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Abstract—This paper addresses the behavior of the Lovász
number for dense random circulant graphs. The Lovász number
is a well-known semidefinite programming upper bound on the
independence number. Circulant graphs, an example of a Cayley
graph, are highly structured vertex-transitive graphs on integers
modulo n, where the connectivity of pairs of vertices depends
only on the difference between their labels. While for random
circulant graphs the asymptotics of fundamental quantities such
as the clique and the chromatic number are well-understood,
characterizing the exact behavior of the Lovász number remains
open. In this work, we provide upper and lower bounds on the
expected value of the Lovász number and show that it scales
as the square root of the number of vertices, up to log log
factor. Our proof reduces the semidefinite program formulation
of the Lovász number to a linear program with random objective
and constraints via diagonalization of the adjacency matrix of a
circulant graph by the discrete Fourier transform (DFT). This
leads to a problem about controlling the norms of vectors with
sparse Fourier coefficients, which we study using results on the
restricted isometry property of subsampled DFT matrices.

Index Terms—Semidefinite programming, random graphs, re-
stricted isometry property.

I. INTRODUCTION

The Lovász number ϑ is a well-known statistic of an
arbitrary simple undirected graph G. As Lovász first observed
in [18], one can define a number ϑ(G) as the value of a certain
semidefinite program (SDP) whose constraints depend on the
adjacency matrix of G. The Lovász number provides an upper
bound on the Shannon capacity of the graph and satisfies the
following inequalities:

ω(G) ≤ ϑ(G) ≤ χ(G), (1)

where ω(G) is the size of the largest clique in G, χ(G) is
the chromatic number of G, and G is the complement of
G. This observation is remarkable, since ϑ is computable in
polynomial time, while ω and χ are famously NP-hard to
compute.

The Lovász number has been studied for a variety of ran-
dom graph models including the classical Erdős-Rényi (ER)
random graph G(n, p). Its expected value was first studied
by Juhász [15], who showed that Eϑ(G) = Θ(

√
n/p) for

log6 n
n ≤ p ≤ 1/2. For p = 1/2, Arora and Bhaskara [1]

showed that ϑ(G) concentrates around its median in an interval
of polylogarithmic length. In the sparse regime p < n−1/2,
it has been further shown that ϑ(G) concentrates around its
median in an interval of constant length [9]. To the best of our
knowledge, determining the correct constant in the Θ(

√
n/p)

asymptotic remains an open question.

In this work, we focus on a class of random circulant graphs
(RCGs), a family of vertex-transitive graphs with a circulant
adjacency matrix; see Definitions 3 and 4. We emphasize that
RCGs are fully determined by the connectivity of any given
single vertex. Therefore, a dense RCG can be generated with
n−1
2 random bits, where each bit affects the presence of n

edges, in contrast to the n(n−1)
2 random bits in G(n, 1/2),

each affecting just one edge. In this sense, RCGs may be
viewed as a “partial derandomization” of ER graphs. Indeed,
circulant graphs are precisely Cayley graphs on the group Zn,
and general random Cayley graphs have long been studied for
similar purposes in theoretical computer science.

It is therefore of interest to understand to what extent the
above results for ER graphs also apply to RCGs. For dense
RCGs, the asymptotics of the clique number and the chromatic
number are well-understood: [12] showed a high-probability
upper bound on the clique number ω(G) = O(log n), and
later [11] proved that the chromatic number is at most (1 +
o(1)) n

2 log2 n with high probability. These results imply bounds
on the Lovász number through (1), but the resulting upper and
lower bounds are far apart.

In this work, we prove much sharper upper and lower
bounds on the expected Lovász number of a dense RCG.

Theorem 1. There exists a constant C > 0 such that, for a
dense random circulant graph G on n vertices (Definition 4),

√
n ≤ Eϑ(G) ≤ C

√
n log logn. (2)

Proof Strategy: Our proof of the upper bound in Theorem 1
relies on the algebraic structure of circulant graphs. First,
following [19], we transform the SDP formulation of ϑ(G) to a
linear program (LP) using the fact that the circulant matrices
are diagonalizable by a discrete Fourier transform (DFT) .
Lemma 2 gives the resulting LP:

ϑ(G) = max
(y0,...,yn−1)∈Rn

⟨y, g⟩,

subject to


yk = yn−k for k = 1, . . . , n− 1,

∥y∥1 = 1, y ≥ 0,

⟨y, fk⟩ = 0 for all edges (0, k).

(3)

Here, fk is the k-th row of the DFT matrix F , and g := Fb for
b ∈ {±1}n with b0 = 1 and bk = 1 if (0, k) is not an edge, and
−1 otherwise, for 1 ≤ k ≤ n− 1. We denote 0 := (0, . . . , 0)
and y ≥ 0 stands for entrywise positivity of y.

The last constraint in (3) requires the Fourier transform of
y to have a specific sparsity pattern. Uncertainty principles
for the Fourier transform (see, e.g., [3]) then suggest that all



feasible vectors y must be dense [10]. A quantitative version of
this “density” would be enough to bound the LP. To illustrate,
suppose that y is a feasible vector with ∥y∥1 = 1 and its
mass is spread almost uniformly among its coordinates, i.e.,
that ∥y∥2 ≤ c√

n
∥y∥1 = c√

n
, for some constant c > 0. Since

∥g∥2 = n, Cauchy-Schwarz inequality would give ⟨y, g⟩ ≤
∥y∥2∥g∥2 ≤ c

√
n, proving upper bound in Theorem 1 without

the extra
√
log log n factor.

The second part of our proof, Lemma 5, makes the afore-
mentioned intuition rigorous, relying on the restricted isometry
property (RIP, Definition 5). The fk in our constraints form a
so-called subsampled DFT basis, which is a random subset
of the Fourier basis. The RIP for such bases is in fact a
celebrated topic in the compressed sensing literature. RIP
was first introduced and studied for subsampled DFT bases
in seminal work of Candès and Tao [7], and since then,
one of the central questions for compressed sensing is the
number of fk needed for RIP to hold. Lemma 8 describes
a simplified version of the current best bound due to [14]
which is sufficient for our purposes. Interestingly, our upper
bound proof only uses the fact that feasible solutions of (3)
lie on a (random) nullspace of a subsampled DFT matrix, and
omits the positivity constraint y ≥ 0. However, as we discuss
in Section IV, we believe that this constraint is important for
tighter results.

II. PRELIMINARIES

Notation: For n ∈ N, let [n] := {0, . . . , n−1}. We index
vectors and matrices by [n]: for x ∈ Rn, x = (x0, . . . , xn−1).
We write x ≥ 0 for entrywise positivity. For n ∈ N, we
denote by G = (V,E) a graph with vertex set V = [n]
and edge set E ⊆ (V × V ) \ {(k, k) for k ∈ V }. For a
graph G = (V,E) we define its complement G = (V,E′),
where E′ = {(u, v) s.t. u ̸= v and (u, v) /∈ E}. We use the
standard asymptotic notation, O(·),Ω(·), and Θ(·) to describe
the order of the growth of functions associated with the limit
of the graph dimension n. For x ∈ Rn, we denote ∥x∥1 :=∑n−1

i=0 |xi|, ∥x∥2 :=
(∑n−1

x=0 x
2
i

)1/2
, and ∥x∥∞ := maxk|xk|.

Discrete Fourier Transform: Let F ∈ Cn×n be the
discrete Fourier transform matrix: Fjk = exp(−2πijk/n) for
j, k ∈ [n]. For k ∈ [n], let fk denote the k-th row of F . We
associate a matrix rF ∈ Rm×n to any RCG G consisting of
subsampled rows of F .

Definition 1. For any RCG G, let rF ≡ rF (G) ∈ Cm×n

(with m the number of neighbors of 0 in G) be defined as
a submatrix of F , including row fk if (0, k) ∈ E(G).

Definition 2. The Lovász theta number ϑ(G) is defined as the
solution to the following SDP (J is the all-ones matrix),

ϑ(G) := max
X∈Rn×n

{
⟨X, J⟩, such that X ⪰ 0,TrX = 1,

Xij = 0 for all (i, j) ∈ E(G)
}
.

(4)

Definition 3. A graph on n vertices is called circulant if there
is an ordering of its vertices such that its adjacency matrix is

circulant. Equivalently, a circulant graph is a Cayley graph of
a cyclic group Zn.

This definition implies that a circulant graph is described
by listing the neighbors of a single root vertex (say vertex 0),
since (i, j) ∈ E ⇐⇒ (0, i − j) ∈ E. In this text, we focus
on dense random circulant graphs.

Definition 4. For odd n, a dense random circulant graph
(RCG) is a random Cayley graph of a cyclic group Zn.
It is obtained in the following way: uniformly sample x ∈
{0, 1}m,m = n−1

2 , and define the first row of the adjacency
matrix as

R = (0 x
←
x), (5)

where
←
x i := xm−i−1. Circulate R to obtain the complete

adjacency matrix.

For a circulant graph G we define a vector g := Fb, where
b ∈ {±1}n with b0 = 1 and bk = 1 if (0, k) is not an edge,
and −1 otherwise, for 1 ≤ k ≤ n− 1.

Definition 5 (Restricted isometry property). A matrix A ∈
Cq×n is said to satisfy (k, ε)-restricted isometry property, for
k ≤ n and ε ∈ (0, 1), if for all k-sparse x ∈ Cn we have that

(1− ε)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + ε)∥x∥22. (6)

III. PROOF OF MAIN THEOREM

Let G be a circulant graph. As noted in [19], for circulant
graphs the SDP formulation of the Lovász number can be
rewritten as the following linear program:

ϑ(G) = max
x∈Rn

∑
i∈[n]

xi,

subject to


xk = xn−k for all k ∈ [n] \ {0},
x0 = 1, Fx ≥ 0,

xk = 0 for all edges (0, k),

(7)

Table I shows four equivalent linear programs, arising from
strong duality (see, e.g., [4]) and switching between ’time’ and
’frequency’ domains. For the latter, we perform the change of
variables, y := Fx and t := Fz respectively.

All formulations share the same structure: the optimization
objective is determinisitic, while the set of feasible solutions
is random through the random circulant graph structure. The
following proposition introduces randomness to the objective,
which is a crucial part of our argument.

Lemma 2. Let G be a dense RCG and rF be a subsampled
DFT matrix, see Definition 1. Let g := Fb ∈ Rn, for b ∈
{±1}n with bk = 1 if (0, k) is not an edge and −1 otherwise.
Then,

ϑ(G) = max
y∈Rn

⟨y, g⟩,

subject to


yk = yn−k for all k ∈ [n] \ {0},
∥y∥1 = 1, y ≥ 0,

y ∈ ker rF ,

(8)



TABLE I
FOUR EQUIVALENT LPS FOR ϑ(G).

’time’ domain

Primal Dual

max
x∈Rn

∑
i

xi

s.t. xk = xn−k

for all k ∈ [n] \ {0},
x0 = 1, Fx ≥ 0,

xk = 0

for all (0, k) ∈ E(G).

min
z∈Rn

1 +
∑
i

zi

s.t. zk = zn−k

for all k ∈ [n] \ {0},
z ≥ 0,

⟨z, fk⟩ = −1

for all (0, k) ∈ E(G).

’frequency’ domain

Primal Dual

max
y∈Rn

ny0

s.t. yk = yn−k

for all k ∈ [n] \ {0},
∥y∥1 = 1, y ≥ 0,

⟨y, fk⟩ = 0

for all (0, k) ∈ E(G).

min
t∈Rn

1 + nt0

s.t. tk = tn−k

for all k ∈ [n] \ {0},
F t ≥ 0,

tk = −1/n

for all (0, k) ∈ E(G).

Proof. We use the primal formulation in the frequency domain
and observe that ny0 = ⟨y,

∑
k∈[n] fk⟩. Since feasible vectors

y are orthogonal to rF , i.e., y ∈ ker rF , after subtracting
2
∑

(0,k)∈E(G)⟨y, fk⟩ from ⟨y,
∑

k∈[n] fk⟩ we obtain

⟨y,
∑
k∈[n]

fk⟩ = ⟨y,
∑

(0,k)/∈E(G)

fk −
∑

(0,k)∈E(G)

fk⟩ = ⟨y, g⟩.

(9)

By the definition of graph G, b0 = 1, and
b1, b2, . . . , bn−1

2

iid∼ Unif{−1, 1}. Since maxjk|Fjk| = 1, we
can bound ∥g∥∞, leading to the following upper bound on ϑ.

Lemma 3. Let G be a dense RCG. Then,

P(ϑ(G) ≤ 1 + 4
√
n log n) ≥ 1− 2

n
. (10)

Proof. We show that each entry of g is small with high
probability. Indeed, for any k ∈ [n],

P(|gk| > 1 + 4
√
n log n) = P(|⟨fk, b⟩| > 1 + 4

√
n log n)

≤ P

∣∣∣∣∣∣
(n−1)/2∑

j=1

Xj

∣∣∣∣∣∣ > 2
√
n log n

 ≤ 2

n2
,

(11)
where Xj := ℜ(Fkj)bj ∈ [−1, 1], and the last step fol-
lows from Hoeffding’s inequality (Lemma 7). Applying union
bound over k ∈ [n], we obtain

P(∥g∥∞ > 1 + 4
√
n log n) ≤ 2

n
. (12)

Thus, on a complement event, for any feasible vector y
of (3), we can simply upper bound ⟨y, g⟩ ≤ ∥y∥1∥g∥∞ ≤
1 + 4

√
n log n, which finishes the proof.

The upper bound in Theorem 1 would follow if we could
show maxk gk = O(

√
n log log n) with high probability. How-

ever, this is too optimistic: since we expect that the coordinates
of g behave like standard Gaussian random variables and are
uncorrelated, we also expect that maxk gk = Θ(

√
n log n).

Fortunately, as the next lemma shows, only a vanishing
fraction of entries is of order at least

√
n log logn.

Lemma 4. There exists a constant C > 0, such that for I :=
{k ∈ [n] : |gk| ≥ C

√
n log log n}, it holds

P

(
|I| ≤ n

log10 n

)
≥ 1− 1

log10 n
. (13)

Proof. We express |I| =
∑n−1

k=0 Yk, where Yk = I{|gk| ≥
C
√
n log log n}. Using Hoeffding’s inequality we obtain, for

C large enough,

E|I| =
n−1∑
k=0

P(|gk| ≥ C
√
n log log n) ≤ n

log20 n
, (14)

where the constant on the right hand side is absorbed into
logarithm, and its power is chosen for the technical reasons.
Plugging this bound into Markov’s inequality we get

P

(
|I| ≥ n

log10 n

)
≤ 1

log10 n
. (15)

The constraint y ∈ ker rF was so far only used to change the
objective function from ny0 to ⟨y, g⟩. Next lemma highlights
another important consequence of this constraint, namely, an
upper bound on the ∥y∥2.

Lemma 5. For large enough n, with probability at least 1− 1
n

all x ∈ ker rF satisfy ∥x∥2 ≤ log2 n√
n

∥x∥1.

Proof. We adapt the existing results in the literature regarding
the RIP of the subsampled Fourier basis.

Consider the following coupling: let b̂ ∈ {0, 1}n with b̂0 =

0 and b̂k
iid∼ Ber

(√
2−1√
2

)
for k = 1, . . . , n−1. Let rb ∈ {0, 1}n

be defined as follows:

rbk =


0, for k = 0,

1, if b̂k = 1 or b̂n−k = 1, for k ≥ 1,

0, otherwise.
(16)

Note that (i) the distribution of rb is the same as the distribution
of the adjacency vector for the vertex 0 in the random circulant
graph G and (ii) rbi = 0 implies b̂i = 0. Let q :=

∑
k b̂k. Define

pF ∈ Cq×n to be the matrix consisting of subsampled rows of
F rescaled by 1/

√
q, where the k-th row is included if and

only if b̂k = 1.
To show that pF satisfies the RIP, we apply Lemma 8. To

ensure its requirements, we condition on the following two
events. First, since we do not include row 0 in our construction,
we condition on the event that among the uniformly subsam-
pled rows, row 0 is not present; this increases the probability
of a bad event by at most a constant factor. Additionally, we



condition on a high probability event that q ≥ ⌈n/4⌉. Lemma 8
then implies that there exist constants c > 0 and 0 < ε < 1/3,
such that with probability at least 1−1/n, pF satisfies the RIP
with parameters k = cn

log3 n
and ε.

On this event, by Lemma 9, it follows that

∥x∥2 ≤ C(ε) log3/2 n√
cn

∥x∥1 ≤ log2 n√
n

∥x∥1, (17)

for all x ∈ ker pF and large enough n, where we absorbed the
constants in the additional (log n)1/2 factor in the numerator.
Since pF consists of a subset of rows of rF , all x ∈ ker rF are
also in ker pF , so the proof is complete.

Remark 6 (Alternative proof technique). Lemma 5 also
follows from an intermediate step in the proof of RIP of
the subsampled Fourier matrix in [14]. More specifically,
in our notation [14, Theorem 3.1] implies that ∥ pFx∥ ≥
(1 − ε)∥Fx∥22 − Cε/k∥x∥21 with high probability, and since
x ∈ ker pF , it follows that ∥x∥2 ≤ log2 n√

n
.

Now we present the proof of our main result.

Proof of Theorem 1. We begin with the lower bound
Eϑ(G) ≥

√
n. Since G is vertex-transitive, it holds that

ϑ(G)ϑ(G) = n, see [18, Theorem 8]. Therefore,

log n = E log ϑ(G)ϑ(G) = 2E log ϑ(G) ≤ 2 logEϑ(G),
(18)

where we used the fact that G equals in distribution to G
together with Jensen’s inequality and linearity of the expected
value. Upon exponentiating we obtain

Eϑ(G) ≥
√
n. (19)

To prove the upper bound, we use the LP formulation of the
Lovász number as in Lemma 2. Let A denote the intersection
of the events of Lemmas 3 and 5, with P(A) ≥ 1 − 3

n from
union bound, and let B denote the event of Lemma 4. Since
E[ϑ|A or B]P(A or B) = O(1), we condition on A and B
in the following. For constant C defined in Lemma 4, we split
g into two parts, gsmall and glarge, where

(gsmall)k =

{
gk if |gk| < C

√
n log log n,

0 otherwise,
(20)

and glarge = g−gsmall. Then, ⟨y, g⟩ = ⟨y, gsmall⟩+⟨y, glarge⟩.
We bound each term separately: first,

⟨y, gsmall⟩ ≤ ∥y∥1∥gsmall∥∞ = O(
√
n log log n). (21)

On the event B we have that glarge is n
log10 n

-sparse. From (12)
∥glarge∥∞ = O(

√
n log n), which implies that ∥glarge∥2 =

O(n/ log4 n). Using Cauchy-Schwartz inequality together
with Lemma 5, we bound the second term as follows:

⟨y, glarge⟩ ≤ ∥y∥2∥glarge∥2 ≤ log2 n√
n

· n

log4 n
= O(

√
n),

(22)
which completes the proof.

IV. DISCUSSION

Based on numerical observations, we formulate the follow-
ing conjecture.

Conjecture 1. Let G be a dense random circulant graph.
Then,

Eϑ(G) = (1 + o(1))
√
n. (23)

Existing lower bounds against RIP (see [3, 5]) do not
allow us to use our proof strategy for showing Conjecture 1.
Indeed, there exist n

logn -sparse vectors in the kernel of rF ,
which contradicts the desired inequality ∥y∥2 ≤ C√

n
∥y∥1 for

y ∈ ker rF . However, it is still possible that no cn-sparse
entrywise positive vector exists in the kernel of rF , for small
enough constant c > 0. It is also plausible that constructing a
feasible vector for the dual programs in Table I may lead to
tighter upper bounds. We leave these questions for the future
work.

Paley graph: A classical example of a circulant graph
is Paley graph. For a prime p ≡ 1 mod 4, it is defined as
the graph on p vertices with vertices i and j connected if and
only if i− j is a quadratic residue modulo p, see [8, 2]. Paley
graphs are believed to exhibit certain pseudorandom proper-
ties, and bounding its independence number is a long-standing
open problem in number theory and combinatorics [13]. This
quantity can be upper bounded by the Lovász number of a
certain subgraph called 1-localization which is circulant [17].

Recently, several optimization based approaches were con-
sidered, see [16, 17, 20]. In [19], a numerical evidence
similar to Conjecture 1 regarding subgraphs of Paley graph
was observed, which if true, recovers the best known upper
bound on the independence number due to [13].

V. USEFUL DEFINITIONS AND INEQUALITIES

Lemma 7 (Hoeffding’s inequality). Let X1, . . . , Xn be inde-
pendent random variables, such that EXi = 0 and a ≤ Xi ≤
b almost surely. Then,

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

n(b− a)2

)
(24)

Lemma 8 (RIP of subsampled DFT matrix, [14]). Let F ∈
Cn×n be a DFT matrix: Fjk = exp(−2πijk/n) for j, k ∈ [n].
There exist c > 0 and 0 < ε < 1/3, such that for all n
large enough, a matrix consisting of q ≥ ⌈n/4⌉ uniformly
subsampled rows of F and rescaled by 1/

√
q has (k, ε)-RIP

for k = cn
log3 n

, with probability at least 1− 2Ω(− log2 n).

Lemma 9 (e.g. [6], Theorem 11). If A ∈ Cm×n satisfies
the RIP with parameters k and ε < 1/3, then there exists
C = C(ε), such that for any x ∈ kerA we have that

∥x∥2 ≤ C√
k
∥x∥1. (25)
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