Under review as submission to TMLR

Subspace based Federated Unlearning

Anonymous authors
Paper under double-blind review

Abstract

Federated learning (FL) enables collaborative machine learning among multiple clients while
preserving user data privacy by preventing the exchange of local data. However, when users
request to leave the FL system, the trained FL. model may still retain information about
their contributions. To comply with the right to be forgotten, federated unlearning has been
proposed, which aims to remove a designated client’s influence from the FL model. Exist-
ing federated unlearning methods typically rely on storing historical parameter updates,
which may be impractical in resource-constrained FL settings. In this paper, we propose a
Subspace-based Federated Unlearning method (SFU) that addresses this challenge without
requiring additional storage. SFU updates the model via gradient ascent constrained within
a subspace, specifically the orthogonal complement of the gradient descent directions de-
rived from the remaining clients. By projecting the ascending gradient of the target client
onto this subspace, SFU can mitigate the contribution of the target client while maintain-
ing model performance on the remaining clients. SFU is communication-efficient, requiring
only one round of local training per client to transmit gradient information to the server for
model updates. Extensive empirical evaluations on multiple datasets demonstrate that SFU
achieves competitive unlearning performance while preserving model utility. Compared to
representative baseline methods, SFU consistently shows promising results under various
experimental settings.

1 Introduction

The traditional training approach of deep learning typically aggregates data from various participants. How-
ever, certain data, such as medical records [30], cannot be relocated from the hospital due to concerns
regarding data privacy and individual preferences. In response, Federated Learning (FL) [3T} 24} [3; 27]
emerges as a prominent decentralized machine learning solution for addressing these challenges. FL facili-
tates the training of a global model by exchanging model parameters between clients and a central server,
effectively bypassing the need to transfer the raw data [22} 23} 27].

Recent privacy legislations [5; B5; [39] provide data owners the right to be forgotten. In the context of
machine learning, this right necessitates two key actions: (i) deletion of user data from the storing entity
and (ii) removal of the data’s influence on the model [I5]. Within the realm of Federated Learning (FL),
federated unlearning crystallizes the embodiment of the right to be forgotten. However, achieving machine
unlearning within the framework of federated learning presents heightened challenges: (1) Limited Data
Access: In FL, the server lacks direct access to all data and associated operations, rendering forgetfulness
techniques reliant on dataset segmentation inapplicable to FL scenarios. (2) Multi-client Participation:
The initial model of each client in every training round depends on aggregating models from clients engaged
in prior-round training, resulting in the gradual propagation of effects from individual data samples across
models used for local training at multiple clients [33} B2, 40]. Thus, erasing data samples from one client
requires a substantial number of clients to engage in a retraining process.

As mentioned above, retraining in FL. demands a significant number of clients to participate in local training,
inevitably leading to extended training durations. Some recent endeavors have been focused on addressing
this challenge, such as storing the client’s historical updated gradient data on the server and utilizing it to
revert the trained global model [45; 29]. However, these methods necessitate either the client or the server



Under review as submission to TMLR

to retain additional data or gradient information, which may not be practical in FL scenarios with limited
storage resources. There are alternative approaches to execute the unlearning process by directly modifying
the final model. For instance, directly employing gradient ascent on the target client can achieve the
immediate reduction of client data influence in the final model. Nevertheless, this approach may considerably
compromise the model’s performance.

In this paper, we focus on developing a practical approach for implementing federated unlearning within the
final model. We consider unlearning as the inverse process of learning via gradient ascent. However, the loss
function is unbounded, requiring constraints on the gradient to preserve model quality [8;[6]. Consequently,
we treat the entire process as a constraint-solving problem, aiming to maximize the empirical loss of the target
client while maintaining acceptable model performance for other clients. Introducing updates orthogonal to
the gradient directions of neural network predictions can induce minimal changes in network output [10].
Building on this idea, we propose a Subspace-based Federated Unlearning method, termed SFU.

In the SFU framework, the server only requires the ascending gradient information from the target client
and the descending gradient information from the remaining clients. The server then projects the ascending
gradient onto the orthogonal subspace of the descending gradient space. This constrained gradient is used
to update the final trained FL global model, aiming to reduce the contribution of the target client while
preserving the model’s utility. Fig. [1| illustrates the core idea of our approach.

Specifically, participants in the SFU process can be categorized into three roles: the target client to be
forgotten, the remaining clients, and the server. The target client performs local gradient ascent based on
the global model and sends the gradient to the server. Each remaining client performs gradient descent
and transmits their respective gradients to the server. The server aggregates the descending gradients and
derives the gradient space through Singular Value Decomposition (SVD) [16;[36]. Finally, the server projects
the ascending gradient onto the gradient space and updates the global model. The SFU framework only
requires one round of local training per client and a subsequent server update, without the need to access
each client’s raw data or store historical gradients. Empirical results indicate that SFU achieves competitive
unlearning performance across various datasets while maintaining reasonable model accuracy.

In conclusion, our main contributions are as follows:

¢ We incorporate subspace learning into federated unlearning and propose a novel algorithm named SFU.
This algorithm performs gradient ascent within an orthogonal subspace to the gradient space of the
remaining clients.

e SFU effectively achieves unlearning while maintaining acceptable model performance, without incurring
additional storage costs.

e We conduct comprehensive experiments to evaluate SFU, demonstrating that it achieves competitive
performance across multiple datasets, including MNIST, CIFAR10, and CIFAR100.

2 Related Work

Machine unlearning. The concept of “machine unlearning” entails the complete removal of a specific
training data instance, necessitating the nullification of its impact on both extracted features and models. The
introduction of machine unlearning is attributed to Cao & Yang [7], who reformulate statistical query learning
into a summation form and achieve unlearning by selectively updating a subset of the summation. However,
this algorithm is confined to transformable traditional machine-learning methods, prompting exploration into
machine unlearning for various ML models. Ginart et al. [I2] formalize the notion of effective data deletion
in machine learning and propose two efficient deletion strategies for the K-means clustering algorithm. In
the realm of supervised linear regression, Izzo et al. [I7] develop the projective residual update (PRU) for
linear and logistic models. While the computational cost of PRU scales linearly with feature dimensions, its
suitability is limited for more intricate models such as neural networks. To address the overhead of forgetting,
Bourtoule et al. [4] introduce the versatile SISA framework, which trains disjoint sub-models on data shards
and only retrains the affected shard after a deletion request. A recent survey [I8] provides a comprehensive



Under review as submission to TMLR

Figure 1: An illustration of SFU with three clients. wj and w3 represent the optimal model parameters for client
1 and client 2, respectively. The ascending gradient of the target client is denoted as g. Additionally, g1 and g2
correspond to the descending gradients originating from client 1 and client 2. The projection of g onto the orthogonal
space spanned by g1 and g2 is denoted as §. Operating within this orthogonal subspace ensures minimal perturbation
to the model’s performance on client 1 and client 2.

overview of progress, but most studies still assume centrally accessible data, which is ill-suited for federated
settings.

Federated unlearning. Current work can be grouped into two main directions.

Retraining-efficient methods. Liu et al. [29] cache historical gradients to accelerate retraining; Su & Li
[41] cluster clients and retrain only within the group containing the target client, which is useful in highly
heterogeneous scenarios.

One-shot model modification. Wu et al. [45] subtract stored gradients of the target client from the final
model, still requiring extra storage. Wang et al. [44] prune task-specific weights, but only support class-level
forgetting. Very recently, NoT [20] introduces a storage-free weight-negation strategy that supports client-,
class-, and instance-wise unlearning without retraining. The definition of exact federated unlearning was
formalized in FATS [43], which provides a TV-stable FedAvg variant and a provable closed-form unlearning
step equivalent to retraining—but it requires server-side batch data and complex aggregation schemes.

Our approach is closely related to UPGA [I5] and EWC-SAG [45]. All three perform gradient ascent on the
final model to remove a client’s influence, but differ in their constraints: UPGA constrains the magnitude of
the update with an /5 ball; EWC-SAG employs an elastic weight penalty; in contrast, SFU constrains the
direction of the update to the orthogonal complement of the remaining clients’ descent subspace, eliminating
the need for historical checkpoints while better preserving accuracy.

3 Method

We introduce a novel federated unlearning approach, termed SFU, outlined in Algorithm [I] SFU leverages
constrained gradient information from the target client to adapt the final trained model, effectively removing
client contributions while upholding model performance across other clients. Notably, this method eliminates
the need for the server to retain a historical record of parameter updates from individual clients and obviates
the necessity for extensive retraining.

3.1 Problem Setup

Suppose there are K clients, denoted as Cj,...,Cy, respectively. Client C; possesses a local dataset D
The objective of conventional Federated Learning (FL) is to collaboratively train a machine learning model
w over the combined dataset D £ Uie[N] D

Di
w* € argmin L(w) =) uLi(w), (1)
w i=1
where Li(w) = E(g )~pi[li(w; (z,y))] represents the empirical loss of client C;. Throughout the federated

training process, each client minimizes their respective empirical risk L;(w). The model w* obtained is the
final outcome of the FL procedure.



Under review as submission to TMLR

Algorithm 1 Subspace-based Federated Unlearning (SFU)

Input: FL global model w*, local dataset D° of client 4, learning rate 7.
1: Target client Cj:

g1 VLY (w'; DY)

Send g; to the server

Other clients:

for each client ¢ # I do
gi < nVLi(w*; D)
Send g; to the server

Server:

for each net’s layer [ =1,2,3,... do
R' « (g, ....8) 1,87 1, 85
Perform SVD on R! = U'SH{(VHT
Select the first k vectors of U
St « span{u},ub,... ul}
Projection matrix P! < S{(SHT

: P« [PL P2 .. ]

gr < Py

gp < (91 — dr1)

wul — wt — gp

© % N> o ®h

= =
L T

== e e
® N> x

Now let’s delve into the strategy for eliminating the contribution of the target client C;. An intuitive
approach is to escalate the empirical risk L;(w) associated with the target client C7, essentially reversing the
learning process. However, a straightforward maximization of the loss will impact the model’s performance
on other clients. Federated unlearning needs to forget the contribution of the target client C; while ensuring
the overall model performance. Consequently, federated unlearning can be formulated as follows:

argmax Lj(w) = E (g )~pi [l1(w; (2,7))]
w (2)
s.t. E(w) —E(w*) <6

Here, § represents a tolerable difference in model performance, while £(w) signifies the accuracy of model
w evaluated on the remaining clients within the FL system. Prior work by Halimi et al. [I5] utilized the
parameter distance between w and w* as a constraint, although this parameter distance might not fully
capture the performance disparity among different models. Conversely, the constraint presented in Eq.
effectively addresses this concern.

3.2 Subspace-based Federated Unlearning (SFU)

When applying the ascending gradient update of the target client to the global model without considering
other clients, there is a high probability that the neural network will turn into a stochastic model. SFU
restricts model updates to orthogonal subspaces aligned with the gradients of other clients to mitigate
this issue. This approach achieves the goal of forgetting the target client’s contribution while minimizing
potential disruptions to model performance for other clients. The training process of SFU is depicted in
Fig.[2l Participants in SFU encompass the target client, remaining clients, and the server. The target client
employs gradient ascent and transmits the resulting gradient to the server. Other clients engage in gradient
descent and forward their descending gradients to the server. The server calculates the gradient space of the
other clients and performs unlearning updates on the global model. Subsequently, we will provide a more
detailed explanation of the SFU process.



Under review as submission to TMLR

3.2.1 Local training on clients

Satisfying the constraints outlined in Eq. necessitates imposing restrictions on the ascending gradient.
Drawing inspiration from Fig. [I} it becomes evident that moving orthogonally to the gradient space yields
the least impact (or even negligible change locally) on the FL model’s performance for clients. This valuable
insight prompts us to project the updated gradient of the target client C'; onto the orthogonal space of the
gradient subspace associated with other clients [I0]. This process requires both the ascending gradient from
the target client and the descending gradients from the other clients. Hence, upon receiving a forget request
from the target client, the training procedures for the target client and the other clients are as follows:

o Target Client: The target client trains the FL model using the gradient ascent algorithm. The empirical
loss of client C; in FL is denoted as L;(w). To implement gradient ascent, we modify the empirical loss
of the target client C; to ﬁ, denoted as LY (w). Consequently, the local optimization objective for
the target client becomes arg min Ll (w). Upon completing local training, the target client transmits the

gradient information VL% (w) to the server.

¢ Other Clients: The remaining clients with availability undergo the same gradient descent training as
in the FL process. Hence, the local optimization objective for each remaining client remains L;(w), and
they also forward the gradient information VL;(w) to the server upon training completion.

3.2.2 Computation of projection matrix

When the server aggregates the gradient information sent by each client, it proceeds to compute the projection
matrix of descending gradient space for each layer of the model. This process involves two key steps:

e The gradient information for each client in every layer of the network can be represented as a matrix.
Let gl € R™*" denote the gradient matrix for layer [ of client C;. To calculate the gradient space, the
server needs to merge the gradient information from different clients. In SFU, we concatenate the gradient
matrices from available clients other than the target client C; and assume that the number of available
clients is S, resulting in the merged matrix R' = [gl17 ...7gl171,g11+1, ...,gg], where R! € Rm*(nx5),

o Next, we perform SVD on R!, yielding R! = U'S!(VH)T. Subsequently, we obtain the k-rank approxi-
mation (R!); of R! based on a given coefficient €, satisfying the following criterion:

(R[5 > €'[| R[] 3)

We then span the first k& vectors in U' to represent the significant space at layer I, resulting in S’ =
span{ul, ub, ..., ufc} This space encompasses all directions associated with the highest singular values in
the representation [37].

Following these two steps, the server obtains the projection matrix P! for layer [. Specifically, P! = S'(S%)7,
and this process is repeated for each layer, leading to P = [P, P%,...].

3.2.3 Update of the global model on the server

After receiving gradient information from clients and calculating the projection matrix P, the server proceeds
to update the global model w*. Initially, the server projects the gradient g; from the target client onto the
gradient space, resulting in the projection g7, where gy = Pg;. Subsequently, the server updates the global
model w* in the orthogonal subspace, as represented by the following equation:

w' = w* — gp. (4)

Where gp = (g7 — g1), representing the projection of g; onto the subspace. This updated model w* removes
the contribution of the target client C; while maintaining a performance level similar to that of the original
global model.



Under review as submission to TMLR

Client 1 .
Gradient g

)
o\ |8
—

@ = ‘&

Gradient —= .gh; <8N
Cllent € o cooE
targot client) Server Gradient Subspace
® ®

Gradient gy
=)

Client N
Figure 2: The pipeline of SFU. The entire process occurs subsequent to the training of the FL model. The
orange client denotes the target client from which the contribution is to be removed; the blue clients represent
others. The boxes on the right of the image symbolize global model updates performed on the server.

In conclusion, we offer several remarks regarding the proposed SFU algorithm. It is noteworthy that subspace
learning has found widespread application in diverse domains such as continual learning [37], meta learning
[19], one-shot learning [42], adversarial training [26], Graph forgetting [9], and expedited training of deep
learning models [25]. However, SFU is the first work to use the orthogonal space of input gradient space for
federated unlearning.

3.3 On the effectiveness of SFU

In this section, we investigate the efficacy of SFU by quantifying the difference between our unlearned
solution ggpy and the solution w, obtained through retraining. We anticipate that ||w, — w,]||2 remains
bounded to mitigate the generation of arbitrary models. Prior to presenting our results, we establish the
following customary assumptions regarding the variance of stochastic gradients, as depicted in Assumption [I]
It is important to note that Assumption [I] represents standard assumptions in the theoretical analysis of
Federated Learning (FL) [49; 28].

Assumption 1. The expected squared norm of stochastic gradients of L(w) is uniformly bounded by G2,
i.e., E||VL(w)||* < G2.

Theorem 1. Let us suppose Assumption{d] hold. Let us define w,; as the solution obtained by SFU, w, is
the solution obtained by re-training from scratch. Then, the closeness of wy; to the weight parameters w,
can be bounded by

Ellwy = wull2] < (20T + 1)02’ (5)

This indicates that the difference between the last computed model by SFU and the retrained model is limited.

Proof. Let us define w(t), w,(t) as the weight parameters obtained by training from scratch with target
client and without target client for ¢ epochs with the same initialization w(0) = w,.(0), and w,,;(¢) denote
the weight parameters obtained by applying SFU on w(t). To help the reader better understand the proof
strategy used in this section, we derive the upper bound of ||w,.(T) — wy||2 by first expanding the formula
into two terms

Wi (T) = W] (6)
Slwe(T) = w(T)ll2 + [[W(T) = Wurl2-

Then, we derive the upper bound of the first term and the second term respectively to obtain the upper
bound of ||w,.(T) — wy|2.



Under review as submission to TMLR

According to the gradinet update rule in gradient descent, we can bound the change of model parameters in
the first term w,.(¢t) and w(t) by

[[w(t+1) = w(t+1)]2 (7)

= w2+l VL (wr () [|2 + 0l VL(w(D))]]2
= w(t)l|2 + 20G?,

where L"(L) = =

ieny1 157 Li(w). Then after T iterations, we can bound the different between two param-
eters as

[w(T) = w(T)|l2 < 20T G*. (8)

P is the projection matrix, so ||P|lz < 1. We can bound the change of model parameters in the second
term w,.(t) and w,; by
[W(T) = Wl

= [Iw(T) = (w(T) = PVL(w(T)))], (©)

= [PV L(w(T))|2

<G
Adding the bound of the first term and the bound of the second term we can obtain the final bound
(2nT + 1)G>. O

In the following theorem, we show that the new direction —gp is still a descent direction (i.e. {(—gp, gr) < 0).

Theorem 2. Let g; be the ascent gradient of target client Cy and P is the projection matriz to the gradient
space of other clients. Let g = Pgr, gp = (91 — g1). Then, —gp is also a descent direction for L(w).

Proof. For a vector u to be a descent direction it should satisfy (u,g) < 0. To begin with, we have

(—gp, 91) = (—gpr,9p + d1)

= gpl — (—gp ) - 10

Since gp is orthogonal to the space in which ¢y lies, hence (gp,gr) = 0. Substituting this into Eq. we
have (—gp, g1) = —| gp||?> < 0. Therefore, —gp is a descent direction for client Cj. O

The above two theories ensure that SFU indeed updates the model in the direction of removing the target
client contribution. They also provide an explanation for the limited difference between the model result-
ing from SFU and the model obtained through complete retraining. This guarantees a certain level of
performance for the model.

4 Experiments

In this section, we empirically assess the effectiveness of SFU across various model architectures on three
datasets. Our experimental findings demonstrate that our unlearning strategies can adeptly eliminate the
target client’s impact on the global model while incurring minimal performance degradation. Furthermore,
these strategies facilitate rapid accuracy recovery within a few training rounds. We commence by outlining
the experimental setup and subsequently unveil the evaluation outcomes. For comprehensive experimental
settings, please consult the Appendix.

4.1 Experimental Setup

Datasets. We evaluate the performance of SFU using three widely recognized datasets: MNIST [47], CI-
FARI10, and CIFAR100 [2I]. The datasets exhibit increasing levels of training difficulty from MNIST to



Under review as submission to TMLR

FedAvg Retraining UPGA ULS EWC-SAG SFU
Dataset distribution | network | test acc | atk acc | test acc | atk acc | test acc | atk acc | test acc | atk acc | test acc | atk acc | test acc | atk acc
1D MLP 96.57 99.14 96.45 0.611 86.48 0.10 83.42 0.0 90.19 0.24 92.8 0.15
CNN 99.15 99.63 99.21 0.20 51.59 0.0 34.95 0.0 88.9 1.56 98.62 0.06
. ) MLP 96.03 99.04 95.95 0.60 81.91 0.14 68.41 0.0 86.69 1.41 89.12 0.25
MNIST Dir(0.6) CNN 98.96 99.58 99.01 0.26 14.11 0.0 46.43 0.0 85.25 0.0 98.76 0.01
Dir(0.3) MLP 95.54 98.95 95.48 0.66 83.21 0.24 72.96 0.0 86.34 1.88 88.63 0.26
CNN 98.92 99.78 98.98 0.28 52.41 0.0 38.76 0.0 86.83 0.0 98.39 0.03
1D MLP 50.86 52.38 50.6 3.77 11.05 0.01 13.75 0.0 20.45 0.08 44.76 0.96
CNN 66.40 37.14 67.56 4.42 60.94 94 10.0 0.0 61.48 1.02 61.68 0.46
. MLP 47.58 53.58 48.42 4.81 16.54 0.02 11.97 0.0 334 0.12 42.95 3.67
CIFARI0 Dir(0.6) CNN 63.74 39.88 65.83 3.21 64.2 8.34 53.27 0.85 56.27 0.94 61.52 6.43
Dir(0.3) MLP 46.41 54.4 45.51 6.01 13.69 0.01 10.36 0.0 30.73 0.26 45.21 1.53
CNN 61.52 51.84 63.51 4.54 38.76 0.08 10.06 0.0 50.07 1.43 54.67 3.72
1D MLP 21.93 57.79 23.42 1.73 9.05 0.01 2.03 0.0 20.01 0.26 22.06 1.46
CNN 33.20 4.66 33.68 0.48 34.35 0.13 1.75 0.0 31.50 0.20 32.45 1.27
. MLP 21.12 50.89 21.8 0.78 9.72 0.0 1.59 0.0 19.12 0.50 20.12 0.71
CIFAR100 Dix(0.6) CNN 31.26 7.7 32.06 0.58 29.38 0.02 28.52 0.03 30.89 0.09 31.55 0.12
Dir(0.3) MLP 20.17 57.93 20.67 1.30 6.94 0.01 1.06 0.0 16.52 0.61 19.2 1.34
CNN 31.61 5.81 32.02 0.65 31.96 0.18 1.0 0.0 30.86 0.20 31.12 2.10

Table 1: Results of different unlearning methods. We record the attack success rate as “atk acc,” and “test
acc" represents the accuracy metric on the clean test data.

CIFAR100. Our evaluation encompasses two distinct data distribution scenarios: Independent and Identi-
cally Distributed (IID), as well as Non-IID (Non Independent and Identically Distributed). For the Non-IID
setting, we adopt the Dirichlet distribution (3): The label distribution on each device follows the Dirichlet
distribution, where § serves as the concentration parameter (8 > 0).

Baselines. Our goal is to achieve the unlearning process by adapting the FL model. To this end, we
select three prominent federated unlearning algorithms that directly modify the final FL model as reference
benchmarks: Unlearning via Projected Gradient Ascent (UPGA) [I5], UL-Subtraction (ULS) [45], and
EWC—SAGH [15]. Furthermore, we include a full retraining from scratch baseline for comparative evaluation.
These methods are chosen because they (i) require no multi-epoch retraining of all clients, (ii) do not assume
access to auxiliary server-side data, and (iii) represent three different constraint strategies—¢s-ball, gradient
subtraction, and elastic weight regularisation—thus providing a diverse yet fair yardstick for SFU.

Unlearning Assessment Approaches. We employ backdoor attacks during the target client’s updates
to the global model, enabling us to intuitively examine the unlearning impact through the success rate of a
model backdoor attack on the unlearned global model. An effective unlearning method should diminish the
success rate of such an attack post unlearning. It is worth noting that due to model prediction errors, even
retraining can yield an attack success rate greater than 0. In our experiments, we follow to the approach
of Halimi et al. [I5] and execute the backdoor attack using a “pixel pattern" trigger of size 2 x 2, altering
the label to “9" on data with labels other than “9". Furthermore, we evaluate the model’s performance after
unlearning using accuracy metrics on untainted test data.

Implementation details. We employed two network architectures, MLP and CNN, to handle the MNIST
and CIFAR10 datasets. These models were implemented using PyTorch [34]. Our experimental setup consists
of 10 clients, with one designated as the target client. All clients fully participate in each training round.
Unlearning experiments were carried out on the FL model after 100 training rounds. We backdoor 80% of
the data on the target client.The hyperparameter settings for each approach were as follows: In the case
of SFU, the learning rate was set to 0.01, the number of epochs was set to 1, and a mini-batch size of 128
was utilized for gradient ascent on the target client. We explored the SVD parameter ¢ within the range
[0.90 — 0.99] and selected the optimal value. SFU constructs the gradient space by aggregating gradient
information from all other clients.For UPGA and EWC-SAG, the learning rate, the number of epochs, and
the mini-batch size were maintained consistent with those of SFU. Additionally, we performed a parameter
search to determine the specific values of their unique parameters.

4.2 Main Results

Efficient Unlearning with Minimal Performance Loss. The unlearning effects of SFU and other
baseline methods on various IID datasets and model architectures are presented in Table It is evident

1We follow the notation of Halimi et al. [I5] and denote elastic weight consolidation with single ascent gradient as EWC-SAG.



Under review as submission to TMLR

that SFU, similar to retraining, effectively mitigates the backdoor attack success rate across all datasets.
Other baselines also yield comparable results, indicating their ability to efficiently remove the influence of the
target client.Furthermore, Table [1] also provides accuracy results for each baseline on the clean test dataset
after unlearning. The outcomes reveal that several alternative methods lead to significant performance
degradation while accomplishing forgetting. For instance, UPGA results in an 47% reduction in accuracy
for the CNN model on the IID MNIST dataset, whereas SFU demonstrates a mere 1% reduction. This
contrast underscores SFU’s capability to maintain model performance while eliminating the contribution of
the target client.

Robustness Across Different Data Settings. The heterogeneity of data across different clients and
the complexity of training tasks can both impact the federated learning process. Table [I] illustrates the
influence of these factors on the unlearning process. It is evident that as the data heterogeneity increases,
various unlearning methods lead to more significant performance degradation. For instance, during the
transition from IID data to Dir(0.3) data, SFU’s performance degradation on the CNN model trained on the
CIFARI10 dataset increases from 4.72% to 6.85%. However, this performance change remains smaller than
the performance losses observed in other algorithms when facing changes in data heterogeneity. Furthermore,
as the task complexity shifts from MNIST to CIFAR100, some unlearning methods may become ineffective.
For instance, ULS generates a random CNN model on the CIFAR10 dataset, while SFU manages to maintain
the model’s performance after unlearning. This highlights SFU’s superior robustness across different data
settings.

Recovery of Model Accuracy After Unlearn-

ing After undergoing different Federated Unlearn- 0] =T T i e S
ing methods, it is a common practice to fine-tune — et ™
the unlearned model on the remaining clients to re- 7 / o -

store its accuracy. We conducted fine-tuning on the 1

CNN models generated by these unlearning meth-
ods on the remaining clients using the IID CIFAR10
dataset. In contrast, the ULS method employs %1

Accuracy

clean server data for knowledge distillation-based

=== Retraining

fine-tuning. Fig. [3] presents the results on the CI- -

FARI10 dataset under the IID setting. Impressively, 7 BMC-SAG

SFU achieves higher accuracy with just one or a few 6l ="
1 2 3 4 5 6 7 8 910 1M 121314 15 16 17 18 19 20

rounds of retraining, while other methods require
more training rounds. This emphasizes that SFU
can offer a superior initial model for accuracy re-
covery.

Training round

Figure 3: Convergence plots for SFU and other baselines
on CIFAR-10 (CNN, IID).

4.3 Exploratory Study

Impact of different SVD coefficient e. As discussed in Section [3.2] our approach aims to mitigate the
decline in accuracy by taking gradient steps orthogonal to the gradient space of the remaining clients. This
gradient space is formed using bases that approximate the significant task representations of the remaining
clients. The extent of this approximation is controlled by the threshold hyperparameter ¢ at layer [ of the
network, defined in Equation [3] In our experiments, we maintain the same parameter € for all layers. The
impact of different e values is visually demonstrated in Fig. a). A lower € value (closer to 0) empowers
the optimizer to adjust the model’s weights mainly along directions where the gradients from other clients
exhibit higher representational significance. Consequently, this can lead to substantial changes in the model’s
performance across other clients. Conversely, a higher e value (closer to 1) preserves these correlations, but
it may not fully eliminate the target client’s contribution due to the constraints imposed by the abundant
gradients in the space. Furthermore, Fig. a) indicates that selecting a value for ¢ between 0.9 and 0.95
in our federated unlearning algorithm strikes a balance between eliminating the target client’s contribution
and preserving model performance as effectively as possible.

Impact of client’s participation rate. In a real-world FL scenario, not all clients can partici-
pate simultaneously in the federated training process. SFU relies on clients providing descending gra-



Under review as submission to TMLR

Attack accuracy
== Test accuracy

100 4
60 CIFAR100
L oa CIFARTO
- _NIST
55 804
] ol
1
40 4
Fo1
20
7] .
T T . T T — 00 0 T T T T T
508

0.7 0.8 0.9 0.92 0.95 0.97 o 2% o% 100%
Participation rate of clients

=1
w

Attack accuracy

w
=]

&

o
o
)

Test accuracy
Test accuracy

(a) SFU results on CIFAR-10 with varying e val- (b) Accuracy under IID setting vs. client partici-
ues. pation rate.

Figure 4: Ablation results of SFU.

dients to establish the gradient space. We investigated the impact of removing the target client’s con-
tribution when employing SFU with varying proportions of available clients. The experimental results,
illustrated in Fig. @(b), reveal that SFU effectively eliminates the target client’s contribution across
nearly all client participation rates. Moreover, as the client participation rate increases, the perfor-
mance of the unlearning model on the remaining clients improves.Interestingly, at a client participation
rate of 0, which is equivalent to directly updating the global model using the target client’s descend-
ing gradient, the outcome is a random model with a 10% accuracy across ten classification tasks. This
underscores the significance of conducting SFU within an orthogonal gradient space, emphasizing its
role in achieving meaningful updates even when only a subset of clients is available for participation.

Impact of the amount of data on the target T e — T
client. The data volume of the target client indi- ““‘-—-,__‘_”___
cates to some extent the importance of the target T
client in the overall FL system. As shown in Fig.[f], ¥
as the amount of data in the target client increases, g
the performance of the model after performing SFU E & i
will produce degradation in the remaining clients. % H “~  CIFARIO0
However, the SFU can successfully remove its con- = »
tribution to the FL system under almost all data ] ’ i
volume conditions of the target client. )

20

10% 0% 30% 40% 0%

5 Conclusion The percentage of the target c\ienf's data

Figure 5: Outcome under the IID setting for different
In this paper, we propose a novel federated unlearn- amounts of data on the target client.

ing approach that can successfully eliminate the con-

tribution of a specified client to the global model,

which also can minimize the model accuracy loss by performing a gradient ascent process within the sub-
space at any stage of model training. Our approach only relies on the target client to be forgotten from the
federation without the server or any other client keeping track of its history of parameter updates. We have
used a backdoor attack to effectively evaluate the performance of the proposed method and our experimental
results demonstrate the efficiency and effectiveness of SFU.

10



Under review as submission to TMLR

References

[1]

[13]

[14]

[15]

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. In International Conference on Artificial Intelligence and Statistics, pp.
2938-2948. PMLR, 2020.

Thomas Baumhauer, Pascal Schottle, and Matthias Zeppelzauer. Machine unlearning: Linear filtration
for logit-based classifiers. Machine Learning, 111(9):3203-3226, 2022.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov,
Chloe Kiddon, Jakub Konec¢ny, Stefano Mazzocchi, Brendan McMahan, et al. Towards federated learn-
ing at scale: System design. Proceedings of machine learning and systems, 1:374-388, 2019.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141-159. IEEE, 2021.

Axel Bussche. The EU General Data Protection Regulation (GDPR): A Practical Guide. Springer,
2017.

Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhengiang Gong. Fedrecover: Recovering from poisoning
attacks in federated learning using historical information. In 2028 IEEE Symposium on Security and
Privacy (SP), pp. 1366-1383. IEEE, 2023.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015 IEEE
Symposium on Security and Privacy, pp. 463-480. IEEE, 2015.

Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected gradient descent:
General statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025, 2015.

Weilin Cong and Mehrdad Mahdavi. Efficiently forgetting what you have learned in graph representation
learning via projection. In International Conference on Artificial Intelligence and Statistics, pp. 6674—
6703. PMLR, 2023.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762-3773. PMLR,
2020.

Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. The limitations of federated learning in sybil
settings. In RAID, pp. 301-316, 2020.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data deletion
in machine learning. Advances in neural information processing systems, 32, 2019.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 11516-11524, 2021.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Anisa Halimi, Swanand Kadhe, Ambrish Rawat, and Nathalie Baracaldo. Federated unlearning: How
to efficiently erase a client in 17 arXiv preprint arXiv:2207.05521, 2022.

Andreas Hoecker and Vakhtang Kartvelishvili. Svd approach to data unfolding. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 372(3):469-481, 1996.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models. In International Conference on Artificial Intelligence and Statistics, pp.
2008-2016. PMLR, 2021.

11



Under review as submission to TMLR

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[28]

[29]

[30]

[31]

[32]

[34]

[35]

Hyejun Jeong, Shiqing Ma, and Amir Houmansadr. Sok: Challenges and opportunities in federated
unlearning. arXiv preprint arXiv:2403.02437, 2024.

Weisen Jiang, James Kwok, and Yu Zhang. Subspace learning for effective meta-learning. In Interna-
tional Conference on Machine Learning, pp. 10177-10194. PMLR, 2022.

Yasser H Khalil, Leo Brunswic, Soufiane Lamghari, Xu Li, Mahdi Beitollahi, and Xi Chen. Not: Fed-
erated unlearning via weight negation. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 25759-25769, 2025.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Guanghao Li, Yue Hu, Miao Zhang, Ji Liu, Quanjun Yin, Yong Peng, and Dejing Dou. Fedhisyn: A hi-
erarchical synchronous federated learning framework for resource and data heterogeneity. In Proceedings
of the 51st International Conference on Parallel Processing, pp. 1-11, 2022.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Computers
& Industrial Engineering, 149:106854, 2020.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713-10722, 2021.

Tao Li, Lei Tan, Zhehao Huang, Qinghua Tao, Yipeng Liu, and Xiaolin Huang. Low dimensional
trajectory hypothesis is true: Dnns can be trained in tiny subspaces. IFEFE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Tao Li, Yingwen Wu, Sizhe Chen, Kun Fang, and Xiaolin Huang. Subspace adversarial training. In
Proceedings of the IEEE/CVE Conference on Computer Vision and Pattern Recognition, pp. 13409—
13418, 2022.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEFE signal processing magazine, 37(3):50-60, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Gaoyang Liu, Xiaogiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. Federaser: Enabling effi-
cient client-level data removal from federated learning models. In 2021 IEEE/ACM 29th International
Symposium on Quality of Service (IWQOS), pp. 1-10. IEEE, 2021.

Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E Dahl, Timo Kohlberger, Aleksey Boyko,
Subhashini Venugopalan, Aleksei Timofeev, Philip Q Nelson, Greg S Corrado, et al. Detecting cancer
metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence
and statistics, pp. 1273-1282. PMLR, 2017.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
feature leakage in collaborative learning. In 2019 IEEE symposium on security and privacy (SP), pp.
691-706. IEEE, 2019.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning. In
Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), pp. 1-15, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.08748, 2018.

Stuart L Pardau. The california consumer privacy act: Towards a european-style privacy regime in the
united states. J. Tech. L. & Pol’y, 23:68, 2018.

12



Under review as submission to TMLR

[36] Rowayda A Sadek. Svd based image processing applications: state of the art, contributions and research
challenges. arXiv preprint arXiv:1211.7102, 2012.

[37] Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. arXiv
preprint arXiv:2103.09762, 2021.

[38] Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. Advances in Neural Information Processing
Systems, 34:18075—18086, 2021.

[39] Supreeth Shastri, Melissa Wasserman, and Vijay Chidambaram. The seven sins of {Personal-Data}
processing systems under {GDPR}. In 11th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 19), 2019.

[40] Mengkai Song, Zhibo Wang, Zhifei Zhang, Yang Song, Qian Wang, Ju Ren, and Hairong Qi. Analyzing
user-level privacy attack against federated learning. IEEE Journal on Selected Areas in Communications,
38(10):2430-2444, 2020.

[41] Ningxin Su and Baochun Li. Asynchronous federated unlearning. In IEEE INFOCOM 2023-1EEE
conference on computer communications, pp. 1-10. IEEE, 2023.

[42] Shangchao Su, Bin Li, and Xiangyang Xue. One-shot federated learning without server-side training.
Neural Networks, 2023.

[43] Youming Tao, Cheng-Long Wang, Miao Pan, Dongxiao Yu, Xiuzhen Cheng, and Di Wang. Communi-
cation efficient and provable federated unlearning. arXiv preprint arXiv:2401.11018, 2024.

[44] Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated unlearning via class-discriminative pruning.
In Proceedings of the ACM Web Conference 2022, pp. 622-632, 2022.

[45] Chen Wu, Sencun Zhu, and Prasenjit Mitra. Federated unlearning with knowledge distillation. arXiv
preprint arXiv:2201.09441, 2022.

[46] Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad: Rapid retraining of machine learning
models. In International Conference on Machine Learning, pp. 10355-10366. PMLR, 2020.

[47] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[48] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor attacks against federated
learning. In International conference on learning representations, 2020.

[49] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated learning
with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

We conducted experiments on real-world datasets including MNIST, CIFAR10, and CIFAR100. The exper-
imental settings are described in detail below.

Dataset. We utilized real-world datasets, specifically MNIST, CIFAR10, and CIFAR100. The MNIST
dataset [47] consists of 60,000 training samples and 10,000 test samples distributed across 10 classes. Each
data sample is a grayscale image of dimensions 28 x 28. The CIFAR10 dataset comprises 50,000 training
samples and 10,000 test samples spread across 10 classes. Each data sample is a color image with dimensions
3 x 32 x 32. Similarly, the CIFAR100 dataset [2I] includes 50,000 training samples and 10,000 test samples
distributed among 100 classes, with 500 training samples per class. The normalization of pixel values for
MNIST and CIFAR10/100 is performed using mean and standard deviation values of [0.5, 0.5, 0.5] for both.

13



Under review as submission to TMLR

Datasets  Training Data Test Data Classes Size
MNIST 60,000 10,000 10 28 x 28
CIFAR-10 50,000 10,000 10 3 %32 x 32
CIFAR-100 50,000 10,000 100 3 x 32 x 32

Table 2: Summary of dataset characteristics

|ID Distribution in CIFAR-10 Dirichlet 0.3 Distribution in CIFAR-10
= IR AR §-... o
AR AR -1

HHHH T

3
—

[T I

4 3 2

1250

4
—

o~

1000

|1 | 750

- 500

I I -250

ooooo

Classes

Classes
9 8 7 6 5
—

-115

[ T R E A B S
NT O OoNS OO0 NT oD UL RRITILR ONT VO oMNT OO MNTO® o
NNNNNNNNNN M ]

Clients Clients

9 8 7 6 5

- 110

(a) IID (b) Dir(0.3)

Figure 6: Heat maps for each client using CIFAR10 dataset under different data partitions. Color bar
indicates the number of data samples, and each rectangle represents the count of data samples per class in
a partition.

Dataset Partitions. To ensure a fair comparison with other baselines, we introduce heterogeneity by
partitioning the total dataset based on label ratios sampled from the Dirichlet distribution. A parameter
controls the level of heterogeneity in the data partition. Fig. [f] displays heat maps illustrating the label
distribution across different datasets. Notably, for a heterogeneity weight of 0.3 in the Dirichlet distribution,
approximately 10% to 20% of categories dominate each client, as depicted by the blue blocks in Fig. @ In
contrast, the IID dataset is uniformly distributed across clients, as indicated by the blue block in Fig. [6]

Baseline Algorithms. We evaluate our proposed federated unlearning algorithm (SFU) against four
baseline methods:

¢ Retraining: This method involves retraining the entire FL system without excluding the target
client, resulting in computational and communication overhead.

o UL-Subtraction [45]: This approach forgets the target client by subtracting historical parameter
updates unique to the target client from the global model. Knowledge distillation is used to alleviate
the distortion caused by subtraction.

o Unlearning via Projected Gradient Ascent (UPGA) [I5]: UPGA leverages gradient ascent
information from the target client to revert the learning process and achieve unlearning, while
constraining updates to an f3-norm ball.

« EWC-SGA [I5]: EWC-SGA employs the Fisher Information matrix to regularize the cross-entropy
loss and control parameter updates, with higher importance factors imposing stricter constraints.

Network Architectures. We employ two neural network architectures in our experiments:

e MLP: A fully-connected neural network with 2 hidden layers, containing 200 and 100 neurons,
respectively.

14



Under review as submission to TMLR

e CNN: A network architecture consisting of 2 convolutional layers with 64 5x5 filters, followed by
2 fully connected layers with 800 and 500 neurons and a ReLU activation function.

Both MLP and CNN models were implemented using PyTorch [34].

Implementation Details. For the unlearning experiment, we conducted trials on the FL model after
100 training rounds. The hyperparameters for each method were set as follows: SFU used a learning rate
of 0.01, epoch as 1, and a mini-batch size of 128 for gradient ascent on the target client. SVD parameters
followed the setting of Saha et al. [37], exploring ¢ within the range [0.90 — 0.99] and selecting the optimal
value. UPGA and EWC-SAG maintained the same learning rate and mini-batch size as SFU. ULS on the
server used a public dataset formed by randomly sampling one-tenth of the total data.

For the model performance recovery experiment, FL training commenced with the stochastic model for full
retraining. For SFU, UPGA, and EWC-SAG, FL training started on the unlearned local model without
the target client’s involvement. Knowledge distillation with the server’s public data aided model accuracy
recovery for UL. Additionally, parameter searches were performed to determine the best hyperparameter
values.

Unlearning Metrics Comparing the distinction between the unlearned model and the retrained model
serves as a fundamental criterion for measuring the effectiveness of unlearning. Common dissimilarity metrics
encompass model test accuracy difference [4], ¢5-distance [46], and Kullback-Leibler (KL) divergence [3§].
Nevertheless, in the context of Federated Learning (FL), assessing the removal of a specific client’s contribu-
tion through these model difference-based evaluation methods can be challenging. Alternative metrics involve
privacy leakage within the differential privacy framework [38] and membership inference attacks [I3; 2]. In
this study, we adopt backdoor triggers [14] as an effective means to evaluate unlearning methods, akin to Wu
et al. [45]. Specifically, the target client employs a dataset containing a fraction of images with inserted
backdoor triggers. Consequently, the global FL. model becomes susceptible to these triggers. A successful
unlearning process should result in a model that reduces accuracy for images with backdoor triggers while
maintaining strong performance on regular (clean) images. It is important to note that we employ back-
door triggers solely for the purpose of evaluating unlearning methods; we do not consider any malicious
clients [48; [T} [I1].

Our Evaluation Metric. @ We use backdoor attacks in the target client’s updates to the global model, as
described earlier, to intuitively assess the unlearning effect based on the attack success rate of the unlearned
global model. In Table (1], we record the attack success rate as "atk acc". A lower "atk acc" indicates a cleaner
removal of the target client’s contribution. In our experiments, we implement the backdoor attack using a
"pixel pattern" trigger of size 2x2 and change the label to "9". Due to the predictive errors of the model,
even the attack success rate after retraining is greater than 0. We can consider the attack success rate after
retraining as the benchmark for successful removal of the target client’s contribution. Additionally, we use
the accuracy metric on clean test data to gauge the model’s performance after unlearning, denoted as "test
acc" in Table[l] A high accuracy suggests that unlearning has minimal impact on the model’s performance.

15



	Introduction
	Related Work
	Method
	Problem Setup
	Subspace-based Federated Unlearning (SFU)
	Local training on clients
	Computation of projection matrix
	Update of the global model on the server

	On the effectiveness of SFU

	Experiments
	Experimental Setup
	Main Results
	Exploratory Study

	Conclusion

