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Abstract
A key component for building trust in automated systems
is improved transparency into the decisions made by the
automation and the reasons behind those decisions. Cur-
rent models of transparency, however, assume that the op-
erator has the time and mental capacity to digest the trans-
parency information the moment it is provided. Often times,
this is exactly the moment where the operator is most over-
loaded, which is why they delegated to automation in the
first place. This paper presents the idea of Transparency In-
formation Pacts, or TIPs, as a way to formally represent
transparency information and better allow the information to
be requested and conveyed back to the human when they
are best able to use it. TIPs build off the idea of Lifecycle
Transparency presented in (Miller 2021), which encourages
the use of other mission phases—pre-mission planning and
post-mission debrief—for conveying transparency informa-
tion where appropriate. Here we present multiple types of
TIPs, how they are structured and used, along with illustra-
tive examples.

Introduction
Transparency in automation and AI systems is the ability for
the operator to know, or see—as “through glass”—the work-
ings of the machine. Bhaskara, Skinner and Loft’s recent re-
view of the literature on transparency (Bhaskara, Skinner,
and Loft 2020) says that “In a transparent system, informa-
tion regarding the agent’s actions, decisions, behavior, and
intentions is communicated to the operator through an ap-
propriate interface with the aim of improving trust in the sys-
tem, performance, and operator situation awareness (SA).”
Increasing the transparency of a system has generally been
shown to improve human SA, trust, and frequently, overall
human-machine performance compared to systems which
include less or no transparency (Mercado et al. 2016; Lyons
and Havig 2014; Ososky et al. 2014; de Visser et al. 2014).

But there is a problem inherent in the concept of trans-
parency as it has frequently been used and researched. Au-
tomation is generally installed precisely because human op-
erators do not have time, skill, attentional capacity, or ad-
equate precision to perform the task that the automation
does when it does it. And yet, for transparency to func-
tion and yield benefit, the human must be able to absorb
the transparency information and use it to understand what
the automation is doing and determine whether and how to

intervene—all in addition to whatever else they need to be
doing.

A likely solution to this problem is to take advantage of
reduced human task load at other portions of the human-
machine integration lifecycle to either transfer transparency
information to reduce the need to do so during the highly
constrained period of execution or to create conditions so
that transfer at execution time will be more efficient and re-
quire fewer resources. This might be called taking a LifeCy-
cle Transparency (LCT) perspective (Miller 2021). Echoes
of this approach in human-human interactions can be seen
in organizational development of standard operating pro-
cedures, training in the execution of standard reactions to
known or anticipated situations, detailed pre-mission plan-
ning and “red teaming”, and post-mission debriefing, re-
views, and discussions to foster future improvement.

As we have begun researching and designing to support
LCT, however, it has become apparent that a missing or
under-represented element for lifecycle integration between
humans and automation is the existence of the ability to
communicate about transparency activities and information.
Chen articulated three levels of transparency information
having to do with (1) What is going on and what the agent
is trying to achieve, (2) Why the agent is doing what it does,
and (3) What should the operator expect to happen (Chen
et al. 2014). Communication about these constructs, how-
ever, requires a shared understanding (and even a shared
vocabulary) of (1) states of the world, (2) plans or pro-
cesses that affect or achieve those states, (3) intentionality to
achieve those states or perform those processes, and (4) in-
formation presentation capabilities. That is, as human teams
do in natural language, we need the ability to talk about these
entities outside of the context of execution if we are to gain
benefits in execution intervals.

For the most part, items 1-3 are well covered in exist-
ing user interfaces. Indeed, the “Playbook” approaches to
planning and intentionality expressions described in (Miller
and Parasuraman 2007) are, in a sense, designed to be es-
pecially efficient means of communicating in well-trained
teams. What was missing, however, was an ability to com-
municate about the conditions under which specific kinds
of transparency information might be desired and expected.
Plugging that gap is the focus of the work reported here.

This paper will present the concept of Transparency Infor-



mation Pacts (TIPs), their structure and taxonomy, as well
as examples of how TIPs can be integrated into existing
Playbook-based systems to improve transparency across the
mission lifecycle. TIPs are our answer to what we have iden-
tified as as missing piece in the prior use of plays for human-
machine teaming. In seeking to define both a human and
a machine representation for what plays are and how they
can be represented across lifecycle phases in ways useful to
both humans and machines, we identified a need to explicitly
represent and reason about transparency information, and to
do so in ways that would connect pre-mission planning, in-
mission execution and information management, and post-
mission debriefing phases of operation and their contexts.

Related Work
TIPs are designed to address the need for greater trans-
parency into the reasoning and actions of automated sys-
tems during human-in-the-loop operations, while minimiz-
ing the cognitive workload required to digest transparency
information in-mission. Transparency itself is one manner to
establish reliability and predictability in unmanned systems,
which enables properly calibrated trust between the human
and automation (Bhaskara, Skinner, and Loft 2020; Stowers
et al. 2017; Lyons et al. 2019; Smith 2019). Examples on
achieving greater system transparency include improved in-
terface design (Kilgore and Voshell 2014), more detailed in-
formation readouts (Stowers et al. 2020), improved data fu-
sion (Simpson, Brander, and Portsdown 1995), and explain-
able artificial intelligence (XAI) (Shin 2021).

Multiple models have been proposed for operationalizing
system transparency: Chen et al.’s revised SA Situational
Awareness Transparency model (SAT) and Lyons’ model
of robot-to-human and robot-of-human transparency (Chen
et al. 2018; Lyons 2013) are the two primary taxonomies
we referenced when designing TIPs. The two models are
fairly similar, but the main difference between the two is that
Chen et al. include bidirectional transparency (i.e., the hu-
man must also convey information to the robot) and Lyons’
model adds the concept of “robot-of-human” transparency,
which communicates the robot’s awareness of factors re-
lating to its human teammates. Robot-to-human, robot-of-
human, and bidirectional transparency combined represent
mental model synchronization and general awareness of the
human and automation of each other.

There is a problem with the current concept of trans-
parency, however, that requires more precise definitions. As
mentioned previously, autonomous systems are specifically
designed to work when the human operator is not actively
monitoring or issuing control inputs to the automated parts
of the system. Despite this, laboratory experiments demon-
strating benefits for automation often involve operators who
are actively monitoring the automation’s reasoning and be-
haviors (Lyons and Guznov 2019; Mercado et al. 2016) and
therefore are not representative of most real-world contexts.
Other work on trust and transparency with real world scenar-
ios and participants (Lyons et al. 2016; Sadler et al. 2016) ei-
ther involved limited simulations with novel technologies or,
in the case of (Ho et al. 2017), involved pilots reporting on
their interactions with novel automation after flying. Both

the novelty of the automation and the informal experimen-
tal settings could provide more monitoring time, attentional
capacity, and motivation than would be present in a fully op-
erational setting.

This paper describes a new approach to transparency that
will integrate into real-world systems while not assuming
there will be available cognitive workload on the part of the
operator at any particular point during the mission. Our ap-
proach is to create information contracts, or “plays”, simi-
lar in structure and content to traditional Playbook plays for
human-machine teaming (Miller and Parasuraman 2007).
Plays represent a shared model of the upcoming task, often
in a hierarchical format, for both the human operators and
the automation under their control, much in the same way
sports teams use plays as an alternative to fully explaining
the upcoming plan to every player beforehand every time
it is executed (see Figure 1 for an example graphical rep-
resentation of a play). A play in a human-machine system
provides bounds and reasonable defaults for operation, but
otherwise leaves the details for the automation to fill in. For
instance, one play might task a group of vehicles to ingress
from some starting point into a given region. The play might
specify maximum route length allowed, whether to proceed
with radio silence or not, or no-go zones to avoid. The au-
tomation then decides on the exact route. The Playbook ap-
proach has previously proven to be an effective method of
supervisory control (Fern and Shively 2009).

Similarly, TIPs can provide reasonable bounds and default
values for information requests—for instance, if the opera-
tor wants an explanation for why a group of unmanned vehi-
cles under their control deviated from their existing course,
it could send that request in the form of a TIP that specifies
who should respond (all vehicles or just one of them), how
deep an explanation is required (just the event that caused
the change, or a full chain of reasoning), and a timeline
for receiving the response (within 10 minutes, or leave for
post-mission debrief). As with plays, these will have sensi-
ble defaults so the operator can issue the information request
quickly when needed. The configurable timeline for sending
and receiving the request allows the operator to make use of
displaced transparency (Miller 2021)—in other words, shift-
ing the conveying of transparency to a time when the oper-
ator is better able to digest it (e.g., during post-mission de-
briefing).

TIPs can be tightly integrated with Playbook-based sys-
tems, and can themselves be encoded as plays—just ones
that require information exchange as the action instead of
physical actions in the world. TIPs could also work in con-
cert with existing social AI frameworks (Ehsan et al. 2021;
van der Vecht et al. 2018), which aim to move AI inter-
actions and explainability into more human terms. For in-
stance, in (Ehsan et al. 2021) the authors describe how so-
cial and organizational contexts are important to consider in
the context of XAI systems—the “who”, “what”, “why”, and
“when” of a given action by an AI. All of these contexts can
be encoded within a TIPs specification.

Finally, previous research has demonstrated that high-
performing, well-integrated human teams actually commu-
nicate less often than other teams (Entin and Serfaty 1999),



Figure 1: Graphical representation of an Overwatch play from (Miller et al. 2004).

likely because they have better integrated mental models,
better communication shortcuts and planning procedures,
and the experience of repeated interactions over time, all of
which make them better able to predict what other team-
mates will do. In essence, they have already exhibited dis-
placed transparency in the form of planning and learning
from previous interactions, and may already have a TIPs-like
communication structure. Our goal with this work is to move
toward a formal definition of transparency information ex-
change in order to improve the function of human-machine
teams in the same manner, even when the natural built-up
trust from repeated interactions and tight integration is not
yet present.

TIPs Taxonomy
The inclusion of TIPs within, or in addition to, a play will
dictate when and how information about specific parame-
ters should be conveyed when a play is active. As such, it
serves as a contract between the operator, or their manage-
ment, and the automation about the circumstances in which
information will be captured and presented. This enables
lifecycle distribution and negotiation about information, as
well as the development of expectations about what infor-
mation will be presented when. This kind of expectation is
anticipated to have payoffs for information transference and
processing–and associated situation awareness–in terms of
both allowing interpretation of the lack of information (e.g.,
no fuel status warning as long as certain conditions hold) and
in terms of setting expectations of the kinds of information
to be presented when.

TIP Structure

As plays themselves, TIPs must contain the following com-
ponents, although they may also include other components:

• Triggers: Preconditions that must evaluate to true before
actions are executed.

• Actions: Operations that will execute when all triggers
are met.

• Parameters: Additional information to take into account
when evaluating triggers and executing actions.

• Caller: The actor who called, or requested, the TIP/Play.
• Recipient: The actor on whom the TIP/Play is called.

Additionally, it may be useful to codify a topic for the TIP.
The topic refers to the action, state variable, or piece of in-
formation with which the TIP is concerned. For instance, a
TIP requesting an unmanned vehicle notify the human oper-
ator when battery level drops below 30% would have battery
level as the topic. Similarly, a TIP requesting the vehicle no-
tify the operator when a previously called action play begins
execution would have that play as its topic.

Triggers are defined as any Boolean expression over the
state variables available to the TIP callee. TIP actions are
distinct from standard play actions in that they satisfy re-
quests for information; they are not physical actions in the
real world (although physical actions may need to occur to
satisfy the information request).

TIPs can theoretically include multiple callers—the actor
who made the explicit TIP call, as well as other actors whom
the caller would like to receive the information from the TIP
request (e.g, the operator may call a TIP on a single UAV
to alert them and all other human operators when a specific
event occurs). Similarly, there may be multiple callees, for
instance when the human wants to receive an alert from any
UV upon sighting an unknown aircraft.

TIP Types and Classification
We have codified six types of TIPs that we believe cover the
range of information requests during a human-automation
interaction scenario:



• Alert: Inform when a certain trigger has occurred and
can have varying degrees of urgency. An ALERT TIP
might be called on a UV to request it notify the human
operator when the next stage of its mission phase or on-
going play begins (e.g., ”Ingress complete, beginning loi-
ter while waiting for further instruction.”).

• Monitor: Provide continuous updates about a target state
variable. A MONITOR TIP might be called on a UV
asking it to track a sighted unknown UV, providing con-
tinuous estimates of it’s position within the area of oper-
ations.

• Request: Retrieve and return a specific piece of informa-
tion to the callee. A REQUEST TIP might be called on
a UV to request diagnostic information about its onboard
camera for analysis by the human to determine the cause
of a malfunction.

• Explain: Provide justification for an action. This could
be associated with a specific action, or all actions within
a particular time period or area of operation. An EX-
PLAIN TIP might be called on a UV asking it to justify
why it altered course when the caller was expecting it to
maintain heading.

• Evaluate: Assess the impact of a given event on the cur-
rent plan. An EVALUATE TIP might be called when un-
expected rain is forecast for part of the area of operations
and the human operator wants to know the impact modi-
fying existing no-fly zones to avoid the rain will have on
nearby UV plans.

• Prepare: Prepare a new plan or play in response to some
supplied information. A PREPARE TIP might be called
when an operator wants to force a UV to replan an ingress
route after the original route closes unexpectedly.

Categorizing TIPs characteristics in different ways can
help us understand the types of information different TIPs
might require, the different modes of presentation in a
human-readable interface, and other essential features re-
quired by different TIP structures. Two important character-
istics of any TIP to keep in mind when authoring them and
designing interfaces are what the TIP is concerned with, and
when is the TIP relevant.

What the TIP caller is requesting transparency informa-
tion about can be one of two categories: managed (an asset
or feature of the world under the operator or their team’s
control) and unmanaged (not under their control). This dis-
tinction is important because it impacts how the information
is gathered and how quickly, as well as how reliable one can
expect the information to be. An operator calling a TIP on a
platform under their control, about a state variable concern-
ing that platform, can be expected to result in a quick an-
swer that is likely accurate, as the platform merely needs to
inspect its own state or query its own sensors. An operator
calling a TIP requesting information about an unmanaged
platform or world state not under their control, however, of-
ten requires extra action in the world on the part of the callee,
as well as inference about an external state that is not fully
observable.

When the TIP is active, and when the event with which
the TIP is concerned occurred, also significantly impacts

how the calling human specifies the TIP and how it is visu-
alized in their display. The event the TIP is focused on can
be in the past, present, or future; and the TIP can be called
and executed immediately (present) or later (future). Cer-
tain TIPs are only applicable at certain times—for instance,
ALERT TIPs can be called immediately or planned for the
future, but will always be about future (potential) events.
Simiarly, EXPLAIN TIPs are focused on events that oc-
curred in the past, rather than future events—an explanation
cannot be provided for something that has not happened yet.
Interface designers must take this information into account
when creating display components showing TIP status or
progress. For instance, as ALERT TIPs are concerned with
future states, they do not need to take up a portion of the
display at all times in the same way a MONITOR TIP does.

TIPs States
Because TIPs drive user displays, it is necessary to define
states and transitions to provide the interface with accurate
and up-to-date information on a given TIP’s state. For in-
stance, after an explain TIP is called, how does the caller
distinguish between that TIP being “called” versus “received
and in progress” versus “complete and ready for human con-
sumption”. In the following subsections, we present state di-
agrams to cover different TIP types.

Alert, Monitor, and Request ALERT, MONITOR, and
REQUEST share the same state diagrams due to the sim-
ilar nature of their structure and outcome. Underlying both
is a process whereby the automation assesses the value of
some aspect of the world state—for instance fuel level, wind
speed, or existence of adversarial entities—and reports it
back to the human. In the case of ALERT, this is done when
a predefined trigger condition is hit; in the case of MONI-
TOR, this is done on a periodic schedule; and in the case of
REQUEST, it is done once as soon as the human specifies.
As with all TIPs, these start as available, when loaded
from a TIP library during pre-mission planning, then either
before or during the mission can be staged, where they are
brought up by a user for manipulation pre-call, or called,
where the user has sent the TIP out to callees for evaluation.
During the mission, a called ALERT TIP goes through tran-
sitions between active, where the automation is actively
evaluating the TIP to determine if the trigger conditions are
met, at which point it moves through a triggered state
and a returned state, where it waits until brought up in
the user’s display and is presented (see Figure 2). For
MONITOR and REQUEST TIPs, there is no concept of
being triggered, as MONITORs are sustained, periodic
reports on information, and REQUESTs begin immediately
after the human’s call. Therefore, they move immediately
from active to returned once the data has been gath-
ered and sent to the human.

Explain EXPLAIN TIPs differ from ALERT, MONI-
TOR, and REQUEST TIPs in that they cannot be satisfied
by simply relaying a pre-specified information state in the
world—instead, the human instructs the automation to ex-
plain some past decision point or time period, at which point
the automation must perform some work to identify relevant



Available Staged

Triggered

Loaded from 
pre-mission 

library

Returned• Will be available to 
Caller in their 
interface

Called

• Caller has brought up TIP 
for further specification

• Can tweak parameters, 
callees, etc.

• TIP not yet sent

• Caller has sent TIP out 
to callees

• Due to comm. 
restrictions, may not 
immediately become 
received/active

• (ALERT only) trigger 
condition for alert 
met.

Presented

• Information 
presented in caller’s 
interface

Pre-mission

In-mission

Pre-mission or in-mission

Alert →

Monitor/Request →

• (MONITOR only) 
continuous stream of 
updates returned

• (ALERT/REQUEST) info 
returned to caller

Canceled

Active

• Calles have received TIP
• (ALERT only) trigger 

conditions monitored
• (MONITOR only) 

transient state

M
o

n
it

o
r/

R
ep

ea
ti

n
g 

A
le

rt
 →

Figure 2: State diagram for ALERT, MONITOR, and REQUEST TIPs.

information and use it to generate that explanation. The au-
tomation sends the explanation to the human either on com-
pletion, or holds in a ready state to be returned to the hu-
man later on in the mission or during post-mission debrief.
Therefore, the state diagram diverges from the previous TIPs
after the active state into either ready or failed, de-
pending on whether a valid explanation could be generated
(see Figure 3). Note that although there is no failed state
in the previous diagram (Figure 2), all TIPs can fail if, for
example, communication between the human and automa-
tion does not allow for all the information to be transmitted
in a timely manner. EXPLAIN TIPs simply have an extra,
unique failure case that can occur even when communication
is good.

Evaluate and Prepare EVALUATE and PREPARE
TIPs ask the automation to assess the impact of some event,
decision, or other piece of information on their current or
planned execution. In the case of EVALUATE, this in-
volves assessing whether the current plan is still valid or
needs modification. For PREPARE, this involves generat-
ing a new plan that takes into account the provided TIP
parameters. Although the automation’s job may be com-
plex, the lifecycle of EVALUATE and PREPARE TIPs are
the simplest of the TIPs presented so far. Like other TIPs,
EVALUATE and PREPARE can be staged and called
in-mission or pre-mission, then once active, the automa-
tion works to either evaluate the impact to the provided in-
formation on their current plan or generate a new plan. The
TIP moves to ready once the automation has completed its
analysis or created the plan, and later the TIP information
is returned and presented to the user (see Figure 4),
much like an EXPLAIN TIP.

Example Scenario
We have developed an abstract domain, named “Lord of the
Dragons.” This domain has started as a variant of the Logis-
tics (Veloso 1992) AI planning domain and focuses on ad-
versarial decentralized planning and execution. In this sce-
nario, three groups of dragons, overseen by elves, must carry
rocks from their predesignated starting locations to a given
goal location as specified in the initial state of planning prob-
lems. The initial state also describes geospatial constraints,
such as boundaries of the area in which dragons work and
terrain properties, which affect the solution plans and routes
the dragons can fly to achieve their goals.

The domain can also be configured to include any number
of adversarial agents, called orcs, that present obstacles for
the plans of the dragons. Different classes of planning prob-
lems in this domain can be generated by varying positioning
of the orcs, different capabilities that will harm the dragons,
and the dragons’ ability to neutralize them. there can be dif-
ferent breeds of orcs in a world and each breed is typically
capable of using a suite of weapons such as spears and bow-
and-arrows against dragons. Some orc breeds are capable to
lure deafen dragons by the sweetness of their songs.

In our current version of the domain, we assume all of the
orcs are stationary agents; i.e., they do not change their loca-
tion from their initial positioning during a planning episode.
However, a planning problem might be incomplete—an ini-
tial state is not guaranteed to specify the locations and capa-
bilities of all the orcs that are present in the world.

As an example problem instance, consider the following
scenario. On their ingress, the dragon team discovers un-
expected pop-up orc units to the west of the known threat
locations. They report this to their commanding elf, who ac-
tivates a REQUEST TIP for more info about the orcs. This
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goes unanswered however, because the dragons were told
to remain silent not to invoke the singing orcs, and this in-
formation was not conveyed to the elf in pre-mission plan-
ning. The elf asks for an EXPLAIN TIP to understand why
the REQUEST TIP went unanswered. The answer may be
provided immediately or deferred for review until after the
flight.

The dragons change their formation so that the fire-
breathing ones can clear the orc units and keep the other
dragons safe. The commanding elf directs the dragons to an
alternative flight route through the valley to the east of the
world. TIPs provide the elf with notification of the new orcs
and a pre-planned EVALUATE for plan variations (e.g., en-
ergy (food), time, and fire usage).

The forward dragon, A, in the flight pattern screams at
the orcs to deafen them, whereas others, B and C, breath
fire at the orcs. In the process, the elf anticipates energy and
fire-breathing strength shortage and calls in a new flight of
dragons: D, E, F, and leader G. Dragon C misses its target
orc unit due to wind conditions. The lead dragon G engages.
The commanding elf takes control of all of the the other
dragons while dragon G is busy with the target. TIPs alert
the elf about the energy drops on A, B, and C (due to the
replan route). The elf directs these out of the area and gives
the dragons D, E, F to G to control. The team neutralizes the
orcs, arrives at their goal location, and drops their rocks.

We are planning to use this domain in our empirical and
walkthrough analyses of TIPs and how helpful TIPs can be
for a user. The following summarizes a “points of variance”
example, describing what would happen with or without
TIPs in a simple scenario as described above: on approach,
the dragons monitor weather, their energy levels, location
of other other dragons, and watch for threats. Monitoring

time and attention would be much involved without TIPs,
and could be theoretically be reduced with ALERT TIPs.
Later in flight, after the orc units are discovered, Dragon C
starts its fire-breathing maneuver. The overseeing elf inserts
a TIP: ALERT if an orc unit is targeted and missed. Without
this TIP, the elf has to monitor for effects continuously, sig-
nificantly increasing their mental workload. The lead dragon
destroys orc units and the elf gives the custody of dragons D,
E, and F to the lead dragon. A new TIP triggers: ALERT if
energy level is below 40%. In the absence of TIP, the elf
may not remember to check for the energy levels until it is
too late.

Conclusions
This paper presents the novel concept of Transparency Infor-
mation Pacts (TIPs), which serve as contracts between hu-
man and automation under their oversight that aim to guar-
antee when and how certain information will be delivered
to the human. The goal of TIPs is to provide a vehicle for
improved transparency across the lifecycle of a mission.

To that end, we have described in detail how TIPs are
structured, their requirements, and their output. We have
identified several types of TIPs that could be implemented
in human-machine teaming systems, although we anticipate
future work will refine and expand this list as new types
of information and new methods of conveying and achiev-
ing transparency are developed. Our scenario illustrates how
TIPs could be used in a situation where one or more human
operators are working alongside multiple autonomous vehi-
cles, yet TIPs have wide applicability to any domain where
humans and automation work in tandem, including indus-
trial control systems, robot-assisted medical procedures, and
cybersecurity.
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Figure 4: State diagram for the EVALUATE and PREPARE TIPs.

Future work will focus on implementing and integrating
TIPs into existing simulations for human-machine teaming,
with the eventual goal of deploying TIPs on real world sys-
tems. At the same time, we plan to continue research into
improving lifecycle transparency, and expanding and refin-
ing TIPs as needed to account for new scenarios as they
are uncovered. Hopefully, future human-machine systems
will employ TIPs as an essential tool in improving coordi-
nation and situational awareness between humans and au-
tomation, thereby improving the capabilities of these sys-
tems and allowing both the human and automation to focus
more time on the mission components to which they are each
best suited.
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