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Abstract

Deep Networks (DNs) are state-of-the-art predictors, able to navigate billion di-
mensional spaces to produce compressed embeddings of datasets. While most
of the focus has been on improving the performance of these embeddings, we
ask instead a different question: how can Deep Networks teach us about the data
geometry. Through the spline theory of DNs, we derive a novel kernel that charac-
terizes DNs as vector quantizers implementing affine functions over a partition of
the domain, where the regions are coupled in a manner not immediately obvious
from the partition geometry. We employ this kernel in the interpretation of DNs,
illustrating their internalization of the training data geometry.

1 Introduction

Deep Networks (DNs) can navigate high-dimensional spaces to yield effective compressed represen-
tations of a dataset; thus, interpreting and explaining DNs is important but challenging. There have
been multiple paradigms shaping the progress in this direction, leading to pockets of progress, which,
sparingly, culminate in satisfying insights into increasingly capable DNs. For example, Grad-CAM
[8] provides a sample-wise understanding of a DN’s behavior by exploring its gradients; however,
its inherently visual and local application limits its broad applicability. Similarly, feature-wise tech-
niques, such as LIME [7], SHAP [4], and Sparse Autoencoders (SAEs) [2], provide a more holistic
understanding of a DN’s behavior by going beyond individual samples, but fall short of generaliz-
ing insights. To overcome these challenges, there is a necessity to derive explanations from beyond
point-wise statistics; especially as DNs become increasingly subjected to fine-tuning, distillation and
extrapolation, it becomes important to understand the geometry of a DN’s learned representations.

In this work, we appeal to the spline theory of DNs [1] to characterize the geometry of a DN’s
learned representation through its input space partitioning. Although this partitioning has been stud-
ied before, its combinatorial construction [5] has limited its practical applicability. In this work, we
link the neural activation patterns of a DN when applied to a given input to the partition geometry,
yielding a pseudodistance2 on the domain that reflects the vector quantization (VQ) by the piecewise
affine layers. In Fig. 1, we demonstrate how the eigenvectors of our proposed pseudodistance kernel
reflect the geometry of the training data.

∗Correspondence to TMR: mitch@roddenberry.xyz
2A pseudodistance is a metric distance that allows distinct points to have zero distance.
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Figure 1: The vector quantization (VQ) of a deep network (DN) reflects the geometry of the training
data. (Top) Dominant eigenvectors (left) of the VQ-Kernel (right) of a DN trained to classify a
two-moons point cloud. (Bottom) Eigenvectors and distance matrix for a DN trained on a rotation
of the same point cloud. The geometry of the learned partition approximately commutes with the
rigid transformation of the training data, indicating that the DN adapts to the underlying geometry
of the data.

2 VQ-Kernels: Tractable Spline Insights into Deep Learning Geometry

The Spline Theory of Deep Networks DNs with continuous piecewise affine (CPA) layers,
namely those employing continuous piecewise affine (CPA) nonlinearities (e.g. ReLU), are known
to themselves be CPA [1]. In particular, the corresponding linear regions partition the input space
in a manner that can be characterized by the collection of hyperplanes induced from the level-sets
of the DN’s nonlinearities [3]. The structure of the input space as formed by this partitioning is our
focus.

Consider a CPA DN composed of L CPA layers. The ℓth layer is defined as a map f (ℓ) : RD(ℓ−1) →
RD(ℓ)

, with z 7→ σ
(
A(ℓ)z + b(ℓ)

)
, for integers D(ℓ), matrices A(ℓ) ∈ RD(ℓ)×D(ℓ−1)

, and vectors
b(ℓ) ∈ RD(ℓ)

. We put D(0) = D. Assuming that σ = ReLU is applied elementwise, this layer
constitutes a CPA function with respect to the partition defined by the collection of hyperplanes
H(ℓ) = {(A(ℓ)

j,: , b
(ℓ)
j )}D(ℓ)

j=1 , where we have identified each hyperplane in H(ℓ) with a row in A(ℓ) and
the corresponding entry in b(ℓ). That is to say, for each binary vector s ∈ {−1,+1}H, there is a
matrix-vector pair (As, bs) such that for all x ∈ sign−1

H (s), we have f (ℓ)(x) = Asx+ bs.

The VQ-Kernel Since the input space geometry is constructed via hyperplanes derived from the
parameters of the DN, it is clear that it is informative of the learned representations; we probe this
structure through pseudometrics.

Let H be a collection of hyperplanes in RD, so that for each H ∈ H, there is a corresponding pair
(aH , bH) ∈ RD × R where H = {x ∈ RD : 〈aH , x〉 + bH = 0}. We exclude the degenerate
case where aH = 0, as the corresponding hyperplane is either the empty set or the entire domain.
Correspondingly, we can assume without loss of generality that ‖aH‖ = 1.

Each H ∈ H divides RD into two regions: one where 〈aH , x〉 + bH ≥ 0, and the other where
〈aH , x〉 + bH < 0. Then, the partition of RD defined by H is determined by the patterns of in-
tersections of these regions: this is easily encoded as a binary vector signH : RD → {−1,+1}H,
with x 7→ [sign(〈aH , x〉 + bH)]H∈H, where sign : R → {−1,+1} is the signum function. This
quantization of the domain RD allows us to pull back simple metrics on binary strings {−1,+1}H
to yield pseudodistances on the domain. In particular, we pull back the Hamming distance to define
the pseudodistance

dH : RD × RD → R≥0, (x, y) 7→ dH(signH(x), signH(y)),
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Figure 2: The vector quantization (VQ) of a DN re-
flects the geometry of high-dimensional training data.
(Top) MDS embedding of VQ-Kernel trained on high-
dimensional two-moons data (left), a rotated version of
the same data (center), and the Multidimensional Scal-
ing (MDS) embedding of the Euclidean distance matrix
(right). (Bottom) Distance matrices. Observe that the low-
dimensional structure of the training data is apparent in the
VQ-Kernels, as opposed to the Euclidean distance matrix.

Figure 3: Cosine similarities of heat
kernels derived from VQ-Kernels
for two models with different ar-
chitectures, pre- and post-training
on MNIST. Although not identical,
the VQ-Kernels of networks with
different architectures become more
similar when trained on the same
dataset.

where the Hamming distance dH is the number of hyperplanes in H where the signs of the ar-
guments differ. It is clear that dH indeed satisfies the nonnegativity, reflexivity, and triangle in-
equality properties of a distance, but evaluates to zero if both inputs are contained in the same
partition region defined by H. This implies that if x, x′ are contained in the same partition region,
dH(x, y) = dH(x′, y).

Observe that dH measures the pattern of relations of points to each hyperplane, amounting to a
distance defined on the partition itself, where two sets in the partition are close if they are on the
same “side” of a large number of hyperplanes. Define the ℓth partial DN as F (ℓ) : RD(0) → RD(ℓ)

,
with x 7→ (f (ℓ) ◦ F (ℓ−1))(x), where F (0) is the identity function. For each ℓ ≥ 1 and pair of points
x, y ∈ RD, define

d(ℓ)(x, y) = dH(ℓ)(F (ℓ−1)(x), F (ℓ−1)(y)).

When needed, we will also write d(ℓ)(x, y;N ), where N gathers the parameters and architecture of
the DN. In other words, d(ℓ) is the pullback of dH(ℓ) via the map F (ℓ−1).

Given a finite set of such layers indexed by ℓ = 1, . . . , L, we define the overall pseudodistance on
RD as the sum of each of the L intermediate pseudodistances:

d(x, y;N ) =

L∑
ℓ=1

wℓd
(ℓ)(x, y;N ),

for scalars wℓ > 0. Unless otherwise specified, we take wℓ = 1. This yields the VQ-Kernel:

Definition 1. For a DN with parameters N , the VQ-Kernel of a sample U = (ui)
m
i=1 ⊆ Rd is the

matrix K = (kij) ∈ Rm×m where kij = d (ui, uj ;N ).

Partition distances. For a partition Ω determined by a set of hyperplanes H on a domain RD, the
distance dH is the natural pullback of an incidence-based distance on Ω. Define a distance d on Ω
so that for two regions ω1, ω2 ∈ Ω, d(ω1, ω2) = 0 if ω1 = ω2, and d(ω1, ω2) = 1 if ω1 and ω2

have a shared face. Otherwise, d(ω1, ω2) is defined as the minimal distance that obeys the triangle
inequality and the above constraint. Using this distance on Ω, we define a pseudodistance on RD

via the pullback of the projection map PΩ : RD → Ω, that is, dΩ(x, y) = d(PΩ(x),PΩ(y)).

Lemma 1. For a partition Ω determined by a (nondegenerate) set of hyperplanes H on a domain
RD, the pseudodistances dΩ and dH are identical. (Proof in Appendix B.1)
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For a network N with one hidden layer, the partition Ω over which N is a piecewise affine map is
exactly determined by the set of hyperplanes in the hidden layer. Hence, Lemma 1 demonstrates
that such networks yields distances d(·, ·;N ) that are identical to the partition geometry distance
dΩ(·, ·). However, when N is a deep network (composed of multiple layers), the distance defined by
the network is only upper bounded by the partition distance, summarized in the following lemma.

Lemma 2. Let Ω be a partition of RD determined by a (generic) DN N . Then, for any points
x, y ∈ RD, d(x, y;N ) ≤ dΩ(x, y). (Proof in Appendix B.2)

Lemma 2 indicates the difference between the distance d(·, ·;N ) and the corresponding partition
distance dΩ. As illustrated in Fig. 5, the compositional nature of the DN creates “shortcuts” between
regions of the domain RD that are not visible through immediate examination of the final partition
alone. In the regime of Lemma 1, the VQ partition distance between points simply counts the
number of regions separating them. In the setting of Lemma 2 attained by a DN, the VQ distance
reflects the hierarchical partitioning of the domain by the composition of layers. See Appendix B.2
for further discussion.

3 Applications

3.1 Comparing DNs

The comparison of DNs beyond their realization as function is difficult, particularly in high dimen-
sions. We apply the VQ-Kernel as a means to compare the geometric structures internalized by DNs
with different architectures. Consider two ReLU MLPs: one with 4 layers, and the other with 6 lay-
ers.3 We train both models to convergence on the MNIST digits training set, and then compute their
VQ-Kernels on the test set. We also compute the VQ-Kernels using the randomly initialized set of
parameters for each model. With these kernels in hand, we consider to what extent the VQ-Kernel
is dependent on the training data, and to what extent it is dependent on the architecture.

To do so, we evaluate cosine-similarity between heat kernel matrices derived from the VQ-Kernel,
i.e., the matrix H = {hij} such that hij = exp(−d(ui, uj ;N )/σ2) for some σ2 > 0. We illustrate
the results of this for both architectures (pre- and post-training) in Fig. 3. Although the kernels of the
trained models are not identical, they are more similar to each other than at initialization, suggesting
that the VQ-Kernel reasonably reflects the geometry of the training data, even when evaluated on
unseen points.

3.2 Understanding Coordinate-Free Data Geometry

The complex coupling of affine regions in DNs offers a plausible explanation of how these networks
are able to approximate functions on low-dimensional structures in high-dimensional ambient spaces.
To illustrate that the VQ-Kernel captures this, we consider a high-dimensional variant of the two-
moons classification problem. We consider a two-class classification dataset in R2, then concatenate
each point ui ∈ R2 with a random vector zi ∈ R98 such that the resulting vector in R100 has unit
norm. We then train an MLP on the original labels of the dataset, and examine the resulting VQ-
Kernel evaluated on the training data. Similar to the example in Fig. 1, we repeat this procedure
on a rotated version of the dataset, to illustrate the invariance to rigid transformations. In Fig. 2,
we observe that the VQ-Kernel exhibits an approximately low-rank structure, reflecting the intrinsic
dimensionality of the training data. The multidimensional scaling (MDS) embedding of the training
data according to the VQ-Kernel demonstrates the separability of the classes. Furthermore, this low-
dimensional structure is not visible when using the Euclidean metric, which yields an unstructured
kernel and thus a poor embedding, as shown.

4 Conclusion

We have demonstrated that the VQ-Kernel, defined via the pullback of the Hamming distance applied
to neural activation patterns, is a viable means of studying the geometry of a DN. Lemmas 1 and 2
demonstrate the properties of the VQ-Kernel in the shallow and deep architectural settings as it

3See Appendix A for further details on the experimental parameters.
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relates to the partition of the domain into polytopes, over which the realized mapping is piecewise
affine. We have also demonstrated via simple numerical experiments that the VQ-Kernel reflects the
geometry of the data on which the network was trained, in both low and high-dimensional settings.

Limitations of this approach to be resolved in future work include leveraging the proposed VQ-
Kernel for deep learning tasks such as model distillation or neural architecture search. Furthermore,
better understanding of the theoretical properties of the VQ-Kernel for DNs remain an open chal-
lenging question we hope to investigate.
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Figure 4: Cosine similarities of heat kernels derived from VQ kernels for two models with different
architectures, pre- and post-training on MNIST, with varying scale parameter σ2.

A Experimental Details

A.1 Section 1 (Figure 1)

We generate a two-moons binary classification dataset with n = 150 points in R2, scaled to be
contained in the square [−1, 1]2. For the alternate dataset, we rotate the coordinates by π/6 radians.
We train ReLU MLPs with L = 3 hidden layers of width 96 using the binary cross-entropy loss until
convergence.

We then compute the VQ kernels for each model over a the unit disc sampled according to 96× 96
discretization of [−1, 1]2, yielding two matrices K,Krot ∈ RN×N , corresponding to the models
trained on the original training dataset and its rotated version, respectively. In Fig. 1, we compute
the three dominant eigenvalue/eigenvector pairs of the MDS matrix B = (I − J/N)K(I − J/N)
normalized by the leading eigenvalue of B, where I denotes the identity matrix and J denotes the all-
ones matrix. In the rightmost columns of Fig. 1, we show the VQ-Kernel for the models evaluated
over their training datasets, ordered according to the labels.

A.2 Section 3.1 (Figure 3)

We split the MNIST digits dataset into a training set of ntr = 8000 and a test set of nts = 2000
images, all of size 28× 28. We train ReLU MLPs with L ∈ {4, 6} layers, all of width 16. Then, we
compute the VQ-Kernels over the test set for both the randomly initialized and trained models.

To compare, we take the cosine similarity between heat kernels applied to the VQ-Kernels, defined
as the elementwise exponential hij = exp(−k2ij/σ

2), for some σ2 > 0. We demonstrate the results
of this for a variety of scale parameters σ2 in Fig. 4.

A.3 Section 3.2 (Figure 2)

To demonstrate the advantage of a learned VQ-Kernel over kernels based on the ambient Euclidean
metric, we develop a “high-dimensional two-moons” binary classification dataset. We begin with
the binary classification dataset in R2 described in Appendix A.1. Then, for each training data point
uj , we draw a uniform random vector zj ∼ U

(√
1− ‖0.1uj‖2S98

)
, where S98 denotes the unit

sphere in R98. We then concatenate 0.1uj and zj to form a new data point in S100 ⊂ R100. The
scaling factor of 0.1 reduces the effective signal-to-noise ratio of the training data, although the
useful information of the data points lie in a two-dimensional subspace. Once again, we also create
an alternate version of the dataset rotated by π/6 radians in the “signal” subspace. We then repeat
the process explained in Appendix A.1, this time using a ReLU MLP with L = 3 layers of width 64
and plot the MDS embedding of the VQ-Kernel evaluated on the training data for both the dataset
and the rotated version.

B Proofs

B.1 Lemma 1

The lemma essentially follows from the discussion in [6, Section 1.2]; we provide more details here.
Let H be a set of hyperplanes in general position defining a partition of RD into a set of (potentially
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Figure 5: Networks with identical partitions may have different VQ distances. Although a wide,
shallow network (top) and a deep, narrow network (bottom) may define an identical partition of the
domain (center) as a set of polytopes, the VQ-Kernel more accurately characterizes the coupling of
the affine regions in the deep regime.

unbounded) convex polytopes Ω. Let x, y ∈ RD be given arbitrarily. Denote r = dΩ(x, y), and their
respective polytopes by ω0 3 x and ωr 3 y, so that there exists a sequence [ω0, ω1, . . . , ωr] where
for each j > 0, ωj shares a face with ωj−1 corresponding to a unique hyperplane H ∈ H. Denote
the sequence of such hyperplanes by [H1,H2, . . . , Hr]. Observe that for j > 0, v ∈ ωj−1, w ∈ ωj ,
we have dH(v, w) = 1. By the triangle inequality for dH, it then follows that dH(x, y) ≤ dΩ(x, y).
A similar argument establishes the inequality in the opposite direction, thus proving the lemma.

B.2 Lemma 2

Let N be a deep network defining a partition of RD into a set of (potentially unbounded) polytopes Ω.
Assuming nondegeneracy of the partitions defined by the deep network, let two polytopes ω1, ω2 ∈
Ω be given that share a face. Then, for some ℓ ≥ 1, there is a hyperplane H ∈ H(ℓ) such that
ω1 and ω2 are divided by H , but are divided by no other hyperplanes in the network. Therefore,
if dΩ(x, y) = 1, it is also the case that d(x, y;N ) = 1. The lemma then follows by the triangle
inequality.

For the interested reader, we provide a specific example in R1 that attains a strict inequality
d(x, y;N ) < dΩ(x, y) for certain pairs of points x, y. Let N be a deep network with L layers
such that D(ℓ) = 1 for all ℓ ≥ 0, and the corresponding affine maps are defined as

f (ℓ)(z) = 2z − σ(2z − 1).

This deep network can be thought of as a ReLU network with skip connections. Restricting to the
unit interval I = [0, 1], N defines a uniform partition of I into 2L intervals, despite using only L
neurons. That is to say, for all x, y ∈ I , d(x, y;N ) ≤ L. At the same time, we can find points
x, y ∈ I such that dΩ(x, y) ≈ 2L, yielding a strict inequality d(x, y;N ) < dΩ(x, y) for such points.

To achieve the same partition with a shallow network would require 2L neurons, in which case
Lemma 1 implies that d(x, y;N ) = dΩ(x, y) for all x, y ∈ I , as illustrated in Fig. 5.
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