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ABSTRACT

Semantic text embedding is essential to many tasks in Natural Language Pro-
cessing (NLP). While black-box models are capable of generating high-quality
embeddings, their lack of interpretability limits their use in tasks that demand
transparency. Recent approaches have improved interpretability by leveraging
domain-expert-crafted or LLM-generated questions, but these methods rely heavily
on expert input or well-prompt design, which restricts their generalizability and
ability to generate discriminative questions across a wide range of tasks. To address
these challenges, we introduce CQG-MBQA (Contrastive Question Generation
- Multi-task Binary Question Answering), a general framework for producing
interpretable semantic text embeddings across diverse tasks. Our framework sys-
tematically generates highly discriminative, low cognitive load yes/no questions
through the CQG method and answers them efficiently with the MBQA model,
resulting in interpretable embeddings in a cost-effective manner. We validate
the effectiveness and interpretability of CQG-MBQA through extensive exper-
iments and ablation studies, demonstrating that it delivers embedding quality
comparable to many advanced black-box models while maintaining inherently
interpretability. Additionally, CQG-MBQA outperforms other interpretable text
embedding methods across various downstream tasks. The source code is available
at https://anonymous.4open.science/r/CQG-MBQA-483F/.

1 INTRODUCTION

Text embedding is a cornerstone of Natural Language Processing (NLP), transforming texts—whether
sentences, paragraphs, or full documents—into embedding vectors that capture their semantic
meaning. In semantic embedding spaces, the similarity between texts is represented by the proximity
of their embedding vectors, typically measured using distance measures like Euclidean distance,
cosine distance, or inner product. The closer the vectors, the more semantically similar the texts. These
embeddings are foundational to many downstream NLP tasks, including Semantic Textual Similarity
(STS) (Agirre et al., 2012; 2013), Information Retrieval (Karpukhin et al., 2020; Thakur et al., 2021),
Clustering (Aggarwal & Zhai, 2012), and more recently, Retrieval Augmented Generation (RAG)
(Lewis et al., 2020; Guu et al., 2020; Asai et al., 2024).

Black-box text embedding methods, such as Sentence-BERT (Reimers & Gurevych, 2019), SimCSE
(Gao et al., 2021), WhitenedCSE (Zhuo et al., 2023), and AnglE (Li & Li, 2024), excel at generating
high-quality embeddings by training on vast amounts of data. These models are highly effective at
capturing semantic similarities, making them indispensable for a variety of NLP tasks (Muennighoff
et al., 2023). However, their black-box nature leaves the embeddings opaque to human users. These
models do not provide insight into why certain texts are deemed similar, which becomes problematic
for tasks that require transparency, especially in applications involving high-stakes decision-making,
such as legal and medical domains, or in cases requiring explanations for regulatory compliance.

Interpretability in machine learning is the ability of humans to understand the reasoning behind a
model’s results (Miller, 2019), which is essential not only for building trust and ensuring safety but
also for detecting biases and debugging models (Molnar, 2022). Recent advances have enhanced
interpretability by leveraging inherently interpretable models such as Decision Tree (Breiman
et al., 1984) and Generalized Additive Models (Hastie & Tibshirani, 1986), as well as model-
agnostic methods like LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017). However,
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these interpretable approaches lose effectiveness when applied on top of non-interpretable features
generated by black-box text embedding models. Consequently, the challenge remains: how can we
create interpretable text embeddings without sacrificing performance?

Recent efforts have sought to address the challenge of creating interpretable embeddings by using
questions as interpretable dimensions. For instance, ChiLL (McInerney et al., 2023) employs yes/no
questions crafted by domain experts to classify patient clinical notes, but its reliance on costly expert
annotation limits its generalizability to different datasets. QAEmb (Benara et al., 2024) advances
this concept by using task-specific prompts with examples to automatically generate yes/no questions
via Large Language Models (LLMs), achieving notable success in the fMRI prediction task (Huth
et al., 2016; LeBel et al., 2023; Tang et al., 2023).

Nonetheless, QAEmb requires meticulously crafted prompts and uses six distinct prompt templates
to generate questions for the fMRI prediction task, which complicates its usage in general settings due
to the need for prompt engineering expertise. Furthermore, this example-based question generation
approach often produces generic, less discriminative questions, limiting its effectiveness in broader
applications. Given the importance of question quality in creating effective interpretable embeddings,
there is a pressing need for a systematic approach that can automatically generate meaningful and
discriminative questions across various text embedding tasks.

To address this gap, we introduce CQG-MBQA (Contrastive Question Generation - Multi-task Binary
Question Answering), a general framework for producing interpretable semantic text embedding,
which matches the performance of many black-box models and surpasses existing interpretable
baselines across various text embedding tasks. CQG-MBQA harnesses contrastive learning principles
to prompt LLMs to generate highly discriminative binary yes/no questions, which form the dimensions
of the embedding space. These questions not only capture the semantic nuances between texts but
also offer human-interpretable insights. The main contributions of this work are as follows:

• We propose CQG-MBQA, the first general framework that tackles the challenge of generating
interpretable text embeddings for a broad range of tasks, offering a practical and scalable
solution for text representation.

• Our Contrastive Question Generation (CQG) method produces highly discriminative ques-
tions that offer high interpretability while minimizing cognitive load for users, ensuring that
the semantic relationships between texts can be easily understood.

• The Multi-task Binary Question Answering (MBQA) model processes these binary questions
efficiently at scale, significantly reducing the inference costs typically associated with LLMs,
making the framework cost-effective for real-world applications.

• We validate the effectiveness of CQG-MBQA through extensive experiments and ablation
studies, demonstrating its robustness and practical applicability across multiple benchmarks
and downstream tasks.

2 RELATED WORK

Text embedding is a core NLP task that transforms texts into vector representations that capture their
semantic meanings. Generally, it is categorized into black-box and interpretable embeddings.

Black-box Embedding. Early methods for text embedding, such as GloVe (Pennington et al., 2014)
and Word2Vec (Mikolov et al., 2013), typically pool word embeddings to create low-dimensional
semantic representations. However, these methods, which rely on individual word embeddings, often
fail to capture the full context of a text. For example, the sentences “Most people in the world like
Apple.” and “Most people in the world do not like Apple.” share high lexical overlap but have
opposite meanings, highlighting the limitations of such methods, which struggle to capture deeper
semantic differences beyond surface-level word similarity.

To produce context-aware text embeddings, Universal Sentence Encoder (USE) (Cer et al., 2018)
employs a transformer model (Vaswani et al., 2017) trained on a combination of unsupervised tasks
and supervised fine-tuning using the Stanford Natural Language Inference (SNLI) corpus (Bowman
et al., 2015). BERT (Devlin et al., 2019), a transformer network pre-trained on large-scale unlabeled
text, can generate sentence embeddings by pooling its output representations. Subsequent models have
further refined BERT using contrastive learning and other semantic-related objectives. For instance,
Sentence-BERT (SBERT) (Reimers & Gurevych, 2019) pioneers the Siamese network structure
for Semantic Textual Similarity (STS), while SimCSE (Gao et al., 2021) develop a contrastive

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

learning framework for both unsupervised and supervised settings. WhitenedCSE (Zhuo et al., 2023)
enhances embedding uniformity and alignment with shuffled group whitening, and AnglE (Li & Li,
2024) optimizes angle differences to overcome cosine similarity limitations. Despite these advances,
black-box models produce embeddings that are opaque and difficult to interpret. In this work, we
target generating interpretable dimensions for text embedding.

Interpretable Embedding. The challenge of creating interpretable embeddings has been persisted,
especially with the rise of dense word embeddings. Early efforts focus on transforming word embed-
dings to improve interpretability. Jha et al. (2018) apply categorical knowledge in the biomedical
domain to convert pre-trained embeddings into interpretable dimensions, while Senel et al. (2018)
quantify interpretability by analyzing latent semantic structures. Models like SPINE (Subrama-
nian et al., 2018) employ auto-encoders to create interpretable embeddings from non-interpretable
ones like GloVe (Pennington et al., 2014) and Word2Vec (Mikolov et al., 2013), and Word2Sense
(Panigrahi et al., 2019) creates interpretable dimensions based on specific word senses.

Despite progress, developing context-aware, interpretable dimensions remains difficult. Recent
research has shifted towards indirectly understanding embedding spaces. For instance, Lee et al.
(2022) introduce token pair contribution heatmaps to enhance interpretability in sentence similarity.
Opitz & Frank (2022) introduce S3BERT, which trains interpretable text embeddings by structuring
SBERT embeddings into explainable subspaces aligned with Abstract Meaning Representation met-
rics. And Simhi & Markovitch (2023) proposes transforming embedding spaces into comprehensible
conceptual representations. Recent advancements like ChiLL (McInerney et al., 2023) generate
interpretable binary features from health records by querying pre-trained LLMs with expert-crafted
yes/no questions for patient classification. LISA (Patel et al., 2023) learns interpretable text style
embedding by leveraging LLMs for text style analysis and summarization, training a smaller model
for efficiency and applying post-processing to refine style attributes. QAEmb (Benara et al., 2024)
extends this by prompting LLMs to automatically generate questions using examples of texts and
questions, demonstrating its efficacy in the fMRI prediction task. Inspired by QAEmb, we propose
a cost-effective framework that generates high-quality questions and uses them as interpretable
dimensions for text embedding.

3 INTERPRETABLE TEXT EMBEDDING FRAMEWORK

We present CQG-MBQA, an interpretable text embedding framework that uses yes/no questions as
semantic dimensions. By generating a single set of versatile questions, it serves as a general-purpose
solution for embedding text across diverse tasks and datasets, akin to pre-trained encoders. The
answers to these questions form an interpretable embedding vector, capturing the text’s core semantics.
For instance, consider three questions: “Is the article about AI?”, “Is the article about sports?”, and
“Is the article about food?”. For the text “Apple is a technology company.”, querying an LLM yields
the answers: [“yes”, “no”, “no”], resulting in an embedding vector of [1, 0, 0], which reflects the
text’s key features. Applying this same set of questions across all texts in a corpus produces a unified
embedding matrix that encodes the semantic information of the entire dataset.

As shown in Figure 1, the CQG-MBQA framework consists of two phases: question generation
and question answering. To generate high-quality, discriminative questions, we develop a method
called Contrastive Question Generation (CQG), which harnesses pre-trained dense text embedding
models and generative LLMs for question generation. Details of this method are outlined in Section
3.1. Once the questions are generated, their corresponding answers form the text’s embedding vector.
Yet, generating answers through LLMs at scale is both time-consuming and expensive. To address this,
we propose a Multi-task Binary Question Answering (MBQA) model. Trained with a multi-task
binary classification objective, this model can generate interpretable embeddings efficiently, requiring
far fewer LLM API calls. Further details on this model are provided in Section 3.2.

3.1 QUESTION GENERATION

Motivations. Effective text representation with binary question answers requires highly discriminative
questions to capture subtle semantic differences within the corpus. Existing methods, such as QAEmb
(Benara et al., 2024), generate questions by prompting LLMs with dataset descriptions, example texts,
and sample questions. However, this example-based approach presents two significant limitations:
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Figure 1: An overview of the CQG-MBQA framework.

(1) Insufficient Specificity: The generated questions are often too generic, resulting in embed-
dings that fail to capture fine semantic nuances.

(2) Interpretability Issue: A significant proportion of questions consistently yield simple “yes”
answers, which can make the resulting embeddings more challenging to interpret and analyze.

These limitations reduce the effectiveness of the embeddings in capturing fine-grained semantic
differences, which in turn hinders their practical utility in downstream tasks. To overcome these
challenges, we introduce Contrastive Question Generation (CQG), a novel method that leverages the
creative potential of LLMs to generate more discriminative questions.

Contrastive Question Generation (CQG). The CQG method applies contrastive learning principles,
using positive, hard negative, and easy negative samples to guide LLMs in generating high-quality
questions. These questions are designed to effectively differentiate positive samples from negative
ones, especially hard negatives, which are semantically similar (Robinson et al., 2021). The goal is to
generate questions that elicit a “yes” answer only for a specific group of texts while excluding others,
even those that are closely related.

Example 1: Consider a toy example with four groups of texts for animals: G1 = {Whale,Dolphin},
G2 = {Shark,Ray}, G3 = {Giraffe,Deer}, and G4 = {Eagle,Hawk}. The objective is to generate
questions that can effectively distinguish G1 from other groups. At first, broad questions such as
“Does it live in water?” or “Is it a mammal?” might seem useful. While these questions correctly
yield “yes” for Whale and Dolphin, they also apply to other groups. For example, Shark and Ray
also live in water, and Giraffe and Deer are also mammals. To better differentiate G1, a more precise
question would be “Does the animal use echolocation to navigate and hunt?”, which yields a “yes”
only for Whale and Dolphin, effectively distinguishing them from the other groups. Furthermore, this
question could also generalize to other animals, such as Bat, that were not part of the original groups,
highlighting the method’s potential to apply to unseen examples. △

As depicted in Figure 2, the CQG method begins by identifying semantically similar groups of texts.
This is accomplished by encoding the text corpus into embedding vectors and clustering these vectors
to form distinct groups. For each cluster, we design a strategic sampling technique: selecting np

positive texts from within the cluster, nh hard negative samples from neighboring clusters, and ne

easy negative samples from the global corpus. The LLM is then prompted to generate questions
under a key constraint: the questions must elicit “yes” answers exclusively for the positive samples
and “no” answers for all negative samples. The detailed prompt for CQG is provided in Appendix
A.1. This strategic sampling technique serves two main purposes:

4
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Figure 2: Illustration of the CQG method.

(1) Discriminative Power: Contrasting positive samples with hard negative samples encourages
the LLM to generate highly discriminative questions tailored to each cluster.

(2) Broader Relevance: Including easy negative samples ensures that the generated questions
maintain broader relevance across the entire corpus.

A well-tuned negative-to-positive ratio, i.e., (nh + ne)/np, encourages the LLM to craft precise,
discriminative questions for the positive cluster, leading to sparser and more interpretable embedding
dimensions. This process is repeated across all clusters, resulting in a comprehensive set of LLM-
generated questions that capture the unique characteristics of each cluster while maintaining global
relevance, forming the foundation of our interpretable text embedding framework.

Post-Processing. LLMs may encounter two common issues when generating questions: (1) failing to
consistently provide “yes” answers only for positive samples and (2) generating similar questions
across different clusters. To address these challenges, we implement a post-processing step to filter
and select the highest-quality, non-redundant questions.

We introduce a probing mechanism to evaluate and refine the generated questions. For each question,
we randomly sample pp positive probes from the originating cluster, ph hard negative probes from
neighboring clusters, and pe easy negative probes from other clusters. The LLM answers these
questions, and we calculate the quality of each question using the following formula:

quality =
# “yes” for positive probes

pp
− # “yes” for negative probes

ph + pe
. (1)

Equation 1 measures the difference between the percentage of “yes” answers for positive probes and
negative probes. A higher quality value indicates that the question is more discriminative for the
cluster, as it correctly identifies more positive samples while filtering out negatives.

To construct the final set of questions, we iteratively select the top t most discriminative questions from
each cluster, based on their quality values, and ensure that no two questions are highly semantically
similar. Here, the similarity between questions is measured using cosine similarity between their
corresponding embedding vectors, which are generated using the same pre-trained encoding model
used in encoding the text corpus. If the cosine similarity of two questions exceeds a predefined
threshold θ, they are considered duplicates, and the latter question is excluded.

This post-processing step helps filter out hallucinated and/or low-quality questions generated by the
LLM. The final set comprises m questions, forming a diverse and highly discriminative collection
that effectively captures the semantic structure of the entire corpus.

3.2 QUESTION ANSWERING

Motivations. Generating answers to questions using LLMs can be prohibitively expensive, especially
when scaling up to large datasets with numerous questions. For example, as presented in Table
7, LLM-based Question Answering (QA), which leverages LLMs to answer 10,000 questions for
approximately 8.8 million articles in the MS MARCO dev set, requires about 4.4 billion LLM
inference passes and processes 1.5 trillion tokens. This incurs a substantial cost of 244,551 USD, even
with a cost-effective model (GPT-4o-mini) and a token-efficient prompting approach (grouping
20 questions per prompt). Further details are available in Appendix C.

While increasing the number of questions improves performance (see Section 4.5), the cost associated
with LLM-based QA renders it impractical for large-scale real-world applications. To address this,
we propose the Multi-task Binary Question Answering (MBQA) model as a cost-effective alternative.

5
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Multi-task Binary Question Answering (MBQA) Model. Similar to LISA (Patel et al., 2023) and
QAEmb (Benara et al., 2024) that distill the LLM answers into a smaller model, we propose the
MBQA model that enables efficient inference with a single forward pass of the encoding model. It is
designed to leverage LLM-generated answers from a smaller subset of texts to train a multi-task binary
classification model. This model consists of a pre-trained encoding model and multiple classification
heads. The encoder converts the input text into an embedding vector, while the classification heads
predict binary scores for each question. Formally, the MBQA model M is defined as:

M = (Enc, {C1, C2, · · · , Cm}), (2)

where Enc : T → Rd represents the encoding model, and Ci : Rd → [0, 1] is the i-th Multi-Layer
Perceptron (MLP) classification head. For a given input text t ∈ T , the MBQA model generates a
binary embedding vector y = [y1, y2, · · · , ym] ∈ {0, 1}m as follows:

e = Enc(t), (3)
yi = 1[σ(Ci(e)) > τ ], for i ∈ {1, 2, · · · ,m}, (4)

where σ is the Sigmoid function, 1[·] is the indicator function, and τ is the threshold for bi-
nary classification. During training, the encoder Enc is frozen and only the classification heads
{C1, C2, · · · , Cm} are optimized using weighted Binary Cross-Entropy (BCE) Loss (Bishop, 2006)
on the available LLM-generated question-answer pairs.

Remarks. The MBQA model achieves 96% accuracy in reproducing LLM-generated answers for
CQG questions with just a single pass through the encoding model, substantially reducing costs
compared to running a pre-trained LLM for each text. Our model only requires training data from as
few as 1,000 articles per question, resulting in 10 million text-question pairs for 10,000 questions,
costing just 31 USD using GPT-4o-mini. The training process takes 36 hours, and embedding the
entire MS MARCO dev set requires 90 hours on a single GTX 1080 Ti, which is an inexpensive
GPU. Consequently, encoding the same MS MARCO dev set with the MBQA model costs around
41 USD–just 0.017% of the original cost with GPT-4o-mini. This model allows us to scale up
the number of questions (dimensions) efficiently, providing interpretable embeddings at a fraction of
the cost of LLM-based answering. In addition, the CQG pipeline is also cost-effective, which just
requires 2.52 USD for question generation and 1.92 USD for probing using GPT-4o-mini in our
experiments. For more details on training and evaluation, see Appendix B.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of the CQG-MBQA framework by addressing
four essential questions aimed at understanding its performance and applicability:

• Embedding Quality: How well does our framework generate high-quality interpretable
embeddings comparable to advanced black-box models? (Section 4.3)

• Interpretability: Does our framework improve the human interpretability of embeddings over
existing methods? (Section 4.4)

• Question Efficiency: Can the CQG method generate a limited number of highly discriminative
questions that maintain strong performance? (Section 4.5)

• Flexibility: Can the MBQA model be tuned to strike a balance between embedding quality
and interpretability? (Section 4.6)

To rigorously evaluate the framework, we conduct experiments on three core downstream tasks
in text embedding: STS, retrieval, and clustering. These experiments allow us to benchmark the
CQG-MBQA framework against both black-box and interpretable models.

4.1 METRICS

Embedding Quality Measurement. For evaluating embedding quality, we adopt the metrics that are
widely used in the MTEB benchmark (Muennighoff et al., 2023) for a comprehensive comparison. For
STS tasks, we use Spearman correlation (Spearman, 1904) on cosine similarity between embeddings
as the evaluation metric. In retrieval tasks, we assess the performance using Normalized Discounted
Cumulative Gain at Top 10 (nDCG@10) (Wang et al., 2013). For clustering tasks, we evaluate the
results using V-Measure (Rosenberg & Hirschberg, 2007).

6
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Table 1: STS results measured by Spearman correlation. Evaluated on seven popular datasets:
SemEval STS tasks 2012-2016 (STS12–STS16) (Agirre et al., 2012; 2013; 2014; 2015; 2016), STS
Benchmark (STS-B) (Cer et al., 2017), and SICK-Relatedness (SICK-R) (Marelli et al., 2014)
using the MTEB evaluation suite (Muennighoff et al., 2023).

Type Model Spearman Correlation ↑ (STS)

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

B
la

ck
-b

ox

BERT 38.78 57.98 57.98 63.15 61.06 46.35 58.40 54.81
GloVe 54.64 69.16 60.81 72.31 65.34 61.54 55.43 62.74
USE 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22

SimCSE (Unsup.) 66.05 81.49 73.61 79.72 78.12 76.52 72.24 75.39
SBERT (Ori.) 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68

SimCSE (Sup.) 75.30 84.67 80.19 85.40 80.82 84.25 68.38 79.86
WhitenedCSE 74.65 85.79 77.49 84.71 80.33 81.48 75.34 79.97
SBERT (New) 73.08 82.13 76.73 85.58 80.23 83.09 79.32 80.02

OpenAI 72.84 86.1 81.15 88.49 85.08 83.56 79.00 82.31
AnglE 79.09 89.62 85.02 89.51 86.61 89.06 82.62 85.93

In
te

rp
. Bag-of-Tokens 44.75 52.06 54.78 68.65 60.59 54.85 57.87 56.22

QAEmb-MBQA 59.40 63.19 57.68 69.29 63.18 71.33 72.33 65.20
CQG-MBQA 69.21 80.19 73.91 80.66 78.30 82.69 78.21 77.60

Interpretability Measurement. Since both STS and retrieval tasks measure pairwise text similarity
using cosine similarity, we focus on interpreting the cosine similarity scores produced by CQG-
MBQA. With inherently interpretable dimensions, we can offer insights to users by highlighting the
dimensions that contribute most to the similarity between two texts. Building on COGAM (Abdul
et al., 2020), we suggest that interpretability should account for the cognitive load imposed on users.
In COGAM, cognitive load is assessed by counting the number of visual cognitive chunks. Similarly,
we measure it by the number of questions a user must consider to understand the similarity between
two texts, corresponding to the dimensions where both embedding vectors have a value of 1. Formally,
for any two binary embedding vectors u = [u1, u2, · · · , um] and v = [v1, v2, · · · , vm], the cognitive
load is defined as the inner product of u and v:

cognitive load = ⟨u,v⟩ =
∑m

i=1 uivi. (5)

To mitigate the impact of the number of dimensions (m) used for different models, we also report
the cognitive load normalized by m: normalized cognitive load = cognitive load

m . Quantifying cognitive
load allows us to assess the interpretability of our CQG-MBQA framework’s embeddings. A lower
value indicates that fewer dimensions are involved, making the interpretation easier to understand,
thus enhancing both interpretability and user-friendliness.

4.2 MODELS

Interpretable Models. We evaluate CQG-MBQA against existing interpretable baselines to provide
a thorough comparison. For CQG-MBQA, we use the MEDI2 dataset (Muennighoff et al., 2024), a
diverse text corpus, as the training data. Texts are encoded with the AnglE model (UAE-Large-V1),
and the resulting embeddings are normalized. We then perform k-Means clustering (Arthur &
Vassilvitskii, 2007) with k = 5, 000. The CQG process produces 9,614 questions after probing and
deduplication, forming the final embedding dimensions. The MBQA model also leverages AnglE
as the backbone, with three-layer MLP classification heads and a hidden layer size of 8. More
implementation details of CQG-MBQA are provided in Appendix D.1.

To make a fair comparison and highlight the benefits of our CQG method, we adapt QAEmb,
originally designed for task-specific text embeddings, and develop QAEmb-MBQA. Specifically, we
utilize its example-based question generation approach (Benara et al., 2024), modifying the prompt
to generate questions suitable for general text embeddings with LLMs. After deduplication, the
QAEmb produces 10,654 questions, which we integrate with our MBQA model for evaluation.
Details of the QAEmb-MBQA implementation are provided in Appendix D.2. Additionally, we
include Bag-of-Tokens, a simple baseline that uses the BERT tokenizer to produce interpretable
embeddings. For the retrieval task, we also compare against the rule-based sparse retriever BM25
(Robertson et al., 1995), implemented using BM25S (Lù, 2024).
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Table 2: Retrieval results evaluated by nDCG@10. Evaluated on seven diverse datasets: MS MARCO
(Bajaj et al., 2016), NewsSpectrum (NSP) (Sun et al., 2024), ArguAna (Wachsmuth et al., 2018),
FiQA-2018 (FQA) (Maia et al., 2018), NFCorpus (NFC) (Boteva et al., 2016), SCIDOCS (Cohan
et al., 2020), and SciFact (Wadden et al., 2020). MS MARCO is evaluated on a 1% sample of its
dev set, while NewsSpectrum uses news titles as queries with corresponding articles as targets. The
remaining datasets are assessed using the MTEB evaluation suite.

Type Model nDCG@10 ↑ (Retrieval)

MS MARCO NSP ArguAna FQA NFC SCIDOCS SciFact Avg.

B
la

ck
-b

ox

BERT 16.86 12.48 28.29 2.19 4.30 2.82 13.34 11.47
SimCSE (Unsup.) 44.63 40.05 38.34 9.84 9.88 5.50 25.72 24.85

GloVe 44.27 35.15 36.30 10.09 13.87 8.04 29.58 25.33
SimCSE (Sup.) 47.86 47.01 38.33 10.41 12.42 7.53 29.59 27.59
SBERT (New) 88.74 69.66 47.13 37.27 32.25 21.82 62.64 51.36

AnglE 90.43 81.46 66.15 44.84 38.65 22.98 74.07 59.80
OpenAI 92.18 85.17 58.05 55.00 42.07 23.11 77.77 61.91

In
te

rp
. Bag-of-Tokens 29.79 22.09 34.25 3.99 21.51 6.79 47.36 23.68

BM25 68.42 76.81 49.28 25.14 32.08 15.78 68.70 48.03
QAEmb-MBQA 40.51 30.45 34.75 8.23 3.87 3.74 12.01 19.08

CQG-MBQA 62.21 49.63 47.75 18.63 9.74 8.67 32.80 32.78

Table 3: Clustering results assessed by V-Measure. Evaluated on seven commonly-used datasets:
TwentyNewsgroupsClustering (TNG), StackExchangeClusteringP2P (SE-P2P), BiorxivCluster-
ingP2P (BR-P2P), BiorxivClusteringS2S (BR-S2S), MedrxivClusteringP2P (MR-P2P), Medrx-
ivClusteringS2S (MR-S2S), and RedditClusteringP2P (RD-P2P) from the MTEB evaluation suite.

Type Model V-Measure ↑ (Clustering)
TNG SE-P2P BR-P2 BR-S2S MR-P2P MR-S2S RD-P2P Avg.

B
la

ck
-b

ox

SimCSE (Unsup.) 23.21 28.50 24.90 19.55 23.60 21.97 45.14 26.70
GloVe 25.83 28.51 29.27 19.18 26.12 20.38 35.82 26.44
BERT 23.35 26.55 30.12 24.77 26.09 23.60 43.32 28.26

SimCSE (Sup.) 34.86 29.45 30.15 24.67 26.25 24.12 47.74 31.03
SBERT (New) 47.47 33.13 36.99 33.21 34.25 32.24 54.80 38.87

AnglE 51.72 36.72 39.38 37.23 33.22 31.18 65.35 42.11
OpenAI 58.14 36.88 38.03 36.53 32.70 31.27 67.96 43.07

In
te

rp
. Bag-of-Tokens 8.52 17.64 4.70 3.32 11.39 13.05 15.67 10.61

QAEmb-MBQA 36.72 25.68 24.66 21.16 25.53 22.85 46.57 29.02
CQG-MBQA 40.00 28.22 34.88 31.13 31.02 28.71 54.40 35.48

Black-box Models. To benchmark the embedding quality of CQG-MBQA, we compare it with
several advanced black-box text embedding models. These include GloVe (Pennington et al., 2014;
Reimers & Gurevych, 2019), USE (Cer et al., 2018), BERT (Devlin et al., 2019), the Original (Ori.)
and Up-to-date (New) versions of Sentence-BERT (SBERT) (Reimers & Gurevych, 2019), the
Supervised (Sup.) and Unsupervised (Unsup.) versions of SimCSE (Gao et al., 2021). Additionally,
we compare our framework with WhitenedCSE (Zhuo et al., 2023), the OpenAI API, and AnglE
(Li & Li, 2024). Implementation details for all baseline models are outlined in Appendix D.2.

4.3 EMBEDDING QUALITY

Tables 1–3 present the embedding quality results for STS, retrieval, and clustering tasks, highlighting
CQG-MBQA’s competitive performance. In STS tasks (Table 1), CQG-MBQA achieves comparable
quality to advanced dense models like SimCSE and SBERT (New) while preserving interpretability.
It also outperforms earlier methods like GloVe, USE, and BERT, as well as all interpretable base-
lines. For retrieval tasks (Table 2), CQG-MBQA surpasses SimCSE, GloVe, and BERT. While it
trails state-of-the-art black-box models such as AnglE and OpenAI, it consistently outperforms all
interpretable baselines except for BM25, a rule-based model optimized for retrieval. In clustering
tasks (Table 3), CQG-MBQA exceeds several black-box models (SimCSE, GloVe, and BERT)
and outperforms all interpretable baselines, closely matching the performance of recent models like
SBERT (New). The comparison with QAEmb-MBQA further underscores the efficacy of our CQG
algorithm in generating high-quality, discriminative questions that capture semantic nuances.
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Table 4: Cognitive Load and Normalized Cognitive Load (values in parentheses) on STS datasets.

Model Cognitive Load ↓ (Normalized Cognitive Load ↓) (STS)

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Bag-of-Tokens 8 (0.03%) 4 (0.01%) 6 (0.02%) 5 (0.02%) 8 (0.03%) 7 (0.02%) 6 (0.02%) 6 (0.02%)
QAEmb-MBQA 1,626 (15.26%) 1,571 (14.75%) 1,625 (15.25%) 1,443 (13.54%) 1,577 (14.80%) 1,408 (13.22%) 1,018 (9.56%) 1,467 (13.77%)

CQG-MBQA 481 (5.00%) 439 (4.57%) 458 (4.76%) 426 (4.43%) 478 (4.97%) 446 (4.64%) 413 (4.30%) 449 (4.67%)

Text A

Text B

Yes
ID Answer BAnswer A

283 Is the article intended for educational purposes?
Questions

Yes
357 Is the research based on data collected from human participants? YesYes

Yes1153 Is the content related to personal health or well-being? Yes
2039 Is there a focus on the effects of a specific disease or disorder? YesNo

No3400 Is the research aimed at understanding or treating neurological conditions? Yes
4634 Is the method discussed in the article aligned with scientific standards? YesYes

Yes7273 Is there a discussion on the role of food in human health? No
8540  Is the subject matter related to medical or health professions?  YesYes

No9292 Is there an emphasis on the importance of variables? Yes

Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in
elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) Study—a randomized controlled trial1234

Blood Pressure Is Reduced and Insulin Sensitivity Increased in Glucose-Intolerant, Hypertensive Subjects
after 15 Days of Consuming High-Polyphenol Dark Chocolate

Figure 3: Case study.

4.4 INTERPRETABILITY

Cognitive Load. Table 4 displays the cognitive load required to interpret embeddings across different
interpretable models, evaluated through the STS task, which computes the pairwise similarity of
texts. This provides a clear measure of how much effort is needed to understand the embeddings.
CQG-MBQA achieves a 2.5∼3.6× lower cognitive load than QAEmb-MBQA, indicating that the
CQG method significantly enhances interpretability. This technique produces more “no” answers and
fewer “yes” answers, making the embeddings easier to interpret. For Bag-of-Tokens, it has a much
lower cognitive load due to its lexical nature, but this advantage comes at the cost of significantly
reduced embedding quality. The trade-off between interpretability and embedding quality can be
adjusted by tuning the binary classification threshold τ , as further discussed in Section 4.6.

Case Study. Figure 3 showcases a pair of texts from our training corpus, focusing on nine specific
questions (dimensions) where at least one text yields a “yes” answer. This illustrates how CQG-
MBQA generates relevant and insightful dimensions. For instance, question ID 1153, which asks
if the text is related to personal health or well-being, receives a “yes” for both Text A and Text
B, accurately reflecting their shared focus on health topics. Similarly, question ID 4634 inquires
whether the text aligns with scientific standards, and both texts–discussing evidence-based findings
on substance effects–obtain “yes” answers, showcasing the relevance of generated questions.

Despite the texts’ similarity, CQG-MBQA captures subtle semantic differences through fine-grained
questions. For example, question ID 3400 asks if the research targets neurological conditions. Text A,
which discusses cognitive function, receives a “yes”, indicating a connection to neurological condi-
tions, whereas Text B, focusing on blood pressure and insulin sensitivity, acquires a “no”, highlighting
a clear distinction in their subject matter. This case study highlights how CQG generates interpretable,
relevant, and discriminative questions that effectively capture nuanced semantic differences, while
MBQA accurately predicts the answers, reinforcing the framework’s practicality and reliability.

4.5 EFFECT ON NUMBER OF QUESTIONS

We explore how varying the number of questions (dimensions) m impacts the quality and inter-
pretability of embeddings produced by CQG-MBQA. To adjust m, we reduce the output length of
the final binary embedding vector. Figure 4 illustrates the relationship among embedding quality,
interpretability, and m. As m grows, the Spearman correlation increases and stabilizes around 3,000
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Figure 4: Spearman correlation and cognitive load vs. the number of dimensions m. Higher Spearman
correlation signals better embedding quality; lower cognitive load implies greater interpretability.
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Figure 5: Spearman correlation and cognitive load vs. the binary classification threshold τ .

dimensions, indicating better embedding quality. This highlights the need for an efficient QA model
to manage computational costs while scaling up dimensions for optimal embedding quality.

However, a trade-off arises: as m increases, cognitive load increases, and the interpretability declines
due to a higher proportion of “yes” in the embeddings. This inverse relationship between embedding
quality and interpretability emphasizes the importance of balancing dimensions based on the task’s
requirements. Figure 4 also demonstrates the effectiveness of the CQG algorithm in generating
high-quality, discriminative embeddings with approximately 3,000 questions, achieving a balance
between embedding quality and interpretability without an excessive number of questions.

4.6 TRADE-OFF BETWEEN EMBEDDING QUALITY AND INTERPRETABILITY

To further investigate the balance between embedding quality and interpretability, we vary the binary
classification threshold τ that determines the final binary embedding vector. Figure 5 depicts a clear
trade-off between embedding quality and interpretability. Increasing τ improves the interpretability,
but this comes at the cost of reduced embedding quality, as the Spearman correlation decreases. This
is due to fewer active dimensions, leading to reduced values in the cognitive load, which are easier to
interpret but may lose subtle semantic distinctions.

More importantly, this trade-off presents an opportunity for user-driven customization. Depending
on different scenarios, users of our framework can dynamically tune the desired τ based on the
cognitive load to meet their needs. For instance, in scenarios requiring rapid decision-making or
where cognitive resources are constrained, users might prioritize interpretability by opting for a
higher threshold. On the other hand, in situations where nuanced analysis is crucial and resources are
abundant, a lower threshold could be chosen to maximize embedding quality. This flexibility makes
CQG-MBQA highly adaptable to different scenarios and user requirements.

5 CONCLUSION

In this paper, we introduce CQG-MBQA, a novel general framework for generating interpretable
semantic text embeddings by systematically creating binary questions and using the answers as
interpretable embedding dimensions. Our CQG method effectively addresses the challenges of
generalizability and quality issues during the question generation phase, while the MBQA model
provides an efficient, scalable solution for answering these questions, significantly reducing costs.
Through extensive experiments on STS, retrieval, and clustering tasks, we demonstrate that our
framework delivers performance comparable to advanced black-box models while being inherently
interpretable. Moreover, CQG-MBQA consistently outperforms other interpretable text embedding
models across various downstream tasks, further validating its effectiveness.
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A PROMPTS

A.1 PROMPT: CONTRASTIVE QUESTION GENERATION

We present the prompt template used for the Contrastive Question Generation (CQG) algorithm. The
input to the prompt template consists of two lists of texts: positive_examples and negative_examples.
The LLM is explicitly instructed to generate questions that yield “yes” answers for the positive
examples and “no” answers for the negative examples. To enhance the quality of the generated
questions and the potential generalizability to new texts, we prompt the LLM to avoid complex
sentence structures. Initial experiments revealed that if we do not require the LLM to avoid complex
sentence structures, the LLM tended to create discriminative questions by simply combining two
conditions to ensure “yes” answers for the positives, rather than identifying deeper relationships
between the positives and negatives. Additionally, we include formatting instructions at the end of
the prompt template to improve result parsing accuracy.

Generate 10 simple yet insightful yes/no questions that determine the properties of an article,
where for all questions, the answer will be “yes” for ALL the positive articles and “no”
for ALL the negative articles. Keep questions concise and avoid using complex sentence
structures with “and” or “or” unless necessary.
Positive Articles:
Positive {i}. {positive_example_i}
Negative Articles:
Negative {i}. {negative_example_i}
Instruction: Based on the excerpts provided, generate 10 simple yet insightful yes/no
questions that can accurately differentiate the positive articles from the negative articles. Each
question should be concise and framed in such a way that it will elicit a “yes” response for
ALL positive articles and a “no” response for ALL negative articles. Avoid using complex
sentence structures with “and” or “or” unless absolutely necessary. Format the questions in a
numbered list as shown below:
1. First simple yes/no question
2. Second simple yes/no question

A.2 PROMPT: QAEMB QUESTION GENERATION

The Question Generation Prompt #5 used in the QAEmb paper (Benara et al., 2024) is the most
general form prompt in the list, making it suitable for adopting it to generate questions for general-
purpose text embedding. It uses two lists of texts as input: example narrative sentences and example
yes/no questions. The original prompt instructs the LLM to "Generate a bulleted list of 100 specific,
non-overlapping yes/no questions that ask about aspects of the example narrative sentences that are
important for classifying them." This was originally designed for the task of fMRI prediction with
narrative sentences.

Following this approach, we designed a prompt template for experiments on QAEmb question
generation, also using two lists of texts as inputs: reference_articles and example_questions. The
example questions are sourced from the original QAEmb paper, while the reference articles are
randomly drawn from the training dataset.

Generate 10 diverse insightful yes/no questions that determine the properties of an article.
Reference Articles:
{i}. {reference_article_i}
Example Questions:
{i}. {example_question_i}
Instruction: Based on the excerpts provided, generate 10 yes/no questions that can determine
the properties of the articles. Format the questions in a numbered list as shown below:
1. First yes/no question
2. Second yes/no question
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Table 5: Question answering performance of the CQG-MBQA model.

Class Precision ↑ Recall ↑ F1-score ↑ Support

“no” 1.00 0.96 0.97 846,089
“yes” 0.74 0.97 0.84 112,645

Macro Avg. 0.87 0.96 0.91 958,734
Weighted Avg. 0.97 0.96 0.96 958,734

Accuracy ↑ 0.96

A.3 PROMPT: MULTI-TASK BINARY QUESTION ANSWERING

This section details the prompt template used to generate LLM answers for training the Multi-task
Binary Question Answering (MBQA) model. The prompt takes two inputs: the text_chunk, which is
the training article sample, and a list of questions to be answered. To optimize token usage for the
article sample and instructions, we group up to 20 questions in a single prompt.

Evaluate the following text chunk based on the yes/no questions provided.
Text Chunk:
{text_chunk}
Questions:
i. {question_i}
Instruction for the model: Please read the provided text chunk and answer each of the
questions with either "yes" or "no". Format the responses as follows:
1. yes/no
2. yes/no

B TRAINING AND EVALUATION OF THE MBQA MODEL

To ensure that the MBQA model produces faithful answers to the questions, we evaluate its question-
answering performance on a 10% held-out document set that was not used for training.

Data Collection. For each question generated in the previous question generation step, we randomly
sample 500 in-cluster samples, 300 neighboring cluster samples from 5 nearest clusters, and 200
random samples from the entire corpus. We use the pre-trained LLM (GPT-4o-mini) to generate
answers for each question across these samples. The LLM-generated answers are batched in groups
of 20 questions to train the multi-task binary classification model. Refer to Appendix A.3 for the
prompt used to collect answers. This approach allows us to gather data from a larger number of text
samples, thereby increasing the generalizability of our model.

Training. We train the MBQA model using the Adam optimizer with a learning rate α of 1e-4
and a batch size of one text sample. For each step, we calculate the loss based on all available
questions with answers from the previous data collection phase. The model is trained using the
BCEWithLogitsLoss function, where the weight is the ratio of “yes” answers to “no” answers in the
training data.1 Specifically, for CQG-MBQA, we set this weight to 7.5127, and for QAEmb-MBQA,
the weight is set to 4.9608. The model is trained for 3 million steps, at which point performance
begins to converge.

Evaluation. The classification results (with threshold τ = 0.5) on the held-out test set for CQG-
MBQA and QAEmb-MBQA are presented in Tables 5 and 6, respectively. The CQG-MBQA model
achieves an accuracy of 96% and a macro F1 score of 91%, while the QAEmb-MBQA model attains
a high 93% accuracy and 89% macro F1 score. These results demonstrate that MBQA can accurately
predict LLM-generated question answers, serving as a cost-effective substitute for the more expensive
LLM model in generating embeddings.

1https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.h
tml
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Table 6: Question answering performance of the QAEmb-MBQA model.

Class Precision ↑ Recall ↑ F1-score ↑ Support

“no” 0.99 0.93 0.96 886,749
“yes” 0.72 0.94 0.82 178,591

Macro Avg. 0.85 0.93 0.89 1,065,340
Weighted Avg. 0.94 0.93 0.93 1,065,340

Accuracy ↑ 0.93

Table 7: Estimated cost for embedding the MS MARCO dev set using LLM-generated answers.

Model Cost for Number of Questions

2,000 4,000 6,000 8,000 10,000

GPT-4o-mini $48,859 $97,792 $146,725 $195,570 $244,551
GPT-4o $1,454,000 $2,910,487 $4,366,946 $5,820,517 $7,278,566

MBQA $13 $20 $27 $34 $41

C COST ANALYSIS FOR LLM-BASED QA VS. MBQA

We estimate the cost of LLM-based QA and MBQA for producing question answers for interpretable
embeddings for the entire MS MARCO dev set.

LLM-based QA. Using LLMs to answer questions for document embedding is prohibitively expen-
sive. Table 7 shows the cost of running LLM-based QA on the MS MARCO dev set for various
numbers of questions across different models. We assume grouping 20 questions into one prompt,
using the format in Appendix A.3. Using this prompt, LLM-based Question Answering (QA),
which leverages LLMs to answer 10,000 questions for approximately 8.8 million articles in the MS
MARCO dev set, requires about 4.4 billion LLM inference passes and processes 1.5 trillion tokens.
Using the Batch API, the cost per 1 million tokens for GPT-4o is 2.5 USD for input tokens and 7.5
USD for output tokens, while for GPT-4o-mini, it’s 0.075 USD for input tokens and 0.3 USD for
output tokens.2 Based on the prices above, this incurs a substantial cost of 244,551 USD, even with a
cost-effective model (GPT-4o-mini) and a token-efficient prompting approach.

MBQA. The cost of running our MBQA model comprises two key components: (1) LLM API cost
for training data collection and (2) GPU runtime expenses. For the first component, an upfront cost
of approximately 31 USD is required to collect training data using GPT-4o-mini on the MEDI2
dataset. This cost covers 1,000 text-question pairs for each of 10,000 questions, resulting in a total
of 10 million text-question pairs. The cost scales down proportionally for fewer questions. For the
second component, we measure the training and inference time of our model on a single GTX 1080
Ti GPU. We estimate the cost based on a rental rate of 0.08 USD per hour.3 Training for 3 million
steps took around 36 hours, and inference times for the MS MARCO dataset varied by the number
of dimensions: 48 hours for 2,000 dimensions, 63 hours for 4,000, 73 hours for 6,000, 79 hours for
8,000, and 90 hours for 10,000 dimensions.

D IMPLEMENTATION DETAILS

D.1 THE CQG-MBQA FRAMEWORK

In the experiments, we train the proposed CQG-MBQA framework using the MEDI2 dataset
(Muennighoff et al., 2024). Detailed information about the model configuration and hyperparameters
used in our framework is provided in Table 8.

Data Pre-processing. We use the MEDI2 dataset, downloaded from the HuggingFace repository at
GritLM/MEDI2.4 We filter out files starting with task, as they are unsuitable for the training corpus.

2Costs obtained from https://openai.com/api/pricing
3Costs obtained from https://vast.ai/pricing/gpu/GTX-1080-TI
4https://huggingface.co/datasets/GritLM/MEDI2/tree/main
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Table 8: Hyperparameters used in our experiments.

Description Symbol Setting

Encoding model Enc UAE-Large-V1
Generation model LLM GPT-4o-mini-2024-07-18
Number of clusters k 5,000
Positive samples per cluster np 6
Hard negative samples per cluster nh 18
Easy negative samples per cluster ne 18
Positive probe samples per question pp 5
Hard negative probe samples per question ph 3
Easy negatives probe samples per question pe 2
Deduplication threshold θ 0.8
Top questions per cluster t 4
Learning rate of the MBQA Model α 1e-4
Binary classification threshold τ 0.5

From the remaining files, we extract both positive and negative instances of each data line. Since
the MEDI2 dataset contains instructions for queries and documents, we remove the instruction part,
leaving only the content. We merge all positive and negative instances from the filtered corpus and
run a simple exact deduplication to produce the final training text corpus.

1000 3000 5000 7000 9000
k

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

M
SE

Figure 6: Mean Squared Error (MSE) vs. number of cluster k for optimal k selection.

Contrastive Question Generation. The pre-processed training corpus contains 6.8 million unique
texts. We encode these texts using AnglE (UAE-Large-V1) and normalize the embeddings. We
then run KMeans clustering (Arthur & Vassilvitskii, 2007) with k = 5, 000 clusters and default
parameters, utilizing using the scikit-learn library,5 accelerated by Intel(R) Extension for scikit-learn.6
We pick k = 5, 000 based on the elbow point observed in the MSE vs. the number of clusters plotted
in Figure 6. Once clustering is complete, we generate questions for each cluster according to the
process described in Section 3.1. We sample random positive examples from within the cluster, hard
negatives from the three nearest clusters, and easy negatives from the remaining clusters. This process
yields 9,614 deduplicated questions, which serve as the final embedding dimensions.

Multi-Task Binary Question Answering. We train the MBQA model following the setup described
in Appendix B.

D.2 BASELINE MODELS

QAEmb-MBQA. To ensure a fair comparison with QAEmb (Benara et al., 2024), we adapt QAEmb
and develop QAEmb-MBQA by utilizing its example-based prompting method. Specifically, we
use the prompts originally designed for the fMRI task and modify them to create a prompt suitable
for generating a list of questions for the general text embedding task. Detailed prompts used for this

5https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMea
ns.html

6https://github.com/intel/scikit-learn-intelex
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Table 9: Model checkpoints used in our experiments.

Model Checkpoint

BERT bert-base-uncased

GloVe average_word_embeddings_glove.6B.300d

SimCSE (Unsup.) unsup-simcse-bert-base-uncased

SimCSE (Sup.) sup-simcse-bert-base-uncased

SBERT (New) all-MiniLM-L12-v2

OpenAI text-embedding-ada-002

AnglE UAE-Large-V1

BM25 bm25s

Table 10: Classification results, measured by Accuracy, on twelve datasets: AmazonCounterfactual
(AC), AmazonPolarity (AP), AmazonReviews (AR), Banking77 (Bank), Emotion (Emo), Imdb,
MassiveIntent (MaI), MassiveScenario (MaS), MTOPDomain (MTD), MTOPIntent (MTI),
ToxicConversations (TC), and TweetSentimentExtraction (TSE), all from the MTEB evaluation
suite (Muennighoff et al., 2023).

Type Model Accuracy ↑ (Classification)

AC AP AR Bank Emo Imdb MaI MaS MTD MTI TC TSE Avg.

B
la

ck
-b

ox

BERT 74.25 71.33 33.56 63.41 35.28 65.35 59.88 64.28 82.63 68.14 70 51.81 61.66
SimCSE (Unsup.) 67.09 74.48 33.85 73.55 42.22 69.63 59.84 66.25 81.71 59.23 68.82 53.36 62.50

GloVe 56.91 60.32 29.67 67.69 36.93 62.57 56.19 66.03 79.11 55.85 65.4 50.8 57.29
SimCSE (Sup.) 75.75 82.47 39.6 75.76 44.81 73.53 65.95 70.78 84.29 63.14 72.04 59.73 67.32
SBERT (New) 65.28 62.98 30.79 80.4 41.17 59.76 67.15 74.58 91.9 62.84 67.47 54.25 63.21

AnglE 75.55 92.84 48.29 87.69 51.75 92.78 76.5 79.75 94.02 76.92 71.09 59.75 75.58
OpenAI 75.94 86.72 44.78 80.66 48.74 77.98 70.15 75.33 92.13 64.68 72.29 61.81 70.93

In
te

rp
. Bag-of-Tokens 78.87 55.28 27.95 60.63 22.17 53.32 48.79 49.63 72.77 58.41 53.24 43.59 52.05

QAEmb-MBQA 59.81 84.43 40.31 77.72 39.68 89.27 62.52 68.87 80.95 60.23 59.91 56.03 64.98
CQG-MBQA 62.62 93.66 45.39 83.45 46.04 92.8 70.2 74.9 89.79 66.95 60.79 61.48 70.67

version are provided in Appendix A.2. Using this prompt, we generate questions 5,000 times, each
time utilizing np+nh+ne = 42 randomly sampled documents from the training corpus as reference
articles. The generated questions are deduplicated using a process similar to that of the CQG method,
where questions with a cosine similarity score higher than 0.925 (based on question embeddings) are
removed. The QAEmb question generation process resulted in a total of 10,654 unique questions.
Finally, the MBQA model is trained using the same approach as in our CQG-MBQA framework.

Black-box Models. For STS tasks, the results for SBERT (Ori.) and USE are sourced from (Reimers
& Gurevych, 2019), and the results for WhitenedCSE are taken from the best-performing model
in (Zhuo et al., 2023), all evaluated using the same metric. Table 9 shows the model checkpoints
used for each black-box model. For STS, retrieval (excluding MS MARCO and NewsSpectrum),
and clustering tasks, the results for BERT, GloVe, SimCSE (Unsup.), SimCSE (Sup.), SBERT
(New), OpenAI, and AnglE are retrieved from the MTEB leaderboard.7 The retrieval results for
BM25 (excluding the datasets MS MARCO and NewsSpectrum) are also retrieved from the MTEB
leaderboard, while our own experiments were conducted for MS MARCO and NewsSpectrum.

E ADDITIONAL DOWNSTREAM TASKS

In addition to the STS, retrieval, and clustering tasks presented in Section 4, we further evaluate
our framework on four additional downstream tasks from the MTEB benchmark: classification, pair
classification, reranking, and summarization.8 The classification results are provided in Table 10,
while results for the pair classification, reranking, and summarization tasks are detailed in Table 11.

7https://huggingface.co/spaces/mteb/leaderboard
8The bitext mining task from the MTEB benchmark is excluded because it involves multilingual inputs,

whereas our framework currently focuses on single-language scenarios, which are beyond the scope of this study.
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Table 11: Pair classification results, measured by Precision, on three datasets: SprintDuplicateQues-
tions (SDQ), TwitterSemEval2015 (TSE), and TwitterURLCorpus (TUC); Reranking results,
measured by MAP, on four datasets: AskUbuntuDupQuestions (AUDP), MindSmall (MS), Sci-
DocsRR (SDRR), and StackOverflowDupQuestions (SODQ); Summarization results, measured by
Spearman Correlation, on one dataset: SummEval, all from the MTEB evaluation suite (Muennighoff
et al., 2023).

Type Model Precision ↑ (Pair Classification) MAP ↑ (Reranking) Spear. Corr. ↑ (Sum.)

SDQ TSE TUC Avg. AUDP MS SDRR SODQ Avg. SummEval

B
la

ck
-b

ox

BERT 36.81 55.9 76.29 56.33 45.84 28.37 64.94 34.62 43.44 29.82
SimCSE (Unsup.) 78.03 61.01 81.37 73.47 51.57 28.62 66.33 39.35 46.47 31.15

GloVe 86.96 53.12 77.35 72.48 49.57 27.01 62.56 34.03 43.29 28.87
SimCSE (Sup.) 73.04 67.75 83.89 74.89 51.8 29.3 70.14 38.9 47.54 31.17
SBERT (New) 92.58 70.02 84.77 82.46 64.06 31.02 87.2 51.47 58.44 27.9

AnglE 97.24 78.17 86.33 87.25 64.2 32.51 87.49 55.32 59.88 32.03
OpenAI 92.17 75.28 87.22 84.89 62.05 31.45 81.22 50.54 56.32 30.8

In
te

rp
. Bag-of-Tokens 83.33 59.82 78.63 73.26 49.28 23.99 56.2 37.99 41.86 28.2

QAEmb-MBQA 43.71 60.04 73.21 59.65 54.7 28.73 70.86 40.81 48.78 28.57
CQG-MBQA 81.77 67.42 79.13 76.11 59.61 30.83 81.72 47.33 54.87 30.41

As shown in Tables 10 and 11, CQG-MBQA consistently outperforms existing interpretable text
embedding models and achieves results comparable to many advanced black-box models across all
examined downstream tasks. These findings underscore the framework’s ability to maintain a balance
between interpretability and embedding quality. Furthermore, the robust performance across diverse
text embedding tasks highlights its generalizability, offering a compelling solution for tasks requiring
both transparency and high semantic fidelity.

F ABLATION STUDIES

F.1 COMPONENTS IN THE CQG METHOD

We perform extensive ablation studies to analyze the contributions of various components in the CQG
method. Specifically, we investigate the effects of excluding certain elements: keeping only implicit
negatives (no explicit negatives), without hard negatives, without easy negatives, and omitting the
probing mechanism. The results of these experiments are presented in Table 12.

Implicit Negatives. To assess the impact of explicit negative samples, we modified the question
generation prompt (Appendix A.1) to rely solely on implicit negatives. The modified prompt is shown
as follows:

Generate 10 simple yet insightful yes/no questions that determine the properties of an article,
where for all questions, the answer will be "yes" for ALL the positive articles and "no" for
general articles. Keep questions concise and avoid using complex sentence structures with
“and” or “or” unless necessary.
(The rest of the prompt remains identical to the original version.)

As shown in the first row of Table 12, the absence of explicit negative samples reduces performance
from 77.60 to 76.57 (average across STS datasets). This demonstrates that explicit negatives are
essential for refining the discriminative power of the generated questions.

Without Hard Negatives. In this experiment, we removed hard negative samples by setting both the
hard negative samples per cluster (nh) and the hard negative probe samples per question (ph) to 0.
The results, presented in the second row of Table 12, reveal a performance drop to 76.26 compared to
77.60 when both hard and easy negatives are included. This indicates that hard negatives, which are
semantically similar to positives, play a crucial role in enhancing question discriminability.

Without Easy Negatives. To evaluate the significance of easy negatives, we excluded them by setting
the easy negative samples per cluster (ne) and the easy negative probe samples per question (pe) to 0.
As shown in the third row of Table 12, this exclusion results in a further decline in performance to
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Table 12: Ablation study of different components in the CQG method on STS datasets.

Model Spearman Correlation ↑ (STS)

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

CQG-MBQA (Implicit Negative) 67.67 78.58 72.48 79.24 78.64 82.13 77.24 76.57
CQG-MBQA (w/o Hard Negative) 66.73 77.14 70.48 78.77 76.21 81.07 76.44 75.26
CQG-MBQA (w/o Easy Negative) 68.90 76.12 73.17 79.63 75.08 81.59 79.34 76.26
CQG-MBQA (w/o Probing) 68.29 77.92 71.17 79.80 77.06 81.33 76.52 76.01
CQG-MBQA 69.21 80.19 73.91 80.66 78.30 82.69 78.21 77.60

Table 13: Ablation study of different encoders (i.e., Stella (stella_en_400M_v5), GTE
(gte-large-en-v1.5), and AnglE (UAE-Large-V1)) on STS datasets.

Model Spearman Correlation ↑ (STS)

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

CQG-MBQA (Stella) 54.45 75.66 64.92 76.13 74.20 74.01 73.37 70.39
CQG-MBQA (GTE) 63.34 73.28 68.24 78.45 73.64 75.08 73.20 72.18
CQG-MBQA (AnglE) 69.21 80.19 73.91 80.66 78.30 82.69 78.21 77.60

75.26, highlighting that easy negatives contribute to capturing broader semantic distinctions within
the dataset.

Without Probing. Finally, we removed the probing mechanism for this experiment, instead relying
solely on the original LLM-generated order of questions. The results, shown in the fourth row of
Table 12, indicate a performance reduction to 76.01 compared to 77.60 when probing is included.
This emphasizes the importance of the probing mechanism in ensuring high-quality, discriminative
question selection.

F.2 DIFFERENT ENCODERS

Beyond utilizing AnglE (UAE-Large-V1, 335M parameters) as the encoder in our CQG-MBQA
framework, an advanced encoder that ranks among the top performers on the MTEB benchmark,
we extended our evaluation to include two alternative encoders: Stella (stella_en_400M_v59,
435M parameters) and GTE (gte-large-en-v1.5, 434M parameters) (Zhang et al., 2024).
These models, with parameter sizes comparable to AnglE, are also recognized for their strong
performance on the MTEB benchmark, making them suitable candidates for comparison.

Table 13 presents a summary of the results for the STS task. While the alternative encoders deliver
competitive performance, the CQG-MBQA model consistently achieves its best results when paired
with AnglE as the encoder. This highlights AnglE’s effectiveness in capturing fine-grained semantic
distinctions and its synergy with the CQG-MBQA framework.

G QUESTION FILTERING FOR QAEMB

In our work, we adapted the QAEmb method for general text embedding by incorporating LLM-based
question generation and applying semantic deduplication as a post-processing step. In contrast, we
developed a Contrastive Question Generation (CQG) method, which includes a probing mechanism
to filter questions based on their discriminative ability and semantic deduplication as post-processing.

A notable difference between our CQG approach and the QAEmb baseline lies in the absence of an
equivalent sparsity penalty in QAEmb for filtering question discriminability. This raises the question
of whether the observed performance improvements in CQG stem primarily from the probing stage
or from the generation of higher-quality questions. To disentangle these factors, we conducted two
additional experiments: (1) Adding a Sparsity Penalty for QAEmb and (2) Removing the Probing
Stage in CQG.

9https://huggingface.co/dunzhang/stella_en_400M_v5
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G.1 ADDING A SPARSITY PENALTY FOR QAEMB

The QAEmb paper (Benara et al., 2024) proposes two post-hoc approaches for filtering questions, as
described in the paragraph titled “Post-hoc pruning of Q:”

(1) Using feature selection models (e.g., elastic net) with task labels.
(2) Using an LLM to select questions relevant to a task description.

Since our work targets a general text embedding task without task-specific labels, we followed the
second approach and developed an LLM-based method for filtering low-quality questions using
a sparsity penalty approach. Specifically, we clustered the questions generated by QAEmb and
employed an LLM to select subsets of questions from each cluster, varying the percentage of questions
retained from 10% to 90% of the cluster size.

To ensure consistency and precision, we crafted the following detailed prompt, which includes task
descriptions and explicit selection criteria:

You are an expert in natural language processing and text embeddings. From the following
list of questions, select the {num_to_keep} best questions that would be most effective for
text embedding tasks.

Task Description:
Text embedding is a process where we convert text into numerical vectors that capture
semantic meaning. Good questions for text embedding should help in:
1. Capturing the main topics and themes in texts
2. Understanding the semantic relationships between different pieces of text
3. Identifying key concepts and ideas
4. Distinguishing between different contexts and meanings
5. Enabling effective text similarity comparisons and search

Selection Criteria:
The selected questions should:
1. Be clear and well-formed
2. Cover diverse semantic aspects
3. Be general enough to apply to various texts
4. Avoid redundancy and similar phrasings
5. Focus on meaningful content rather than superficial details
6. Help in extracting semantic features useful for embedding generation
7. Exclude any questions that are unclear or ambiguous

Instructions:
- From the list below, select EXACTLY {num_to_keep} questions that best meet the above
criteria.
- Aim for diversity by choosing questions that cover a wide range of semantic features.
- List only the numbers of the selected questions, separated by commas. For example: "1, 5,
8, 12".
- Do not include any explanations or additional text in your response.
- Your response should strictly follow the format specified.

Here are the questions:
{i}.{questions}

Using this sparsity penalty approach, we evaluated the QAEmb-MBQA model with different
percentages of retained questions. As shown in Tables 14 and 15, the embedding quality remains
comparable or slightly lower than QAEmb-MBQA (Full), while the cognitive load is significantly
reduced. This trade-off highlights the value of sparsity penalty in improving interpretability without
severely impacting performance.
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Table 14: Ablation study of embedding quality for different percentages of best output dimensions to
keep after filtering in the QAEmb method on STS datasets.

Model # Questions Spearman Correlation ↑ (STS)

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

QAEmb-MBQA (10%) 870 58.96 62.1 56.83 66.89 61.6 68.38 71.25 63.71
QAEmb-MBQA (20%) 1,938 59.41 62.74 57.05 68.37 62.53 69.81 71.6 64.5
QAEmb-MBQA (30%) 2,961 59.83 63.08 57.59 69.04 63.16 70.68 72.1 65.07
QAEmb-MBQA (40%) 4,042 59.77 63.32 57.66 69.17 63.08 70.97 72.21 65.17
QAEmb-MBQA (50%) 5,127 59.65 63.22 57.64 68.99 63.29 70.88 72.16 65.12
QAEmb-MBQA (60%) 6,064 59.58 63.22 57.69 68.88 63.0 71.03 72.12 65.07
QAEmb-MBQA (70%) 7,063 59.35 63.07 57.48 69.08 63.17 70.98 72.16 65.04
QAEmb-MBQA (80%) 8,103 59.49 63.2 57.67 69.15 63.1 71.05 72.24 65.13
QAEmb-MBQA (90%) 9,153 59.29 62.94 57.46 69.14 62.95 71.03 72.28 65.01
QAEmb-MBQA (Full) 10,654 59.40 63.19 57.68 69.29 63.18 71.33 72.33 65.20

CQG-MBQA (Full) 9,614 69.21 80.19 73.91 80.66 78.30 82.69 78.21 77.60

Table 15: Ablation study of cognitive load for different percentages of best output dimensions to keep
after filtering in the QAEmb method on STS datasets.

Model # Questions Cognitive Load ↓ (Normalized Cognitive Load ↓) (STS)

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

QAEmb-MBQA (10%) 870 144 (16.6%) 141 (16.2%) 143 (16.4%) 125 (14.4%) 139 (16.0%) 121 (13.9%) 84 (9.7%) 128 (14.7%)
QAEmb-MBQA (20%) 1,938 310 (16.0%) 303 (15.6%) 309 (15.9%) 272 (14.0%) 299 (15.4%) 263 (13.6%) 184 (9.5%) 277 (14.3%)
QAEmb-MBQA (30%) 2,961 468 (15.8%) 453 (15.3%) 465 (15.7%) 411 (13.9%) 452 (15.3%) 398 (13.4%) 283 (9.6%) 418 (14.1%)
QAEmb-MBQA (40%) 4,042 633 (15.7%) 612 (15.1%) 631 (15.6%) 557 (13.8%) 609 (15.1%) 541 (13.4%) 387 (9.6%) 567 (14.0%)
QAEmb-MBQA (50%) 5,127 799 (15.6%) 774 (15.1%) 797 (15.5%) 703 (13.7%) 772 (15.1%) 684 (13.3%) 489 (9.5%) 717 (14.0%)
QAEmb-MBQA (60%) 6,064 935 (15.4%) 907 (15.0%) 933 (15.4%) 828 (13.7%) 908 (15.0%) 803 (13.2%) 575 (9.5%) 841 (13.9%)
QAEmb-MBQA (70%) 7,063 1,086 (15.4%) 1,052 (14.9%) 1,085 (15.4%) 961 (13.6%) 1,049 (14.9%) 935 (13.2%) 669 (9.5%) 977 (13.8%)
QAEmb-MBQA (80%) 8,103 1,241 (15.3%) 1,202 (14.8%) 1,239 (15.3%) 1,097 (13.5%) 1,199 (14.8%) 1,067 (13.2%) 766 (9.5%) 1,116 (13.8%)
QAEmb-MBQA (90%) 9,153 1,398 (15.3%) 1,352 (14.8%) 1,398 (15.3%) 1,240 (13.5%) 1,351 (14.8%) 1,209 (13.2%) 873 (9.5%) 1,260 (13.8%)
QAEmb-MBQA (Full) 10,654 1,626 (15.3%) 1,571 (14.7%) 1,625 (15.3%) 1,443 (13.5%) 1,577 (14.8%) 1,408 (13.2%) 1,018 (9.6%) 1,467 (13.8%)

CQG-MBQA (Full) 9,614 481 (5.0%) 439 (4.6%) 458 (4.8%) 426 (4.4%) 478 (5.0%) 446 (4.6%) 413 (4.3%) 449 (4.7%)

G.2 REMOVING THE PROBING STAGE IN CQG

To isolate the effect of the probing mechanism, we conducted an experiment where the probing stage
was removed from the CQG method. In this configuration, we used the original LLM-generated
question order for evaluation. The results, labeled as CQG-MBQA (w/o Probing), are presented in
Table 12 in Appendix F.1.

When comparing CQG-MBQA (w/o Probing) with CQG-MBQA and QAEmb-MBQA, as reported
in Table 1, we observe that CQG-MBQA (w/o Probing) still outperforms QAEmb-MBQA. However,
the probing mechanism contributes additional performance gains, underscoring its importance in
refining the discriminative power of the questions.
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