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Abstract:
Deformable object manipulation has great research significance for the robotic
community and numerous applications in daily life. In this work, we study how to
knot plastic bags that are randomly dropped from the air with a dual arm robot and
image input. The complex initial configuration and intricate physical properties
of plastic bags pose challenges for reliable perception and planning. Directly
knotting it from random initial states is difficult. In this work, we propose Iterative
Interactive Modeling (IIM) to first adjust the plastic bag to a standing pose with
imitation learning to establish a high-confidence keypoint skeleton model, then
perform a set of learned motion primitives to knot it. We leverage spatial action
maps to accomplish the iterative pick-and-place action and a graph convolutional
network to evaluate the adjusted pose during the IIM process. In experiments, we
achieve an 85.0% success rate in knotting 4 different plastic bags including one
that has no demonstration.
Keywords: Plastic Bag Manipulation, Learning from Demonstrations

1 Introduction
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Figure 1: Overview of our work. (a) A
randomly dropped plastic bag. (b) Inaccu-
rate depth measurement from Intel Realsense
D435i. (c) Unstable keypoint detection at the
initial state. (d)(e) We propose IIM to first iter-
atively interact with the plastic bag to shape it
to a standing pose, then build a high-confidence
3D keypoint skeleton with triangulation. (f)
Knot tying with learned motion primitives.

Deformable object manipulation (DOM) has been
a long standing problem in robotics. Researchers
have been studying manipulating various kinds of
deformable objects, from linear objects [1, 2], fab-
rics [3, 4], papers [5] to elastic and elasto-plastic
objects [6, 7, 8]. Apart from them, plastic bag,
perhaps the most widely used application of plas-
tics in our daily life, has remained unexplored in
robotics literature due to the high complexity in-
volved in modeling and controlling its deforma-
tion. Endowing robots with the ability to ma-
nipulate plastic bags can spawn diverse industrial
and domestic applications in warehouses, garbage
dumps, and supermarkets. Knotting plastic bags is
one of the most representative manipulation tasks
on plastic bags for a robot to show its dexterity in
the real world. In this paper, we study how to knot
plastic bags that are randomly dropped from the
air with a dual arm robot and raw image inputs.

A randomly dropped plastic bag is shown in Fig-
ure 1(a). Knotting it from such an irregular initial
configuration requires locating and taking the han-
dles out from the mess and delicate coordination
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of dual arms to tie the knot. Compared to previous knot tying tasks that have been well studied on
ropes [1, 9, 10, 11], this task poses new challenges for both perception and planning, because of
the complex initial configuration and the intricate material and dynamics property of plastic bags.
For perception, as shown in Figure 1(b), the translucent and non-Lambertian surface of plastic bags
makes depth sensing inaccurate, thus 3D vision based models such as point cloud [12, 13, 14] or
voxels [15] are not suitable for our task. Meanwhile, 2D vision models such as 2D keypoints [16]
are not reliable due to the severe self-occlusion and partial observation problem caused by com-
plex initial configurations (Figure 1(c)). For planning, mathematical physical models are difficult to
build for plastic bags since their physical parameters are very hard to estimate, and to the best of our
knowledge, no simulator can be employed. Learning a dynamics model for planning [7, 13, 15] is
also infeasible since motions of plastic bags are not quasi-static. Although some image-based imi-
tation or reinforcement learning approaches [3, 4, 17, 18] can directly learn a visual policy without
a visual representation or physical model, their learned policies either employ just a small action
space such as pick-and-place that is not enough to accomplish the knot tying task, or are unable to
cope with complex initial configurations that appear in a randomly dropped plastic bag. Therefore,
directly knotting the plastic bag from initial configurations is hard for both perception and planning.

Fortunately, the elasto-plastic property of plastic bags gives us another way to accomplish the knot
tying task. Elasto-plastic objects can be shaped to a predefined target state in equilibrium and un-
changing. This is called deformation control [19], and previous works have studied how to learn a
dynamics model [13] or estimate physical parameters [20] of elasto-plastic objects such as sponges,
plasticine, or clay by interacting with them during this shaping process. However, for our task, this
interactive shaping process is more valuable for reducing difficulties of perception and planning:
shaping a plastic bag from a randomly dropped state to a standing pose (Figure 1(d)) is a process of
straightening it, and the partial observation and self-occlusion problem can be gradually alleviated
during this process. This allows us to build a more reliable visual model (such as keypoint skeleton,
Figure 1(e)), and the knot tying task can be realized from the standing pose based on this model.
This adjusting process can be accomplished with only iterative pick-and-place actions [17, 4, 21]
using recent advances, thus we can tackle the original problem by developing a visual learning
policy to straighten the plastic bag and then acquiring a reliable perception model to perform the
down-streaming knot tying task.

In this work, we propose Iterative Interactive Modeling (IIM) for knotting plastic bags randomly
dropped from the air with only image input. We train the robot to first shape the plastic bag to
a standing pose with the help of demonstrations and then establish a keypoint skeleton model with
multi-view stereo images to knot it with a set of learned adaptive motion primitives. Specifically, the
robot iteratively performs different kinds of top-down pick-and-place actions on part of the plastic
bag to outspread it, meanwhile, a task progress module evaluates if the pose is good enough for knot
tying. We leverage spatial action maps [17, 18] to accomplish the pick-and-place action, and train a
graph convolutional network as the task progress module with the same demonstrations to evaluate
the keypoint skeleton during the adjusting process. To enable keypoint detecting on plastic bags,
we provide the first 2D plastic bag keypoint dataset PBPose with 43,200 images to train an off-the-
shelf 2D keypoint detection model RLE [22]. After the IIM process, we lift the plastic bag into air
with geometrically constrained planning to knot the plastic bag with a set of motion primitives with
trained action parameters from CNN. In our experiments, we achieve an 85.0% success rate in tying
four different plastic bags (one of them has no demonstration) that randomly dropped from the air
with our dual Kinova Gen3 arms equipped with standard Robotiq 2F-85 grippers, with only 100
demonstrations (1.5 hours) provided for each plastic bag. In summary:

• We propose Iterative Interactive Modeling (IIM) for complex elasto-plastic object manipu-
lation that iteratively shapes the object to facilitate more reliable perception and planning.

• We leverage spatial action maps, graph convolutional networks and the RLE model to per-
form IIM on plastic bags, and train motion primitives to accomplish the knot tying task.

• We build the first dual-arm robotic system to knot plastic bags randomly dropped from the
air with the provided PBPose dataset and a small number of demonstrations.

2 Related Works
Deformable object manipulation (DOM) has long been a challenging area of robotics research. The
challenges of DOM come from two properties of deformable objects: the infinite degrees of freedom
and the complex non-linear dynamics, which lead to difficulties for perception, modeling, and plan-
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ning. In this section, we compare different techniques for modeling and manipulating deformable
objects and discuss whether they are suitable for knotting plastic bags.

2.1 Visual Representations of Deformable Objects
Keypoints [23, 24, 25] are commonly used representations. They are sparse representations for the
structure of target objects, and grasping points are usually generated from them. Keypoint detec-
tors can be trained either with supervised or unsupervised ways [26] to find keypoints with image
or point cloud inputs to allow robots to manipulate the object based on some geometry loss on the
keypoints. Dense visual descriptors [8, 27, 28, 29] are recently used as a real-time pixel-wise dense
representation for many kinds of objects, and humans can specify grasping points on it. Besides, the
3D vision community has made great progress in modeling deformable objects, with voxels [30],
meshes [31], convexes [32], or implicit functions such as flow-based model [33] or neural radiance
fields [34], and most of these model can represent the deformable object in high fidelity. Other
works seek to use particles [35, 14, 36] that are down-sampled from point cloud data to represent
deformable objects. These methods usually combine graph neural networks and differentiable sim-
ulators [37, 38] to learn the dynamics of objects. Lastly, visual policy learning methods simply use
high-dimensional feature embedding learned from deep neural networks as object representations
for manipulation [3, 4, 11, 39] and have achieved great success in various tasks.

For plastic bags, current commercial depth sensors fail to give accurate depth estimation because of
the translucent and non-Lambertian surface, thus 3D vision based methods are not feasible. Since
we aim to manipulate the plastic bag rather than studying how to build a refined representation,
those high-fidelity representations are not necessary: they all degenerate to grasping points [28] in
practice for manipulation. Thus, we choose keypoint skeleton as the representation of plastic bags.

2.2 Manipulating Deformable Objects
A lot of work aims to build a dynamics model for the target object first and then perform motion
planning on it to manipulate the object. Conventional works build the dynamics model mathe-
matically [40, 41, 42], and some of them have achieved promising results recently by planning
on simpler approximated dynamics and using local controllers to tackle actual complex dynamics
[43, 44, 45]. Other works aim to learn the dynamics model from visual data [13, 15, 7] or tactile
data [46, 47]. Recently, reinforcement learning and imitation learning methods are developed to di-
rectly manipulate the object without a dynamics model, and have achieved success on various tasks
[3, 48, 1, 10, 17, 49]. Some of them train the robot in simulation with fast virtual experiences and
then transfer the learned policy directly to real robots or with sim-to-real methods [27, 50]. Others
try to directly train the robot in the real world with its own experience or expert demonstrations [4].

For manipulating plastic bags, dynamics models are hard to build since the complex non-linear
dynamics, and the motion of plastic bag is not always quasi-static: some parts of the plastic bag may
collapse after it has been moved. In this work, we follow the idea of most visual policy learning
approaches that directly learn a pick-and-place policy with a limited action space to accomplish the
adjusting task, and use geometrically constrained planning to lift the plastic bag to the air to knot it
with a set of learned motion primitives.

3 Method
The goal of this paper is to enable a dual arm robotic system to knot plastic bags from initial ran-
domly dropped states. We use keypoint skeleton as the visual representation for plastic bags. The
robot is trained to iteratively adjust the plastic bag to a standing pose to build a complete and high-
confidence keypoint model with the help of a task progress module, then tie the knot with a set of
learned motion primitives. We introduce the problem setting in 3.1, the keypoint detection model in
3.2, the iterative interactive modeling process in 3.3, and the knotting process in 3.4.

3.1 Problem Statement
We use the most common type of plastic bags that are colored, medium-sized (33.7∼42.5 cm wide
and 40.2∼42.3 cm long when laid out), translucent, and have two looped handles, as shown in Figure
2(a). We choose four kinds of plastic bags that vary in size and color. In order to make the tying
problem possible, we put some items in the plastic bag to resist indoor airflow. The plastic bag is
randomly dropped from the air to form an initial state. The knot we tie in this work is a kind of Ian
Knot [9] which can be tied with two motion primitives (Action 1 and Action 2) from the stage of
hanging on grippers, as illustrated in Figure 2(c): 1) The right arm grasps the rear side of the left
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Figure 2: (a) Plastic bags and fillers used in this work. We give demonstrations on white, red and
black bags. The grey plastic bag is used to show the generalization of IIM. We fill plastic bags with
different items varying in size and shape, including cloths, paperboards, bottles, tape volumes, and
dry batteries. (b) The PBPose dataset. Images are captured in various backgrounds, knotting states,
occupied states, illumination conditions, placement status (standing or lying down), and angles of
view. (c) We design two motion primitives for tying an Ian Knot in the air.

handle to allow the left arm to go back; 2) The right arm rotates 90◦ to let the left arm grasp the front
side of the right handle. The knot is tightened by pulling two handles away from each other.

The whole experimental setup is shown in Figure 3. We use two identical Kinova Gen3 (6DoF) arms
and Robotiq 2F-85 grippers for our experiments. We mount two Intel Realsense D435i cameras
Cleft and Cright on the end of each arm respectively to get image inputs Ileft and Iright from
the end-effector perspective. The distance between the bases of two arms is 51.2cm. Cright looks
straight down at the XY plane from a top view to get Iright within the range of 75.4cm × 56.6cm
with the plastic bag at the center. On the other side, we get Ileft by moving Cleft aiming at the
plastic from a set of widely-separated poses to get stereo images.
3.2 3D Keypoint Skeleton for Plastic Bags
Directly 3D keypoint detecting methods and reconstruction methods are not suitable for plastic bags
as discussed in section 2.1. Thus in this work we detect 2D keypoints of plastic bags with image
input and reconstruct 3D keypoint skeleton with multi-view geometry. This requires a plastic bag
keypoint dataset and a well-trained 2D keypoint detection model.

To this end, we provide PBPose, the first 2D plastic bag keypoint dataset with 43,200 images of four
different kinds of plastic bags. Images in PBPose vary from the background, knotting state, occupied
state, illumination condition, placement status, and angle of view, as shown in Figure 2(b). For each
image, we manually label 19 keypoints of the plastic bag from handle to bottom to establish a full
skeleton of it, along with point visible properties and the bounding box. Based on this dataset, we
train a RLE network [22] f for 2D keypoint detection. f takes as input of a single frame from Ileft
and outputs predicted 2D joints of the target plastic bag along with confidences of each point.

From the illustrated performances on plastic bags at initial states and standing poses in Figure 1(c)
and 1(e), we can see that it is not robust and reliable to detect keypoints from random initial config-
urations. Although this problem can be mitigated by providing more training data at different initial
configurations, it is hard to cover enough cases of the infinite continuous initial states. Thus in this
work we sidestep this problem by shaping the plastic bag to a standing pose.
3.3 Iterative Interactive Modeling
We adjust the plastic bag from its initial state by iteratively picking and placing it with expert demon-
strations, and automatically evaluate the pose with a task progress module. We introduce these
modules one by one in the following part. Note we do not require the whole adjusting process to be
quasi-static, which means the plastic bag can partially collapse before it can steadily stand.

Observation and Action Space Definition: At every step, we get h multi-view images Imv
left =

{I0left, · · · , I
h−1
left } from Cleft (h = 15 in this work), and one top-view image Iright from Cright.

The robot can choose two kinds of pick-and-place action at each step: 1) a single-arm picking action
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Figure 3: The IIM iteration for knotting plastic bags. At each step, the right camera gets a top-down
view image Iright, and the left camera gets a sequence of side view images Imv

left. We use a spatial
action maps module φ to get the grasping points, and use a sparse reconstructed point cloud to get
the grasping depth. At the same time, we detect 2D keypoints from Imv

left with f to facilitate the task
progress module G to determine which picking action to use, and when the adjusting pose is good
enough to support building a 3D keypoint skeleton to tie the knot.

p1 that goes top-down to location R ∈ R3 and picks up to 0.55m height along the Z axis; 2) a
dual-arm picking action p2 that goes top-down to locations L,R ∈ R3 and picks up to 0.55m height
along the Z axis respectively. After each picking, the arm can choose to go to a left/staying/right
placing position to release the plastic bag, as shown in Figure 4. p1 is used for most pick-and-place
actions and p2 is only used for final steps to get a good standing pose.

The robot needs to choose which action to use, and grasping and placing locations at every step.
Specifically, the xy locations of grasping points are determined by our learned visual policy. The
z parameter (grasping depth) is determined by first running sparse reconstruction of stereo images
by structure from motion algorithm (SfM) to get sparse point cloud (using COLMAP [51] in this
work), then calculating the average height of the top-10 points on a cylinder with a radius of 1cm
with the center of the bottom surface of the grasping point to get the grasping depth. For determining
the placing location, we segment Iright and calculate the relative sizes of the left-side and right-side
areas. If the ratio of two areas is less than 0.5 or greater than 2, the robot will place the plastic bag
to the smaller-side placing point. Otherwise it will release the gripper in situ, as shown in Figure 4.

Demonstration Collection: A human expert demonstrates how to accomplish the adjusting process
for the robot. For each demonstration trajectory D = {pc0 , pc1 , · · · , pck−1

}, it includes k picking
actions, where c0, c1, · · · , ck−1 denote picking categories. For each pci , we record Imv

left and Iright
before performing the action, and the grasping locations L,R ∈ R2 from the perspective of Cright,
along with the grasping angles θL, θR. Thus, pci = {Imv

left, Iright, L,R, θL, θR}ci . The expert al-
ways grasps handles of the plastic bag for all picking actions. This is important to establish a unified
grasping principle to avoid ambiguity for imitation learning. p2 may be used several times at the end
of a trajectory to form a good standing pose. In this paper, we find 100 demonstration trajectories
are enough for each kind of plastic bag, which only take 1.5 hour for human to demonstrate.

Visual Grasping Module: The robot determines the grasping points {(L, θL), (R, θR)} from Iright
with spatial action maps [17, 21, 18], which have shown promising results for learning heatmaps
of visual-affordances over pixels with fully convolutional networks. They can recover pixel-wise
grasping affordances of different graspings with input images being rotated to achieve a discrete set
of possible actions. Concretely, as shown in Figure 4, given an image from Iright, we first segment
out the plastic bag from the background and generate 16 rotated images (multiples of 22.5◦), then
pass them through the fully-convolutional network φ to predict the corresponding set of heatmaps
within the same size of the input image. In this work we use a pixel resolution of 160 × 120. The
pixel with a higher predicted probability among all 16 maps is more suitable for grasping.

The problem in our case is that we have to determine one grasping point for p1 but two grasping
points for p2. To this end, we propose a Selection Rule based on safe distance constraints to avoid
collisions of grippers: for p1 and p2, the pixel with the highest value corresponds to (R, θR). When
choosing (L, θL) for p2, we first delete nearby areas (a circle of 5 pixels radius) of (R, θR) on all 16
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Figure 4: A pick-and-place process. Iright is segmented and rotated to get 16 copies. We send
these images through network φ and choose one or two grasping point(s) from the output candidates
according to our selection rules and distance constraints. We get the grasping depth of these points
by calculating the depths of top-10 points above the grasping points and perform the picking action.
After picking it upward, we determine where to place the plastic bag by segmenting the top-down
view and compare relative sizes of left-side and right-side area of the plastic bag.

output images, and select the pixel with the highest value in the remaining area. If this pixel has a
value higher than 0.8, then we choose it as (L, θL), otherwise we abort p2 and only perform p1.

Task Progress Module: To evaluate the quality of poses during the adjusting process to determine
when the robot can use p2 and when the pose is good enough to facilitate knot tying, we propose
to use a graph convolutional network to classify the keypoint skeleton during the IIM process to
predict the task progress stages. We represent the 2D keypoint skeleton as a graph formed by state
S = (O, E), where vertices O are the keypoints. Concretely, oi = 〈xi, ci〉, where xi and ci are
2D pixel locations and confidences of each keypoint respectively. The edges E are the connectivity
of each pair of keypoints that are predefined. At each step, a graph convolutional network G gets
h graphs abstracted from stereo image inputs of Imv

left and detected keypoint skeletons by f and
calculates the mean state S̄. Then it classifies current step to three categories: 1) ordinary picking
step (using p1); 2) final picking step (using p2); 3) ending step (no picking action will be chosen).
We train G with the standard cross entropy loss and the same demonstrations collected above.

After IIM, we get a well-standing plastic bag. We recover the 3D keypoint skeleton of it by perform-
ing triangulation from detected 2D keypoints of stereo images of Imv

left with the help of calibrated
camera intrinsic and extrinsic parameters. The next step is to knot the plastic bag with this model.

3.4 In-air Knotting Plastic Bags by Learning Motion Primitives

Figure 5: (a) Calculating the inserting direction.
(b) Different initial stages for tying Ian Knot. (c)
End-effector view before action 1 and action 2.
Red stars represent goals.

As shown in Figure 2(c), tying an Ian Knot
needs to first lift the plastic bag to the air to
eliminate the influence from ground. This re-
quires the direction that allows each arm to go
into each ring on handles, as shown in Figure
5(a). There are six keypoints on each ring, and
they are not on the same plane in R3. Thus
we here calculate a ring plane that minimizes
the total least squares (TLS) distance from each
point to it. Then we calculate the perpendicular
direction of each ring plane, and let this perpen-
dicular go through the center point of the ring,
which is the average of 3D coordinates of all the
ring points. By TLS, we know this center point
is on the ring plane too. We set each robot arm
on its perpendicular respectively and place each gripper 0.1m away from the center point of each
ring. Then we close both grippers and move the arm along the perpendicular to insert into the ring,
and keep both end effectors horizontal with a 0.25m distance to lift the bag to a height of 0.5m.
Finally we open both grippers to reach the initial stage for tying an Ian Knot.

The second step is to perform the two motion primitives. However, as shown in Figure 5(b), the
dangling handles of plastic bags on the gripper may hang in different specific places. This requires
both actions to adaptively choose their goals (the grasping points, see Figure 5(c)) according to
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Table 1: Success rates of different methods. FSR of baseline methods are calculated by using our
method to complete the missing parts of them.

Metircs Plastic Bags DI RP VBE-S VBE-T HKT Ours

ASR
Red, Black, White 4.0%(2/60) 13.3%(8/60) 70.0%(42/60) 65.0%(39/60) - 88.3%(53/60)
Grey (Unlearned) 5.0%(1/20) 10.0%(2/20) 40.0%(8/20) 30.0%(6/20) - 80.0%(16/20)

KSR
Red, Black, White - - - - 41.6%(25/60) 98.3%(59/60)
Grey (Unlearned) - - - - 40.0%(8/20) 90.0%(18/20)

FSR
Red, Black, White 4.0%(2/60) 13.3%(8/60) 70.0%(42/60) 63.3%(38/60) 38.3%(23/60) 86.7%(52/60)
Grey (Unlearned) 0.0%(0/20) 10.0%(2/20) 30.0%(6/20) 25.0%(5/20) 25.0%(5/20) 80.0%(16/20)

actual situations. To this end, we train a 4-layer convolutional neural network using Huber loss
with hidden size=256 to regress grasping points for both actions directly in R3 with images input,
as shown in Figure 5(c). Following up demonstrations in 3.3, we extend each demonstration with
a knot tying part. For each demonstration, we record two images from right and left end-effector
views respectively for action 1 and action 2, and record corresponding grasping locations in R3.

4 Experimental Results
4.1 Metrics and Baselines
We evaluate our method on success rates of knot tying on three plastic bags that have demonstra-
tions on them and a new type of plastic bag (grey) that has no demonstration on it to show the
generalization ability of our method. Concretely, we evaluate: a) Adjusting Success Rate (ASR):
if the plastic bag is successfully adjusted to a standing pose from a randomly dropped initial state
to facilitate a valid inserting and lifting action (evaluated by human); b) Knot Tying Success Rate
(KSR): if the plastic bag is successfully knotted from a randomly in-air initial stage. c) Full Task
Success Rate (FSR): if the plastic bag is successfully knotted from a randomly dropped initial state.
For ASR and FSR, we say one attempt fails if it does not succeed in 10 steps of grasping. We show
the effectiveness of different modules in our method by a set of ablated versions:
Directly Inserting without Adjusting (DI): This method aims to directly find the handles of the
plastic bag to lift it with the same method in 3.4 when it is just dropped from the air by the keypoint
skeleton detected at the initial state. This is used to show the necessity of IIM.
Random Picking (RP): The robot randomly picks up a point of the plastic bag based on the seg-
mented plastic bag area from top-down view image Iright and randomly generated a single grasping
point in this area. This is used to show the effectiveness of the spatial action maps φ.
Vision Based Keypoint Skeleton Evaluation (VBE): This method evaluates the goodness of the
adjusted pose of the plastic bag directly from images rather than using a GCN to process the keypoint
skeleton. This is used to show the effectiveness of the task progress moduleG. We use channel-wise
concatenated side view images (VBE-S) and top-down view images (VBE-T) for classifying stages
in this baseline respectively.
Hard-coded Knot Tying (HKT): This method ties the Ian Knot with the same primitives of our
method but use hard-coded goals for each action. This is used to show the effectiveness of learned
motion primitives by CNN.

4.2 Quantitative Results
Table 1 shows the ASR, KSR, and FSR of different baselines. Our method achieves the best success
rates in all metrics. For ASR, DI can barely knot the plastic bag, since most of the initial states do
not support high-confidence keypoint detection (as shown in Figure 6), but occasionally a randomly
dropped plastic bag can form a good standing pose. RP achieves similar results. Random picking
can stretch out the plastic bag to some extent, but it can never end up with a good standing pose,
which needs a dual-arm picking action p2. VBE methods achieve much better results than the above
two methods on the training plastic bags, especially for VBE-S. However, their performance drops
dramatically on the grey plastic bag. This is because although images can also provide information
about poses of plastic bags, they do not extract and use the essential information for evaluating poses
such as the keypoint skeleton, and are susceptible to different illumination conditions. Meanwhile
we only provide hundreds of images for each plastic bag, which may not be sufficient for image-
based classification. That is why VBE methods are not as good as IIM on training plastic bags and
lack generalization abilities to new plastic bags. For KSR, the hard-coded knot tying method can
achieve an average 41.25% success rate. Most of failures of HKT happen in action 2. The goal
position in action 2 varies because it is affected by the grasping results of action 1. A hard coded
action 2 will miss the front side of the right handle or just grasp a wrong part of the plastic bag.
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Figure 6: IIM processes in white and red plastic bags. Top row: side view and detected keypoint
skeleton of plastic bags at each step. Middle row: top-down view and the predicted grasping points
and directions. Bottom row: reconstructed 3D keypoint skeletons and the predicted actions at each
step. We can see at both initial states, handles interleave with each other, but the robot can finally
adjust them to standing poses with iterative pick-and-place actions.

Figure 7: All task progresses along with
grasping steps.

Figure 8: (a) Different initial configurations. (b) Spe-
cial initial configurations that support directly lifting.
(c) Failure cases. The filler is thrown out.

4.3 Qualitative Results
We show the qualitative results of white and red plastic bags in Figure 6 and all task progress curves
evaluated by G (mean and std) in Figure 7. IIM shows great generalization ability to adjust plastic
bags from different initial states to the standing poses. Most IIM processes finish in 4 steps. Some
of them have more steps to finish because of harder initial configurations: one handle is too closer
to the surface below it, or two handles interweave. In this situation the robot may grasp up more
parts than one handle, but after several pick-and-place, the interlaced part can disentangle from each
other and subsequent graspings become normal, as shown in the red plastic bag in Figure 6.

Failure Cases: The inaccuracy of depth estimation is the main reason that causes a failed grasping.
Some graspings fail to catch the bag (above the right grasping point). Others exceed the right
grasping depth. The first case will make the robot stuck in a loop. The second case will make the
robot grasp the body of the plastic bag directly. This may lead to a violent jolt when placing the
plastic bag, which almost equals starting all over again. Sometimes the filler items fall out, which
leads to a failed grasping, as shown in Figure 8(c). Most of the attempts can finish in 5 grasps, but
some attempts (around 15%) need more steps due to the above reason, and 13.3% of attempts fail.
5 Discussion and Future Works
In this work we propose Iterative Interactive Modeling for knotting plastic bags that are randomly
dropped from the air with a dual arm robot. We show the effectiveness of various visual learning
methods such as spatial-action maps and keypoint detection models on plastic bags. IIM is a gen-
eral type of interactive perception [52] for modeling complex elasto-plastic objects: interacting with
objects to complete an explicit representation model. Modules in our method can be replaced by
other specific methods for different objects. For example, the representation model (keypoint skele-
ton in this work) can be dense descriptors [8, 27, 28] or partical-based graphs [13, 14, 36], and the
completion algorithm (imitation learning in this work) can be graph-based completion algorithms.

The limitations of our work are: 1) The keypoint detector depends on our custom dataset PBPose,
and IIM is based on human demonstrations. These make our method lack quick extensibility to
other objects and situations. 2) The assumption of this work is that the plastic bag can stand still
after being adjusted. For some very soft/hard plastic bags, or some fillers that do not support stand-
ing, our method would not be effective. 3) Our method cannot handle extremely difficult initial
configurations such as the handles being pressed underneath the plastic bag. Future works may seek
to employ more actions such as pushing to tackle these situations.
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