Under review as submission to TMLR

Subspace based Federated Unlearning

Anonymous authors
Paper under double-blind review

Abstract

Federated learning (FL) enables collaborative machine learning among multiple clients while
preserving user data privacy by preventing the exchange of local data. However, when users
request to leave the FL system, the trained FL. model may still retain information about
their contributions. To comply with the right to be forgotten, federated unlearning has been
proposed, which aims to remove a designated client’s influence from the FL model. Exist-
ing federated unlearning methods typically rely on storing historical parameter updates,
which may be impractical in resource-constrained FL settings. In this paper, we propose a
Subspace-based Federated Unlearning method (SFU) that addresses this challenge without
requiring additional storage. SFU updates the model via gradient ascent constrained within
a subspace, specifically the orthogonal complement of the gradient descent directions de-
rived from the remaining clients. By projecting the ascending gradient of the target client
onto this subspace, SFU can mitigate the contribution of the target client while maintain-
ing model performance on the remaining clients. SFU is communication-efficient, requiring
only one round of local training per client to transmit gradient information to the server for
model updates. Extensive empirical evaluations on multiple datasets demonstrate that SFU
achieves competitive unlearning performance while preserving model utility. Compared to
representative baseline methods, SFU consistently shows promising results under various
experimental settings.

1 Introduction

The traditional training approach of deep learning typically aggregates data from various participants. How-
ever, certain data, such as medical records [31], cannot be relocated from the hospital due to concerns
regarding data privacy and individual preferences. In response, Federated Learning (FL) [32} 25} [3; 28]
emerges as a prominent decentralized machine learning solution for addressing these challenges. FL facili-
tates the training of a global model by exchanging model parameters between clients and a central server,
effectively bypassing the need to transfer the raw data [23} 24} 28].

Recent privacy legislations [5; B35} [40] provide data owners the right to be forgotten. In the context of
machine learning, this right necessitates two key actions: (i) deletion of user data from the storing entity
and (ii) removal of the data’s influence on the model [I5]. Within the realm of Federated Learning (FL),
federated unlearning crystallizes the embodiment of the right to be forgotten. However, achieving machine
unlearning within the framework of federated learning presents heightened challenges: (1) Limited Data
Access: In FL, the server lacks direct access to all data and associated operations, rendering forgetfulness
techniques reliant on dataset segmentation inapplicable to FL scenarios. (2) Multi-client Participation:
The initial model of each client in every training round depends on aggregating models from clients engaged
in prior-round training, resulting in the gradual propagation of effects from individual data samples across
models used for local training at multiple clients [34; 33; 41]. Thus, erasing data samples from one client
requires a substantial number of clients to engage in a retraining process.

As mentioned above, retraining in FL. demands a significant number of clients to participate in local training,
inevitably leading to extended training durations. Some recent endeavors have been focused on addressing
this challenge, such as storing the client’s historical updated gradient data on the server and utilizing it to
revert the trained global model [46; [30]. However, these methods necessitate either the client or the server

Under review as submission to TMLR

to retain additional data or gradient information, which may not be practical in FL scenarios with limited
storage resources. There are alternative approaches to execute the unlearning process by directly modifying
the final model. For instance, directly employing gradient ascent on the target client can achieve the
immediate reduction of client data influence in the final model. Nevertheless, this approach may considerably
compromise the model’s performance.

In this paper, we focus on developing a practical approach for implementing federated unlearning within the
final model. We consider unlearning as the inverse process of learning via gradient ascent. However, the loss
function is unbounded, requiring constraints on the gradient to preserve model quality [8;[6]. Consequently,
we treat the entire process as a constraint-solving problem, aiming to maximize the empirical loss of the target
client while maintaining acceptable model performance for other clients. Introducing updates orthogonal to
the gradient directions of neural network predictions can induce minimal changes in network output [10].
Building on this idea, we propose a Subspace-based Federated Unlearning method, termed SFU.

In the SFU framework, the server only requires the ascending gradient information from the target client
and the descending gradient information from the remaining clients. The server then projects the ascending
gradient onto the orthogonal subspace of the descending gradient space. This constrained gradient is used
to update the final trained FL global model, aiming to reduce the contribution of the target client while
preserving the model’s utility. Fig. [1| illustrates the core idea of our approach.

Specifically, participants in the SFU process can be categorized into three roles: the target client to be
forgotten, the remaining clients, and the server. The target client performs local gradient ascent based on
the global model and sends the gradient to the server. Each remaining client performs gradient descent and
transmits their respective gradients to the server. The server aggregates the descending gradients and derives
the gradient space through Singular Value Decomposition (SVD) [16; B7]. Finally, the server projects the
ascending gradient onto the orthogonal complement of the others’ gradient subspace and updates the global
model. The SFU framework only requires one round of local training per client and a subsequent server
update, without the need to access each client’s raw data or store historical gradients. Empirical results
indicate that SFU achieves competitive unlearning performance across various datasets while maintaining
reasonable model accuracy.

In conclusion, our main contributions are as follows:

o We incorporate subspace learning into federated unlearning and propose a novel algorithm named SFU.
This algorithm performs gradient ascent within an orthogonal subspace to the gradient space of the
remaining clients.

e SFU effectively achieves unlearning while maintaining acceptable model performance, without incurring
additional storage costs.

e We conduct comprehensive experiments to evaluate SFU, demonstrating that it achieves competitive
performance across multiple datasets, including MNIST, CIFAR10, and CIFAR100.

2 Related Work

Machine unlearning. The concept of “machine unlearning” entails the complete removal of a specific
training data instance, necessitating the nullification of its impact on both extracted features and models. The
introduction of machine unlearning is attributed to Cao & Yang [7], who reformulate statistical query learning
into a summation form and achieve unlearning by selectively updating a subset of the summation. However,
this algorithm is confined to transformable traditional machine-learning methods, prompting exploration into
machine unlearning for various ML models. Ginart et al. [I2] formalize the notion of effective data deletion
in machine learning and propose two efficient deletion strategies for the K-means clustering algorithm. In
the realm of supervised linear regression, Izzo et al. [I7] develop the projective residual update (PRU) for
linear and logistic models. While the computational cost of PRU scales linearly with feature dimensions, its
suitability is limited for more intricate models such as neural networks. To address the overhead of forgetting,
Bourtoule et al. [4] introduce the versatile SISA framework, which trains disjoint sub-models on data shards

Under review as submission to TMLR

Figure 1: An illustration of SFU with three clients. wj and w3 represent the optimal model parameters for client
1 and client 2, respectively. The ascending gradient of the target client is denoted as g. Additionally, g1 and g2
correspond to the descending gradients originating from client 1 and client 2. The projection of g onto the orthogonal
space spanned by g1 and g2 is denoted as §. Operating within this orthogonal subspace ensures minimal perturbation
to the model’s performance on client 1 and client 2.

and only retrains the affected shard after a deletion request. A recent survey [I8] provides a comprehensive
overview of progress, but most studies still assume centrally accessible data, which is ill-suited for federated
settings.

Federated unlearning. Current work can be grouped into two main directions.

Retraining-efficient methods. Liu et al. [30] cache historical gradients to accelerate retraining; Su & Li
[42] cluster clients and retrain only within the group containing the target client, which is useful in highly
heterogeneous scenarios.

One-shot model modification. Wu et al. [46] subtract stored gradients of the target client from the final
model, still requiring extra storage. Wang et al. [45] prune task-specific weights, but only support class-level
forgetting. Very recently, NoT [20] introduces a storage-free weight-negation strategy that supports client-,
class-, and instance-wise unlearning without retraining. The definition of exact federated unlearning was
formalized in FATS [44], which provides a TV-stable FedAvg variant and a provable closed-form unlearning
step equivalent to retraining—but it requires server-side batch data and complex aggregation schemes.

Our approach is closely related to UPGA [I5] and EWC-SAG [47]. All three perform gradient ascent on the
final model to remove a client’s influence, but differ in their constraints: UPGA constrains the magnitude of
the update with an /5 ball; EWC-SAG employs an elastic weight penalty; in contrast, SFU constrains the
direction of the update to the orthogonal complement of the remaining clients’ descent subspace, eliminating
the need for historical checkpoints while better preserving accuracy.

3 Method

We propose Subspace-based Federated Unlearning (SFU), summarized in Algorithm SFU leverages con-
strained gradient information from the target client to adapt the final trained model, effectively removing
client contributions while upholding model performance across other clients. Notably, this method eliminates
the need for the server to retain a historical record of parameter updates from individual clients and obviates
the necessity for extensive retraining.

3.1 Problem Setup

Suppose there are N clients, denoted as Ci,...,Cn. Let [N] := {1,...,N}. Client C; possesses a local
dataset Di. The objective of conventional Federated Learning (FL) is to collaboratively train a machine
learning model w over the combined dataset D = Uiev Dt

N i
w” £ argmin L(w) = > D] Li(w), (1)

=1

where Li(w) = E(g)~pi [li(w; (z,y))] represents the empirical loss of client C;. Throughout the federated
training process, each client minimizes their respective empirical risk L;(w). The model w* is the final
outcome of the FL procedure.

Under review as submission to TMLR

Algorithm 1 Subspace-based Federated Unlearning (SFU)

Input: FL global model w*, local dataset D° of client 4, learning rate 7.
1: Target client Cj:
gr + VLY (w*)
Send g; to the server
Other clients:
for each client i # I do
Send g; to the server
Server: Let Zoihers C [IV] \ {I} denote participating others, S := |Zothers|-

for each network 1ay;r l=1,2,...,L do
R' « [vec(g}) lieZoper. € RS
Perform SVD on R! = U'S{(VH)T
Choose the smallest k s.t. |RL[|% > €!||R!||% and let U} = [u},. .., u}]
Projection matrix P! < UL(U})T
P« diag(P',..., P
cgp < (I —=P)gr
Wy <= w* —1gp

© % N> o ®h

o ~ T S S
@ Tk @2

Now let’s delve into the strategy for eliminating the contribution of the target client C;. An intuitive
approach is to escalate the empirical risk L;(w) associated with the target client C7, essentially reversing the
learning process. However, a straightforward maximization of the loss will impact the model’s performance
on other clients. Federated unlearning needs to forget the contribution of the target client C; while ensuring
the overall model performance. Consequently, federated unlearning can be formulated as follows:

arg;nax Li(w) =B yypr [fr(w; (z,y))])
s.t. E(w*) —E(w) <46

Here, § represents a tolerable difference in model performance, while £(w) signifies the accuracy of model
w evaluated on the remaining clients within the FL system. Prior work by Halimi et al. [I5] utilized the
parameter distance between w and w* as a constraint, although this parameter distance might not fully
capture the performance disparity among different models. Conversely, the constraint presented in Eq.
effectively addresses this concern.

3.2 Subspace-based Federated Unlearning (SFU)

When applying the ascending gradient update of the target client to the global model without considering
other clients, there is a high probability that the neural network will turn into a stochastic model. SFU
restricts model updates to orthogonal subspaces aligned with the gradients of other clients to mitigate
this issue. This approach achieves the goal of forgetting the target client’s contribution while minimizing
potential disruptions to model performance for other clients. The training process of SFU is depicted in
Fig.[2] Participants in SFU encompass the target client, remaining clients, and the server. The target client
employs gradient ascent and transmits the resulting gradient to the server. Other clients engage in gradient
descent and forward their descending gradients to the server. The server calculates the gradient space of the
other clients and performs unlearning updates on the global model. Subsequently, we will provide a more
detailed explanation of the SFU process.

3.2.1 Local training on clients

Satisfying the constraints outlined in Eq. necessitates imposing restrictions on the ascending gradient.
Drawing inspiration from Fig. [I} it becomes evident that moving orthogonally to the gradient space yields
the least impact (or even negligible change locally) on the FL model’s performance for clients. This valuable

Under review as submission to TMLR

insight prompts us to project the updated gradient of the target client C; onto the orthogonal space of the
gradient subspace associated with other clients [I0]. This process requires both the ascending gradient from
the target client and the descending gradients from the other clients. Hence, upon receiving a forget request
from the target client, the training procedures for the target client and the other clients are as follows:

o Target Client: The target client performs gradient ascent on its local loss. To implement ascent with
standard descent machinery, we minimize the surrogate L% (w) := 1/L;(w). Concretely, during unlearning
we evaluate at the final FL model w* and compute a mini-batch stochastic gradient g; := VLY (w*), so
g1 is a negative multiple of VL;(w*) and descending along g; increases L;. Hence the local objective for
the target client is to minimize L?l (w). The target client then transmits the gradient information g; to
the server.

e Other Clients: The remaining available clients follow the same gradient descent procedure as in standard
FL; that is, each minimizes its local objective L;(w). During the unlearning round, for each i # I we
evaluate at the final FL model w* a mini-batch stochastic gradient g; := VL;(w*), computed on client
i’s data. Each such client then transmits g; to the server.

3.2.2 Computation of projection matrix

When the server aggregates the gradient information sent by each client, it proceeds to compute the projection
matrix of descending gradient space for each layer of the model. This process involves two key steps:

e Let L denote the total number of network layers. For each layer [, the per-client gradient can be viewed as
a matrix g} € R™>" . Let vec(gl) € R™ denote its vectorization (with r; = m;n;). To form the gradient
subspace at layer [, the server column-stacks the vectorized gradients from the available non-target clients
Tothers € [N]\ {I}, yielding R’ := [vec(g}) JicZoper. € R™ %5 where S := |Zothers|-

e Next, compute the SVD of R!, i.e., Rl = U'S{(V!)T. Based on a user-specified coverage coefficient
¢! € (0,1], choose the smallest k and form the rank-k approximation R} := U!X! (V)T, where U} =
[uh,...,ul], B = diag(ol,...,ol), and V! = [vl,...,v}], such that

IREE = ¢ || B[(3)

We then take the first k£ left singular vectors to represent the significant subspace at layer [, i.e.,
span{ul, ... ,uﬁg}, with U,i as its basis matrix, which captures the directions associated with the largest
singular values [38].

Following these steps, the server forms the orthogonal projector onto the others’ gradient subspace at layer [
as PL:=UL(UL)T, with (U})"U} = Ij. Repeating this for all layers yields a block-diagonal projector over
the whole network, P := diag(P*,..., PF).

3.2.3 Update of the global model on the server

After receiving the client gradients and constructing P, the server updates the global model w*. First project
the target client’s gradient onto the others’ gradient subspace, g := P g;, and let the orthogonal component
be gp := (I — P) g;. The server then updates in the orthogonal complement:

Wyl = w* — ngp, (4)

where 77 > 0 is the learning rate. This update removes the target client C;’s contribution while limiting
interference with directions favored by the remaining clients, thereby preserving overall performance.

Remarks. Subspace methods have been broadly applied in continual learning [38], meta learning [19], one-
shot learning [43], adversarial training [27], graph forgetting [9], and speeding up deep model training [26].
To the best of our knowledge, SFU is the first to exploit updates in the orthogonal complement of the
remaining clients’ gradient subspace for federated unlearning.

Under review as submission to TMLR

.
!
Client 1
Gradient g
)
o\ |8
® —
= ‘8
Gradient g; c—= o« N
Client ¢, =
(target client) Server Gradient Subspace
: ©)]
- Gradient gy
Client N

Figure 2: The pipeline of SFU. The entire process occurs subsequent to the training of the FL model. The
orange client denotes the target client from which the contribution is to be removed; the blue clients represent
others. The boxes on the right of the image symbolize global model updates performed on the server.

3.3 On the effectiveness of SFU

The effectiveness of SF'U is twofold: it preserves overall performance on the remaining clients while enforcing
forgetting for the target client. In this section, we analyze its efficacy. Let w, denote the model obtained by
retraining from scratch, without the target client, starting from the same initialization w(0). Let T be the
total number of gradient updates (equivalently, the aggregated local epochs) used in FL training. Let w,,
denote the model returned by a single application of SF'U to the final FL model w*.

Performance preservation. We aim to show that ||w, — w2 is bounded, thereby ruling out pathological
deviations. Before presenting the result, we state the following standard assumptions on stochastic gradients,
collected in Assumption [1} these are commonly used in the theoretical analysis of federated learning [50; 29].

Assumption 1. The expected squared norm of stochastic gradients is uniformly bounded for all w:

E|VL(w)|3 < G* (hence, E[|[VL(w)|l2 < G). The same bound holds for retraining gradients VL"(w),
where L™ (w) = ZiE[N]\{I} % L;(w). Moreover, the target-client gradient is bounded: El||gr|l2 < G.

Theorem 1. Under Assumption[d] let w, = w* —ngp be the model returned by a single SFU update, and
let w, be the model obtained by retraining from scratch (without the target client) from the same initialization
after T updates. Then

Ellwy —wul2 < (20T +n)G. ()
This shows that the deviation between the SFU-updated model and the retrained model is bounded.

Proof. Let us define w(t), w,(t) as the weight parameters obtained by training from scratch with target
client and without target client for ¢ epochs with the same initialization w(0) = w,.(0), and w,,; denote the
weight parameters obtained by applying SFU on w*. To help the reader better understand the proof strategy
used in this section, we derive the upper bound of E||w,(T") — w||2 by first expanding the formula into two
terms

Elwe(T) — wullz < Ellwr (T) = w(T)l2 + Ellw(T) — wuf2- (6)
First term. By the update rules w,(t+1) = w,(t) —n VL (w,(t)) and w(t+1) = w(t) —nVL(w(t)), where
LT(w) =3 seinpn % L;(w), we have

Elfw, (t+1) — w(t+1)]2 < Eflw,(t) = w(@)|lz + nE[VL" (w,(8))[|2 + n E[[VL(w(#))[|2

< Eljw, () — w(t)||2 + 2nG. (7)

Under review as submission to TMLR

Then after T iterations, we can bound the difference between two parameters as
Eljw,(T) = w(T)l2 < 2nTG. (8)
Second term. Since wy = w(T) — ngp with gp := (I — P)gy, it follows that ||gp|l2 < ||gr||2. Therefore,
Ellw(T) = waullz = nElgpllz < nElgr]l2 < nG. (9)

Adding the bound of the first term and the bound of the second term we can obtain the final bound
2nT +n)G. O

Forgetting of the target client. We now show that SFU enforces forgetting at the target: the update
direction —gp is a descent direction for the surrogate loss LY (equivalently, gp is an ascent direction for Ly).

Theorem 2. Let g5 := VL}l(w*) and let P be the orthogonal projector onto the gradient subspace spanned
by the other clients. Define gy := P gr and gp := (I — P) gr. Then —gp is a descent direction for L?l at w*;
in particular, (—gp, gr) = —|lgpll3 < 0.

Proof. For a differentiable function f, a vector u is a descent direction at w if (u, Vf(w)) < 0. Taking
f = L% and using that P is an orthogonal projector, we have gp L §r; hence

(—gp, 91) = (—9p, gp + J1)

5 (10)
= —|lgrl3 — (gp. 31) = —llgrl3 < O.

Therefore, —gp is a descent direction for L% at w*. O

Together, the two results show that SFU updates the model in a direction that removes (forgets) the target
client’s contribution while respecting the subspace favored by the remaining clients. They also imply a
bounded deviation between the SFU-updated model and the model obtained by full retraining without the
target client, thereby guaranteeing that overall performance is preserved within a controlled margin.

4 Experiments

In this section, we empirically assess the effectiveness of SFU across various model architectures on three
datasets. Our experimental findings demonstrate that our unlearning strategies can adeptly eliminate the
target client’s impact on the global model while incurring minimal performance degradation. Furthermore,
these strategies facilitate rapid accuracy recovery within a few training rounds. We commence by outlining
the experimental setup and subsequently unveil the evaluation outcomes. For comprehensive experimental
settings, please consult the Appendix.

4.1 Experimental Setup

Datasets. We evaluate the performance of SFU using three widely recognized datasets: MNIST [22], CI-
FAR10, and CIFAR100 [2I]. The datasets exhibit increasing levels of training difficulty from MNIST to
CIFAR100. Our evaluation encompasses two distinct data distribution scenarios: Independent and Identi-
cally Distributed (IID), as well as Non-IID (Non Independent and Identically Distributed). For the Non-IID
setting, we adopt the Dirichlet distribution (8): The label distribution on each device follows the Dirichlet
distribution, where § serves as the concentration parameter (8 > 0).

Baselines. Our goal is to achieve the unlearning process by adapting the FL model. To this end, we
select three prominent federated unlearning algorithms that directly modify the final FL model as reference
benchmarks: Unlearning via Projected Gradient Ascent (UPGA) [I5], UL-Subtraction (ULS) [46], and
EWC—SGAH [47]. Furthermore, we include a full retraining from scratch baseline for comparative evaluation.
These methods are chosen because they (i) require no multi-epoch retraining of all clients, (ii) do not assume

1We follow the notation of Wu et al. [47] and denote elastic weight consolidation with single ascent gradient as EWC-SGA.

Under review as submission to TMLR

FedAvg Retraining UPGA ULS EWC-SGA SFU
Dataset distribution | network | test acc | atk acc | test acc | atk acc | test acc | atk acc | test acc | atk acc | test acc | atk acc | test acc | atk acc
MLP 96.57 99.14 96.45 0.61 86.48 0.10 83.42 0.0 90.19 0.24 92.8 0.15
11D CNN 99.15 99.63 99.21 0.20 51.59 0.0 34.95 0.0 88.9 1.56 98.62 0.06
ResNet 99.56 98.32 99.51 0.51 51.80 0.0 45.09 0.0 89.27 1.24 99.03 0.06
MLP 96.03 99.04 95.95 0.60 81.91 0.14 68.41 0.0 86.69 1.41 89.12 0.25
MNIST Dir(0.6) CNN 98.96 99.58 99.01 0.26 14.11 0.0 46.43 0.0 85.25 0.0 98.76 0.01
ResNet 99.59 98.23 99.55 0.79 22.20 0.0 51.42 0.0 85.79 0.0 99.39 0.03
MLP 95.54 98.95 95.48 0.66 83.21 0.24 72.96 0.0 86.34 1.88 88.63 0.26
Dir(0.3) CNN 98.92 99.78 98.98 0.28 52.41 0.0 38.76 0.0 86.83 0.0 98.39 0.03
ResNet 99.41 98.39 99.38 0.69 55.67 0.10 42.95 0.0 85.26 1.24 98.88 0.03
MLP 50.86 52.38 50.6 3.77 11.05 0.01 13.75 0.0 20.45 0.08 44.76 0.96
11D CNN 66.40 37.14 67.56 4.42 60.94 9.40 10.0 0.0 61.48 1.02 61.68 0.46
ResNet 83.73 38.27 83.98 7.23 76.84 8.56 12.61 0.0 77.53 0.84 78.06 0.46
MLP 47.58 53.58 48.42 4.81 16.54 0.02 11.97 0.0 33.4 0.12 42.95 3.67
CIFAR10 Dir(0.6) CNN 63.74 39.88 65.83 3.21 64.2 8.34 53.27 0.85 56.27 0.94 61.52 6.43
ResNet 80.79 46.66 81.62 2.49 75.40 7.52 67.44 0.0 71.64 0.94 77.95 2.82
MLP 46.41 54.4 45.51 6.01 13.69 0.01 10.36 0.0 30.73 0.26 45.21 1.53
Dir(0.3) CNN 61.52 51.84 63.51 4.54 38.76 0.08 10.06 0.0 50.07 1.43 54.67 3.72
ResNet 79.91 56.87 79.55 1.59 50.35 0.08 13.07 0.0 65.04 2.31 71.01 1.56
MLP 21.93 57.79 23.42 1.73 9.05 0.01 2.03 0.0 20.01 0.26 22.06 1.46
1ID CNN 33.20 44.66 33.68 0.48 34.35 0.13 1.75 0.0 31.50 0.20 32.45 1.27
ResNet 58.02 50.38 57.75 0.81 60.03 0.11 3.06 0.0 54.05 0.18 55.71 1.36
MLP 21.12 50.89 21.8 0.78 9.72 0.0 1.59 0.0 19.12 0.50 20.12 0.71
CIFAR100 Dir(0.6) CNN 31.26 47.77 32.06 0.58 29.38 0.02 28.52 0.03 30.89 0.09 31.55 0.12
ResNet 56.50 49.04 56.38 0.51 53.10 0.05 11.83 0.0 50.42 0.12 55.24 0.12
MLP 20.17 57.93 20.67 1.30 6.94 0.01 1.06 0.0 16.52 0.61 19.2 1.34
Dir(0.3) CNN 31.61 45.81 32.02 0.65 31.96 0.18 1.0 0.0 30.86 0.20 31.12 2.10
ResNet 55.11 50.87 55.70 0.50 45.72 0.26 1.74 0.0 51.08 0.82 54.56 1.92

Table 1: Results of different unlearning methods. We record the attack accuracy as “atk acc,” and “test acc"
represents the accuracy metric on the clean test data.

access to auxiliary server-side data, and (iii) represent three different constraint strategies—¢s-ball, gradient
subtraction, and elastic weight regularisation—thus providing a diverse yet fair yardstick for SFU.

Unlearning Assessment Approaches. We employ backdoor attacks during the target client’s updates
to the global model, enabling us to intuitively examine the unlearning impact through the success rate of
a model backdoor attack on the unlearned global model. An effective unlearning method should diminish
the success rate of such an attack post unlearning. It is worth noting that due to model prediction errors,
even retraining can yield an attack success rate greater than 0. In our experiments, we follow the approach
of Halimi et al. [I5] and execute the backdoor attack using a “pixel pattern" trigger of size 2 x 2, altering
the label to “9" on data with labels other than “9". Furthermore, we evaluate the model’s performance after
unlearning using accuracy metrics on untainted test data.

Implementation details. We evaluated three network architectures—MLP, CNN, and ResNet—on the
MNIST, CIFAR-10, and CIFAR-100 datasets. These models were implemented using PyTorch [36]. Our
experimental setup consists of 10 clients, with one designated as the target client. All clients fully participate
in each training round. Unlearning experiments were carried out on the FL model after 100 training rounds.
We backdoor 80% of the data on the target client. The hyperparameter settings for each approach were as
follows: In the case of SFU, the learning rate was set to 0.01, the number of epochs was set to 1, and a
mini-batch size of 128 was utilized for gradient ascent on the target client. We explored the SVD parameter
e within the range [0.90 — 0.99] and selected the optimal value. SFU constructs the gradient space by
aggregating gradient information from all other clients.For UPGA and EWC-SGA, the learning rate, the
number of epochs, and the mini-batch size were maintained consistent with those of SFU. Additionally, we
performed a parameter search to determine the specific values of their unique parameters. All experiments
were run on a single NVIDIA RTX 4090 (24 GB) GPU with 120 GB RAM.

4.2 Main Results

Efficient unlearning with minimal performance loss. Table[I]reports the unlearning effects of SFU and
baseline methods across IID datasets and model architectures. Similar to full retraining, SFU consistently
drives down the backdoor attack accuracy on all benchmarks. While several baselines also reduce ASR, they
often do so at the expense of clean accuracy. For example, on MNIST (IID, CNN), UPGA yields a drop
of about 47 percentage points in accuracy, whereas SFU incurs only &1 percentage point. This contrast
highlights SF'U’s ability to remove the target client’s influence while largely preserving model utility.

Under review as submission to TMLR

-
—_—— T e i et
" 50 * ey Lo *
- -
° 45 4 —— g -
—
._ * » -
e S 40 o
> u A - o
- (8]
§ ° Method (color) B g | 4
g n) S'e:gaAining g
“ g
< ® uLs 307
® EWCSAG
e 3FY 54 === Retraining
A Distribution (marker) v UPGA
® D 24 v ULS
B Dir(0.6) EHC-SAG
. A Dir(03) + - SFU
T T T T T T T T 157 T
000 025 050 075 1.00 125 150 175 2.00 12 3 45 6 7 8 9101112131415 16 17 18 19 2
Attack Accuracy Training round
Figure 3: MNIST MLP: Accuracy vs Attack Accu- Figure 4: Convergence plots for SFU and other baselines
racy. on CIFAR-10 (CNN, IID).

Test—Attack accuracy trade-off. Figure |3| plots test accuracy (1) against attack accuracy () for all
methods on MNIST with an MLP. Owing to stochasticity, even full retraining can yield a non-zero attack
accuracy. We therefore take the retraining point as a reference and deem a method to achieve successful
forgetting if its attack accuracy is at or below the retraining attack accuracy (within a small tolerance §).
Equivalently, points lying to the left of the retraining reference satisfy the forgetting requirement, and among
those, higher test accuracy is preferable (i.e., the upper-left region). Under this criterion, SF'U lies on or near
the empirical Pareto frontier: it delivers the highest test accuracy while keeping attack accuracy within an
acceptable range, indicating a superior balance between accuracy retention and attack mitigation compared
with competing baselines.

Robustness Across Different Data Settings. The heterogeneity of data across different clients and
the complexity of training tasks can both impact the federated learning process. Table [I] illustrates the
influence of these factors on the unlearning process. It is evident that as the data heterogeneity increases,
various unlearning methods lead to more significant performance degradation. For instance, during the
transition from IID data to Dir(0.3) data, SFU’s performance degradation on the CNN model trained on the
CIFARIO0 dataset increases from 4.72% to 6.85%. However, this performance change remains smaller than
the performance losses observed in other algorithms when facing changes in data heterogeneity. Furthermore,
as the task complexity shifts from MNIST to CIFAR100, some unlearning methods may become ineffective.
For instance, ULS generates a random CNN model on the CIFAR10 dataset, while SF'U manages to maintain
the model’s performance after unlearning. This highlights SFU’s superior robustness across different data
settings.

Recovery of Model Accuracy After Unlearning After undergoing different Federated Unlearning meth-
ods, it is a common practice to fine-tune the unlearned model on the remaining clients to restore its accuracy.
We conducted fine-tuning on the CNN models generated by these unlearning methods on the remaining
clients using the IID CIFARI10 dataset. In contrast, the ULS method employs clean server data for knowl-
edge distillation-based fine-tuning. Fig.] presents the results on the CIFAR10 dataset under the IID setting.
Impressively, SFU achieves higher accuracy with just one or a few rounds of retraining, while other methods
require more training rounds. This emphasizes that SFU can offer a superior initial model for accuracy
recovery.

4.3 Resource implications and deployment trade-offs

Table [2| summarizes resource profiles using unified notation: 7' (retraining rounds), Cyound (per-round up-
link+downlink), |w| (model size), S (number of participating non-target clients), R (length of stored history),
and F' (KD fine-tuning rounds, if applicable). The Time column counts only the core unlearning round(s);
optional post-processing (e.g., KD for ULS) is indicated as +F. Column abbreviations are: Target data

Under review as submission to TMLR

Method Target data Extra comm. Srv. storage Public KD Server comp. Time
Retraining - T Cround 0 - FL training T
UPGA v |w] 0 - O(|wl) 1
ULS - 0 O(R|w|) v O(|w|) + KD(F) 0+F
EWC-SGA v |w] 0 - O(Jw|) (Fisher diag) 1
SFU (ours)* v (S+1)|w| 0 - per-layer SVD: O(Zz nklz) 1

Table 2: Resource comparison. Ciounq: total uplink+downlink per FL round; T: # retraining rounds;
R: # pre-unlearning rounds kept by ULS (history length); F: KD fine-tuning rounds; |w|: model size (one
full model upload or download); S: # participating non-target clients. Here 7; denotes the dimension of
the vectorized gradient at layer [, k; the retained rank, and O(-) hides polylogarithmic factors. Time counts
only the core unlearning round(s); optional KD for ULS is shown as +F. T All non-target clients participate
each round (retraining). ¥ A single collaborative round with S non-target clients (SFU).

(whether access to the target client’s data is required), Extra comm. (additional communication beyond
baseline FL, measured in multiples of |w| or Cround), Srv. storage (extra server-side storage), Public KD
(whether public-data knowledge distillation is required), and Server comp. (dominant server-side computa-
tion).

Comparison summary. Retraining serves as the time/communication baseline with 7" rounds, no extra
server storage, and per-round participation of all non-target clients; ULS incurs near-zero extra commu-
nication at unlearning time but requires storing ©(R|w]|) historical updates and typically relies on public
data for knowledge distillation, adding F' rounds; UPGA/EWC-SGA require only the target client once
(extra communication ~ |w|), need no other clients online, and impose O(|w|)-level server compute (EWC
uses a Fisher-diagonal surrogate); SFU neither stores history nor relies on public data—its core cost is a
single collaborative round in which the target uploads an ascent gradient and S non-target clients upload
descent gradients, followed by a per-layer (randomized) SVD at the server to project onto the orthogonal
complement, with (S+1)|w| extra communication and O(3, 7k?) compute.

Practical takeaways. Requiring target data at unlearning time is not inherently a disadvantage; it enables
client-controlled, fine-grained forgetting (e.g., selecting specific subsets to forget) while keeping server-side
storage at zero. SFU is preferable when long-term storage of client histories is disallowed or undesirable,
and when the target client can briefly be online with access to its data. In practice, the single-round
cost of SFU can be further reduced by sampling a subset of non-target clients (reducing S) and by using
layered /randomized SVD with an e-coverage criterion to choose per-layer ranks k;.

4.4 Exploratory Study

Impact of different SVD coefficient e. As discussed in Section our approach aims to mitigate the
decline in accuracy by taking gradient steps orthogonal to the gradient space of the remaining clients. This
gradient space is formed using bases that approximate the significant task representations of the remaining
clients. The extent of this approximation is controlled by the threshold hyperparameter ¢ at layer [of the
network, defined in Equation [3| In our experiments, we maintain the same parameter € for all layers. The
impact of different e values is visually demonstrated in Fig. [[a). A lower € value (closer to 0) empowers
the optimizer to adjust the model’s weights mainly along directions where the gradients from other clients
exhibit higher representational significance. Consequently, this can lead to substantial changes in the model’s
performance across other clients. Conversely, a higher e value (closer to 1) preserves these correlations, but
it may not fully eliminate the target client’s contribution due to the constraints imposed by the abundant
gradients in the space. Furthermore, Fig. a) indicates that selecting a value for € between 0.9 and 0.95
in our federated unlearning algorithm strikes a balance between eliminating the target client’s contribution
and preserving model performance as effectively as possible.

Impact of client’s participation rate. In a real-world FL scenario, not all clients can partici-
pate simultaneously in the federated training process. SFU relies on clients providing descending gra-
dients to establish the gradient space. We investigated the impact of removing the target client’s con-

10

Under review as submission to TMLR

Attack accuracy
== Test accuracy

100 4
60 CIFAR100
L oa CIFARTO
- _NIST
55 804
] ol
1
40 4
Fo1
20
7] .
T T . T T — 00 0 T T T T T
508

0.7 0.8 0.9 0.92 0.95 0.97 o 2% o% 100%
Participation rate of clients

=1
w

Attack accuracy

w
=]

&

o
o
)

Test accuracy
Test accuracy

(a) SFU results on CIFAR-10 with varying e val- (b) Accuracy under IID setting vs. client partici-
ues. pation rate.

Figure 5: Ablation results of SFU.

tribution when employing SFU with varying proportions of available clients. The experimental results,
illustrated in Fig. b)7 reveal that SFU effectively eliminates the target client’s contribution across
nearly all client participation rates. Moreover, as the client participation rate increases, the perfor-
mance of the unlearning model on the remaining clients improves.Interestingly, at a client participation
rate of 0, which is equivalent to directly updating the global model using the target client’s descend-
ing gradient, the outcome is a random model with a 10% accuracy across ten classification tasks. This
underscores the significance of conducting SFU within an orthogonal gradient space, emphasizing its
role in achieving meaningful updates even when only a subset of clients is available for participation.

Impact of the amount of data on the target 100 { g g
client. The data volume of the target client indi- ““‘“'-s_ﬂ__“__
cates to some extent the importance of the target T
client in the overall FL system. As shown in Fig.[], ¥
as the amount of data in the target client increases, 9
the performance of the model after performing SFU E L -l
will produce degradation in the remaining clients. 5 ¥ - CIFARI00
However, the SFU can successfully remove its con- = w
tribution to the FL system under almost all data] " ;
volume conditions of the target client. !
20
5 Conclusion ™ m a - pn

The percentage of the target c\ienf's data

In this paper, we propose a novel federated unlearn-
ing approach that can successfully eliminate the con-
tribution of a specified client to the global model,
which also can minimize the model accuracy loss by performing a gradient ascent process within the sub-
space at any stage of model training. Our approach only relies on the target client to be forgotten from the
federation without the server or any other client keeping track of its history of parameter updates. We have
used a backdoor attack to effectively evaluate the performance of the proposed method and our experimental
results demonstrate the efficiency and effectiveness of SFU.

Figure 6: Outcome under the IID setting for different
amounts of data on the target client.

11

Under review as submission to TMLR

References

[1]

[13]

[14]

[15]

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. In International Conference on Artificial Intelligence and Statistics, pp.
2938-2948. PMLR, 2020.

Thomas Baumhauer, Pascal Schottle, and Matthias Zeppelzauer. Machine unlearning: Linear filtration
for logit-based classifiers. Machine Learning, 111(9):3203-3226, 2022.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov,
Chloe Kiddon, Jakub Konec¢ny, Stefano Mazzocchi, Brendan McMahan, et al. Towards federated learn-
ing at scale: System design. Proceedings of machine learning and systems, 1:374-388, 2019.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141-159. IEEE, 2021.

Axel Bussche. The EU General Data Protection Regulation (GDPR): A Practical Guide. Springer,
2017.

Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhengiang Gong. Fedrecover: Recovering from poisoning
attacks in federated learning using historical information. In 2028 IEEE Symposium on Security and
Privacy (SP), pp. 1366-1383. IEEE, 2023.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015 IEEE
Symposium on Security and Privacy, pp. 463-480. IEEE, 2015.

Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected gradient descent:
General statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025, 2015.

Weilin Cong and Mehrdad Mahdavi. Efficiently forgetting what you have learned in graph representation
learning via projection. In International Conference on Artificial Intelligence and Statistics, pp. 6674—
6703. PMLR, 2023.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762-3773. PMLR,
2020.

Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. The limitations of federated learning in sybil
settings. In RAID, pp. 301-316, 2020.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data deletion
in machine learning. Advances in neural information processing systems, 32, 2019.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 11516-11524, 2021.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Anisa Halimi, Swanand Kadhe, Ambrish Rawat, and Nathalie Baracaldo. Federated unlearning: How
to efficiently erase a client in 17 arXiv preprint arXiv:2207.05521, 2022.

Andreas Hoecker and Vakhtang Kartvelishvili. Svd approach to data unfolding. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 372(3):469-481, 1996.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models. In International Conference on Artificial Intelligence and Statistics, pp.
2008-2016. PMLR, 2021.

12

Under review as submission to TMLR

[18]

[19]

[20]

[21]
[22]

[23]

[27]

[28]

[29]

[30]

[31]

32]

[34]

[35]

Hyejun Jeong, Shiqing Ma, and Amir Houmansadr. Sok: Challenges and opportunities in federated
unlearning. arXiv preprint arXiv:2403.02437, 2024.

Weisen Jiang, James Kwok, and Yu Zhang. Subspace learning for effective meta-learning. In Interna-
tional Conference on Machine Learning, pp. 10177-10194. PMLR, 2022.

Yasser H Khalil, Leo Brunswic, Soufiane Lamghari, Xu Li, Mahdi Beitollahi, and Xi Chen. Not: Fed-
erated unlearning via weight negation. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 25759-25769, 2025.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 2002.

Guanghao Li, Yue Hu, Miao Zhang, Ji Liu, Quanjun Yin, Yong Peng, and Dejing Dou. Fedhisyn: A hi-
erarchical synchronous federated learning framework for resource and data heterogeneity. In Proceedings
of the 51st International Conference on Parallel Processing, pp. 1-11, 2022.

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in federated learning. Computers
& Industrial Engineering, 149:106854, 2020.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713-10722, 2021.

Tao Li, Lei Tan, Zhehao Huang, Qinghua Tao, Yipeng Liu, and Xiaolin Huang. Low dimensional
trajectory hypothesis is true: Dnns can be trained in tiny subspaces. IFEFE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Tao Li, Yingwen Wu, Sizhe Chen, Kun Fang, and Xiaolin Huang. Subspace adversarial training. In
Proceedings of the IEEE/CVE Conference on Computer Vision and Pattern Recognition, pp. 13409—
13418, 2022.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEFE signal processing magazine, 37(3):50-60, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Gaoyang Liu, Xiaogiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. Federaser: Enabling effi-
cient client-level data removal from federated learning models. In 2021 IEEE/ACM 29th International
Symposium on Quality of Service (IWQOS), pp. 1-10. IEEE, 2021.

Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E Dahl, Timo Kohlberger, Aleksey Boyko,
Subhashini Venugopalan, Aleksei Timofeev, Philip Q Nelson, Greg S Corrado, et al. Detecting cancer
metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence
and statistics, pp. 1273-1282. PMLR, 2017.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
feature leakage in collaborative learning. In 2019 IEEE symposium on security and privacy (SP), pp.
691-706. IEEE, 2019.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning. In
Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), pp. 1-15, 2018.

Stuart L Pardau. The california consumer privacy act: Towards a european-style privacy regime in the
united states. J. Tech. L. & Pol’y, 23:68, 2018.

13

Under review as submission to TMLR

[36]

[37]

[38]

[39]

A

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Rowayda A Sadek. Svd based image processing applications: state of the art, contributions and research
challenges. arXiv preprint arXiv:1211.7102, 2012.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. arXiv
preprint arXiw:2105.09762, 2021.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. Advances in Neural Information Processing
Systems, 34:18075-18086, 2021.

Supreeth Shastri, Melissa Wasserman, and Vijay Chidambaram. The seven sins of {Personal-Data}
processing systems under {GDPR}. In 11th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 19), 2019.

Mengkai Song, Zhibo Wang, Zhifei Zhang, Yang Song, Qian Wang, Ju Ren, and Hairong Qi. Analyzing
user-level privacy attack against federated learning. IEEFE Journal on Selected Areas in Communications,

38(10):2430-2444, 2020.

Ningxin Su and Baochun Li. Asynchronous federated unlearning. In IEEE INFOCOM 2023-IEEE
conference on computer communications, pp. 1-10. IEEE, 2023.

Shangchao Su, Bin Li, and Xiangyang Xue. One-shot federated learning without server-side training.
Neural Networks, 2023.

Youming Tao, Cheng-Long Wang, Miao Pan, Dongxiao Yu, Xiuzhen Cheng, and Di Wang. Communi-
cation efficient and provable federated unlearning. arXiv preprint arXiv:2401.11018, 2024.

Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated unlearning via class-discriminative pruning.
In Proceedings of the ACM Web Conference 2022, pp. 622-632, 2022.

Chen Wu, Sencun Zhu, and Prasenjit Mitra. Federated unlearning with knowledge distillation. arXiv
preprint arXiv:2201.09441, 2022.

Leijie Wu, Song Guo, Junxiao Wang, Zicong Hong, Jie Zhang, and Yaohong Ding. Federated unlearning:
Guarantee the right of clients to forget. IEEE Network, 36(5):129-135, 2022.

Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad: Rapid retraining of machine learning
models. In International Conference on Machine Learning, pp. 10355-10366. PMLR, 2020.

Chulin Xije, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor attacks against federated
learning. In International conference on learning representations, 2020.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated learning
with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Appendix

We conducted experiments on real-world datasets including MNIST, CIFAR10, and CIFAR100. The exper-
imental settings are described in detail below.

14

Under review as submission to TMLR

11D Distribution in CIFAR-10 Dirichlet 0.3 Distribution in CIFAR-10
IR AR .. -
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII [N il

125 1500
-
I 120

Classes

9 8 7 6 5
—

(TR

HHIHIE 11 I
-115
|||||||||| |

- 110

mmmmm

HHHHHHHHHH

Clients Clients

(a) 1ID (b) Dir(0.3)

Figure 7: Heat maps for each client using CIFAR10 dataset under different data partitions. Color bar
indicates the number of data samples, and each rectangle represents the count of data samples per class in
a partition.

Dataset. We utilized real-world datasets, specifically MNIST, CIFAR10, and CIFAR100. The MNIST
dataset [22] consists of 60,000 training samples and 10,000 test samples distributed across 10 classes. Each
data sample is a grayscale image of dimensions 28 x 28. The CIFARI10 dataset comprises 50,000 training
samples and 10,000 test samples spread across 10 classes. Each data sample is a color image with dimensions
3 x 32 x 32. Similarly, the CIFAR100 dataset [2I] includes 50,000 training samples and 10,000 test samples
distributed among 100 classes, with 500 training samples per class. The normalization of pixel values for
MNIST and CIFAR10/100 is performed using mean and standard deviation values of [0.5, 0.5, 0.5] for both.

Datasets Training Data Test Data Classes Size
MNIST 60,000 10,000 10 28 x 28
CIFAR-10 50,000 10,000 10 3 x 32 x 32
CIFAR-100 50,000 10,000 100 3 x 32 x 32

Table 3: Summary of dataset characteristics

Dataset Partitions. To ensure a fair comparison with other baselines, we introduce heterogeneity by
partitioning the total dataset based on label ratios sampled from the Dirichlet distribution. A parameter
controls the level of heterogeneity in the data partition. Fig. [7] displays heat maps illustrating the label
distribution across different datasets. Notably, for a heterogeneity weight of 0.3 in the Dirichlet distribution,
approximately 10% to 20% of categories dominate each client, as depicted by the blue blocks in Fig. E In
contrast, the IID dataset is uniformly distributed across clients, as indicated by the blue block in Fig. [7]

Baseline Algorithms. We evaluate our proposed federated unlearning algorithm (SFU) against four
baseline methods:

¢ Retraining: This method involves retraining the entire FL system without excluding the target
client, resulting in computational and communication overhead.

e UL-Subtraction [46]: This approach forgets the target client by subtracting historical parameter
updates unique to the target client from the global model. Knowledge distillation is used to alleviate
the distortion caused by subtraction.

¢ Unlearning via Projected Gradient Ascent (UPGA) [I5]: UPGA leverages gradient ascent
information from the target client to revert the learning process and achieve unlearning, while
constraining updates to an ¢3-norm ball.

15

Under review as submission to TMLR

o EWC-SGA [47]: EWC-SGA employs the Fisher Information matrix to regularize the cross-entropy
loss and control parameter updates, with higher importance factors imposing stricter constraints.

Network Architectures. We employ three neural network architectures in our experiments:

e MLP: A fully-connected neural network with 2 hidden layers, containing 200 and 100 neurons,
respectively.

e CNN: A network architecture consisting of 2 convolutional layers with 64 5x5 filters, followed by
2 fully connected layers with 800 and 500 neurons and a ReLU activation function.

e ResNet: A 4-stage residual network with two BasicBlocks per stage (each block has two 3x3
conv—-BN-ReLU layers), and a downsampling (stride 2) at the beginning of stages 2-4. The channel
widths per stage are [64, 128,256, 512]. A global average pooling is followed by a linear classifier. For
grayscale inputs (MNIST), we adapt the stem to a 3x3 conv with one input channel. In resource-
constrained settings, we also use a lightweight variant with stage widths [20, 40, 80, 160] while keeping
the topology unchanged.

Both MLP and CNN models were implemented using PyTorch [36].

Implementation Details. For the unlearning experiment, we conducted trials on the FL model after
100 training rounds. The hyperparameters for each method were set as follows: SFU used a learning rate
of 0.01, epoch as 1, and a mini-batch size of 128 for gradient ascent on the target client. SVD parameters
followed the setting of Saha et al. [38], exploring ¢ within the range [0.90 — 0.99] and selecting the optimal
value. UPGA and EWC-SGA maintained the same learning rate and mini-batch size as SFU. ULS on the
server used a public dataset formed by randomly sampling one-tenth of the total data.

For the model performance recovery experiment, FL training commenced with the stochastic model for full
retraining. For SFU, UPGA, and EWC-SGA, FL training started on the unlearned local model without
the target client’s involvement. Knowledge distillation with the server’s public data aided model accuracy
recovery for UL. Additionally, parameter searches were performed to determine the best hyperparameter
values.

Unlearning Metrics Comparing the distinction between the unlearned model and the retrained model
serves as a fundamental criterion for measuring the effectiveness of unlearning. Common dissimilarity metrics
encompass model test accuracy difference [4], ¢5-distance [48], and Kullback-Leibler (KL) divergence [39].
Nevertheless, in the context of Federated Learning (FL), assessing the removal of a specific client’s contribu-
tion through these model difference-based evaluation methods can be challenging. Alternative metrics involve
privacy leakage within the differential privacy framework [39] and membership inference attacks [I3; 2]. In
this study, we adopt backdoor triggers [14] as an effective means to evaluate unlearning methods, akin to Wu
et al. [46]. Specifically, the target client employs a dataset containing a fraction of images with inserted
backdoor triggers. Consequently, the global FL. model becomes susceptible to these triggers. A successful
unlearning process should result in a model that reduces accuracy for images with backdoor triggers while
maintaining strong performance on regular (clean) images. It is important to note that we employ back-
door triggers solely for the purpose of evaluating unlearning methods; we do not consider any malicious
clients [49; [T} [TT].

Our Evaluation Metric. @ We use backdoor attacks in the target client’s updates to the global model, as
described earlier, to intuitively assess the unlearning effect based on the attack success rate of the unlearned
global model. In Table (1], we record the attack success rate as "atk acc". A lower "atk acc" indicates a cleaner
removal of the target client’s contribution. In our experiments, we implement the backdoor attack using a
"pixel pattern" trigger of size 2x2 and change the label to "9". Due to the predictive errors of the model,
even the attack success rate after retraining is greater than 0. We can consider the attack success rate after
retraining as the benchmark for successful removal of the target client’s contribution. Additionally, we use
the accuracy metric on clean test data to gauge the model’s performance after unlearning, denoted as "test
acc' in Table[]] A high accuracy suggests that unlearning has minimal impact on the model’s performance.

16

	Introduction
	Related Work
	Method
	Problem Setup
	Subspace-based Federated Unlearning (SFU)
	Local training on clients
	Computation of projection matrix
	Update of the global model on the server

	On the effectiveness of SFU

	Experiments
	Experimental Setup
	Main Results
	Resource implications and deployment trade-offs
	Exploratory Study

	Conclusion
	Appendix

