the complexity
of perturbed AGD method by a factor of poly(log d) due to the use of negative curvature finding
subroutine. Recently, Zhang & Li (2021) proposed a single-loop algorithm that also achieves the
same function query complexity, which replaced the random perturbation step in perturbed AGD
with accelerated negative curvature finding.

Given the advantages of Nesterov’s AGD in finding SOSPs in first-order optimization, it is then
natural to design AGD based zeroth-order methods for finding SOSPs with smaller function query
complexity. To the best of our knowledge, it is still a vacancy in zeroth-order optimization.

Contributions The main contributions of this paper are summarized as follows,
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• We study the complexity of two AGD based zeroth-order methods for finding ϵ-
approximate SOSPs. We first study a zeroth-order version of the perturbed AGD method
(Algorithm 1) using the central finite difference version of the coordinate-wise gradient
estimator, which can be proved to have a lower approximation error compared to its for-
ward counterpart. The total function query complexity of Algorithm 1 for finding an ϵ-
approximate SOSP is Õ(d log6 d/ϵ 7

4 ).
• Due to the efficiency of the negative curvature finding for finding the most negative cur-

vature direction near a saddle, we further study a zeroth-order version of the perturbed
AGD with accelerated negative curvature finding subroutine (Algorithm 3), which uses the
finite difference of the two coordinate-wise gradient estimators to approximate the Hessian-
vector product. We show that Algorithm 3 can further improve the function query complex-
ity of Algorithm 1 by a factor of poly(log d).

• Finally, we conduct several empirical experiments to verify the efficiency and effectiveness
of our methods in escaping saddle points.

2 PRELIMINARIES

2.1 NOTATIONS

Throughout this paper, we use bold uppercase letters A,B to denote matrices and bold lowercase
letters x,y to denote vectors. We use ∥ · ∥ to denote the Euclidean norm of a vector and the spectral
norm of a matrix. We use Bx(r) to denote the ℓ2 ball with radius r centered at point x. We use Õ(·)
to hide absolute constants and log factors.

2.2 DEFINITIONS

Definition 1. For a differentiable nonconvex function f : Rd → R, f is ℓ-Lipschitz smooth if
∀x,y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ ℓ∥x− y∥.

Definition 2. For a twice differentiable nonconvex function f : Rd → R, f is ρ-Hessian Lipschitz if
∀x,y ∈ Rd, ∥∇2f(x)−∇2f(y)∥ ≤ ρ∥x− y∥.

Definition 3. For a differentiable function f , we say x is an ϵ-approximate first-order stationary
point if ∥∇f(x)∥ ≤ ϵ.
Definition 4. For a twice differentiable function f , we say x is an ϵ-approximate second-order
stationary point if

∥∇f(x)∥ ≤ ϵ and λmin(∇2f(x)) ≥ −√ρϵ.

2.3 ZEROTH-ORDER GRADIENT ESTIMATOR

In this subsection, we introduce a central difference coordinate-wise gradient estimator, which is
widely studied in literature of zeroth-order optimization (Ji et al., 2019; Vlatakis-Gkaragkounis et al.,
2019; Lucchi et al., 2021),

∇̂f(x) =
d∑

i=1

f(x+ µei)− f(x− µei)

2µ
ei, (2)

where ei is the i-th standard basis vector with 1 at its i-th coordinate and 0 otherwise. When
analyzing the approximation error of the above gradient estimator, previous work only exploited the
smoothness property of the gradient of f , not the property of Hessian Lipschitz (which is a basic
assumption for analyzing the second-order convergence properties). To fill this gap, we establish the
following lemma,
Lemma 1. For a twice differentiable function f : Rd → R, assume that f is ρ-Hessian Lipschitz,
then for any given smoothing parameter µ and any x ∈ Rd, we have

∥∇̂f(x)−∇f(x)∥2 ≤ 1

36
ρ2dµ4.

Note that, under the Hessian Lipschitz assumption, the central difference has a lower approximation
error than that of O(ℓ2dµ2) error under the ℓ-smooth assumption (Ji et al., 2019).
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2.4 ZEROTH-ORDER HESSIAN-VECTOR PRODUCT ESTIMATOR

In this subsection, we show how to approximate the Hessian-vector product under the setting that
we only have access to the zeroth-order information. By the Hessian Lipschitz property, it is easy
to check that the Hessian-vector product ∇2f(x) · v can be approximated by the difference of two
gradients ∇f(x + v) − ∇f(x) with approximation error up to O(∥v∥2) for some v with small
magnitude. On the other hand, by Lemma 1,∇f(x+v),∇f(x) can be approximated by the central
difference coordinate-wise gradient estimator with high accuracy. Then we define the following
zeroth-order Hessian-vector product estimator as follows, which was previously studied in (Ye et al.,
2018; Lucchi et al., 2021; Zhang et al., 2022):

Hf (x)v = ∇̂f(x+ v)− ∇̂f(x) (3)

=

d∑
i=1

f(x+ v + µei)− f(x+ v − µei)

2µ
ei −

d∑
i=1

f(x+ µei)− f(x− µei)

2µ
ei

Above, the notationHf (x) can be seen as the Hessian matrix of f at point x with small perturbations
and we don’t need to know the explicit expression since we only need to study the approximation
error of it, which is established in Lemma 2.

Lemma 2 (Zhang et al. (2022)). For a twice differentiable function f : Rd → R, assume that f is
ρ-Hessian Lipschitz, then for any smoothing parameter µ and x ∈ Rd, we have

∥Hf (x)v −∇2f(x)v∥ ≤ ρ

(
∥v∥2

2
+

√
dµ2

3

)
.

2.5 HAMILTONIAN

The following function, which takes the form of Hamiltonian, was proposed by Jin et al. (2018b) to
tackle the problem of monotonic decrease of the function value for the momentum-based algorithms
in the nonconvex setting,

Et = f(xt) +
1

2η
∥vt∥2, (4)

where vt = xt − xt−1 is the momentum.

3 ALGORITHM DESCRIPTION

In this section, we propose two novel Nesterov’s accelerated method based algorithms that can
escape saddle points and converge to an ϵ-approximate SOSP using only zeroth-order oracles.

3.1 ZEROTH-ORDER PERTURBED ACCELERATED GRADIENT DESCENT

In this subsection, we introduce the zeroth-order perturbed accelerated gradient descent method in
Algorithm 1. The algorithms consist of three parts: the random perturbation steps, the accelerated
gradient descent steps and the negative curvature exploitation steps. The random perturbation step
is called when the gradient is small and no perturbation is added over the past T iterations. Let
κ = ℓ√

ρϵ , and set the parameters of Algorithm 1 as follows,

η =
1

4ℓ
, θ =

1

4
√
κ
, γ =

θ2

η
,

s =
γ

4ρ
, T =

√
κχc, r = ηϵχ−5c−8, (5)

where c is constant and χ = max{1, log dℓ∆f

ρϵδ } with ∆f := f(x0)− f(x∗) <∞.

Since we only have access to the zeroth-order information, we can verify if a point x is an ϵ-
approximate FOSP by using the coordinate-wise gradient estimator based on the following fact:
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Algorithm 1 Zeroth-Order Perturbed Accelerated
Gradient Descent

1: v0 ← 0, tperturb ← 0
2: for t = 0, 1, . . . do
3: if ∥∇̂f(xt)∥ ≤ 3

4ϵ and t − tperturb > T
then

4: xt ← xt + ξt, ξt ∼ Unif (B0(r)),
tperturb ← t

5: yt ← xt + (1− θ)vt

6: xt+1 ← yt − η∇̂f(yt)
7: vt+1 ← xt+1 − xt

8: if Eq. (6) holds then
9: (xt+1,vt+1)← NCE(xt,vt, s)

Algorithm 2 Negative Curvature Exploitation
(xt,vt, s) (Jin et al., 2018b)

1: if ∥vt∥ ≥ s then
2: xt+1 ← xt

3: else
4: δ = s · vt/∥vt∥
5: xt+1 ← argminx∈{xt+δ,xt−δ} f(x)

Return (xt+1, 0)

Proposition 1. Assume that f is ρ-Hessian Lipschitz, with choice of the smoothing parameter µ in
Eq. (2) such that µ ≤

√
3ϵ

2ρ
√
d

, we can conclude that if ∥∇̂f(x)∥ ≤ 3ϵ
4 , then we have ∥∇f(x)∥ ≤ ϵ,

if ∥∇̂f(x)∥ > 3ϵ
4 , then we have ∥∇f(x)∥ ≥ ϵ

2 .

The proof of this proposition directly follows from Lemma 1. The random perturbation is uniformly
randomly selected from the ℓ2-ball with radius r. The second part of the Algorithm 1 is the Nes-
terov’s accelerated gradient descent steps with its gradients estimated by Eq. (2).

The negative curvature exploitation step is called when the following condition holds:

f(xt) ≤ f(yt) +
〈
∇̂f(yt),xt − yt

〉
− γ

2
∥yt − xt∥2. (6)

If this condition hold, then the function have an approximate large negative curvature between xt

and yt. In this case, the accelerated gradient step may not decrease the function value of the Hamil-
tonian. Then we call the negative curvature exploitation step to further decrease the Hamiltonian.
Specifically, when Eq. (6) doesn’t hold, we have the following lemma:
Lemma 3. Assume that f(·) is ℓ-smooth, ρ-Hessian Lipschitz and set the learning rate η ≤ 1

4ℓ , θ ∈
[2ηγ, 1

2 ]. Then, for each iteration t where Eq. (6) does not holds, we have:

Et+1 ≤ Et −
θ

2η
∥vt∥2 −

η

4
∥∇f(yt)∥2 + η · ρ

2dµ4

48
.

On the other hand, when Eq. (6) holds, i.e., a negative curvature direction is observed, then we have
the following lemma:
Lemma 4. Assume that f(·) is ℓ-smooth and ρ-Hessian Lipschitz. Then, for each iteration t where
Eq. (6) holds, we have:

Et+1 ≤ Et −min

{
s2

2η
,
1

2
γs2 − ρs3 − ρ2dµ4

9γ

}
.

Remark 1. The results in Lemma 3 and 4 are similar to the ones in Jin et al. (2018b) while with ad-
ditional system error terms induced by the smoothing parameter µ. Lemma 3 and 4 together ensure
the monotonic decrease of the Hamiltonian in each iteration as long as the smoothing parameter µ
is sufficient small.

Then we set T =
√
κχc = Θ̃(

√
κ) and denote E :=

√
ϵ3

ρ χ
−5c−7 = Θ̃(

√
ϵ3

ρ ). Based on
Lemma 3 and Lemma 4, we can further prove that when the current approximate gradient is large,
i.e., ∥∇̂f(xt)∥ ≥ 3ϵ

4 (or equivalently, ∥∇f(xt)∥ ≥ ϵ
2 , according to Lemma 1). We have the follow-

ing average decrease lemma:

Lemma 5 (Large gradient). If ∥∇̂f(xτ )∥ ≥ 3ϵ
4 with µ ≤ O(( 3ϵ

2ρ
√
d
)1/2) in Line 3 of Algorithm 1

for all τ ∈ [0,T ], then by running Algorithm 1 with µ ≤ Õ( ϵ
5/8

d1/4 ) in Line 6 and µ ≤ Õ( ϵ
1/2

d1/4 ) in
Line 8, we have ET − E0 ≤ −E .
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On the other hand, when the current approximate gradient is small and no perturbation is added over
the past T iterations, then we add a uniform random perturbation in B0(r). If there exist a large
negative curvature direction of the current point, we have

Lemma 6 (Negative curvature). Suppose ∥∇̂f(xt)∥ ≤ 3ϵ
4 ( thus ∥∇f(xt)∥ ≤ ϵ),

λmin(∇2f(xt)) ≤ −
√
ρϵ and no perturbation is added in iterations [t − T , t). Then by running

Algorithm 1, we have ET − E0 ≤ −E with probability at least 1− δE
2∆f

.

Utilizing the above lemmas, we finally get the following main result.

Theorem 1. Assume that f(·) is ℓ-smooth and ρ-Hessian Lipschitz. For any δ > 0, ϵ ≤ ℓ2

ρ , f(x0)−
f∗ ≤ ∆f , if we set the hyperparameters as in Eq. (5) and choose µ = Õ( ϵ

1/2

d1/4 ) in Line 3 and 8,

µ = Õ( ϵ
13/8

d1/2 ) in Line 6 of Algorithm 1, respectively, then with probability at least 1 − δ, one of
the iterates of xt will be an ϵ-approximate SOSP. The total number of iterations is no more than

O
(

∆f ℓ
1/2ρ1/4

ϵ7/4
log6(

dℓ∆f

ρϵδ )
)

and the total number of function queries (oracle complexity) is no more
than

O
(
d∆f ℓ

1/2ρ1/4

ϵ7/4
log6(

dℓ∆f

ρϵδ
)

)
.

Proof outline. We first prove two monotonical descent lemmas (Lemma 3 and Lemma 4) of the
Hamiltonian in each iteration and an improve or localize property in Appendix B. Next, in Appendix
C, we prove that Hamiltonian will decrease by E in T iterations in both large gradient and negative
curvature scenarios.
Remark 2. Note that, Theorem 1 only ensures that with high probability, one of the iterates will
be an ϵ-approximate SOSP. It is then natural to add a termination condition to make the algorithm
more practical: Once the pre-condition of random perturbation step is reached, record the current
iterate point xt0 and the current function value of the Hamiltonian Et0 before adding the random
perturbation. If the decrease of the Hamiltonian is less than E after T iterations, then, with high
probability xt0 is an ϵ-approximate SOSP according to Lemma 6.

3.2 ZEROTH-ORDER PERTURBED ACCELERATED GRADIENT DESCENT WITH ACCELERATED
NEGATIVE CURVATURE FINDING

In this subsection, we introduce how to utilize the negative curvature finding to accelerate escaping
saddle points. The main task of the negative curvature finding is to find the approximate most
negative eigenvector direction near a saddle point. Then adding a perturbation in this direction will
obtain a more efficient decrease of the function value.

Classical methods for computing the most negative eigenvector direction like the power method and
Lanczos method require the computations of the Hessian-vector products. Since we have only ac-
cess to the zeroth-order information, an efficient way to approximate the Hessian-vector product is
to utilize the zeroth-order Hessian-vector product estimator in Eq. (3). The accelerated negative cur-
vature finding subroutine is self-contained in Line 11-13 of Algorithm 3 when ζ ̸= 0. The following
lemma states that the accelerated negative curvature finding using zeroth-order Hessian-vector prod-
uct estimator can find a negative curvature direction in almost the same iteration complexity as the
Lanczos method.
Lemma 7. Suppose ∥∇̂f(xt)∥ ≤ 3ϵ

4 , λmin(∇2f(xt)) ≤ −
√
ρϵ and no perturbation is added in

iterations [t−T ′, t]. For any 0 < δ0 < 1, let κ = ℓ√
ρϵ , and set the parameters as follows,

η =
1

4ℓ
, θ =

1

4
√
κ
, γ =

θ2

η
, s =

γ

4ρ
,

T ′ = 32
√
κ log(

ℓ
√
d

δ0
√
ρϵ

), r′ =
δ0ϵ

32

√
π

ρd
. (7)

Then by running Algorithm 3 for T ′ iterations after adding the random perturbation in Line 5, with
probability at least 1− δ0, we have êT∇2f(xt)ê ≤ −

√
ρϵ

4 .
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Algorithm 3 Zeroth-Order Perturbed Accelerated Gradient Descent with Accelerated Negative Cur-
vature Finding

1: tperturb ← −T ′ − 1,y0 ← x0, x̃← x0, ζ ← 0
2: for t = 0, 1, . . . , do
3: if ∥∇̂f(xt)∥ ≤ 3ϵ

4 and t− tperturb > T ′ then
4: x̃ = xt

5: xt = x̃+ ξt, ξt ∼ Unif(B0(r
′))

6: yt = xt, ζ = ∇̂f(x̃), tperturb ← t

7: if tperturb ̸= −T ′ − 1 and t− tperturb = T ′ then
8: ê← xt−x̃

∥xt−x̃∥
9: xt ← argminx∈{x̃− 1

4

√
ϵ
ρ ê,x̃+

1
4

√
ϵ
ρ ê}

f(x)

10: yt = xt, ζ = 0

11: xt+1 = yt − η(∇̂f(yt)− ζ)
12: vt+1 = xt+1 − xt

13: yt+1 = xt+1 + (1− θ)vt+1

14: if tperturb ̸= −T ′ − 1 and t− tperturb < T ′ then
15: (yt+1,xt+1) = (x̃, x̃) + r′ · ( yt+1−x̃

∥yt+1−x̃∥ ,
xt+1−x̃

∥xt+1−x̃∥ )

16: else if f(xt+1) ≤ f(yt+1) +
〈
∇̂f(yt+1),xt+1 − yt+1

〉
− γ

2 ∥yt+1 − xt+1∥2 then
17: (xt+1,vt+1)← NCE(xt+1,vt+1, s)
18: yt+1 ← xt+1 + (1− θ)vt+1

Then moving along the direction of ê, the function value of f will make further decrease according
to the following lemma:
Lemma 8 (Zhang & Li (2021), Lemma 6). Suppose the function f : Rd → R is ℓ-smooth and ρ-
Hessian Lipschitz. Then for any point x0 ∈ Rd, if there exist a unit vector ê satisfying ê∇2f(x0)ê ≤
−

√
ρϵ

4 , then we have f
(
x0 − f ′

ê(x0)
4|f ′

ê(x0)|

√
ϵ
ρ ê
)
≤ f(x0) − 1

384

√
ϵ3

ρ , where f ′
ê(x0) is the directional

derivative along the direction ê.
Remark 3. In the first-order setting, f ′

ê(x0) = ⟨∇f(x0), ê⟩. However, in the zeroth-order setting,
the directional derivative cannot be computed directly. To tackle this problem, one can simply
compare the function value of two opposite directions, i.e., Line 9 of Algorithm 3.

Theorem 2. Assume that f(·) is ℓ-smooth and ρ-Hessian Lipschitz. For any δ > 0, ϵ ≤ ℓ2

ρ , f(x0)−

f∗ ≤ ∆f , if we set the hyperparameters as in Eq. (7) with δ0 = δ
384∆f

√
ϵ3

ρ and choose µ =

Õ( ϵ
1/2

d1/4 ) in Line 3 and 16, µ = Õ( ϵ
13/8

d1/2 ) in Line 11 of Algorithm 3. Then with probability at least
1 − δ, one of the iterates of xt in Algorithm 3 will be an ϵ-approximate SOSP. The total number

of iterations is no more than O
(

∆f ℓ
1/2ρ1/4

ϵ7/4
log(

ℓ
√
d∆f

δϵ2 )
)

and the total number of function queries
(oracle complexity) is no more than

O

(
d∆f ℓ

1/2ρ1/4

ϵ7/4
log(

ℓ
√
d∆f

δϵ2
)

)
.

Remark 4. Similar to Algorithm 1, we can also add an termination condition for Algorithm 3:
Once the pre-condition of random perturbation step is reached, record the current iterate point xt0
and the current function value f(xt0) before adding the random perturbation. If the decrease of the

function is less than 1
384

√
ϵ3

ρ after T ′ iterations, then, with high probability xt0 is an ϵ-approximate
SOSP according to Lemma 8.
Remark 5 (Proof outline). The main difference between Algorithm 1 and Algorithm 3 is the way
in which random perturbations are added. Specifically, in Algorithm 1, we add a uniform random
perturbation nearby a first-order stationary point. If it is a saddle point, then by running the zeroth-
order accelerated gradient descent for T =

√
κχc = Θ̃(

√
κ) steps, the value of Hamiltonian

function will decrease by E :=
√

ϵ3

ρ χ
−5c−7 = Θ̃(

√
ϵ3

ρ ). In Algorithm 3, the perturbation is

7
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added along an approximate negative curvature direction, which is obtained by running T ′ =

32
√
κ log( ℓ

√
d

δ0
√
ρϵ ) steps of zeroth-order accelerated negative curvature finding (Line 11-13). Then

moving along the negative curvature direction, the value of Hamiltonian function will decrease

by 1
384

√
ϵ3

ρ (no more log term as in E ). Thus, the total function query complexity induced by

Algorithm 3 is O(d ·
√
κ log( ℓ

√
d

δ0
√
ρϵ ) ·

√
ρ
ϵ3 ) = O

(
d∆f ℓ

1/2ρ1/4

ϵ7/4
log(

ℓ
√
d∆f

δϵ2 )
)

.

4 NUMERICAL EXPERIMENTS

In this section, we conduct several numerical experiments to verify the effectiveness of the proposed
methods for escaping saddle points and the efficiency compared with the existing methods. Spe-
cially, we run zeroth-order perturbed accelerated gradient descent (Algorithm 1) and zeroth-order
perturbed accelerated gradient descent with accelerated negative curvature finding (Algorithm 3)
against the perturbed approximate gradient descent (PAGD) and the random search power iteration
(RSPI) method. All experiments are performed on a computer with a six-core Intel Core i5-10500
CPU.

4.1 CUBIC REGULARIZATION PROBLEM
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Figure 1: Performance of different algorithms to minimize the cubic regularization problem with
growing dimensions. Confidence intervals show mini-max intervals over ten runs

We first consider the cubic regularization problem (Liu et al., 2018), which is defined as:

min
x∈Rd

f(x) :=
1

2
xTAx+

1

6
∥x∥3. (8)

Above, A is a randomly generated diagonal matrix with only one diagonal entry is -1 and the rest
diagonal entries are uniformly distributed between [1, 2]. So that with increase of the dimension, the
negative curvature directions that can escape from the saddle point will be more difficult to explore.
In this experiment, we set ϵ = 10−2. To test the ability of different algorithms to escape from saddle
points, we initialize all algorithms at a strict saddle point x0 = (0, . . . , 0)T.

In this experiment, we run Algorithm 1, 3, PAGD on the above cubic regularization problem from a
strict saddle point. For Algorithm 1 and 3, the parameter settings basically follow Eq. (5) and Eq.
(7). Specifically, we choose ϵ = 0.001 and the perturbation radius r and r′ are set to 0.001. The
Lipschitz constants ℓ and ρ are selected based on a coarse grid search of the region {0.1, 1, 10, 100}×
{0.1, 1, 10, 100}. Since all algorithms have certain randomness, we repeatedly run each algorithm
multiple times and report the averaged function value versus the averaged number of function queries
and the number of iterations in Figure 2.

The results in Fig. 1 illustrate that Algorithm 1, 3 can escape saddle points using less iterations
than PAGD and converge faster than PAGD. On the other hand, in all dimensions, the number of

8
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iterations for escaping saddle points are almost the same. This verifies the result in Lemma 6 and 7
that the number of iterations of Algorithm 1, 3 are only log dependent on the dimension d.

4.2 QUARTIC FUNCTION
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Figure 2: Performance of different algorithms to minimize the quartic function with growing dimen-
sions. Confidence intervals show mini-max intervals over ten runs.

Then we consider the following quartic function (Lucchi et al., 2021),

f(x1, x2, . . . , xd, y) =
1

4

d∑
i=1

x4
i − y

d∑
i=1

xi +
d

2
y2 (9)

which has a strict saddle point at x0 = (0, . . . , 0)T and two global minima at (1, . . . , 1)T and
(−1, . . . ,−1)T.

In this experiment, we run Algorithm 1, 3, perturbed approximate gradient descent (PAGD), Random
Search Power Iteration (RSPI) and ZO-GD-NCF on the above quartic function staring from its
saddle point. Especially, we also run an acceleration version of RSPI, which replaces the finite
difference gradient estimator in RSPI by the SPSA estimator (Spall et al., 1992). The parameter
settings of PAGD are taken from Vlatakis-Gkaragkounis et al. (2019) and the parameters of RSPI
are taken from the appendix of Lucchi et al. (2021). For Algorithm 1 and 3, the parameter settings
basically follow Eq. (5) and Eq. (7). Specifically, we choose ϵ = 10−4 and the perturbation radius
r and r′ are set to 0.01. The Lipschitz constants ℓ and ρ are selected based on a coarse grid search
of the region {10, 20, 100, 150, 200} × {0.1, 1, 10}. Since all algorithms have certain randomness,
we repeatedly run each algorithm multiple times and report the averaged function value versus the
averaged number of function queries in Figure 2.

The results in Fig.2 illustrate that both Algorithms 1 and 3 can efficiently escape saddle points
and converge quickly to the global minimum. Note that, for all dimensions, Algorithms 1 and 3
escape saddle points with fewer function queries than PAGD. This verifies the theoretical result that
algorithms 1 and 3 take Θ̃(

√
κ) iterations for escaping saddle points when the initial point is a

saddle point, while PAGD takes Θ̃(κ) iterations. For high dimensional problems, the computational
cost of RSPI for escaping saddle points is expensive. In contrast, RSPI with SPSA estimator is much
more efficient.

5 CONCLUSION

In this paper, we study the complexity of two zeroth-order AGD based algorithms for escaping
saddle points and converging to SOSPs. The first method is a zeroth-order version of the perturbed
AGD which uses the central finite difference version of the coordinate-wise gradient estimator. The
second method extracts accelerated negative curvature findings by using the finite difference of two
coordinate-wise gradient estimators. Both methods improve the function query complexity of prior
zeroth-order methods for converging to SOSPs.
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APPENDIX

A AUXILIARY LEMMAS

Lemma 9 (Nesterov et al. (2018), Lemma 1.2.3 & 1.2.4). If f is ℓ-Lipschitz smooth, then for all
x, y ∈ Rd,

|f(y)− f(x)−∇f(x)T (y − x)| ≤ ℓ

2
∥y − x∥2.

If f is ρ-Hessian Lipschitz, then for all x, y ∈ Rd,∥∥∇f(y)−∇f(x)−∇2f(x)(y − x)
∥∥ ≤ ρ

2
∥y − x∥2,

11
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and ∣∣∣∣f(y)− f(x)−∇f(x)T (y − x)− 1

2
(y − x)T∇2f(x)(y − x)

∣∣∣∣ ≤ ρ

6
∥y − x∥3.

Lemma 1. If f is ρ-Hessian Lipschitz, then for any given smoothing parameter µ and any x ∈ Rd,
if f is ℓ-Lipschitz smooth, we have

∥∇̂f(x)−∇f(x)∥2 ≤ 1

36
ρ2dµ4 (10)

Proof. ∥∥∥∇f(x)− ∇̂coordf(x)
∥∥∥ =

∥∥∥∥∥
d∑

i=1

f(x+ µei)− f(x− µei)

2µ
ei −∇f(x)

∥∥∥∥∥
=

1

2µ

∥∥∥∥∥
d∑

i=1

(f(x+ µei)− f(x− µei)− 2µ∇if(x))ei

∥∥∥∥∥
Since f is ρ-Hessian Lipschitz, for all i ∈ [d], we have

f(x+ µei)− f(x− µei)− 2µ∇if(x)

=

[
f(x+ µei)− f(x)− µ∇if(x)−

µ2

2
∇2

iif(x)

]
−
[
f(x− µei)− f(x) + µ∇if(x)−

µ2

2
∇2

iif(x)

]
≤
∣∣∣∣f(x+ µei)− f(x)− µ∇if(x)−

µ2

2
∇2

iif(x)

∣∣∣∣+ ∣∣∣∣f(x− µei)− f(x) + µ∇if(x)−
µ2

2
∇2

iif(x)

∣∣∣∣
①
≤2 · ρ

6
µ3 =

ρ

3
µ3

where ① is due to Lemma 9.∥∥∥∇f(x)− ∇̂coordf(x)
∥∥∥

=
1

2µ

∥∥∥∥∥
d∑

i=1

(f(x+ µei)− f(x− µei)− 2µ∇if(x))ei

∥∥∥∥∥
=

1

2µ

√√√√ d∑
i=1

(f(x+ µei)− f(x− µei)− 2µ∇if(x))
2

≤ 1

2µ

√
d

(
ρµ3

3

)2

=

√
dρµ2

6

Lemma 10 (Jin et al. (2018b), Lemma 24 & 25). Define

A =

(
a b
1 0

)

Let µ1, µ2 denote the two eigenvalues of A, then A can be rewritten as A =

(
µ1 + µ2 −µ1µ2

1 0

)
and for any t ∈ N:

(0 1)At = (1 0)At−1

(µ1 − 1)(µ2 − 1) (1 0)

t−1∑
τ=0

Aτ

(
1
0

)
= 1− (1 0)At

(
1
1

)
.

12
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Lemma 11 (Jin et al. (2018b), Lemma 30). Let θ ∈ (0, 1/4], define

A =

(
(2− θ)(1− x) −(1− θ)(1− x)

1 0

)
,

and let x ∈ [− 1
4 ,

θ2

(2−θ)2 ]. Denote (at −bt) = (1 0)At, then for any t ≥ 2
θ + 1, we have

t−1∑
τ=0

aτ ≥ Ω(
1

θ2
),

1

bt
(

t−1∑
τ=0

aτ ) ≥ Ω(1)min{1
θ
,

1√
|x|
}.

Lemma 12 (Jin et al. (2018b), Lemma 32). Let θ ∈ (0, 1/4], define

A =

(
(2− θ)(1− x) −(1− θ)(1− x)

1 0

)
,

and let x ∈ [ θ2

(2−θ)2 ,
1
4 ]. Denote (at −bt) = (1 0)At, then for any t ≥ 0, we have

max{|at|, |bt|} ≤ (t+ 1)(1− θ)1/2.

Lemma 13 (Jin et al. (2018b), Lemma 34). Under the same setting as in Lemma 12, for any se-
quence ϵτ , any t ≥ Ω(1/θ), we have:

t−1∑
τ=0

aτ ϵτ ≤O(1/x)

(
|ϵ0|+

t−1∑
τ=1

|ϵτ − ϵτ−1|

)
t−1∑
τ=0

(aτ − aτ−1)ϵτ ≤O(1/
√
x)

(
|ϵ0|+

t−1∑
τ=1

|ϵτ − ϵτ−1|

)
Lemma 14 (Jin et al. (2018b), Lemma 36). Let θ ∈ (0, 1/4], define

A =

(
(2− θ)(1− x) −(1− θ)(1− x)

1 0

)
,

and let x ∈ [−1/4, 0], denote (at, −bt) = (1 0)At. Then for any 0 ≤ τ ≤ t, we have

|at−τ ||aτ − bτ | ≤ [
2

θ
+ t+ 1]|at+1 − bt+1|.

Lemma 15 (Jin et al. (2018b), Lemma 37). Under the same setting as in Lemma 14, let A(x) = A

and g(x) = | (1 0) [A(x)]t
(
1
0

)
|, then we have

1. g(x) is a monotonically decreasing function for x ∈ [−1, θ2/(2− θ)2].

2. For any x ∈ [θ2/(2− θ2), 1], we have g(x) ≤ g(θ2/(2− θ2)).

Lemma 16 (Jin et al. (2018b), Lemma 38). Under the same setting as in Lemma 14, we have

|at+1 − bt+1| ≥ |at − bt| = (at, −bt) = (1 0)At

(
1
1

)
and |at − bt| ≥

θ

2
(1 +

1

2
min{ |x|

θ
,
√
|x|})t.

Lemma 17 (Zhang & Li (2021), Lemma 21). Consider the sequence with recurrence:

ξt+2 = (1 + κ)((2− θ)ξt+1 − (1− θ)ξt),

for some κ > 0. Then we have

ξt = (
1 + κ

2
)t(C1(2− θ − µ)t + C2(2− θ − µ)t),

where µ =
√
(2− θ)2 − 4(1−θ)

1+κ , C1 = − 2−θ−µ
2µ ξ0 +

1
(1+κ)µξ1, C2 = 1−θ+µ

2µ ξ0 − 1
(1+κ)µξ1.
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B PROOF OF HAMILTONIAN LEMMAS IN THE ZEROTH-ORDER SETTING

Lemma 3. Assume that f(·) is ℓ-smooth and set the learning rate η ≤ 1
4ℓ , θ ∈ [2ηγ, 1

2 ]. Then, for
each iteration t where Eq. (6) does not hold, we have:

Et+1 ≤ Et −
θ

2η
∥vt∥2 −

η

4
∥∇f(yt)∥2 + η · ρ

2dµ4

48

Proof.

xt+1 ←yt − η∇̂f(yt)

yt+1 ←xt+1 + (1− θ)(xt+1 − xt)

By smoothness, with η ≤ 1
4ℓ , we have

f(xt+1) ≤f(yt) + ⟨∇f(yt),xt+1 − yt⟩+
ℓ

2
∥xt+1 − yt∥2

=f(yt)− η
〈
∇f(yt), ∇̂f(yt)

〉
+

ℓη2

2
∥∇̂f(yt)∥2

According to the update rule of the accelerated gradient descent, we have

∥xt+1 − xt∥2 =∥yt − η∇̂f(yt)− xt∥2

=∥yt − xt∥2 − 2η
〈
∇̂f(yt),yt − xt

〉
+ η2∥∇̂f(yt)∥2.

Dividing both sides by 2η, we have

1

2η
∥xt+1 − xt∥2 =

1

2η
∥yt − xt∥2 +

〈
∇̂f(yt),xt − yt

〉
+

η

2
∥∇̂f(yt)∥2

Then we have

f(xt+1) +
1

2η
∥xt+1 − xt∥2

≤f(yt) +
1

2η
∥yt − xt∥2 +

〈
∇̂f(yt),xt − yt

〉
+

η

2
∥∇̂f(yt)∥2 − η

〈
∇f(yt), ∇̂f(yt)

〉
+

ℓη2

2
∥∇̂f(yt)∥2

=f(yt) +
1

2η
∥yt − xt∥2 +

〈
∇̂f(yt),xt − yt

〉
− η

〈
∇f(yt), ∇̂f(yt)

〉
+

η

2
(1 + ℓη)∥∇̂f(yt)∥2

As long as the following condition holds:

f(xt) ≥ f(yt) +
〈
∇̂f(yt),xt − yt

〉
− γ

2
∥xt − yt∥2,

we have

f(xt+1) +
1

2η
∥xt+1 − xt∥2

≤f(xt) +
1 + ηγ

2η
∥yt − xt∥2 − η

〈
∇f(yt), ∇̂f(yt)

〉
+

η

2
(1 + ℓη)∥∇̂f(yt)∥2

Note that

−
〈
∇f(yt), ∇̂f(yt)

〉
=− ∥∇f(yt)∥2 −

〈
∇f(yt), ∇̂f(yt)−∇f(yt)

〉
,

and

∥∇̂f(yt)∥2 =∥∇f(yt) + ∇̂f(yt)−∇f(yt)∥2

=∥∇f(yt)∥2 + 2
〈
∇f(yt), ∇̂f(yt)−∇f(yt)

〉
+ ∥∇̂f(yt)−∇f(yt)∥2

Combine the two equations with the above inequality, we have

f(xt+1) +
1

2η
∥xt+1 − xt∥2

14
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≤f(xt) +
1 + ηγ

2η
∥yt − xt∥2 −

η(1− ℓη)

2
∥∇f(yt)∥2 + ℓη2

〈
∇f(yt), ∇̂f(yt)−∇f(yt)

〉
+

η(1 + ℓη)

2
∥∇̂f(yt)−∇f(yt)∥2

≤f(xt) +
1 + ηγ

2η
∥yt − xt∥2 −

η(1− ℓη)

2
∥∇f(yt)∥2 + ℓη2

(
β

2
∥∇f(yt)∥2 +

1

2β
∥∇̂f(yt)−∇f(yt)∥2

)
+

η(1 + ℓη)

2
∥∇̂f(yt)−∇f(yt)∥2

=f(xt) +
1 + ηγ

2η
∥yt − xt∥2 − η · 1− ℓη − βℓη

2
∥∇f(yt)∥2 + η(

ℓη

2β
+

1 + ℓη

2
)∥∇̂f(yt)−∇f(yt)∥2.

Take β = 1 and η ≤ 1
4ℓ , we have

f(xt+1) +
1

2η
∥xt+1 − xt∥2

≤f(xt) +
1 + ηγ

2η
∥yt − xt∥2 −

η

4
∥∇f(yt)∥2 +

3η

4
∥∇̂f(yt)−∇f(yt)∥2

≤f(xt) +
1 + ηγ

2η
∥yt − xt∥2 −

η

4
∥∇f(yt)∥2 + η · ρ

2dµ4

48

Using the fact that ∥yt − xt∥ = (1− θ)∥xt − xt−1∥, we have

f(xt+1) +
1

2η
∥xt+1 − xt∥2

≤f(xt) +
1 + ηγ

2η
(1− θ)2∥xt − xt−1∥2 −

η

4
∥∇f(yt)∥2 + η · ρ

2dµ4

48

=f(xt) +
1

2η
∥xt − xt−1∥2 −

2θ − θ2 − ηγ(1− θ)2

2η
∥vt∥2 −

η

4
∥∇f(yt)∥2 + η · ρ

2dµ4

48

≤f(xt) +
1

2η
∥xt − xt−1∥2 −

θ

2η
∥vt∥2 −

η

4
∥∇f(yt)∥2 + η · ρ

2dµ4

48

Lemma 4. Assume that f(·) is ℓ-smooth and ρ-Hessian Lipschitz. Then, for each iteration t where
Eq. (6) holds, we have:

Et+1 ≤ Et −min{ s
2

2η
,
1

2
γs2 − ρs3 − ρ2dµ4

9γ
}

Proof. When ∥vt∥ ≥ s, then xt+1 = xt, so we have

Et+1 = f(xt+1) = f(xt) = Et −
1

2η
∥vt∥2 ≤ Et −

s2

2η
.

When ∥vt∥ ≤ s happens, we have

f(xt) = f(yt) + ⟨∇f(yt),xt − yt⟩+
1

2
(xt − yt)

T∇2f(ζt)(xt − yt),

where ζt = yt + α(xt − yt), and α ∈ [0, 1]. When the following condition holds:

f(xt) ≤f(yt) +
〈
∇̂f(yt),xt − yt

〉
− γ

2
∥xt − yt∥2

=f(yt) + ⟨∇f(yt),xt − yt⟩+
〈
∇̂f(yt)−∇f(yt),xt − yt

〉
− γ

2
∥xt − yt∥2,

we have
1

2
(xt − yt)

T∇2f(ζt)(xt − yt) ≤
〈
∇̂f(yt)−∇f(yt),xt − yt

〉
− γ

2
∥xt − yt∥2

15
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≤1

2

(
1

β
∥∇̂f(yt)−∇f(yt)∥2 + β∥xt − yt∥2

)
− γ

2
∥xt − yt∥2

=− γ − β

2
∥xt − yt∥2 +

1

2β
∥∇̂f(yt)−∇f(yt)∥2

≤− γ − β

2
∥xt − yt∥2 +

ρ2dµ4

18β
.

Take β = γ
2 we have

1

2
(xt − yt)

T∇2f(ζt)(xt − yt) ≤ −
γ

4
∥xt − yt∥2 +

ρ2dµ4

9γ

Note that min{⟨∇f(xt), δ⟩ , ⟨∇f(xt),−δ⟩} ≤ 0. Without loss of generality, we assume that
⟨∇f(xt), δ⟩ ≤ 0. Since xt+1 = argminx∈{xt+δ,xt−δ} f(x), we have

f(xt+1) ≤ f(xt + δ) = f(xt) + ⟨∇f(xt), δ⟩+
1

2
δT∇2f(ζ ′t)δ ≤ f(xt) +

1

2
δT∇2f(ζ ′t)δ,

where ζ ′t = xt + α′δ and α′ ∈ [0, 1]. Since ∥ζt − ζ ′t∥ ≤ 2s and δ lines up with yt − xt, we have

δT∇2f(ζ ′t)δ ≤δT∇2f(ζt)δ + ∥∇2f(ζ ′t)−∇2f(ζt)∥∥δ∥2 ≤ −
γ

2
∥δ∥2 + 2ρs∥δ∥2 + 2ρ2dµ4

9γ

=− γ

2
s2 + 2ρs3 +

2ρ2dµ4

9γ

Finally we get

Et+1 = f(xt+1) ≤ f(xt)− (
1

4
γs2 − ρs3 − ρ2dµ4

9γ
) ≤ Et − (

1

4
γs2 − ρs3 − ρ2dµ4

9γ
).

Lemma 18. If the Eq. (6) does not holds, then for all steps in [t, t+ T ], we have:
t+T∑

τ=t+1

∥xτ − xτ−1∥2 ≤
2η

θ
(Et − Et+T ) +

ηρ2dµ4

48
T

Proof. The proof directly follows from the results of Lemma 3.

C PROOF OF MAIN RESULTS OF ALGORITHM 1

Recall the parameter settings in Algorithm 4,

η =
1

4ℓ
, θ =

1

4
√
κ
, γ =

θ2

η
=

√
ρϵ

4
, s =

γ

4ρ
=

1

16

√
ϵ

ρ
, r = ηϵχ−5c−8,

where κ = ℓ√
ρϵ . Denote

T =
√
κ · χc, E =

√
ϵ3

ρ
· χ−5c−7, S =

√
2ϵ

ρ
χ−2c−3, M =

ϵ
√
κ

ℓ
c−1

Lemma 19. After running the NCE with µ ≤ Õ( ϵ
1/2

d1/4 ) for one step, we have

Et+1 − Et ≤ −2E .

Proof. According to Lemma 4, with the choice of the smoothing parameter such that µ ≤ Õ( ϵ
1/2

d1/4 ),
we have

Et+1 − Et ≤ −min{ s
2

2η
,
1

2
γs2 − ρs3 − ρ2dµ4

9γ
} ≤ −Ω(E c7) ≥ 2E .

16
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Lemma 20. Let 0 be an origin point. Denote

δτ = ∇̂f(yτ )− ∇̂f(0)−∇2f(0)yτ

Then the zeroth-order AGD update can be rewritten as:(
xt+1

xt

)
= At

(
x1

x0

)
− η

t∑
τ=1

At−τ

(
∇̂f(0) + δτ

0

)
(11)

, where A =

(
(2− θ)(I− η∇2f(0)) −(1− θ)(I− η∇2f(0))

I 0

)
.

Proof.

xt+1 = (2− θ)xt − (1− θ)xt−1 − η∇̂f((2− θ)xt − (1− θ)xt−1)

Then we have(
xt+1

xt

)
=

(
(2− θ)(I− η∇2f(0)) −(1− θ)(I− η∇2f(0))

I 0

)(
xt

xt−1

)
− η

(
∇̂f(0) + δt

0

)
=At

(
x1

x0

)
− η

t∑
τ=1

At−τ

(
∇̂f(0) + δτ

0

)

Lemma 21. If for any τ ≤ t, we have ∥xτ∥ ≤ R, then for any τ ≤ t, we have

1. ∥δτ∥ ≤ ρO(R2 +
√
dµ2)

2. ∥δτ − δτ−1∥ ≤ ρO(R∥xτ − xτ−1∥+R∥xτ−1 − xτ−1∥+
√
dµ2)

3.
∑t

τ=1 ∥δτ − δτ−1∥2 ≤ O(ρ2R2
∑t

τ−1 ∥xτ − xτ−1∥2 + tρ2dµ4)

Proof. For the first inequality, by using the second inequality of Lemma 9, we have

∥∇f(yτ )−∇f(0)−∇2f(0)yτ∥ ≤
ρ

2
∥yτ∥2 =

ρ

2
∥(2− θ)xτ − (1− θ)xτ−1∥2 ≤ O(ρR2).

Using Lemma 1, we have

∥δτ∥ =∥∇̂f(yτ )− ∇̂f(0)−∇2f(0)yτ∥
≤∥∇f(yτ )−∇f(0)−∇2f(0)yτ∥+ ∥∇̂f(yτ )− ∇̂f(0)− (∇f(yτ )−∇f(0))∥

≤O(ρR2 +
√
dρµ2).

For the second inequality, we have

δτ − δτ−1 = ∇̂f(yτ )− ∇̂f(yτ−1)−∇2f(0)(yτ − yτ−1).

Then we have

∥∇f(yτ )−∇f(yτ−1)−∇2f(0)(yτ − yτ−1)∥

=∥
∫ 1

0

(∇2f(xτ−1 + θ(yτ − yτ−1))−∇2f(0))dθ(yτ − yτ−1)∥

≤∥
∫ 1

0

(∇2f(yτ−1 + θ(yτ − yτ−1))−∇2f(0))dθ∥ · ∥yτ − yτ−1∥ ≤ ρmax{∥yτ∥, ∥yτ−1∥}∥yτ − yτ−1∥

≤O(ρR)(∥xτ − xτ−1∥+ ∥xτ−1 − xτ−2∥).

Thus,

∥δτ − δτ−1∥

17
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≤∥∇̂f(yτ )− ∇̂f(yτ−1)− (∇f(yτ )−∇f(yτ−1))∥+ ∥∇f(yτ )−∇f(yτ−1)−∇2f(0)(yτ − yτ−1)∥

≤O(ρR)(∥xτ − xτ−1∥+ ∥xτ−1 − xτ−2∥) +O(ρ
√
dµ2)

Then we have
t∑

τ=1

∥δτ − δτ−1∥2 ≤ O(ρ2R2
t∑

τ−1

∥xτ − xτ−1∥2 +
t∑

τ=1

ρ2dµ4)

C.1 LARGE GRADIENT

Let S be the subspace with eigenvalues in ( θ2

η(2−θ)2 , ℓ] and Sc be the complementary subspace.

Lemma 22 (Large momentum or large gradient). If ∥vt∥ ≥ M or ∥∇f(xt)∥ ≥ 2ℓM , and at
iteration t only AGD is used with smoothing parameter µ ≤ O( ϵ

1/2κ1/8

ρ1/2d1/4 c
−1/2) and without NCE or

perturbation, we have:

Et+1 − Et ≤ −
4E

T
.

Proof. When ∥vt∥ ≥ ϵ
√
κ

ℓ and µ ≤ O( ϵ
1/2κ1/8

ρ1/2d1/4 c
−1/2), using Lemma 3, we have

Et+1 − Et ≤−
θ

2η
∥vt∥2 +

ηρ2dµ4

48
≤ −Ω( ℓ√

κ

ϵ2κ

ℓ2
c−2 − ρ2dµ4

ℓ
) = −Ω(ϵ

2
√
κc−2 − ρ2dµ4

ℓ
) ≤ −Ω(ϵ

2
√
κc−2

ℓ
)

≤− Ω(
E

T
c6) ≤ −4E

T
,

holds for large enough constant c. When ∥vt∥ ≤ M and ∥∇f(xt)∥ ≥ 2ℓM , then by gradient
Lipschitz assumption, we have

∥∇f(yt)∥ ≥ ∥∇f(xt)∥ − ∥∇f(yt)− f(xt)∥ ≥ ∥∇f(xt)∥ − ℓ(1− θ)∥vt∥ ≥ ℓM .

Using Lemma 3, with µ ≤ O( ϵ
1/2κ1/8

ρ1/2d1/4 c
−1/2), we have

Et+1 − Et ≤−
η

4
∥∇f(yt)∥2 +

ηρ2dµ4

48
≤ −Ω(ϵ

2κc−2 − ρ2dµ4

ℓ
) ≤ −Ω(ϵ

2
√
κc−2 − ρ2dµ4

ℓ
)

≤− Ω(
ϵ2
√
κc−2

ℓ
) ≤ −Ω( E

T
c6) ≤ −4E

T
,

holds for large enough constant c.

Lemma 23. If ∥PSc∇f(x0)∥ ≥ ϵ
4 , ∥v0∥ ≤ M , vT

0 [PT
S∇2f(x0)PS ]v0 ≤ 2

√
ρϵM 2, µ ≤

Õ( ϵ
5/8

d1/4 ), and for t ∈ [0,T /4] only AGD steps are used, then we have

ET /4 − E0 ≤ −E .

Proof. Define x−1 = x0 − v0. Without loss of generality, set x0 = 0. Using Lemma 20, we have(
xt

xt−1

)
= At−1

(
0
−v0

)
− η

t−1∑
τ=0

At−1−τ

(
∇̂f(0) + δτ

0

)
Denote

Aj =

(
(2− θ)(1− ηλj) −(1− θ)(1− ηλj)

1 0

)
,

18
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where λj is the j-th eigenvalue of∇2f(0). Denote(
a
(j)
t −b(j)t

)
= (1 0)At

j .

Then we have for the j-th eigen-direction

x
(j)
t = b

(j)
t v

(j)
0 − η

t−1∑
τ=0

(∇̂f(0) + δ(j)τ ) = −η

[
t−1∑
τ=0

a(j)τ

](
∇̂f(0)(j) +

t−1∑
τ=0

p(j)τ δ(j)τ + q
(j)
t v

(j)
0

)
,

where

p(j)τ =
a
(j)
t−1∑t−1−τ

τ=0 a
(j)
τ

, q
(j)
t = − b

(j)
t

η
∑t−1−τ

τ=0 a
(j)
τ

For j ∈ Sc, using Lemma , we have
∑t−1

τ=0 a
(j)
τ ≥ Ω( 1

θ2 ). Then rewrite the above equation as

x
(j)
t = −η

[
t−1∑
τ=0

a(j)τ

](
∇̂f(0)(j) + δ̃(j) + ṽ(j)

)
,

where δ̃(j) =
∑t−1

τ=0 p
(j)
τ δ

(j)
τ , ṽ(j) = q

(j)
t v

(j)
0 .

For all j ∈ Sc,

|δ̃(j)| = |
t−1∑
τ=0

p(j)τ δ(j)τ | ≤
t−1∑
τ=0

p(j)τ (|δ(j)0 |+ |δ(j)τ − δ
(j)
0 |) = |δ

(j)
0 |+

t−1∑
τ=0

p(j)τ |δ(j)τ − δ
(j)
0 | ≤ |δ

(j)
0 |+

t−1∑
τ=1

|δ(j)τ − δ
(j)
τ−1|

Then by Cauchy-Swartz inequality,

∥PSc δ̃∥2 =
∑
j∈Sc

|δ̃(j)|2 ≤
∑
j∈Sc

(|δ(j)0 |+
t−1∑
τ=1

|δ(j)τ − δ
(j)
τ−1|)2 ≤ 2

∑
j∈Sc

|δ(j)0 |2 +
∑
j∈Sc

(

t−1∑
τ=1

|δ(j)τ − δ
(j)
τ−1|)2


≤2

∑
j∈Sc

|δ(j)0 |2 + t
∑
j∈Sc

t−1∑
τ=1

(|δ(j)τ − δ
(j)
τ−1|)2

 ≤ 2∥δ0∥2 + 2t

t−1∑
τ=1

∥δτ − δτ−1∥2

Assume that ET /4−E0 ≥ −E . By Lemma 18 and choose µ ≤ O((
√

ϵ3

ρ5
χ−6c−8

d )1/4) = Õ( ϵ3/8

(d)1/4
),

we have ∥xt − x0∥ ≤
√
t
∑t

τ=1 ∥xτ − xτ−1∥2 ≤
√

2ηE
θ ·

T
4 + T 2

16
ηρ2dµ4

48 ≤ S . With µ ≤

O((
√

ϵ5

ρ3
χ−10c−14

dℓ )1/4) = Õ( ϵ5/8

(d)1/4
), by Lemma 21 we have ∥δ0∥ ≤ O(ρS 2). By Lemma 18 and

Lemma 21, we have

t

t−1∑
τ=1

∥δτ − δτ−1∥2 ≤ O(ρ2S 2t

t−1∑
τ=1

∥xτ − xτ−1∥2 + t2ρ2dµ4) ≤ O(ρ2S 4)

So we have ∥PSc δ̃∥ ≤ O(ρS 2) ≤ O(ϵc−6).

By Lemma 11, −ηq(j)t = bt∑t−1
τ=0 aτ

≤ O(1)max{θ,
√
η|λj |}, then

∥PSc ṽ∥2 =
∑
j∈Sc

[q
(j)
t v

(j)
0 ]2 ≤ O(1)

∑
j∈Sc

max{θ2, η|λj |}
η2

[v
(j)
0 ]2

Since the NCE step is not reached, then we have:

f(x0) ≥f(y0) +
〈
∇̂f(y0),x0 − y0

〉
− γ

2
∥x0 − y0∥2

=f(y0) + ⟨∇f(y0),x0 − y0⟩+
〈
∇̂f(y0)−∇f(y0),x0 − y0

〉
− γ

2
∥x0 − y0∥2

≥f(y0) + ⟨∇f(y0),x0 − y0⟩ −
1

2β
∥∇̂f(y0)−∇f(y0)∥2 −

γ + β

2
∥x0 − y0∥2
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≥f(y0) + ⟨∇f(y0),x0 − y0⟩ −
ρ2dµ4

72β
− γ + β

2
∥x0 − y0∥2

=f(y0) + ⟨∇f(y0),x0 − y0⟩ −
ρ2dµ4

72γ
− γ∥x0 − y0∥2,

where the last step is by taking β = γ. Then we have

1

2
(x0 − y0)

T∇2f(ζ0)(x0 − y0) ≥ −
ρ2dµ4

72γ
− γ∥x0 − y0∥2,

where ζ0 = ϕx0 + (1− ϕ)y0 and ϕ ∈ [0, 1]. Note that (1− θ)v0 = y0 − x0, we have

1

2
vT
0∇2f(ζ0)v0 ≥ −

ρ2dµ4

72(1− θ)2γ
− γ∥v0∥2 ≥ −

ρ2dµ4

18γ
− γ∥v0∥2,

where the last inequality uses the fact that θ ≤ 1
2 . Using the Hessian Lipschitz property, we have

∥∇2f(ζ0)−∇2f(x0)∥ ≤ ρ∥y0∥ ≤ ρ∥v0∥ ≤ ρM =
(ρϵ)3/4√

ℓ
c−1 ≤

√
ρϵ

2
= 2γ.

Then we have

vT
0∇2f(x0)v0 ≥ −

ρ2dµ4

9γ
− 4γ∥v0∥2 ≥ −

ρ2dµ4

√
ρϵ
−√ρϵ∥v0∥2.

Since θ2

η(1−θ)2 = Θ(
√
ρϵ), we have

∑
j∈Sc

|λj |[v(j)0 ]2 ≤√ρϵ∥v0∥2 +
ρ2dµ4

√
ρϵ

+
∑

j:0<λj≤ θ2

η(1−θ)2

λj [v
(j)
0 ]2 +

∑
j:λj>

θ2

η(1−θ)2

λj [v
(j)
0 ]2

≤O(√ρϵ)∥v0∥2 +
ρ2dµ4

√
ρϵ

+ vT
0 [PT

S∇2f(0)PS ]v0.

With µ ≤ O( ϵ
2√ρϵ

ℓρ2d )1/4 = Õ( ϵ
5/8

d1/4 ), then we have

∥PSc ṽ∥2 ≤ O( 1
η
)

[
√
ρϵ∥v0∥2 +

ρ2dµ4

√
ρϵ

+ vT
0 [PT

S∇2f(0)PS ]v0

]
≤ O(ℓ√ρϵM 2) = O(ϵ2c−2)

Then we have

∥xt∥ ≥∥PScxt∥ ≥ η

[
min
j∈Sc

t−1∑
τ=0

a(j)τ

]
∥PSc(∇̂f(0) + δ̃ + ṽ)∥

≥Ω( η
θ2

)

[
∥PSc∇f(0)∥ − ρ

√
dµ2

6
− ∥PSc δ̃∥ − ∥PSc ṽ∥

]
≥Ω(ηϵ

θ2
) ≥ S ,

which contradicts with ∥xt − x0∥ = ∥xt∥ ≤ S . So we have

ET /4 − E0 ≤ −E .

Lemma 24. If ∥v0∥ ≤M and ∥∇f(x0)∥ ≤ 2ℓM , ET /2 − E0 ≥ −E , µ ≤ Õ( ϵ
5/8

d1/4 ) and for any
t ∈ [0,T /2] only SGD steps are used. Then ∀t ∈ [T /4,T /2]:

∥PS∇f(xt)∥ ≤
ϵ

4
and vT

t [PT
S∇2f(x0)PS ]vt ≤

√
ρϵM 2.
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Proof. Since ET /4−E0 ≥ −E . By Lemma 18 and choose µ ≤ O((
√

ϵ3

ρ5
χ−6c−8

d )1/4) = Õ( ϵ3/8

(d)1/4
),

we have ∥xt − x0∥ ≤
√
t
∑t

τ=1 ∥xτ − xτ−1∥2 ≤
√

2ηE
θ ·

T
4 + T 2

16
ηρ2dµ4

48 ≤ S . Define x−1 =

x0 − v0. Without loss of generality, set x0 = 0. Using Lemma 20, we have(
xt

xt−1

)
= At−1

(
0
−v0

)
− η

t−1∑
τ=0

At−1−τ

(
∇̂f(0) + δτ

0

)
Define ∆t =

∫ 1

0
(∇2f(ϕxt)−∇2f(0))dϕ. Then we have

∇f(xt) =∇f(0) + (∇2f(0) + ∆t)xt = ∇̂f(0) + (∇2f(0) + ∆t)xt +∇f(0)− ∇̂f(0)

=

(
I− η∇2f(0) (I 0)

t−1∑
τ=0

At−1−τ

(
I
0

))
∇̂f(0) +∇2f(0) (I 0)At

(
0
−v0

)

− η∇2f(0) (I 0)

t−1∑
τ=0

At−1−τ

(
δt
0

)
+∆txt +∇f(0)− ∇̂f(0).

If we choose µ ≤ Õ( ϵ
1/2

d1/4 ), we have

∥∆txt∥ ≤ ρ∥xt∥2 ≤O(ρS 2) ≤ O(ϵc−6) ≤ ϵ/20

∥∇f(0)− ∇̂f(0)∥ ≤ρ
√
dµ2

6
≤ ϵ/20

By Lemma 11, we have

1− ηλj (1 0)

t−1∑
τ=0

At−1−τ
j

(
1
0

)
= (1 0)At

j

(
1
1

)
.

Denote (
a
(j)
t , −b(j)t

)
= (1 0)At

j .

By Lemma 12, maxj∈S

{
|a(j)t |, |b

(j)
t |
}
≤ (t + 1)(1 − θ)t/2, then we have when t ≥ T /4 =

Ω( 2θ log
1
θ ), µ ≤ Õ(

ϵ1/2

d1/4 ),

∥PS

((
I− η∇2f(0) (I 0)

t−1∑
τ=0

At−1−τ

(
I
0

))
∇̂f(0)

)
∥2 =

∑
j∈S
|(a(j)t − b

(j)
t )∇̂f(0)(j)|2

≤(t+ 1)2(1− θ)t∥∇̂f(0)∥2 ≤ (t+ 1)2(1− θ)t2(∥∇f(0)∥2 + ρ2dµ4

36
) ≤ ϵ2/400

∥PS

(
∇2f(0) (I 0)At

(
0
−v0

))
∥2 ≤

∑
j∈S
|λjb

(j)
t v

(j)
0 |2ℓ2(t+ 1)2(1− θ)t∥v0∥2 ≤ ϵ2/400.

Using Lemma 13, for all j ∈ S, we have

|

(
η∇2f(0) (I 0)

t−1∑
τ=0

At−1−τ

(
δt
0

))(j)

| = |ηλj

t−1∑
τ=0

a(j)τ δt−1−τ | ≤ |δ(j)t−1|+
t−1∑
τ=1

|δ(j)τ − δ
(j)
τ−1|

Using Lemma 21 and choose µ ≤ Õ( ϵ
5/8

d1/4 ), we have

∥PS

(
η∇2f(0) (I 0)

t−1∑
τ=0

At−1−τ

(
δt
0

))
∥ ≤ 2∥δt−1∥2 + 2t

t−1∑
τ=1

∥δτ − δτ−1∥2 ≤ O(ρ2S 4) ≤ O(ϵ2c−12) ≤ ϵ2

400

Thus we have for any t ∈ [T /4,T ],

∥PS∇f(xt)∥ ≤
ϵ

4
.
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Using Lemma 20, we have

vt = (1 −1)
(

xt

xt−1

)
=(1 −1)At

(
0
−v0

)
− η (1 −1)

t−1∑
τ=0

At−1−τ

(
∇̂f(0)

0

)

− η (1 −1)
t−1∑
τ=0

At−1−τ

(
δτ
0

)
By Lemma 12, for t ≥ T /4 = Ω( cθ log

1
θ ), we have

∥[PT
S∇2f(x0)PS ]

1/2 (1 −1)At

(
0
−v0

)
∥2 =

∑
j∈S
|λ1/2

j (b
(j)
t − b

(j)
t−1)v

(j)
0 |2 ≤ ℓ(t+ 1)2(1− θ)t∥v0∥2

≤O(ϵ
2

ℓ
c−3) ≤ 1

3

√
ρϵM 2

By Lemma 10, we have

|ηλj (1 −1)
t−1∑
τ=0

At−1−τ
j

(
1
0

)
| =|ηλj (1 0)

t−1∑
τ=0

(At−1−τ
j −At−2−τ

j )

(
1
0

)
|

=| (1 0) (At
j −At−1

j )

(
1
0

)
|.

By choosing µ ≤ Õ( ϵ
1/2

d1/4 ), then we have

∥[PT
S∇2f(x0)PS ]

1/2η (1 −1)
t−1∑
τ=0

At−1−τ

(
∇̂f(0)

0

)
∥2

=
∑
j∈S
|λ−1/2

j (a
(j)
t − a

(j)
t−1 − b

(j)
t + b

(j)
t−1)∇̂f(0)(j)|2

≤O( 1
√
ρϵ

)(t+ 1)2(1− θ)t∥∇̂f(0)∥2 ≤ O( 1
√
ρϵ

)(t+ 1)2(1− θ)t · 2(∥∇f(0)∥2 + ρ2dµ4

36
)

≤O(ϵ
3

ℓ
c−3) ≤ 1

3

√
ρϵM 2.

By Lemma 13, for any j ∈ S, we have

|(∇2f(0)
1
2 η (1 −1)

t−1∑
τ=0

At−1−τ

(
δτ
0

)
)(j)|

=|ηλ1/2
j

t−1∑
τ=0

(aτ − aτ−1)δt−1−τ | ≤
√
η(|δ(j)t−1|+

t−1∑
τ=1

|δ(j)τ − δ
(j)
τ−1|).

Using Lemma 21 and choose µ ≤ Õ( ϵ
5/8

d1/4 ), we have

∥[PT
S∇2f(x0)PS ]

1/2η (1 −1)
t−1∑
τ=0

At−1−τ

(
δτ
0

)
∥2 ≤η[2∥δt−1∥2 + 2t

t−1∑
τ=1

∥δτ − δτ−1∥2]

≤O(ηρ2S 2) ≤ O(ϵ
2

ℓ
c−6) ≤ 1

3

√
ρϵM 2

Thus we have

vT
t [PT

S∇2f(x0)PS ]vt ≤
√
ρϵM 2.

Lemma 5. If ∥∇̂f(xτ )∥ ≥ 3ϵ
4 with µ ≤ O(( 3ϵ

2ρ
√
d
)1/2) in Line 3 of Algorithm 1 for all τ ∈ [0,T ],

then by running Algorithm 1 with µ ≤ Õ( ϵ
5/8

d1/4 ) in Line 6 and µ ≤ Õ( ϵ
1/2

d1/4 ) in Line 8, we have
ET − E0 ≤ −E .
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Proof. According to lemma 1, if we choose µ ≤ O(( 3ϵ
2ρ

√
d
)1/2) in Line 3 of Algorithm 1. Then we

get if ∥∇̂f(xt)∥ ≤ 3ϵ
4 , then ∥∇f(xt)∥ ≤ ϵ, otherwise ∥∇f(xt)∥ ≥ ϵ

2 . According to Algorithm 1,
if ∥∇̂f(xτ )∥ ≥ ϵ

4 , then for all τ ∈ [0,T ], the perturbation step is not reached.

According to Lemma 19, as long as the NCE step is reached, then we have the Hamiltonian we
decrease by E in a single step. And according to Lemma 3 and Lemma 4, the Hamiltonian decrease
monotonically in all steps, so we have Lemma 5 holds.

Then we prove that if the NCE step is never reached in all steps τ ∈ [0,T ], Lemma 5 holds.
Let t1 = argmint∈[0,T ]{t|∥vt ≤ M and∥∇f(xt)∥ ≤ 2ℓM ∥}. When t1 ∈ [T /4,T ], then we
have ET − E0 ≤ ET /4 − E0 ≤ −E according to Lemma 22. Then we discuss the case when
t1 ∈ [0,T /4]. Using Lemma 24 by setting t1 as a initial step, we have

∥PS∇f(xt)∥ ≤
ϵ

4
and vT

t [PT
S∇2f(x0)PS ]vt ≤

√
ρϵM 2. ∀t ∈ [t1 + T /4, t1 + T /2].

Let t2 = argmint∈[t1+T /4,T ]{t|∥vt∥ ≤ M }. If t2 ≥ t1 + T
2 , then Hamiltonian will decrease

by E by Lemma 22. Otherwise, t2 ∈ [t1 + T /4, t1 + T /2], we have ∥PS∇f(xt2)∥ ≤ ϵ
4 , by

prediction of Lemma 5, we have ∥∇f(xt2)∥ ≥ 3ϵ
4 , so we have ∥PSc∇f(xt2)∥ ≥ ϵ

4 . By Lemma 18,
∥xt1 − xt2∥ ≤ 2S holds, then we have

vT
t2 [PST∇2f(xt2)PS ]vt2 ≤ vT

t2 [PST∇2f(xt1)PS ]vt2 + ∥∇2f(xt1)−∇2f(xt2)∥∥vt2∥2 ≤ 2
√
ρϵM 2

So according to Lemma 23, the Hamilton will decrease by E .

C.2 NEGATIVE CURVATURE

Lemma 25. Suppose ∥∇̂f(x̃)∥ ≤ 3ϵ
4 ( thus ∥∇̂f(x̃)∥ ≤ ϵ) and λmin(∇2f(x̃)) ≤ −√ρϵ. x0 and

x′
0 are at distance at most r from x̃. Let x0−x′

0 = r0e1 and v0 = v′
0 = ṽ where e1 is the minimum

eigen-direction of ∇2f(x̃) and r0 ≥ δE r
2∆f

√
d

. Then, running zeroth-order AGD starting at (x0,v0)

and (x′
0,v

′
0) respectively and set µ ≤ Õ( ϵ

13/8

d1/2 ), we have

min{ET − Ẽ, E′
T − Ẽ} ≤ −E .

Proof. Assume that

min{ET − E0, E
′
T − E′

0} ≥ −2E ,

where E0 and E′
0 are Hamiltonians at (x0,v0) and (x′

0,v
′
0), respectively. By Lemma 18 and choose

µ ≤ Õ( ϵ
3/8

d1/4 ), we have for any t ≤ T ,

max{∥xt − x̃∥, ∥x′
t − x̃∥} ≤max{∥xt − x0 + x0 − x̃∥, ∥x′

t − x′
0 + x′

0 − x̃∥}

≤r +max{∥xt − x0∥, ∥x′
t − x′

0∥} ≤ r +

√
4ηE T

θ
+ T 2

ηρ2dµ4

48
≤ 2S .

Let x̃ = 0 be the origin. Let wt = xt − x′
t, according to lemma 20, we have(

wt+1

wt

)
= At

(
w1

w0

)
− η

t∑
τ=1

At−τ

(
ξτ
0

)
= At+1

(
w0

w−1

)
− η

t∑
τ=0

At−τ

(
ξτ
0

)
,

where ξt = ∇̂f(yt) − ∇̂f(y′
t) − ∇2f(0)(yt − y′

t) =. Let ∆t =
∫ 1

0
(∇2f(ϕyt + (1 − ϕ)y′

t) −
∇2f(0))dϕ, then we have

ξt = ∆t(yt − y′
t) + et − e′t = ∆t((1− θ)wt − (1− θ)wt−1) + et − e′t,

where et = ∇̂f(yt) − ∇f(yt), e
′
t = ∇̂f(y′

t) − ∇f(y′
t). Since v0 = v′

0, we have w−1 = w0,
∥∆t∥ ≤ ρmax{∥xt − x̃∥, ∥x′

t − x̃∥} ≤ 2ρS and ∥ξt∥ ≤ 6ρS (∥wτ∥+ ∥wτ−1∥) + ρ
√
dµ2

3 . Then
we prove by induction that

∥η (I 0)

t−1∑
τ=0

At−1−τ

(
ξτ
0

)
∥ ≤ 1

2
∥ (I 0)At

(
w0

w0

)
∥
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For reasonably small µ, it is easy to check the base case holds for t = 1 as ∥A∥ ≤ ℓ = 4η. Then we
assume that for all steps less than or equal to t, the induction assumption holds. Then we have

∥wt∥ =∥ (I 0)At

(
w0

w0

)
− η (I 0)

t−1∑
τ=0

At−1−τ

(
ξτ
0

)
∥ ≤ ∥ (I 0)At

(
w0

w0

)
∥+ ∥η (I 0)

t−1∑
τ=0

At−1−τ

(
ξτ
0

)
∥

≤2∥ (I 0)At

(
w0

w0

)
∥,

then we have

∥ξt∥ ≤O(ρS )(∥wt∥+ ∥wt−1∥) +
ρ
√
dµ2

3
≤ O(ρS )(∥ (I 0)At

(
w0

w0

)
∥+ ∥ (I 0)At−1

(
w0

w0

)
∥) + ρ

√
dµ2

3

≤O(ρS )∥ (I 0)At

(
w0

w0

)
∥+ ρ

√
dµ2

3
,

where the last inequality uses Lemma 16. For the case t+ 1, we have

∥η (I 0)

t∑
τ=0

At−τ

(
ξτ
0

)
∥ ≤η

t∑
τ=0

∥ (I 0)At−τ

(
I
0

)
∥∥ξτ∥

≤η
t∑

τ=0

∥ (I 0)At−τ

(
I
0

)
∥

(
O(ρS )∥ (I 0)Aτ

(
w0

w0

)
∥+ ρ

√
dµ2

3

)
Without loss of generality, assume that the minimum eigenvector direction of ∇2f(x̃) is along the
first coordinate e1 with the corresponding 2× 2 matrix A1. Let

(
a
(1)
t −b(1)t

)
= (1 0)A1. If we

choose µ ≤ Õ( ϵ
13/8

d1/2 ), then

∥η (I 0)

t∑
τ=0

At−τ

(
ξτ
0

)
∥ ≤η

t∑
τ=0

a
(1)
t−τ

(
O(ρS )(a(1)τ − b(1)τ )∥w0∥+

ρ
√
dµ2

3

)

≤η
t∑

τ=0

a
(1)
t−τ

(
O(ρS )(a(1)τ − b(1)τ )∥w0∥

)
≤O(ηρS )

t∑
τ=0

(
2

θ
+ t+ 1)|a(1)t+1 − b

(1)
t+1|∥x0∥

≤O(ηρS )∥ (I 0)At+1

(
w0

w0

)
∥ ≤ 1

2
∥ (I 0)At+1

(
w0

w0

)
∥,

where the second inequality used Lemma 16 that |a(1)τ − b
(1)
τ | ≥ θ

2 and µ ≤ Õ( ϵ
13/8

d1/2 ); the third
inequality used Lemma 14 and the fourth inequality used 1

θ ≤ S . Then we finished the proof of the
induction. Then we have

∥wt∥ ≥ ∥ (I 0)At

(
w0

w0

)
∥ − ∥η (I 0)

t−1∑
τ=0

At−1−τ

(
ξτ
0

)
∥ ≥ 1

2
∥ (I 0)At

(
w0

w0

)
∥ ≥ 1

4
(1 + Ω(θ))tr0,

where the last inequality Lemma 16 and λmin(∇2f(x̃)). Since r0 ≥ δE r
2∆f

√
d
,T = Ω( 1θχc) Then

we have

∥wT ∥ = ∥xT − x′
T ∥ ≥

1

4
(1 + ω(θ))T r0 ≥ 4S ,

which is contradicted with ∀t ≤ T ,max{∥xt − x̃∥, ∥x′
t − x̃∥} ≤ 2S . Therefore the following

inqualty holds
min{ET − E0, E

′
T − E′

0} ≤ −2E .

Since max{E0 − Ẽ,E′
0 − Ẽ} = max{f(x0) − f(x̃), f(x′

0) − f(x̃)} ≤ ϵr + ℓr2

2 ≤ E . Then we
have

min{ET − Ẽ, E′
T − Ẽ} ≤ −E .
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Lemma 6. Suppose ∥∇̂f(xt)∥ ≤ 3ϵ
4 ( thus ∥∇f(xt)∥ ≤ ϵ), λmin(∇2f(xt)) ≤ −

√
ρϵ and no

perturbation is added in iterations [t−T , t]. Then by running Algorithm 1, we have ET −E0 ≤ −E
with probability at least 1− δE

2∆f
.

Proof. According to precondition of Lemma 6, a perturbation will be added at iteration 0, then the
Hamiltonian will increase by at most E . According to Lemma 19, Hamiltonian will decrease by 2E
if at least one NCE step is called and thus ET −E0 ≤ −E . Otherwise NCE step is never reached in
iterations [0,T ]. In this case, denote by Bx0(r) the ball with radius r around x0. Let X ⊂ Bx0(r)
be the region where Hamiltonian will not decrease by E if the AGD sequences started from at a
point x ∈ X . Then by Lemma 25, the width of region is no more than r0 = δE r

2∆f

√
d

, then we have

Vol(X )
Vol(Bx0

(r))
≤ r0 × Vol(B(d−1)

x0 (r))

Vol(B(d)
x0 (r))

=
r0Γ(d/2 + 1)

r
√
πΓ(d/2 + 1/2)

≤ δE

2∆f
.

Then, with probability at least 1− δE
2∆f

, we have ET − E0 ≤ −E .

C.3 PROOF OF THEOREM 1

Proof. Consider the set H = {τ |τ ∈ [0,T ]and∥∇̂f(xτ )∥ ≤ 3ϵ
4 } and suppose that all xτ are

not ϵ-approximate SOSPs. If H = ∅, then no perturbation is added and by Lemma 5, we have
ET − E0 ≤ −E . Else if H ̸= ∅, then define τ ′ = argminH. Then by Lemma 6, we have
Eτ ′+T − E0 ≤ Eτ ′+T − Eτ ′ ≤ −E . Thus the Hamiltonian will decrease by at least E /(2T )

per step and the total steps is no more than 2T ∆f

E . In all 2T ∆f

E steps, Lemma 6 is called at most
2∆f

E times. Denote by A the event that the argument of Theorem 1 is true and denote by Ai, i ∈
{1, . . . , ⌊ 2T ∆f

E ⌋} the event that the argument of Lemma 6 is true. Then by union bound, we have
Pr(A) ≥ Pr(

⋂
i Ai) = 1− Pr(

⋃
i Āi) ≥ 1−

∑
i Pr(Āi) ≥ 1− 2∆f

E · δE
2∆f

= 1− δ.

D PROOF OF MAIN RESULTS OF ALGORITHM 3

Algorithm 4 Zeroth-Order Accelerated Negative Curvature Finding without
Renormalization(x̃, r′,T ′)

1: x0 ← Unif(Bx̃(r
′))

2: y0 ← x0

3: for t = 0, . . . ,T ′ do
4: xt+1 = yt − η ∥yt−x̃∥

r′

(
∇̂f(r′ yt−x̃

∥yt−x̃∥ + x̃)− ∇̂f(x̃)
)

5: vt+1 = xt+1 − xt

6: yt+1 = xt+1 + (1− θ)vt+1

return xT ′−x̃
∥xT ′−x̃∥ .

Lemma 26. The output of the algorithm 4 is the same as the unit ê in Algorithm 3. Denote
the sequence of {xr} obtained by Algorithm 4 and Algorithm 3 by {x1,0,x1,1, . . . ,x1,T ′} and
{x2,0,x2,1, . . . ,x2,T ′}, respectively. Then we have

x1,T ′ − x̃

∥x1,T ′ − x̃∥
=

x2,T ′ − x̃

∥x2,T ′ − x̃∥
.

Proof. We prove this by induction that

x2,k − x̃

∥y2,k − x̃∥
=

x1,k − x̃

r′
,

y2,k − x̃

∥y2,k − x̃∥
=

y1,k − x̃

r′
.
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It is easy to check that the base case holds for k = 0. Then we assume that the above equations
holds for all k ≤ t. Then we have

x2,t+1 − x̃ =y2,t − x̃− η
∥y2,t − x̃∥

r′

(
∇̂f(r′ y2,t − x̃

∥y2,t − x̃∥
+ x̃)− ∇̂f(x̃)

)
=y2,t − x̃− η

∥y2,t − x̃∥
r′

(
∇̂f(y1,t)− ∇̂f(x̃)

)
=
∥y2,t − x̃∥

r′

(
y1,t − x̃− η

(
∇̂f(y1,t)− ∇̂f(x̃)

))
Denote by x′

1,t+1,y
′
1,t+1 the value of x1,t+1,y1,t+1 before renormalization, then

x′
1,t+1 = y1,t − η(∇̂f(y1,t)− ∇̂f(x̃)), y′

1,t+1 = x′
1,t+1 + (1− θ)(x′

1,t+1 − x1,t)

Then we have

x2,t+1 − x̃ =
∥y2,t − x̃∥

r′

(
y1,t − x̃− η

(
∇̂f(y1,t)− ∇̂f(x̃)

))
=
∥y2,t − x̃∥

r′
(
x′
1,t+1 − x̃

)
,

and

y2,t+1 − x̃ = x2,t+1 − x̃+ (1− θ)(x2,t+1 − x̃− (x2,t − x̃)) =
∥y2,t − x̃∥

r′
(y′

1,t+1 − x̃),

then we have

∥y2,t+1 − x̃∥ = ∥y2,t − x̃∥
r′

∥y′
1,t+1 − x̃∥.

So we have

x2,t+1 − x̃ =
∥y2,t − x̃∥

r′
(x′

1,t+1 − x̃) =
∥y2,t − x̃∥

r′
∥y′

1,t+1 − x̃∥
r′

(x1,t+1 − x̃) =
∥y2,t+1 − x̃∥

r′
(x1,t+1 − x̃).

Then we finish the proof of the induction.

Note that ∇2f(x̃) has the following eigendecomposition: ∇2f(x̃) =
∑n

i=1 λiuiu
T
i , where {un

i=1}
forms an orthonormal basis of Rd. Without loss of generality, assume that λ1 ≤ λ2 ≤ · · · ≤ λd

and λ1 ≤ −
√
ρϵ. If λd ≤ −

√
ρϵ/2, then Lemma holds directly. Then we prove the case when

λd ≥ −
√
ρϵ/2 and assume that λp ≤ −

√
ρϵ ≤ λp+1(p > 1). Let S be the subspace of Rd spanned

by {u1,u2, . . . ,up} and Sc be subspace spanned by {up+1,up+2, . . . ,ud}. Then we have the
following lemma:

Lemma 27. Denote αt =
∥xt,S−x̃∥
∥xt−x̃∥ , where xt,S is the component of xt in the subspace S. Then,

during all the T ′ iterations of Algorithm 4, we have αt ≥ αmin = δ0
8

√
π
d , given that α0 =

√
π
d δ0.

Proof. Define x−1 = x0 − v0. Without loss of generality, we assume that x̃ = 0. Consider the
worst case that α0 =

√
π
d δ0 and the component x0,d along ud equals 0. Assume that the eigenvalues

satisfy

λ2 = · · · = λp = λp+1 = · · · = λd−1 = −√ρϵ.

Define ∆ = ∥yt∥
r′

(
∇̂f(yt

r′

∥yt∥ )− ∇̂f(0)−∇
2f(0) r′

∥yt∥yt

)
and assume that ∆ lies in the direc-

tion that make αt as small as possible. Then, the component ∆S in S should be in the opposite
direction to vS , and the component ∆Sc in Sc should be in the direction of vSc . Then we have both
∥xt,Sc∥/∥xt∥ and ∥yt,Sc∥/∥yt∥ being non-decreasing. Note that

xt+2 = xt+1 + (1− θ)(xt+1 − xt)− η∆− η∇2f(0)(xt+1 + (1− θ)(xt+1 − xt))

Then we consider the following recurrence formula:

∥xt+2,Sc∥ ≤ (1 + η
√
ρϵ)(∥xt+1,Sc∥+ (1− θ)(∥xt+1,Sc∥ − ∥xt,Sc∥)) + η∥∆Sc∥.

Since ∥xt,Sc∥/∥xt∥ is non-decreasing, we have

∥∆Sc∥
∥xt+1,Sc∥

≤ ∥∆∥
∥xt+1,Sc∥

≤ ∥∆∥
∥xt+1∥

∥x0∥
∥x0,Sc∥

≤ ∥∆∥
∥xt+1∥

∥x0∥
∥x0∥ − ∥x0,S∥

=
∥∆∥
∥xt+1∥

1

1− α0

26



Published as a conference paper at ICLR 2023

≤ 2∥∆∥
∥xt+1∥

≤ 2

r′
ρ(

r′2

2
+

√
dµ2

3
) ≤ 2ρr′,

where the last second step uses Lemma 2 and the last step is due to our choice of µ such that√
dµ2 ≤ r′2. Then we have

∥xt+2,Sc∥ ≤ (1 + η
√
ρϵ+ 2ηρr′)((2− θ)∥xt+1,Sc∥ − (1− θ)∥xt,Sc∥).

Then by Lemma 17, we have

∥xt,Sc∥ ≤(1 + κSc

2
)t
(
(−2− θ − µSc

2µSc

∥x0,Sc∥+ 1

(1 + κSc)µSc

(1 + κSc)∥x0,Sc∥) · (2− θ + µSc)t

+(
2− θ + µSc

2µSc

∥x0,Sc∥ − 1

(1 + κSc)µSc

(1 + κSc)∥x0,Sc∥) · (2− θ − µSc)t
)

≤(1 + κSc

2
)t
(
(−2− θ − µSc

2µSc

∥x0,Sc∥+ ∥x0,Sc∥
µSc

) + (
2− θ + µSc

2µSc

∥x0,Sc∥ − ∥x0,Sc∥
µSc

)

)
· (2− θ + µSc)t

=(
1 + κSc

2
)t∥x0,Sc∥(2− θ + µSc)t,

where κSc = η
√
ρϵ + 2ηρr′, µSc =

√
((2− θ)2 − 4(1−θ)

1+κSc
). Suppose for some value t, we have

αk ≥ αmin for any 1 ≤ k ≤ t+ 1. Then we have

∥xt+2,S∥ ≥ (1 + η
√
ρϵ) ≥ (1 + η

√
ρϵ)(∥xt+1,S∥+ (1− θ)(∥xt+1,S∥ − ∥xt,S∥))− η∥∆S∥.

Since ∥xt+1,S∥/∥xt+1∥ ≥ αmin holds for all t > 0, we have ∥yt+1,S∥
∥yt+1∥ ≥ αmin, then

∥∆S∥
∥yt+1,S∥

≤ ∥∆∥
αmin∥yt+1∥

≤ 1

αmin
ρ(

r′2

2
+

√
dµ2

3
) ≤ ρr′

αmin
,

where the last second step uses Lemma 2 and the last step is due to our choice of µ such that√
dµ2 ≤ r′2. Then we have

∥xt+2,S∥ ≥ (1 + η
√
ρϵ− ηρr′

αmin
)((2− θ)∥xt+1,S∥ − (1− θ)∥xt,S∥).

Then by Lemma 17, we have

∥xt,S∥ ≥(
1 + κS

2
)t
(
(−2− θ − µS

2µS
∥x0,S∥+

1

(1 + κS)µS
(1 + κS)∥x0,S∥) · (2− θ + µS)

t

+(
2− θ + µS

2µS
∥x0,S∥ −

1

(1 + κS)µS
(1 + κS)∥x0,S∥) · (2− θ − µS)

t

)
≥(1 + κS

2
)t · (−2− θ − µS

2µS
∥x0,S∥+

∥x0,S∥
µS

) · (2− θ + µS)
t

=(
1 + κS

2
)t · ∥x0,S∥

2
· (2− θ + µS)

t

where κS = η
√
ρϵ− ηρr′

αmin
, µS =

√
((2− θ)2 − 4(1−θ)

1+κS
). Then we have

∥xt,S∥
∥xt,Sc∥

≥ (
1 + κS

1 + κSc

)t
∥x0,S∥
2∥x0,Sc∥

(
2− θ + µS

2− θ + µSc

)t,

where
1 + κS

1 + κSc

≥(1 + κS)(1− κSc) = 1− (
1

αmin
+ 2)ηρr′ − κSκSc ≥ 1− 2ηρr′/αmin,

2− θ + µS

2− θ + µSc

≥(1 + µS

2− θ
)(1− µSc

2− θ
) = (1 +

1

2− θ

√
(2− θ)2 − 4(1− θ)

1 + κS
)(1− 1

2− θ

√
(2− θ)2 − 4(1− θ)

1 + κSc

)

=(1 +
1

2− θ

√
θ2 + κS(2− θ)2

1 + κS
)(1− 1

2− θ

√
θ2 + κSc(2− θ)2

1 + κSc

) ≥ 1− 2(κSc − κS)

θ
≥ 1− 3ηρr′

αminθ
.
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Then we have
∥xt,S∥
∥xt,Sc∥

≥ ∥x0,S∥
2∥x0,Sc∥

(1− 4ρr′

αminθ
)t ≥ ∥x0,S∥

2∥x0,Sc∥
(1− 1/T ′)t ≥ ∥x0,S∥

2∥x0,Sc∥
exp(− t

T ′ − 1
) ≥ ∥x0,S∥

4∥x0,Sc∥
.

So we have

αt =
∥xt,S∥√

∥xt,S∥2 + ∥xt,Sc∥2
≥ ∥x0,S∥

8∥x0,Sc∥
≥ αmin.

Thus for all t ≤ T ′, we have αt ≥ αmin.

Proof of Lemma 7

Proof. As stated above, we only need to prove the case when λd ≥ −
√
ρϵ

2 . Then there ex-
ist some p′ such that λp′ ≤ −√ρϵ/2 ≤ λp′+1. Let S ′ be the subspace of Rd spanned by

{u1,u2, . . . ,up′} and S ′c be the complementary subspace. Define xt,S′ =
∑p′

i=1 ⟨ui,xt⟩ui,
xt,S′c =

∑d
i=p′+1 ⟨ui,xt⟩ui, and let αt = ∥xt,S∥/∥xt∥. We know that with probability at least

1−
√

π

d
δ0

Vol(Bd−1
0 (1))

Vol(Bd
0(1))

≥ 1−
√

π

d
δ0

√
d

π
= 1− δ0,

we have α0 ≥
√

π
d δ0. Then we prove that there exists some t0 with 1 ≤ t ≤ T ′ such that

∥xt0,S′c∥
∥xt0∥

≤
√
ρϵ

8ℓ
.

Assume the contrary holds that for any 1 ≤ t ≤ T ′,
∥xt0,S′c∥
∥xt0

∥ >
√
ρϵ

8ℓ and
∥yt0,S′c∥
∥yt0

∥ >
√
ρϵ

8ℓ . Then
we consider the case when ∥xt,S′c∥ achieves the largest possible value and we have the following
recurrence formula:

∥xt+2,S′c∥ ≤ (1 + η
√
ρϵ/2)(∥xt+1,S′c∥+ (1− θ)(∥xt+1,S′c∥ − ∥xt,S′c∥)) + η∥∆S′c∥.

Since
∥yt0,S′c∥
∥yt0

∥ >
√
ρϵ

8ℓ for any 1 ≤ k ≤ t+ 1, then we have

η∥∆S′c∥
∥xt+1,S′c∥+ (1− θ)(∥xt+1,S′c∥ − ∥xt,S′c∥)

≤ ∥∆S′c∥
4ℓ∥yS′c∥

≤ 2ρ
√
ρϵr′

(
r′2

2
+

√
dµ2

3
) ≤ 2ρr′
√
ρϵ

,

where the last is step is due to Lemma 2 and our choice of µ such that
√
dµ2 ≤ r′2. Then we have

∥xt+2,S′c∥ ≤ (1 + η
√
ρϵ/2 + 2ρr′/

√
ρϵ)((2− θ)∥xt+1,S′c∥ − (1− θ)∥xt,S′c∥).

Then we have

∥xt,S′c∥ ≤ ∥x0,S′c∥(1 + κS′c

2
)t(2− θ + µS′c)t,

where κS′c = η
√
ρϵ/2+2ρr′/

√
ρϵ, µS′c =

√
(2− θ)2 − 4(1−θ)

1+κS′c
. By Lemma 27, we have ∥xt,S∥ ≥

( 1+κS
2 )t · ∥x0,S∥

2 · (2− θ + µS)
t for any 1 ≤ t ≤ T ′. Then we have

∥xT ′,S′c∥
∥xT ′,S∥

≤2∥x0,S′c∥
∥x0,S∥

(
1 + κS′c

1 + κS
)T

′
(
2− θ + µS′c

2− θ + µS
)T

′

≤ 2

α0
(
1 + κS′c

1 + κS
)T

′
(
2− θ + µS′c

2− θ + µS
)T

′
≤ 2

δ0

√
d

π
(
1 + κS′c

1 + κS
)T

′
(
2− θ + µS′c

2− θ + µS
)T

′
,

where
1 + κS′c

1 + κS
≤ 1

(1 + κS)(1− κS′c)
≤ 1

1 + (κS − κS′c)/2
= 1− (κS − κS′c)/2

1 + (κS − κS′c)/2
≤ 1− κS − κS′c

4

≤1−
η
√
ρϵ/2− ρr′( 1√

ρϵ +
1

αmin
)

4
≤ 1−

η
√
ρϵ

16
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2− θ + µS′c

2− θ + µS
=
1 + µS′c

2−θ

1 + µS
2−θ

≤ 1

(1 + µS
2−θ )(1−

µS′c
2−θ )

=
1

(1 +
√
1− 4(1−θ)

(1+κS)(2−θ)2 )(1−
√
1− 4(1−θ)

(1+κS′c )(2−θ)2 )

≤ 1

1 + 2(κS−κS′c )
θ

= 1−
2(κS−κS′c )

θ

1 + 2(κS−κS′c )
θ

≤ 1− κS − κS′c

θ
≤ 1−

η
√
ρϵ

4θ
= 1− (ρϵ)1/4

16
√
ℓ
.

Then we have

∥xT ′,S′c∥
∥xT ′,S∥

≤ 2

δ0

√
d

π
(1− (ρϵ)1/4

16
√
ℓ
)T

′
≤
√
ρϵ

8ℓ
.

So we conclude that there exist some 1 ≤ t0 ≤ T ′ such that
∥xt0,S′c∥
∥xt0∥

≤
√
ρϵ

8ℓ . Consider the

normalized vector ê =
xt0

r , then we have ∥êS′c∥ ≤
√
ρϵ

8ℓ and ∥êS′∥ ≥ ∥ê∥ − ∥êS′c∥ ≥ 1 −
√
ρϵ

8ℓ .
Then we have

êT∇2f(0)ê =(êS′c + êS′)T∇2f(0)(êS′c + êS′) = êTS′c∇2f(0)êS′c + êTS′∇2f(0)êS′

≤ℓ∥êS′c∥2 −
√
ρϵ

2
∥êS′∥2 ≤ ρϵ

64ℓ
−
√
ρϵ

2
(1−

√
ρϵ

8ℓ
)2 ≤ −

√
ρϵ

4
.

D.1 PROOF OF THEOREM 2

Proof. Recall the parameters setting of Algorithm 3:

δ0 =
δ

384∆f

√
ϵ3

ρ
, η =

1

4ℓ
, θ =

1

4
√
κ
, γ =

θ2

η
, s =

γ

4ρ
, T ′ = 32

√
κ log(

ℓ
√
d

δ0
√
ρϵ

),

E =

√
ϵ3

ρ
c−7
A , r′ =

δ0ϵ

32

√
π

ρd
,

where cA is a large enough constant. Define a new parameter T̃ =
√
κcA. From Lemma 5 we know

if ∥∇̂f(xτ )∥ ≥ 3ϵ
4 for any τ ∈ [0, T̃ ], then by running Algorithm 3 we have ET̃ − E0 ≤ −E .

Then we first assume that for each time we can escape saddle points successfully, i.e., after T ′

iterations of the perturbation step, we have êT∇2f(x̃)ê ≤ −
√
ρϵ

4 . Then by Lemma 8, we have

min{f(x̃− 1
4

√
ϵ
ρ ê), f(x̃+ 1

4

√
ϵ
ρ ê)} ≤ f(x̃− f ′

ê(x̃)
4|f ′

ê(x̃)|

√
ϵ
ρ ê) ≤ f(x̃)− 1

384

√
ϵ3

ρ and the total times

of random perturbations is no more than 384(f(x0) − f∗)
√

ρ
ϵ3 . By union bound, the probability

that at least one time the negative curvature finding fails to escape saddle points is upper bounded
by 384(f(x0)− f∗)

√
ρ
ϵ3 δ0 ≤ δ.

Then we assume that we never encounter a SOSP in the rest steps. Set the total number of iterations

to be T = max{ 4∆f (T̃ +T ′)
E , 768∆fT ′√ ρ

ϵ3 } = O
(

∆f ℓ
1/2ρ1/4

ϵ7/4
log(

ℓ
√
d∆f

δϵ2 )
)

. Denote by the NT̃

the number of periods containing only large gradient steps, then we have

NT̃ ≥
T

2(T̃ + T ′)
− 384(f(x0)− f∗)

√
ρ

ϵ3
≥ (2c7A − 84)∆f

√
ρ

ϵ3
≥ ∆f

E
.

By Lemma 5 we have the Hamiltonian will decrease by NT̃ E ≥ ∆f , which cause a contradiction.
Thus we have with probability at least 1− δ, we must encounter an ϵ-approximate SOSP during the
T iterations.

E PARAMETER SETTINGS OF THE NUMERICAL EXPERIMENTS
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Table 2: Parameter settings of the cubic regularization problem experiment.

Algorithm Parameters
d = 20, 100, 200, 1000

PAGD ℓ = 10, η = 1/ℓ, r = 0.01, tthresh = 30, gthresh = e/100
ZO-Perturbed-AGD ℓ = 10, ρ = 1, η = 1/η, r = 0.001, µ = 0.001

ZO-Perturbed-AGD-ANCF ℓ = 10, ρ = 1, η = 1/η, r = 0.001, µ = 0.001

Table 3: Parameter settings of the cubic quartic function experiment.

Algorithm Parameters
d = 20

PAGD ℓ = 20, η = 1/ℓ, r = 10−3, tthresh = 10, gthresh = e/100
RSPI ℓ = 20, σ1 = 1, σ2 = 0.6, ρσ1

= 0.8, Tσ1
= 5, TDFPI = 20

RSPI(SPSA) ℓ = 20, σ1 = 1.75, σ2 = 0.65, ρσ1 = 0.8, Tσ1 = 15, TDFPI = 100
ZO-GD-NCF ℓ = 20, ρ = 10, η = 1/ℓ

ZO-Perturbed-AGD ℓ = 20, ρ = 10, η = 1/ℓ, r = 0.01, µ = 0.001
ZO-Perturbed-AGD-ANCF ℓ = 20, ρ = 10, η = 1/ℓ, r = 0.01, µ = 0.01

d = 100
PAGD ℓ = 100, η = 1/ℓ, r = 10−3, tthresh = 10, gthresh = e/100
RSPI ℓ = 100, σ1 = 1, σ2 = 0.65, ρσ1

= 0.95, Tσ1
= 15, TDFPI = 20

RSPI(SPSA) ℓ = 100, σ1 = 1.75, σ2 = 0.65, ρσ1 = 0.95, Tσ1 = 15, TDFPI = 100
ZO-GD-NCF ℓ = 100, ρ = 10, η = 1/ℓ

ZO-Perturbed-AGD ℓ = 100, ρ = 10, η = 1/ℓ, r = 0.01, µ = 0.001
ZO-Perturbed-AGD-ANCF ℓ = 2 = 100, ρ = 10, η = 1/ℓ, r = 0.01, µ = 0.01

d = 200
PAGD ℓ = 110, η = 1/ℓ, r = 10−3, tthresh = 10, gthresh = e/100
RSPI ℓ = 200, σ1 = 1.5, σ2 = 0.65, ρσ1 = 0.96, Tσ1 = 15, TDFPI = 20

RSPI(SPSA) ℓ = 200, σ1 = 1.75, σ2 = 0.65, ρσ1
= 0.98, Tσ1

= 15, TDFPI = 100
ZO-GD-NCF ℓ = 150, ρ = 10, η = 1/ℓ

ZO-Perturbed-AGD ℓ = 200, ρ = 10, η = 1/ℓ, r = 0.01, µ = 0.001
ZO-Perturbed-AGD-ANCF ℓ = 200, ρ = 10, η = 1/ℓ, r = 0.01, µ = 0.01
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