
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A GENERAL FRAMEWORK FOR PRODUCING INTER-
PRETABLE SEMANTIC TEXT EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Semantic text embedding is essential to many tasks in Natural Language Pro-
cessing (NLP). While black-box models are capable of generating high-quality
embeddings, their lack of interpretability limits their use in tasks that demand
transparency. Recent approaches have improved interpretability by leveraging
domain-expert-crafted or LLM-generated questions, but these methods rely heavily
on expert input or well-prompt design, which restricts their generalizability and
ability to generate discriminative questions across a wide range of tasks. To address
these challenges, we introduce CQG-MBQA (Contrastive Question Generation
- Multi-task Binary Question Answering), a general framework for producing
interpretable semantic text embeddings across diverse tasks. Our framework sys-
tematically generates highly discriminative, low cognitive load yes/no questions
through the CQG method and answers them efficiently with the MBQA model,
resulting in interpretable embeddings in a cost-effective manner. We validate
the effectiveness and interpretability of CQG-MBQA through extensive exper-
iments and ablation studies, demonstrating that it delivers embedding quality
comparable to many advanced black-box models while maintaining inherently
interpretability. Additionally, CQG-MBQA outperforms other interpretable text
embedding methods across various downstream tasks. The source code is available
at https://anonymous.4open.science/r/CQG-MBQA-483F/.

1 INTRODUCTION

Text embedding is a cornerstone of Natural Language Processing (NLP), transforming texts—whether
sentences, paragraphs, or full documents—into embedding vectors that capture their semantic
meaning. In semantic embedding spaces, the similarity between texts is represented by the proximity
of their embedding vectors, typically measured using distance measures like Euclidean distance,
cosine distance, or inner product. The closer the vectors, the more semantically similar the texts. These
embeddings are foundational to many downstream NLP tasks, including Semantic Textual Similarity
(STS) (Agirre et al., 2012; 2013), Information Retrieval (Karpukhin et al., 2020; Thakur et al., 2021),
Clustering (Aggarwal & Zhai, 2012), and more recently, Retrieval Augmented Generation (RAG)
(Lewis et al., 2020; Guu et al., 2020; Asai et al., 2024).

Black-box text embedding methods, such as Sentence-BERT (Reimers & Gurevych, 2019), SimCSE
(Gao et al., 2021), WhitenedCSE (Zhuo et al., 2023), and AnglE (Li & Li, 2024), excel at generating
high-quality embeddings by training on vast amounts of data. These models are highly effective at
capturing semantic similarities, making them indispensable for a variety of NLP tasks (Muennighoff
et al., 2023). However, their black-box nature leaves the embeddings opaque to human users. These
models do not provide insight into why certain texts are deemed similar, which becomes problematic
for tasks that require transparency, especially in applications involving high-stakes decision-making,
such as legal and medical domains, or in cases requiring explanations for regulatory compliance.

Interpretability in machine learning is the ability of humans to understand the reasoning behind a
model’s results (Miller, 2019), which is essential not only for building trust and ensuring safety but
also for detecting biases and debugging models (Molnar, 2022). Recent advances have enhanced
interpretability by leveraging inherently interpretable models such as Decision Tree (Breiman
et al., 1984) and Generalized Additive Models (Hastie & Tibshirani, 1986), as well as model-
agnostic methods like LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017). However,

1

https://anonymous.4open.science/r/CQG-MBQA-483F/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

these interpretable approaches lose effectiveness when applied on top of non-interpretable features
generated by black-box text embedding models. Consequently, the challenge remains: how can we
create interpretable text embeddings without sacrificing performance?

Recent efforts have sought to address the challenge of creating interpretable embeddings by using
questions as interpretable dimensions. For instance, ChiLL (McInerney et al., 2023) employs yes/no
questions crafted by domain experts to classify patient clinical notes, but its reliance on costly expert
annotation limits its generalizability to different datasets. QAEmb (Benara et al., 2024) advances
this concept by using task-specific prompts with examples to automatically generate yes/no questions
via Large Language Models (LLMs), achieving notable success in the fMRI prediction task (Huth
et al., 2016; LeBel et al., 2023; Tang et al., 2023).

Nonetheless, QAEmb requires meticulously crafted prompts and uses six distinct prompt templates
to generate questions for the fMRI prediction task, which complicates its usage in general settings due
to the need for prompt engineering expertise. Furthermore, this example-based question generation
approach often produces generic, less discriminative questions, limiting its effectiveness in broader
applications. Given the importance of question quality in creating effective interpretable embeddings,
there is a pressing need for a systematic approach that can automatically generate meaningful and
discriminative questions across various text embedding tasks.

To address this gap, we introduce CQG-MBQA (Contrastive Question Generation - Multi-task Binary
Question Answering), a general framework for producing interpretable semantic text embedding,
which matches the performance of many black-box models and surpasses existing interpretable
baselines across various text embedding tasks. CQG-MBQA harnesses contrastive learning principles
to prompt LLMs to generate highly discriminative binary yes/no questions, which form the dimensions
of the embedding space. These questions not only capture the semantic nuances between texts but
also offer human-interpretable insights. The main contributions of this work are as follows:

• We propose CQG-MBQA, the first general framework that tackles the challenge of generating
interpretable text embeddings for a broad range of tasks, offering a practical and scalable
solution for text representation.

• Our Contrastive Question Generation (CQG) method produces highly discriminative ques-
tions that offer high interpretability while minimizing cognitive load for users, ensuring that
the semantic relationships between texts can be easily understood.

• The Multi-task Binary Question Answering (MBQA) model processes these binary questions
efficiently at scale, significantly reducing the inference costs typically associated with LLMs,
making the framework cost-effective for real-world applications.

• We validate the effectiveness of CQG-MBQA through extensive experiments and ablation
studies, demonstrating its robustness and practical applicability across multiple benchmarks
and downstream tasks.

2 RELATED WORK

Text embedding is a core NLP task that transforms texts into vector representations that capture their
semantic meanings. Generally, it is categorized into black-box and interpretable embeddings.

Black-box Embedding. Early methods for text embedding, such as GloVe (Pennington et al., 2014)
and Word2Vec (Mikolov et al., 2013), typically pool word embeddings to create low-dimensional
semantic representations. However, these methods, which rely on individual word embeddings, often
fail to capture the full context of a text. For example, the sentences “Most people in the world like
Apple.” and “Most people in the world do not like Apple.” share high lexical overlap but have
opposite meanings, highlighting the limitations of such methods, which struggle to capture deeper
semantic differences beyond surface-level word similarity.

To produce context-aware text embeddings, Universal Sentence Encoder (USE) (Cer et al., 2018)
employs a transformer model (Vaswani et al., 2017) trained on a combination of unsupervised tasks
and supervised fine-tuning using the Stanford Natural Language Inference (SNLI) corpus (Bowman
et al., 2015). BERT (Devlin et al., 2019), a transformer network pre-trained on large-scale unlabeled
text, can generate sentence embeddings by pooling its output representations. Subsequent models have
further refined BERT using contrastive learning and other semantic-related objectives. For instance,
Sentence-BERT (SBERT) (Reimers & Gurevych, 2019) pioneers the Siamese network structure
for Semantic Textual Similarity (STS), while SimCSE (Gao et al., 2021) develop a contrastive

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

learning framework for both unsupervised and supervised settings. WhitenedCSE (Zhuo et al., 2023)
enhances embedding uniformity and alignment with shuffled group whitening, and AnglE (Li & Li,
2024) optimizes angle differences to overcome cosine similarity limitations. Despite these advances,
black-box models produce embeddings that are opaque and difficult to interpret. In this work, we
target generating interpretable dimensions for text embedding.

Interpretable Embedding. The challenge of creating interpretable embeddings has been persisted,
especially with the rise of dense word embeddings. Early efforts focus on transforming word embed-
dings to improve interpretability. Jha et al. (2018) apply categorical knowledge in the biomedical
domain to convert pre-trained embeddings into interpretable dimensions, while Senel et al. (2018)
quantify interpretability by analyzing latent semantic structures. Models like SPINE (Subrama-
nian et al., 2018) employ auto-encoders to create interpretable embeddings from non-interpretable
ones like GloVe (Pennington et al., 2014) and Word2Vec (Mikolov et al., 2013), and Word2Sense
(Panigrahi et al., 2019) creates interpretable dimensions based on specific word senses.

Despite progress, developing context-aware, interpretable dimensions remains difficult. Recent
research has shifted towards indirectly understanding embedding spaces. For instance, Lee et al.
(2022) introduce token pair contribution heatmaps to enhance interpretability in sentence similarity.
Opitz & Frank (2022) introduce S3BERT, which trains interpretable text embeddings by structuring
SBERT embeddings into explainable subspaces aligned with Abstract Meaning Representation met-
rics. And Simhi & Markovitch (2023) proposes transforming embedding spaces into comprehensible
conceptual representations. Recent advancements like ChiLL (McInerney et al., 2023) generate
interpretable binary features from health records by querying pre-trained LLMs with expert-crafted
yes/no questions for patient classification. LISA (Patel et al., 2023) learns interpretable text style
embedding by leveraging LLMs for text style analysis and summarization, training a smaller model
for efficiency and applying post-processing to refine style attributes. QAEmb (Benara et al., 2024)
extends this by prompting LLMs to automatically generate questions using examples of texts and
questions, demonstrating its efficacy in the fMRI prediction task. Inspired by QAEmb, we propose
a cost-effective framework that generates high-quality questions and uses them as interpretable
dimensions for text embedding.

3 INTERPRETABLE TEXT EMBEDDING FRAMEWORK

We present CQG-MBQA, an interpretable text embedding framework that uses yes/no questions as
semantic dimensions. By generating a single set of versatile questions, it serves as a general-purpose
solution for embedding text across diverse tasks and datasets, akin to pre-trained encoders. The
answers to these questions form an interpretable embedding vector, capturing the text’s core semantics.
For instance, consider three questions: “Is the article about AI?”, “Is the article about sports?”, and
“Is the article about food?”. For the text “Apple is a technology company.”, querying an LLM yields
the answers: [“yes”, “no”, “no”], resulting in an embedding vector of [1, 0, 0], which reflects the
text’s key features. Applying this same set of questions across all texts in a corpus produces a unified
embedding matrix that encodes the semantic information of the entire dataset.

As shown in Figure 1, the CQG-MBQA framework consists of two phases: question generation
and question answering. To generate high-quality, discriminative questions, we develop a method
called Contrastive Question Generation (CQG), which harnesses pre-trained dense text embedding
models and generative LLMs for question generation. Details of this method are outlined in Section
3.1. Once the questions are generated, their corresponding answers form the text’s embedding vector.
Yet, generating answers through LLMs at scale is both time-consuming and expensive. To address this,
we propose a Multi-task Binary Question Answering (MBQA) model. Trained with a multi-task
binary classification objective, this model can generate interpretable embeddings efficiently, requiring
far fewer LLM API calls. Further details on this model are provided in Section 3.2.

3.1 QUESTION GENERATION

Motivations. Effective text representation with binary question answers requires highly discriminative
questions to capture subtle semantic differences within the corpus. Existing methods, such as QAEmb
(Benara et al., 2024), generate questions by prompting LLMs with dataset descriptions, example texts,
and sample questions. However, this example-based approach presents two significant limitations:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Whale
Giraffe

Eagle

Deer

Ray

Dolphin

Hawk

Shark

Encoder

Texts
vWhale
vGiraffe
vEagle
vDeer
vRay
vDolphin
vHawk
vShark

Embeddings

vWhale

vDolphin

vGiraffe
vDeer

vSharkvRay

vEaglevHawk

Semantic Space

LLM

Contrastive Question Generation (CQG)

Seal Encoder

Does the animal use echolocation to
navigate and hunt?

Is the animal a marine mammal?

Can the animal sleep with one half of
the brain at a time?

0 (No)

Logits LLM
Answers

1 (Yes)

1 (Yes)

BCE
Loss

Bat Encoder

1

0

0

Training Inference

0.3

0.8

0.9

1. Does the animal use echolocation
to navigate and hunt?
2. Is the animal a marine mammal?
3. Can the animal sleep with one half
of the brain at a time?

Multi-task Binary Question Answering (MBQA)

Post-Processing

Forward Pass Backward Pass

Prompts Questions

Positives: Whale, Dolphin
Negatives: Shark, Giraffe, Eagle

Generate questions that gives
only yes to the positives.

Hard Easy

Figure 1: An overview of the CQG-MBQA framework.

(1) Insufficient Specificity: The generated questions are often too generic, resulting in embed-
dings that fail to capture fine semantic nuances.

(2) Interpretability Issue: A significant proportion of questions consistently yield simple “yes”
answers, which can make the resulting embeddings more challenging to interpret and analyze.

These limitations reduce the effectiveness of the embeddings in capturing fine-grained semantic
differences, which in turn hinders their practical utility in downstream tasks. To overcome these
challenges, we introduce Contrastive Question Generation (CQG), a novel method that leverages the
creative potential of LLMs to generate more discriminative questions.

Contrastive Question Generation (CQG). The CQG method applies contrastive learning principles,
using positive, hard negative, and easy negative samples to guide LLMs in generating high-quality
questions. These questions are designed to effectively differentiate positive samples from negative
ones, especially hard negatives, which are semantically similar (Robinson et al., 2021). The goal is to
generate questions that elicit a “yes” answer only for a specific group of texts while excluding others,
even those that are closely related.

Example 1: Consider a toy example with four groups of texts for animals: G1 = {Whale,Dolphin},
G2 = {Shark,Ray}, G3 = {Giraffe,Deer}, and G4 = {Eagle,Hawk}. The objective is to generate
questions that can effectively distinguish G1 from other groups. At first, broad questions such as
“Does it live in water?” or “Is it a mammal?” might seem useful. While these questions correctly
yield “yes” for Whale and Dolphin, they also apply to other groups. For example, Shark and Ray
also live in water, and Giraffe and Deer are also mammals. To better differentiate G1, a more precise
question would be “Does the animal use echolocation to navigate and hunt?”, which yields a “yes”
only for Whale and Dolphin, effectively distinguishing them from the other groups. Furthermore, this
question could also generalize to other animals, such as Bat, that were not part of the original groups,
highlighting the method’s potential to apply to unseen examples. △

As depicted in Figure 2, the CQG method begins by identifying semantically similar groups of texts.
This is accomplished by encoding the text corpus into embedding vectors and clustering these vectors
to form distinct groups. For each cluster, we design a strategic sampling technique: selecting np

positive texts from within the cluster, nh hard negative samples from neighboring clusters, and ne

easy negative samples from the global corpus. The LLM is then prompted to generate questions
under a key constraint: the questions must elicit “yes” answers exclusively for the positive samples
and “no” answers for all negative samples. The detailed prompt for CQG is provided in Appendix
A.1. This strategic sampling technique serves two main purposes:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Local Area

Semantic Space

+
Positives

Hard Negatives

Yes/No Questions

LLM

Easy Negatives

1. Does the article include ...
2. Is the article ...
3. Did the article mention ...
4. Does it convey a positive ...

Figure 2: Illustration of the CQG method.

(1) Discriminative Power: Contrasting positive samples with hard negative samples encourages
the LLM to generate highly discriminative questions tailored to each cluster.

(2) Broader Relevance: Including easy negative samples ensures that the generated questions
maintain broader relevance across the entire corpus.

A well-tuned negative-to-positive ratio, i.e., (nh + ne)/np, encourages the LLM to craft precise,
discriminative questions for the positive cluster, leading to sparser and more interpretable embedding
dimensions. This process is repeated across all clusters, resulting in a comprehensive set of LLM-
generated questions that capture the unique characteristics of each cluster while maintaining global
relevance, forming the foundation of our interpretable text embedding framework.

Post-Processing. LLMs may encounter two common issues when generating questions: (1) failing to
consistently provide “yes” answers only for positive samples and (2) generating similar questions
across different clusters. To address these challenges, we implement a post-processing step to filter
and select the highest-quality, non-redundant questions.

We introduce a probing mechanism to evaluate and refine the generated questions. For each question,
we randomly sample pp positive probes from the originating cluster, ph hard negative probes from
neighboring clusters, and pe easy negative probes from other clusters. The LLM answers these
questions, and we calculate the quality of each question using the following formula:

quality =
“yes” for positive probes

pp
− # “yes” for negative probes

ph + pe
. (1)

Equation 1 measures the difference between the percentage of “yes” answers for positive probes and
negative probes. A higher quality value indicates that the question is more discriminative for the
cluster, as it correctly identifies more positive samples while filtering out negatives.

To construct the final set of questions, we iteratively select the top t most discriminative questions from
each cluster, based on their quality values, and ensure that no two questions are highly semantically
similar. Here, the similarity between questions is measured using cosine similarity between their
corresponding embedding vectors, which are generated using the same pre-trained encoding model
used in encoding the text corpus. If the cosine similarity of two questions exceeds a predefined
threshold θ, they are considered duplicates, and the latter question is excluded.

This post-processing step helps filter out hallucinated and/or low-quality questions generated by the
LLM. The final set comprises m questions, forming a diverse and highly discriminative collection
that effectively captures the semantic structure of the entire corpus.

3.2 QUESTION ANSWERING

Motivations. Generating answers to questions using LLMs can be prohibitively expensive, especially
when scaling up to large datasets with numerous questions. For example, as presented in Table
7, LLM-based Question Answering (QA), which leverages LLMs to answer 10,000 questions for
approximately 8.8 million articles in the MS MARCO dev set, requires about 4.4 billion LLM
inference passes and processes 1.5 trillion tokens. This incurs a substantial cost of 244,551 USD, even
with a cost-effective model (GPT-4o-mini) and a token-efficient prompting approach (grouping
20 questions per prompt). Further details are available in Appendix C.

While increasing the number of questions improves performance (see Section 4.5), the cost associated
with LLM-based QA renders it impractical for large-scale real-world applications. To address this,
we propose the Multi-task Binary Question Answering (MBQA) model as a cost-effective alternative.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Multi-task Binary Question Answering (MBQA) Model. Similar to LISA (Patel et al., 2023) and
QAEmb (Benara et al., 2024) that distill the LLM answers into a smaller model, we propose the
MBQA model that enables efficient inference with a single forward pass of the encoding model. It is
designed to leverage LLM-generated answers from a smaller subset of texts to train a multi-task binary
classification model. This model consists of a pre-trained encoding model and multiple classification
heads. The encoder converts the input text into an embedding vector, while the classification heads
predict binary scores for each question. Formally, the MBQA model M is defined as:

M = (Enc, {C1, C2, · · · , Cm}), (2)

where Enc : T → Rd represents the encoding model, and Ci : Rd → [0, 1] is the i-th Multi-Layer
Perceptron (MLP) classification head. For a given input text t ∈ T , the MBQA model generates a
binary embedding vector y = [y1, y2, · · · , ym] ∈ {0, 1}m as follows:

e = Enc(t), (3)
yi = 1[σ(Ci(e)) > τ], for i ∈ {1, 2, · · · ,m}, (4)

where σ is the Sigmoid function, 1[·] is the indicator function, and τ is the threshold for bi-
nary classification. During training, the encoder Enc is frozen and only the classification heads
{C1, C2, · · · , Cm} are optimized using weighted Binary Cross-Entropy (BCE) Loss (Bishop, 2006)
on the available LLM-generated question-answer pairs.

Remarks. The MBQA model achieves 96% accuracy in reproducing LLM-generated answers for
CQG questions with just a single pass through the encoding model, substantially reducing costs
compared to running a pre-trained LLM for each text. Our model only requires training data from as
few as 1,000 articles per question, resulting in 10 million text-question pairs for 10,000 questions,
costing just 31 USD using GPT-4o-mini. The training process takes 36 hours, and embedding the
entire MS MARCO dev set requires 90 hours on a single GTX 1080 Ti, which is an inexpensive
GPU. Consequently, encoding the same MS MARCO dev set with the MBQA model costs around
41 USD–just 0.017% of the original cost with GPT-4o-mini. This model allows us to scale up
the number of questions (dimensions) efficiently, providing interpretable embeddings at a fraction of
the cost of LLM-based answering. In addition, the CQG pipeline is also cost-effective, which just
requires 2.52 USD for question generation and 1.92 USD for probing using GPT-4o-mini in our
experiments. For more details on training and evaluation, see Appendix B.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of the CQG-MBQA framework by addressing
four essential questions aimed at understanding its performance and applicability:

• Embedding Quality: How well does our framework generate high-quality interpretable
embeddings comparable to advanced black-box models? (Section 4.3)

• Interpretability: Does our framework improve the human interpretability of embeddings over
existing methods? (Section 4.4)

• Question Efficiency: Can the CQG method generate a limited number of highly discriminative
questions that maintain strong performance? (Section 4.5)

• Flexibility: Can the MBQA model be tuned to strike a balance between embedding quality
and interpretability? (Section 4.6)

To rigorously evaluate the framework, we conduct experiments on three core downstream tasks
in text embedding: STS, retrieval, and clustering. These experiments allow us to benchmark the
CQG-MBQA framework against both black-box and interpretable models.

4.1 METRICS

Embedding Quality Measurement. For evaluating embedding quality, we adopt the metrics that are
widely used in the MTEB benchmark (Muennighoff et al., 2023) for a comprehensive comparison. For
STS tasks, we use Spearman correlation (Spearman, 1904) on cosine similarity between embeddings
as the evaluation metric. In retrieval tasks, we assess the performance using Normalized Discounted
Cumulative Gain at Top 10 (nDCG@10) (Wang et al., 2013). For clustering tasks, we evaluate the
results using V-Measure (Rosenberg & Hirschberg, 2007).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: STS results measured by Spearman correlation. Evaluated on seven popular datasets:
SemEval STS tasks 2012-2016 (STS12–STS16) (Agirre et al., 2012; 2013; 2014; 2015; 2016), STS
Benchmark (STS-B) (Cer et al., 2017), and SICK-Relatedness (SICK-R) (Marelli et al., 2014)
using the MTEB evaluation suite (Muennighoff et al., 2023).

Type Model Spearman Correlation ↑ (STS)

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

B
la

ck
-b

ox

BERT 38.78 57.98 57.98 63.15 61.06 46.35 58.40 54.81
GloVe 54.64 69.16 60.81 72.31 65.34 61.54 55.43 62.74
USE 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22

SimCSE (Unsup.) 66.05 81.49 73.61 79.72 78.12 76.52 72.24 75.39
SBERT (Ori.) 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68

SimCSE (Sup.) 75.30 84.67 80.19 85.40 80.82 84.25 68.38 79.86
WhitenedCSE 74.65 85.79 77.49 84.71 80.33 81.48 75.34 79.97
SBERT (New) 73.08 82.13 76.73 85.58 80.23 83.09 79.32 80.02

OpenAI 72.84 86.1 81.15 88.49 85.08 83.56 79.00 82.31
AnglE 79.09 89.62 85.02 89.51 86.61 89.06 82.62 85.93

In
te

rp
. Bag-of-Tokens 44.75 52.06 54.78 68.65 60.59 54.85 57.87 56.22

QAEmb-MBQA 59.40 63.19 57.68 69.29 63.18 71.33 72.33 65.20
CQG-MBQA 69.21 80.19 73.91 80.66 78.30 82.69 78.21 77.60

Interpretability Measurement. Since both STS and retrieval tasks measure pairwise text similarity
using cosine similarity, we focus on interpreting the cosine similarity scores produced by CQG-
MBQA. With inherently interpretable dimensions, we can offer insights to users by highlighting the
dimensions that contribute most to the similarity between two texts. Building on COGAM (Abdul
et al., 2020), we suggest that interpretability should account for the cognitive load imposed on users.
In COGAM, cognitive load is assessed by counting the number of visual cognitive chunks. Similarly,
we measure it by the number of questions a user must consider to understand the similarity between
two texts, corresponding to the dimensions where both embedding vectors have a value of 1. Formally,
for any two binary embedding vectors u = [u1, u2, · · · , um] and v = [v1, v2, · · · , vm], the cognitive
load is defined as the inner product of u and v:

cognitive load = ⟨u,v⟩ =
∑m

i=1 uivi. (5)

To mitigate the impact of the number of dimensions (m) used for different models, we also report
the cognitive load normalized by m: normalized cognitive load = cognitive load

m . Quantifying cognitive
load allows us to assess the interpretability of our CQG-MBQA framework’s embeddings. A lower
value indicates that fewer dimensions are involved, making the interpretation easier to understand,
thus enhancing both interpretability and user-friendliness.

4.2 MODELS

Interpretable Models. We evaluate CQG-MBQA against existing interpretable baselines to provide
a thorough comparison. For CQG-MBQA, we use the MEDI2 dataset (Muennighoff et al., 2024), a
diverse text corpus, as the training data. Texts are encoded with the AnglE model (UAE-Large-V1),
and the resulting embeddings are normalized. We then perform k-Means clustering (Arthur &
Vassilvitskii, 2007) with k = 5, 000. The CQG process produces 9,614 questions after probing and
deduplication, forming the final embedding dimensions. The MBQA model also leverages AnglE
as the backbone, with three-layer MLP classification heads and a hidden layer size of 8. More
implementation details of CQG-MBQA are provided in Appendix D.1.

To make a fair comparison and highlight the benefits of our CQG method, we adapt QAEmb,
originally designed for task-specific text embeddings, and develop QAEmb-MBQA. Specifically, we
utilize its example-based question generation approach (Benara et al., 2024), modifying the prompt
to generate questions suitable for general text embeddings with LLMs. After deduplication, the
QAEmb produces 10,654 questions, which we integrate with our MBQA model for evaluation.
Details of the QAEmb-MBQA implementation are provided in Appendix D.2. Additionally, we
include Bag-of-Tokens, a simple baseline that uses the BERT tokenizer to produce interpretable
embeddings. For the retrieval task, we also compare against the rule-based sparse retriever BM25
(Robertson et al., 1995), implemented using BM25S (Lù, 2024).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Retrieval results evaluated by nDCG@10. Evaluated on seven diverse datasets: MS MARCO
(Bajaj et al., 2016), NewsSpectrum (NSP) (Sun et al., 2024), ArguAna (Wachsmuth et al., 2018),
FiQA-2018 (FQA) (Maia et al., 2018), NFCorpus (NFC) (Boteva et al., 2016), SCIDOCS (Cohan
et al., 2020), and SciFact (Wadden et al., 2020). MS MARCO is evaluated on a 1% sample of its
dev set, while NewsSpectrum uses news titles as queries with corresponding articles as targets. The
remaining datasets are assessed using the MTEB evaluation suite.

Type Model nDCG@10 ↑ (Retrieval)

MS MARCO NSP ArguAna FQA NFC SCIDOCS SciFact Avg.

B
la

ck
-b

ox

BERT 16.86 12.48 28.29 2.19 4.30 2.82 13.34 11.47
SimCSE (Unsup.) 44.63 40.05 38.34 9.84 9.88 5.50 25.72 24.85

GloVe 44.27 35.15 36.30 10.09 13.87 8.04 29.58 25.33
SimCSE (Sup.) 47.86 47.01 38.33 10.41 12.42 7.53 29.59 27.59
SBERT (New) 88.74 69.66 47.13 37.27 32.25 21.82 62.64 51.36

AnglE 90.43 81.46 66.15 44.84 38.65 22.98 74.07 59.80
OpenAI 92.18 85.17 58.05 55.00 42.07 23.11 77.77 61.91

In
te

rp
. Bag-of-Tokens 29.79 22.09 34.25 3.99 21.51 6.79 47.36 23.68

BM25 68.42 76.81 49.28 25.14 32.08 15.78 68.70 48.03
QAEmb-MBQA 40.51 30.45 34.75 8.23 3.87 3.74 12.01 19.08

CQG-MBQA 62.21 49.63 47.75 18.63 9.74 8.67 32.80 32.78

Table 3: Clustering results assessed by V-Measure. Evaluated on seven commonly-used datasets:
TwentyNewsgroupsClustering (TNG), StackExchangeClusteringP2P (SE-P2P), BiorxivCluster-
ingP2P (BR-P2P), BiorxivClusteringS2S (BR-S2S), MedrxivClusteringP2P (MR-P2P), Medrx-
ivClusteringS2S (MR-S2S), and RedditClusteringP2P (RD-P2P) from the MTEB evaluation suite.

Type Model V-Measure ↑ (Clustering)
TNG SE-P2P BR-P2 BR-S2S MR-P2P MR-S2S RD-P2P Avg.

B
la

ck
-b

ox

SimCSE (Unsup.) 23.21 28.50 24.90 19.55 23.60 21.97 45.14 26.70
GloVe 25.83 28.51 29.27 19.18 26.12 20.38 35.82 26.44
BERT 23.35 26.55 30.12 24.77 26.09 23.60 43.32 28.26

SimCSE (Sup.) 34.86 29.45 30.15 24.67 26.25 24.12 47.74 31.03
SBERT (New) 47.47 33.13 36.99 33.21 34.25 32.24 54.80 38.87

AnglE 51.72 36.72 39.38 37.23 33.22 31.18 65.35 42.11
OpenAI 58.14 36.88 38.03 36.53 32.70 31.27 67.96 43.07

In
te

rp
. Bag-of-Tokens 8.52 17.64 4.70 3.32 11.39 13.05 15.67 10.61

QAEmb-MBQA 36.72 25.68 24.66 21.16 25.53 22.85 46.57 29.02
CQG-MBQA 40.00 28.22 34.88 31.13 31.02 28.71 54.40 35.48

Black-box Models. To benchmark the embedding quality of CQG-MBQA, we compare it with
several advanced black-box text embedding models. These include GloVe (Pennington et al., 2014;
Reimers & Gurevych, 2019), USE (Cer et al., 2018), BERT (Devlin et al., 2019), the Original (Ori.)
and Up-to-date (New) versions of Sentence-BERT (SBERT) (Reimers & Gurevych, 2019), the
Supervised (Sup.) and Unsupervised (Unsup.) versions of SimCSE (Gao et al., 2021). Additionally,
we compare our framework with WhitenedCSE (Zhuo et al., 2023), the OpenAI API, and AnglE
(Li & Li, 2024). Implementation details for all baseline models are outlined in Appendix D.2.

4.3 EMBEDDING QUALITY

Tables 1–3 present the embedding quality results for STS, retrieval, and clustering tasks, highlighting
CQG-MBQA’s competitive performance. In STS tasks (Table 1), CQG-MBQA achieves comparable
quality to advanced dense models like SimCSE and SBERT (New) while preserving interpretability.
It also outperforms earlier methods like GloVe, USE, and BERT, as well as all interpretable base-
lines. For retrieval tasks (Table 2), CQG-MBQA surpasses SimCSE, GloVe, and BERT. While it
trails state-of-the-art black-box models such as AnglE and OpenAI, it consistently outperforms all
interpretable baselines except for BM25, a rule-based model optimized for retrieval. In clustering
tasks (Table 3), CQG-MBQA exceeds several black-box models (SimCSE, GloVe, and BERT)
and outperforms all interpretable baselines, closely matching the performance of recent models like
SBERT (New). The comparison with QAEmb-MBQA further underscores the efficacy of our CQG
algorithm in generating high-quality, discriminative questions that capture semantic nuances.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Cognitive Load and Normalized Cognitive Load (values in parentheses) on STS datasets.

Model Cognitive Load ↓ (Normalized Cognitive Load ↓) (STS)

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Bag-of-Tokens 8 (0.03%) 4 (0.01%) 6 (0.02%) 5 (0.02%) 8 (0.03%) 7 (0.02%) 6 (0.02%) 6 (0.02%)
QAEmb-MBQA 1,626 (15.26%) 1,571 (14.75%) 1,625 (15.25%) 1,443 (13.54%) 1,577 (14.80%) 1,408 (13.22%) 1,018 (9.56%) 1,467 (13.77%)

CQG-MBQA 481 (5.00%) 439 (4.57%) 458 (4.76%) 426 (4.43%) 478 (4.97%) 446 (4.64%) 413 (4.30%) 449 (4.67%)

Text A

Text B

Yes
ID Answer BAnswer A

283 Is the article intended for educational purposes?
Questions

Yes
357 Is the research based on data collected from human participants? YesYes

Yes1153 Is the content related to personal health or well-being? Yes
2039 Is there a focus on the effects of a specific disease or disorder? YesNo

No3400 Is the research aimed at understanding or treating neurological conditions? Yes
4634 Is the method discussed in the article aligned with scientific standards? YesYes

Yes7273 Is there a discussion on the role of food in human health? No
8540 Is the subject matter related to medical or health professions? YesYes

No9292 Is there an emphasis on the importance of variables? Yes

Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in
elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) Study—a randomized controlled trial1234

Blood Pressure Is Reduced and Insulin Sensitivity Increased in Glucose-Intolerant, Hypertensive Subjects
after 15 Days of Consuming High-Polyphenol Dark Chocolate

Figure 3: Case study.

4.4 INTERPRETABILITY

Cognitive Load. Table 4 displays the cognitive load required to interpret embeddings across different
interpretable models, evaluated through the STS task, which computes the pairwise similarity of
texts. This provides a clear measure of how much effort is needed to understand the embeddings.
CQG-MBQA achieves a 2.5∼3.6× lower cognitive load than QAEmb-MBQA, indicating that the
CQG method significantly enhances interpretability. This technique produces more “no” answers and
fewer “yes” answers, making the embeddings easier to interpret. For Bag-of-Tokens, it has a much
lower cognitive load due to its lexical nature, but this advantage comes at the cost of significantly
reduced embedding quality. The trade-off between interpretability and embedding quality can be
adjusted by tuning the binary classification threshold τ , as further discussed in Section 4.6.

Case Study. Figure 3 showcases a pair of texts from our training corpus, focusing on nine specific
questions (dimensions) where at least one text yields a “yes” answer. This illustrates how CQG-
MBQA generates relevant and insightful dimensions. For instance, question ID 1153, which asks
if the text is related to personal health or well-being, receives a “yes” for both Text A and Text
B, accurately reflecting their shared focus on health topics. Similarly, question ID 4634 inquires
whether the text aligns with scientific standards, and both texts–discussing evidence-based findings
on substance effects–obtain “yes” answers, showcasing the relevance of generated questions.

Despite the texts’ similarity, CQG-MBQA captures subtle semantic differences through fine-grained
questions. For example, question ID 3400 asks if the research targets neurological conditions. Text A,
which discusses cognitive function, receives a “yes”, indicating a connection to neurological condi-
tions, whereas Text B, focusing on blood pressure and insulin sensitivity, acquires a “no”, highlighting
a clear distinction in their subject matter. This case study highlights how CQG generates interpretable,
relevant, and discriminative questions that effectively capture nuanced semantic differences, while
MBQA accurately predicts the answers, reinforcing the framework’s practicality and reliability.

4.5 EFFECT ON NUMBER OF QUESTIONS

We explore how varying the number of questions (dimensions) m impacts the quality and inter-
pretability of embeddings produced by CQG-MBQA. To adjust m, we reduce the output length of
the final binary embedding vector. Figure 4 illustrates the relationship among embedding quality,
interpretability, and m. As m grows, the Spearman correlation increases and stabilizes around 3,000

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.60

0.65

STS12

0.7

0.8
STS13

0.6

0.7

STS14

0.70

0.75

0.80
STS15

0.65
0.70
0.75

STS16

0.70

0.75

0.80

STS-B

0.725

0.750

0.775
SICK-R

1000 5000 9000
0

500

1000

1000 5000 9000
0

500

1000

1000 5000 9000
0

500

1000

1000 5000 9000
0

500

1000

1000 5000 9000
0

500

1000

1000 5000 9000
0

500

1000

1000 5000 9000

250
500
750

Sp
ea

r.
Co

rr.
Co

g.
 L

oa
d

Number of Dimensions m

CQG-MBQA QAEmb-MBQA

Figure 4: Spearman correlation and cognitive load vs. the number of dimensions m. Higher Spearman
correlation signals better embedding quality; lower cognitive load implies greater interpretability.

0.6

0.7
STS12

0.6

0.7

0.8
STS13

0.5

0.6

0.7

STS14

0.7

0.8
STS15

0.7

0.8
STS16

0.7

0.8

STS-B

0.70

0.75

0.80
SICK-R

0.1 0.5 0.9
0

2000

4000

0.1 0.5 0.9
0

2000

4000

0.1 0.5 0.9
0

2000

4000

0.1 0.5 0.9
0

2000

4000

0.1 0.5 0.9
0

2000

4000

0.1 0.5 0.9
0

2000

4000

0.1 0.5 0.9
0

2000

4000

Sp
ea

r.
Co

rr.
Co

g.
 L

oa
d

Binary Classification Threshold

CQG-MBQA QAEmb-MBQA

Figure 5: Spearman correlation and cognitive load vs. the binary classification threshold τ .

dimensions, indicating better embedding quality. This highlights the need for an efficient QA model
to manage computational costs while scaling up dimensions for optimal embedding quality.

However, a trade-off arises: as m increases, cognitive load increases, and the interpretability declines
due to a higher proportion of “yes” in the embeddings. This inverse relationship between embedding
quality and interpretability emphasizes the importance of balancing dimensions based on the task’s
requirements. Figure 4 also demonstrates the effectiveness of the CQG algorithm in generating
high-quality, discriminative embeddings with approximately 3,000 questions, achieving a balance
between embedding quality and interpretability without an excessive number of questions.

4.6 TRADE-OFF BETWEEN EMBEDDING QUALITY AND INTERPRETABILITY

To further investigate the balance between embedding quality and interpretability, we vary the binary
classification threshold τ that determines the final binary embedding vector. Figure 5 depicts a clear
trade-off between embedding quality and interpretability. Increasing τ improves the interpretability,
but this comes at the cost of reduced embedding quality, as the Spearman correlation decreases. This
is due to fewer active dimensions, leading to reduced values in the cognitive load, which are easier to
interpret but may lose subtle semantic distinctions.

More importantly, this trade-off presents an opportunity for user-driven customization. Depending
on different scenarios, users of our framework can dynamically tune the desired τ based on the
cognitive load to meet their needs. For instance, in scenarios requiring rapid decision-making or
where cognitive resources are constrained, users might prioritize interpretability by opting for a
higher threshold. On the other hand, in situations where nuanced analysis is crucial and resources are
abundant, a lower threshold could be chosen to maximize embedding quality. This flexibility makes
CQG-MBQA highly adaptable to different scenarios and user requirements.

5 CONCLUSION

In this paper, we introduce CQG-MBQA, a novel general framework for generating interpretable
semantic text embeddings by systematically creating binary questions and using the answers as
interpretable embedding dimensions. Our CQG method effectively addresses the challenges of
generalizability and quality issues during the question generation phase, while the MBQA model
provides an efficient, scalable solution for answering these questions, significantly reducing costs.
Through extensive experiments on STS, retrieval, and clustering tasks, we demonstrate that our
framework delivers performance comparable to advanced black-box models while being inherently
interpretable. Moreover, CQG-MBQA consistently outperforms other interpretable text embedding
models across various downstream tasks, further validating its effectiveness.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ashraf Abdul, Christian Von Der Weth, Mohan Kankanhalli, and Brian Y Lim. COGAM: measuring
and moderating cognitive load in machine learning model explanations. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems (CHI), pp. 1–14, 2020.

Charu C Aggarwal and ChengXiang Zhai. A survey of text clustering algorithms. Mining Text Data,
pp. 77–128, 2012.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre. SemEval-2012 task 6: A
pilot on semantic textual similarity. In *SEM 2012: The First Joint Conference on Lexical and
Computational Semantics – Volume 1: Proceedings of the main conference and the shared task,
and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval
2012), pp. 385–393, 2012.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. *SEM 2013 shared
task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pp. 32–43, 2013.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce Wiebe. SemEval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014), pp. 81–91, 2014.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada Mihalcea, German Rigau, Larraitz Uria, and
Janyce Wiebe. SemEval-2015 task 2: Semantic textual similarity, English, Spanish and pilot
on interpretability. In Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015), pp. 252–263, 2015.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Rada Mihalcea,
German Rigau, and Janyce Wiebe. SemEval-2016 task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pp. 497–511, 2016.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In Proceedings
of the eighteenth annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1027–1035,
2007.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. In International Conference on Learning
Representations (ICLR), 2024.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. MS MARCO: A Human Generated
MAchine Reading COmprehension Dataset. arXiv preprint arXiv:1611.09268, 2016.

Vinamra Benara, Chandan Singh, John X Morris, Richard Antonello, Ion Stoica, Alexander G Huth,
and Jianfeng Gao. Crafting interpretable embeddings by asking LLMs questions. arXiv preprint
arXiv:2405.16714, 2024.

Christopher M Bishop. Pattern Recognition and Machine Learning. 2006.

Vera Boteva, Demian Gholipour, Artem Sokolov, and Stefan Riezler. A full-text learning to rank
dataset for medical information retrieval. In The 38th European Conference on Information
Retrieval (ECIR), pp. 716–722, 2016.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 632–642, 2015.

L Breiman, JH Friedman, R Olshen, and CJ Stone. Classification and Regression Trees. Wadsworth,
1984.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task 1:
Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of the
11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 1–14, 2017.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope, and Ray Kurzweil. Universal
sentence encoder for English. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations (EMNLP), pp. 169–174, 2018.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, and Daniel Weld. SPECTER: Document-
level representation learning using citation-informed transformers. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 2270–2282, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pp. 4171–4186, 2019.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 6894–6910, 2021.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. REALM: Retrieval-
Augmented Language Model Pre-Training. In Proceedings of the 37th International Conference
on Machine Learning (ICML), pp. 3929–3938, 2020.

Trevor Hastie and Robert Tibshirani. Generalized additive models. Statistical Science, 1(3):297–310,
1986.

Alexander G Huth, Wendy A De Heer, Thomas L Griffiths, Frédéric E Theunissen, and Jack L
Gallant. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532
(7600):453–458, 2016.

Kishlay Jha, Yaqing Wang, Guangxu Xun, and Aidong Zhang. Interpretable word embeddings for
medical domain. In 2018 IEEE International Conference on Data Mining (ICDM), pp. 1061–1066,
2018.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781, 2020.

Amanda LeBel, Lauren Wagner, Shailee Jain, Aneesh Adhikari-Desai, Bhavin Gupta, Allyson
Morgenthal, Jerry Tang, Lixiang Xu, and Alexander G Huth. A natural language fMRI dataset for
voxelwise encoding models. Scientific Data, 10(1):555, 2023.

Seonghyeon Lee, Dongha Lee, Seongbo Jang, and Hwanjo Yu. Toward interpretable semantic textual
similarity via optimal transport-based contrastive sentence learning. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 5969–5979, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-Augmented Genera-
tion for Knowledge-Intensive NLP Tasks. In Proceedings of the 34th International Conference on
Neural Information Processing Systems (NeurIPS), pp. 9459–9474, 2020.

Xianming Li and Jing Li. AoE: Angle-optimized embeddings for semantic textual similarity. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 1825–1839, 2024.

Xing Han Lù. BM25S: Orders of magnitude faster lexical search via eager sparse scoring. arXiv
preprint arXiv:2407.03618, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Proceedings of the 31st International Conference on Neural Information Processing Systems
(NIPS), pp. 4768–4777, 2017.

Macedo Maia, Siegfried Handschuh, André Freitas, Brian Davis, Ross McDermott, Manel Zarrouk,
and Alexandra Balahur. WWW’18 open challenge: Financial opinion mining and question
answering. In Companion Proceedings of the The Web Conference 2018, pp. 1941–1942, 2018.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto
Zamparelli. A SICK cure for the evaluation of compositional distributional semantic models.
In Proceedings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14), pp. 216–223, 2014.

Denis McInerney, Geoffrey Young, Jan-Willem van de Meent, and Byron Wallace. CHiLL: Zero-shot
custom interpretable feature extraction from clinical notes with large language models. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pp. 8477–8494, 2023.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representa-
tions of words and phrases and their compositionality. In Proceedings of the 26th International
Conference on Neural Information Processing Systems (NIPS), pp. 3111–3119, 2013.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267:1–38, 2019.

Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022. URL https://christop
hm.github.io/interpretable-ml-book.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive text embed-
ding benchmark. In Proceedings of the 17th Conference of the European Chapter of the Association
for Computational Linguistics (EACL), pp. 2014–2037, 2023.

Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. Generative representational instruction tuning. In ICLR 2024 Workshop: How Far
Are We From AGI, 2024.

Juri Opitz and Anette Frank. SBERT studies meaning representations: Decomposing sentence
embeddings into explainable semantic features. In Proceedings of the 2nd Conference of the
Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 625–638, 2022.

Abhishek Panigrahi, Harsha Vardhan Simhadri, and Chiranjib Bhattacharyya. Word2Sense: Sparse
interpretable word embeddings. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 5692–5705, 2019.

Ajay Patel, Delip Rao, Ansh Kothary, Kathleen McKeown, and Chris Callison-Burch. Learning inter-
pretable style embeddings via prompting LLMs. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 15270–15290, 2023.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1532–1543, 2014.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 3982–3992, 2019.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should I trust you?": Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pp. 1135–1144, 2016.

Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford,
et al. Okapi at TREC-3. NIST Special Publication, (500225):109–123, 1995.

13

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
hard negative samples. In International Conference on Learning Representations (ICLR), 2021.

Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based external cluster
evaluation measure. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp.
410–420, 2007.

Lutfi Kerem Senel, Ihsan Utlu, Veysel Yucesoy, Aykut Koc, and Tolga Cukur. Semantic structure and
interpretability of word embeddings. IEEE/ACM Transactions on Audio, Speech and Language
Processing (TASLP), 26(10):1769–1779, 2018.

Adi Simhi and Shaul Markovitch. Interpreting embedding spaces by conceptualization. In Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
1704–1719, 2023.

Charles Spearman. The proof and measurement of association between two things. The American
Journal of Psychology, 15(1):72–101, 1904.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani, Taylor Berg-Kirkpatrick, and Eduard Hovy.
SPINE: SParse Interpretable Neural Embeddings. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pp. 4921–4928, 2018.

Yiqun Sun, Qiang Huang, Yanhao Wang, and Anthony KH Tung. DiversiNews: Enriching news
consumption with relevant yet diverse news articles retrieval. Proceedings of the VLDB Endowment,
17(12):4277–4280, 2024.

Jerry Tang, Amanda LeBel, Shailee Jain, and Alexander G Huth. Semantic reconstruction of
continuous language from non-invasive brain recordings. Nature Neuroscience, 26(5):858–866,
2023.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: a
heterogeneous benchmark for zero-shot evaluation of information retrieval models. In Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS), pp. 6000–6010, 2017.

Henning Wachsmuth, Shahbaz Syed, and Benno Stein. Retrieval of the best counterargument
without prior topic knowledge. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 241–251, 2018.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen, Arman Cohan,
and Hannaneh Hajishirzi. Fact or fiction: Verifying scientific claims. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7534–7550,
2020.

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-Yan Liu. A theoretical analysis of NDCG type
ranking measures. In Proceedings of the 26th Annual Conference on Learning Theory (COLT), pp.
25–54, 2013.

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong
Yang, Pengjun Xie, Fei Huang, Meishan Zhang, Wenjie Li, and Min Zhang. mGTE: Generalized
long-context text representation and reranking models for multilingual text retrieval. In Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track
(EMNLP), pp. 1393–1412, 2024.

Wenjie Zhuo, Yifan Sun, Xiaohan Wang, Linchao Zhu, and Yi Yang. WhitenedCSE: Whitening-based
contrastive learning of sentence embeddings. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 12135–12148, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROMPTS

A.1 PROMPT: CONTRASTIVE QUESTION GENERATION

We present the prompt template used for the Contrastive Question Generation (CQG) algorithm. The
input to the prompt template consists of two lists of texts: positive_examples and negative_examples.
The LLM is explicitly instructed to generate questions that yield “yes” answers for the positive
examples and “no” answers for the negative examples. To enhance the quality of the generated
questions and the potential generalizability to new texts, we prompt the LLM to avoid complex
sentence structures. Initial experiments revealed that if we do not require the LLM to avoid complex
sentence structures, the LLM tended to create discriminative questions by simply combining two
conditions to ensure “yes” answers for the positives, rather than identifying deeper relationships
between the positives and negatives. Additionally, we include formatting instructions at the end of
the prompt template to improve result parsing accuracy.

Generate 10 simple yet insightful yes/no questions that determine the properties of an article,
where for all questions, the answer will be “yes” for ALL the positive articles and “no”
for ALL the negative articles. Keep questions concise and avoid using complex sentence
structures with “and” or “or” unless necessary.
Positive Articles:
Positive {i}. {positive_example_i}
Negative Articles:
Negative {i}. {negative_example_i}
Instruction: Based on the excerpts provided, generate 10 simple yet insightful yes/no
questions that can accurately differentiate the positive articles from the negative articles. Each
question should be concise and framed in such a way that it will elicit a “yes” response for
ALL positive articles and a “no” response for ALL negative articles. Avoid using complex
sentence structures with “and” or “or” unless absolutely necessary. Format the questions in a
numbered list as shown below:
1. First simple yes/no question
2. Second simple yes/no question

A.2 PROMPT: QAEMB QUESTION GENERATION

The Question Generation Prompt #5 used in the QAEmb paper (Benara et al., 2024) is the most
general form prompt in the list, making it suitable for adopting it to generate questions for general-
purpose text embedding. It uses two lists of texts as input: example narrative sentences and example
yes/no questions. The original prompt instructs the LLM to "Generate a bulleted list of 100 specific,
non-overlapping yes/no questions that ask about aspects of the example narrative sentences that are
important for classifying them." This was originally designed for the task of fMRI prediction with
narrative sentences.

Following this approach, we designed a prompt template for experiments on QAEmb question
generation, also using two lists of texts as inputs: reference_articles and example_questions. The
example questions are sourced from the original QAEmb paper, while the reference articles are
randomly drawn from the training dataset.

Generate 10 diverse insightful yes/no questions that determine the properties of an article.
Reference Articles:
{i}. {reference_article_i}
Example Questions:
{i}. {example_question_i}
Instruction: Based on the excerpts provided, generate 10 yes/no questions that can determine
the properties of the articles. Format the questions in a numbered list as shown below:
1. First yes/no question
2. Second yes/no question

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Question answering performance of the CQG-MBQA model.

Class Precision ↑ Recall ↑ F1-score ↑ Support

“no” 1.00 0.96 0.97 846,089
“yes” 0.74 0.97 0.84 112,645

Macro Avg. 0.87 0.96 0.91 958,734
Weighted Avg. 0.97 0.96 0.96 958,734

Accuracy ↑ 0.96

A.3 PROMPT: MULTI-TASK BINARY QUESTION ANSWERING

This section details the prompt template used to generate LLM answers for training the Multi-task
Binary Question Answering (MBQA) model. The prompt takes two inputs: the text_chunk, which is
the training article sample, and a list of questions to be answered. To optimize token usage for the
article sample and instructions, we group up to 20 questions in a single prompt.

Evaluate the following text chunk based on the yes/no questions provided.
Text Chunk:
{text_chunk}
Questions:
i. {question_i}
Instruction for the model: Please read the provided text chunk and answer each of the
questions with either "yes" or "no". Format the responses as follows:
1. yes/no
2. yes/no

B TRAINING AND EVALUATION OF THE MBQA MODEL

To ensure that the MBQA model produces faithful answers to the questions, we evaluate its question-
answering performance on a 10% held-out document set that was not used for training.

Data Collection. For each question generated in the previous question generation step, we randomly
sample 500 in-cluster samples, 300 neighboring cluster samples from 5 nearest clusters, and 200
random samples from the entire corpus. We use the pre-trained LLM (GPT-4o-mini) to generate
answers for each question across these samples. The LLM-generated answers are batched in groups
of 20 questions to train the multi-task binary classification model. Refer to Appendix A.3 for the
prompt used to collect answers. This approach allows us to gather data from a larger number of text
samples, thereby increasing the generalizability of our model.

Training. We train the MBQA model using the Adam optimizer with a learning rate α of 1e-4
and a batch size of one text sample. For each step, we calculate the loss based on all available
questions with answers from the previous data collection phase. The model is trained using the
BCEWithLogitsLoss function, where the weight is the ratio of “yes” answers to “no” answers in the
training data.1 Specifically, for CQG-MBQA, we set this weight to 7.5127, and for QAEmb-MBQA,
the weight is set to 4.9608. The model is trained for 3 million steps, at which point performance
begins to converge.

Evaluation. The classification results (with threshold τ = 0.5) on the held-out test set for CQG-
MBQA and QAEmb-MBQA are presented in Tables 5 and 6, respectively. The CQG-MBQA model
achieves an accuracy of 96% and a macro F1 score of 91%, while the QAEmb-MBQA model attains
a high 93% accuracy and 89% macro F1 score. These results demonstrate that MBQA can accurately
predict LLM-generated question answers, serving as a cost-effective substitute for the more expensive
LLM model in generating embeddings.

1https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.h
tml

16

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Question answering performance of the QAEmb-MBQA model.

Class Precision ↑ Recall ↑ F1-score ↑ Support

“no” 0.99 0.93 0.96 886,749
“yes” 0.72 0.94 0.82 178,591

Macro Avg. 0.85 0.93 0.89 1,065,340
Weighted Avg. 0.94 0.93 0.93 1,065,340

Accuracy ↑ 0.93

Table 7: Estimated cost for embedding the MS MARCO dev set using LLM-generated answers.

Model Cost for Number of Questions

2,000 4,000 6,000 8,000 10,000

GPT-4o-mini $48,859 $97,792 $146,725 $195,570 $244,551
GPT-4o $1,454,000 $2,910,487 $4,366,946 $5,820,517 $7,278,566

MBQA $13 $20 $27 $34 $41

C COST ANALYSIS FOR LLM-BASED QA VS. MBQA

We estimate the cost of LLM-based QA and MBQA for producing question answers for interpretable
embeddings for the entire MS MARCO dev set.

LLM-based QA. Using LLMs to answer questions for document embedding is prohibitively expen-
sive. Table 7 shows the cost of running LLM-based QA on the MS MARCO dev set for various
numbers of questions across different models. We assume grouping 20 questions into one prompt,
using the format in Appendix A.3. Using this prompt, LLM-based Question Answering (QA),
which leverages LLMs to answer 10,000 questions for approximately 8.8 million articles in the MS
MARCO dev set, requires about 4.4 billion LLM inference passes and processes 1.5 trillion tokens.
Using the Batch API, the cost per 1 million tokens for GPT-4o is 2.5 USD for input tokens and 7.5
USD for output tokens, while for GPT-4o-mini, it’s 0.075 USD for input tokens and 0.3 USD for
output tokens.2 Based on the prices above, this incurs a substantial cost of 244,551 USD, even with a
cost-effective model (GPT-4o-mini) and a token-efficient prompting approach.

MBQA. The cost of running our MBQA model comprises two key components: (1) LLM API cost
for training data collection and (2) GPU runtime expenses. For the first component, an upfront cost
of approximately 31 USD is required to collect training data using GPT-4o-mini on the MEDI2
dataset. This cost covers 1,000 text-question pairs for each of 10,000 questions, resulting in a total
of 10 million text-question pairs. The cost scales down proportionally for fewer questions. For the
second component, we measure the training and inference time of our model on a single GTX 1080
Ti GPU. We estimate the cost based on a rental rate of 0.08 USD per hour.3 Training for 3 million
steps took around 36 hours, and inference times for the MS MARCO dataset varied by the number
of dimensions: 48 hours for 2,000 dimensions, 63 hours for 4,000, 73 hours for 6,000, 79 hours for
8,000, and 90 hours for 10,000 dimensions.

D IMPLEMENTATION DETAILS

D.1 THE CQG-MBQA FRAMEWORK

In the experiments, we train the proposed CQG-MBQA framework using the MEDI2 dataset
(Muennighoff et al., 2024). Detailed information about the model configuration and hyperparameters
used in our framework is provided in Table 8.

Data Pre-processing. We use the MEDI2 dataset, downloaded from the HuggingFace repository at
GritLM/MEDI2.4 We filter out files starting with task, as they are unsuitable for the training corpus.

2Costs obtained from https://openai.com/api/pricing
3Costs obtained from https://vast.ai/pricing/gpu/GTX-1080-TI
4https://huggingface.co/datasets/GritLM/MEDI2/tree/main

17

https://openai.com/api/pricing
https://vast.ai/pricing/gpu/GTX-1080-TI
https://huggingface.co/datasets/GritLM/MEDI2/tree/main

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Hyperparameters used in our experiments.

Description Symbol Setting

Encoding model Enc UAE-Large-V1
Generation model LLM GPT-4o-mini-2024-07-18
Number of clusters k 5,000
Positive samples per cluster np 6
Hard negative samples per cluster nh 18
Easy negative samples per cluster ne 18
Positive probe samples per question pp 5
Hard negative probe samples per question ph 3
Easy negatives probe samples per question pe 2
Deduplication threshold θ 0.8
Top questions per cluster t 4
Learning rate of the MBQA Model α 1e-4
Binary classification threshold τ 0.5

From the remaining files, we extract both positive and negative instances of each data line. Since
the MEDI2 dataset contains instructions for queries and documents, we remove the instruction part,
leaving only the content. We merge all positive and negative instances from the filtered corpus and
run a simple exact deduplication to produce the final training text corpus.

1000 3000 5000 7000 9000
k

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

M
SE

Figure 6: Mean Squared Error (MSE) vs. number of cluster k for optimal k selection.

Contrastive Question Generation. The pre-processed training corpus contains 6.8 million unique
texts. We encode these texts using AnglE (UAE-Large-V1) and normalize the embeddings. We
then run KMeans clustering (Arthur & Vassilvitskii, 2007) with k = 5, 000 clusters and default
parameters, utilizing using the scikit-learn library,5 accelerated by Intel(R) Extension for scikit-learn.6
We pick k = 5, 000 based on the elbow point observed in the MSE vs. the number of clusters plotted
in Figure 6. Once clustering is complete, we generate questions for each cluster according to the
process described in Section 3.1. We sample random positive examples from within the cluster, hard
negatives from the three nearest clusters, and easy negatives from the remaining clusters. This process
yields 9,614 deduplicated questions, which serve as the final embedding dimensions.

Multi-Task Binary Question Answering. We train the MBQA model following the setup described
in Appendix B.

D.2 BASELINE MODELS

QAEmb-MBQA. To ensure a fair comparison with QAEmb (Benara et al., 2024), we adapt QAEmb
and develop QAEmb-MBQA by utilizing its example-based prompting method. Specifically, we
use the prompts originally designed for the fMRI task and modify them to create a prompt suitable
for generating a list of questions for the general text embedding task. Detailed prompts used for this

5https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMea
ns.html

6https://github.com/intel/scikit-learn-intelex

18

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://github.com/intel/scikit-learn-intelex

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Model checkpoints used in our experiments.

Model Checkpoint

BERT bert-base-uncased

GloVe average_word_embeddings_glove.6B.300d

SimCSE (Unsup.) unsup-simcse-bert-base-uncased

SimCSE (Sup.) sup-simcse-bert-base-uncased

SBERT (New) all-MiniLM-L12-v2

OpenAI text-embedding-ada-002

AnglE UAE-Large-V1

BM25 bm25s

Table 10: Classification results, measured by Accuracy, on twelve datasets: AmazonCounterfactual
(AC), AmazonPolarity (AP), AmazonReviews (AR), Banking77 (Bank), Emotion (Emo), Imdb,
MassiveIntent (MaI), MassiveScenario (MaS), MTOPDomain (MTD), MTOPIntent (MTI),
ToxicConversations (TC), and TweetSentimentExtraction (TSE), all from the MTEB evaluation
suite (Muennighoff et al., 2023).

Type Model Accuracy ↑ (Classification)

AC AP AR Bank Emo Imdb MaI MaS MTD MTI TC TSE Avg.

B
la

ck
-b

ox

BERT 74.25 71.33 33.56 63.41 35.28 65.35 59.88 64.28 82.63 68.14 70 51.81 61.66
SimCSE (Unsup.) 67.09 74.48 33.85 73.55 42.22 69.63 59.84 66.25 81.71 59.23 68.82 53.36 62.50

GloVe 56.91 60.32 29.67 67.69 36.93 62.57 56.19 66.03 79.11 55.85 65.4 50.8 57.29
SimCSE (Sup.) 75.75 82.47 39.6 75.76 44.81 73.53 65.95 70.78 84.29 63.14 72.04 59.73 67.32
SBERT (New) 65.28 62.98 30.79 80.4 41.17 59.76 67.15 74.58 91.9 62.84 67.47 54.25 63.21

AnglE 75.55 92.84 48.29 87.69 51.75 92.78 76.5 79.75 94.02 76.92 71.09 59.75 75.58
OpenAI 75.94 86.72 44.78 80.66 48.74 77.98 70.15 75.33 92.13 64.68 72.29 61.81 70.93

In
te

rp
. Bag-of-Tokens 78.87 55.28 27.95 60.63 22.17 53.32 48.79 49.63 72.77 58.41 53.24 43.59 52.05

QAEmb-MBQA 59.81 84.43 40.31 77.72 39.68 89.27 62.52 68.87 80.95 60.23 59.91 56.03 64.98
CQG-MBQA 62.62 93.66 45.39 83.45 46.04 92.8 70.2 74.9 89.79 66.95 60.79 61.48 70.67

version are provided in Appendix A.2. Using this prompt, we generate questions 5,000 times, each
time utilizing np+nh+ne = 42 randomly sampled documents from the training corpus as reference
articles. The generated questions are deduplicated using a process similar to that of the CQG method,
where questions with a cosine similarity score higher than 0.925 (based on question embeddings) are
removed. The QAEmb question generation process resulted in a total of 10,654 unique questions.
Finally, the MBQA model is trained using the same approach as in our CQG-MBQA framework.

Black-box Models. For STS tasks, the results for SBERT (Ori.) and USE are sourced from (Reimers
& Gurevych, 2019), and the results for WhitenedCSE are taken from the best-performing model
in (Zhuo et al., 2023), all evaluated using the same metric. Table 9 shows the model checkpoints
used for each black-box model. For STS, retrieval (excluding MS MARCO and NewsSpectrum),
and clustering tasks, the results for BERT, GloVe, SimCSE (Unsup.), SimCSE (Sup.), SBERT
(New), OpenAI, and AnglE are retrieved from the MTEB leaderboard.7 The retrieval results for
BM25 (excluding the datasets MS MARCO and NewsSpectrum) are also retrieved from the MTEB
leaderboard, while our own experiments were conducted for MS MARCO and NewsSpectrum.

E ADDITIONAL DOWNSTREAM TASKS

In addition to the STS, retrieval, and clustering tasks presented in Section 4, we further evaluate
our framework on four additional downstream tasks from the MTEB benchmark: classification, pair
classification, reranking, and summarization.8 The classification results are provided in Table 10,
while results for the pair classification, reranking, and summarization tasks are detailed in Table 11.

7https://huggingface.co/spaces/mteb/leaderboard
8The bitext mining task from the MTEB benchmark is excluded because it involves multilingual inputs,

whereas our framework currently focuses on single-language scenarios, which are beyond the scope of this study.

19

https://huggingface.co/spaces/mteb/leaderboard

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: Pair classification results, measured by Precision, on three datasets: SprintDuplicateQues-
tions (SDQ), TwitterSemEval2015 (TSE), and TwitterURLCorpus (TUC); Reranking results,
measured by MAP, on four datasets: AskUbuntuDupQuestions (AUDP), MindSmall (MS), Sci-
DocsRR (SDRR), and StackOverflowDupQuestions (SODQ); Summarization results, measured by
Spearman Correlation, on one dataset: SummEval, all from the MTEB evaluation suite (Muennighoff
et al., 2023).

Type Model Precision ↑ (Pair Classification) MAP ↑ (Reranking) Spear. Corr. ↑ (Sum.)

SDQ TSE TUC Avg. AUDP MS SDRR SODQ Avg. SummEval

B
la

ck
-b

ox

BERT 36.81 55.9 76.29 56.33 45.84 28.37 64.94 34.62 43.44 29.82
SimCSE (Unsup.) 78.03 61.01 81.37 73.47 51.57 28.62 66.33 39.35 46.47 31.15

GloVe 86.96 53.12 77.35 72.48 49.57 27.01 62.56 34.03 43.29 28.87
SimCSE (Sup.) 73.04 67.75 83.89 74.89 51.8 29.3 70.14 38.9 47.54 31.17
SBERT (New) 92.58 70.02 84.77 82.46 64.06 31.02 87.2 51.47 58.44 27.9

AnglE 97.24 78.17 86.33 87.25 64.2 32.51 87.49 55.32 59.88 32.03
OpenAI 92.17 75.28 87.22 84.89 62.05 31.45 81.22 50.54 56.32 30.8

In
te

rp
. Bag-of-Tokens 83.33 59.82 78.63 73.26 49.28 23.99 56.2 37.99 41.86 28.2

QAEmb-MBQA 43.71 60.04 73.21 59.65 54.7 28.73 70.86 40.81 48.78 28.57
CQG-MBQA 81.77 67.42 79.13 76.11 59.61 30.83 81.72 47.33 54.87 30.41

As shown in Tables 10 and 11, CQG-MBQA consistently outperforms existing interpretable text
embedding models and achieves results comparable to many advanced black-box models across all
examined downstream tasks. These findings underscore the framework’s ability to maintain a balance
between interpretability and embedding quality. Furthermore, the robust performance across diverse
text embedding tasks highlights its generalizability, offering a compelling solution for tasks requiring
both transparency and high semantic fidelity.

F ABLATION STUDIES

F.1 COMPONENTS IN THE CQG METHOD

We perform extensive ablation studies to analyze the contributions of various components in the CQG
method. Specifically, we investigate the effects of excluding certain elements: keeping only implicit
negatives (no explicit negatives), without hard negatives, without easy negatives, and omitting the
probing mechanism. The results of these experiments are presented in Table 12.

Implicit Negatives. To assess the impact of explicit negative samples, we modified the question
generation prompt (Appendix A.1) to rely solely on implicit negatives. The modified prompt is shown
as follows:

Generate 10 simple yet insightful yes/no questions that determine the properties of an article,
where for all questions, the answer will be "yes" for ALL the positive articles and "no" for
general articles. Keep questions concise and avoid using complex sentence structures with
“and” or “or” unless necessary.
(The rest of the prompt remains identical to the original version.)

As shown in the first row of Table 12, the absence of explicit negative samples reduces performance
from 77.60 to 76.57 (average across STS datasets). This demonstrates that explicit negatives are
essential for refining the discriminative power of the generated questions.

Without Hard Negatives. In this experiment, we removed hard negative samples by setting both the
hard negative samples per cluster (nh) and the hard negative probe samples per question (ph) to 0.
The results, presented in the second row of Table 12, reveal a performance drop to 76.26 compared to
77.60 when both hard and easy negatives are included. This indicates that hard negatives, which are
semantically similar to positives, play a crucial role in enhancing question discriminability.

Without Easy Negatives. To evaluate the significance of easy negatives, we excluded them by setting
the easy negative samples per cluster (ne) and the easy negative probe samples per question (pe) to 0.
As shown in the third row of Table 12, this exclusion results in a further decline in performance to

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 12: Ablation study of different components in the CQG method on STS datasets.

Model Spearman Correlation ↑ (STS)

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

CQG-MBQA (Implicit Negative) 67.67 78.58 72.48 79.24 78.64 82.13 77.24 76.57
CQG-MBQA (w/o Hard Negative) 66.73 77.14 70.48 78.77 76.21 81.07 76.44 75.26
CQG-MBQA (w/o Easy Negative) 68.90 76.12 73.17 79.63 75.08 81.59 79.34 76.26
CQG-MBQA (w/o Probing) 68.29 77.92 71.17 79.80 77.06 81.33 76.52 76.01
CQG-MBQA 69.21 80.19 73.91 80.66 78.30 82.69 78.21 77.60

Table 13: Ablation study of different encoders (i.e., Stella (stella_en_400M_v5), GTE
(gte-large-en-v1.5), and AnglE (UAE-Large-V1)) on STS datasets.

Model Spearman Correlation ↑ (STS)

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

CQG-MBQA (Stella) 54.45 75.66 64.92 76.13 74.20 74.01 73.37 70.39
CQG-MBQA (GTE) 63.34 73.28 68.24 78.45 73.64 75.08 73.20 72.18
CQG-MBQA (AnglE) 69.21 80.19 73.91 80.66 78.30 82.69 78.21 77.60

75.26, highlighting that easy negatives contribute to capturing broader semantic distinctions within
the dataset.

Without Probing. Finally, we removed the probing mechanism for this experiment, instead relying
solely on the original LLM-generated order of questions. The results, shown in the fourth row of
Table 12, indicate a performance reduction to 76.01 compared to 77.60 when probing is included.
This emphasizes the importance of the probing mechanism in ensuring high-quality, discriminative
question selection.

F.2 DIFFERENT ENCODERS

Beyond utilizing AnglE (UAE-Large-V1, 335M parameters) as the encoder in our CQG-MBQA
framework, an advanced encoder that ranks among the top performers on the MTEB benchmark,
we extended our evaluation to include two alternative encoders: Stella (stella_en_400M_v59,
435M parameters) and GTE (gte-large-en-v1.5, 434M parameters) (Zhang et al., 2024).
These models, with parameter sizes comparable to AnglE, are also recognized for their strong
performance on the MTEB benchmark, making them suitable candidates for comparison.

Table 13 presents a summary of the results for the STS task. While the alternative encoders deliver
competitive performance, the CQG-MBQA model consistently achieves its best results when paired
with AnglE as the encoder. This highlights AnglE’s effectiveness in capturing fine-grained semantic
distinctions and its synergy with the CQG-MBQA framework.

G QUESTION FILTERING FOR QAEMB

In our work, we adapted the QAEmb method for general text embedding by incorporating LLM-based
question generation and applying semantic deduplication as a post-processing step. In contrast, we
developed a Contrastive Question Generation (CQG) method, which includes a probing mechanism
to filter questions based on their discriminative ability and semantic deduplication as post-processing.

A notable difference between our CQG approach and the QAEmb baseline lies in the absence of an
equivalent sparsity penalty in QAEmb for filtering question discriminability. This raises the question
of whether the observed performance improvements in CQG stem primarily from the probing stage
or from the generation of higher-quality questions. To disentangle these factors, we conducted two
additional experiments: (1) Adding a Sparsity Penalty for QAEmb and (2) Removing the Probing
Stage in CQG.

9https://huggingface.co/dunzhang/stella_en_400M_v5

21

https://huggingface.co/dunzhang/stella_en_400M_v5

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

G.1 ADDING A SPARSITY PENALTY FOR QAEMB

The QAEmb paper (Benara et al., 2024) proposes two post-hoc approaches for filtering questions, as
described in the paragraph titled “Post-hoc pruning of Q:”

(1) Using feature selection models (e.g., elastic net) with task labels.
(2) Using an LLM to select questions relevant to a task description.

Since our work targets a general text embedding task without task-specific labels, we followed the
second approach and developed an LLM-based method for filtering low-quality questions using
a sparsity penalty approach. Specifically, we clustered the questions generated by QAEmb and
employed an LLM to select subsets of questions from each cluster, varying the percentage of questions
retained from 10% to 90% of the cluster size.

To ensure consistency and precision, we crafted the following detailed prompt, which includes task
descriptions and explicit selection criteria:

You are an expert in natural language processing and text embeddings. From the following
list of questions, select the {num_to_keep} best questions that would be most effective for
text embedding tasks.

Task Description:
Text embedding is a process where we convert text into numerical vectors that capture
semantic meaning. Good questions for text embedding should help in:
1. Capturing the main topics and themes in texts
2. Understanding the semantic relationships between different pieces of text
3. Identifying key concepts and ideas
4. Distinguishing between different contexts and meanings
5. Enabling effective text similarity comparisons and search

Selection Criteria:
The selected questions should:
1. Be clear and well-formed
2. Cover diverse semantic aspects
3. Be general enough to apply to various texts
4. Avoid redundancy and similar phrasings
5. Focus on meaningful content rather than superficial details
6. Help in extracting semantic features useful for embedding generation
7. Exclude any questions that are unclear or ambiguous

Instructions:
- From the list below, select EXACTLY {num_to_keep} questions that best meet the above
criteria.
- Aim for diversity by choosing questions that cover a wide range of semantic features.
- List only the numbers of the selected questions, separated by commas. For example: "1, 5,
8, 12".
- Do not include any explanations or additional text in your response.
- Your response should strictly follow the format specified.

Here are the questions:
{i}.{questions}

Using this sparsity penalty approach, we evaluated the QAEmb-MBQA model with different
percentages of retained questions. As shown in Tables 14 and 15, the embedding quality remains
comparable or slightly lower than QAEmb-MBQA (Full), while the cognitive load is significantly
reduced. This trade-off highlights the value of sparsity penalty in improving interpretability without
severely impacting performance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 14: Ablation study of embedding quality for different percentages of best output dimensions to
keep after filtering in the QAEmb method on STS datasets.

Model # Questions Spearman Correlation ↑ (STS)

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

QAEmb-MBQA (10%) 870 58.96 62.1 56.83 66.89 61.6 68.38 71.25 63.71
QAEmb-MBQA (20%) 1,938 59.41 62.74 57.05 68.37 62.53 69.81 71.6 64.5
QAEmb-MBQA (30%) 2,961 59.83 63.08 57.59 69.04 63.16 70.68 72.1 65.07
QAEmb-MBQA (40%) 4,042 59.77 63.32 57.66 69.17 63.08 70.97 72.21 65.17
QAEmb-MBQA (50%) 5,127 59.65 63.22 57.64 68.99 63.29 70.88 72.16 65.12
QAEmb-MBQA (60%) 6,064 59.58 63.22 57.69 68.88 63.0 71.03 72.12 65.07
QAEmb-MBQA (70%) 7,063 59.35 63.07 57.48 69.08 63.17 70.98 72.16 65.04
QAEmb-MBQA (80%) 8,103 59.49 63.2 57.67 69.15 63.1 71.05 72.24 65.13
QAEmb-MBQA (90%) 9,153 59.29 62.94 57.46 69.14 62.95 71.03 72.28 65.01
QAEmb-MBQA (Full) 10,654 59.40 63.19 57.68 69.29 63.18 71.33 72.33 65.20

CQG-MBQA (Full) 9,614 69.21 80.19 73.91 80.66 78.30 82.69 78.21 77.60

Table 15: Ablation study of cognitive load for different percentages of best output dimensions to keep
after filtering in the QAEmb method on STS datasets.

Model # Questions Cognitive Load ↓ (Normalized Cognitive Load ↓) (STS)

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

QAEmb-MBQA (10%) 870 144 (16.6%) 141 (16.2%) 143 (16.4%) 125 (14.4%) 139 (16.0%) 121 (13.9%) 84 (9.7%) 128 (14.7%)
QAEmb-MBQA (20%) 1,938 310 (16.0%) 303 (15.6%) 309 (15.9%) 272 (14.0%) 299 (15.4%) 263 (13.6%) 184 (9.5%) 277 (14.3%)
QAEmb-MBQA (30%) 2,961 468 (15.8%) 453 (15.3%) 465 (15.7%) 411 (13.9%) 452 (15.3%) 398 (13.4%) 283 (9.6%) 418 (14.1%)
QAEmb-MBQA (40%) 4,042 633 (15.7%) 612 (15.1%) 631 (15.6%) 557 (13.8%) 609 (15.1%) 541 (13.4%) 387 (9.6%) 567 (14.0%)
QAEmb-MBQA (50%) 5,127 799 (15.6%) 774 (15.1%) 797 (15.5%) 703 (13.7%) 772 (15.1%) 684 (13.3%) 489 (9.5%) 717 (14.0%)
QAEmb-MBQA (60%) 6,064 935 (15.4%) 907 (15.0%) 933 (15.4%) 828 (13.7%) 908 (15.0%) 803 (13.2%) 575 (9.5%) 841 (13.9%)
QAEmb-MBQA (70%) 7,063 1,086 (15.4%) 1,052 (14.9%) 1,085 (15.4%) 961 (13.6%) 1,049 (14.9%) 935 (13.2%) 669 (9.5%) 977 (13.8%)
QAEmb-MBQA (80%) 8,103 1,241 (15.3%) 1,202 (14.8%) 1,239 (15.3%) 1,097 (13.5%) 1,199 (14.8%) 1,067 (13.2%) 766 (9.5%) 1,116 (13.8%)
QAEmb-MBQA (90%) 9,153 1,398 (15.3%) 1,352 (14.8%) 1,398 (15.3%) 1,240 (13.5%) 1,351 (14.8%) 1,209 (13.2%) 873 (9.5%) 1,260 (13.8%)
QAEmb-MBQA (Full) 10,654 1,626 (15.3%) 1,571 (14.7%) 1,625 (15.3%) 1,443 (13.5%) 1,577 (14.8%) 1,408 (13.2%) 1,018 (9.6%) 1,467 (13.8%)

CQG-MBQA (Full) 9,614 481 (5.0%) 439 (4.6%) 458 (4.8%) 426 (4.4%) 478 (5.0%) 446 (4.6%) 413 (4.3%) 449 (4.7%)

G.2 REMOVING THE PROBING STAGE IN CQG

To isolate the effect of the probing mechanism, we conducted an experiment where the probing stage
was removed from the CQG method. In this configuration, we used the original LLM-generated
question order for evaluation. The results, labeled as CQG-MBQA (w/o Probing), are presented in
Table 12 in Appendix F.1.

When comparing CQG-MBQA (w/o Probing) with CQG-MBQA and QAEmb-MBQA, as reported
in Table 1, we observe that CQG-MBQA (w/o Probing) still outperforms QAEmb-MBQA. However,
the probing mechanism contributes additional performance gains, underscoring its importance in
refining the discriminative power of the questions.

23

	Introduction
	Related Work
	Interpretable Text Embedding Framework
	Question Generation
	Question Answering

	Experiments
	Metrics
	Models
	Embedding Quality
	Interpretability
	Effect on Number of Questions
	Trade-off between Embedding Quality and Interpretability

	Conclusion
	Prompts
	Prompt: Contrastive Question Generation
	Prompt: QAEmb Question Generation
	Prompt: Multi-task Binary Question Answering

	Training and Evaluation of the MBQA Model
	Cost Analysis for LLM-based QA vs. MBQA
	Implementation Details
	The CQG-MBQA Framework
	Baseline Models

	Additional Downstream Tasks
	Ablation Studies
	Components in the CQG Method
	Different Encoders

	Question Filtering for QAEmb
	Adding a Sparsity Penalty for QAEmb
	Removing the Probing Stage in CQG

