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Abstract

Syntactic knowledge is invaluable informa-
tion for many tasks which handle complex
or long sentences, but typical pre-trained lan-
guage models do not contain sufficient syntac-
tic knowledge. Thus it results in failures in
downstream tasks that require syntactic knowl-
edge. In this paper, we explore additional
training to incorporate syntactic knowledge to
a language model. We designed four pre-
training tasks that learn different syntactic per-
spectives. For adding new syntactic knowl-
edge and keeping a good balance between
the original and additional knowledge, we ad-
dressed the problem of catastrophic forgetting
that prevents the model from keeping semantic
information when the model learns additional
syntactic knowledge. We demonstrated that
additional syntactic training produced consis-
tent performance gains while clearly avoiding
catastrophic forgetting.

1 Introduction

Pre-trained language models are commonly used
and improve the performance of a variety of appli-
cation tasks. It has been shown that those models
roughly capture syntactic knowledge (Chi et al.,
2020), such as dependency labels, but they lack
some syntactic knowledge such as dependency
distance and head token required for application
tasks (Xu et al., 2021).

Recent studies have shown that incorporat-
ing syntactic knowledge into the models fur-
ther improves the performance of language un-
derstanding (Zhang et al., 2020) and translation
tasks (Bugliarello and Okazaki, 2020) by adding
other modules to the core model in the training and
application phases.

In contrast, Tian et al. (2022) and Yang and Wan
(2022) take approaches to embed syntactic knowl-
edge into a model with keeping model structures.
In this paper we follow this approach (henseforth
we call it additional syntactic training), because

Figure 1: An overview of additional syntactic training.
Syntactic knowledge is added to the language model
while preserving original semantic knowledge in the
model using proper optimization functions.

the models empowered with syntax knowledge and
retaining semantic knowledge can be easily applied
to downstream tasks and, the methodology is use-
ful for injecting other knowledge into the language
model to create knowledge-enhanced models such
as domain-specific ones.

Figure 1 depicts our approach and techniques to
obtain desirable language models. We start with
a language model such as BERT (Devlin et al.,
2019) which was pre-trained with a large amount of
unlabeled text data and self-supervised tasks such
as Masked Language Modeling. Such a model
contains semantic knowledge but does not have
explicit syntactic information, thus we enhance the
model with labeled data with syntactic information.

One major issue of additional syntactic training
is that we need to find a good balance between the
original and additional knowledge for improving
performance of downstream tasks. Most of the
previous works have selected dependency structure
predictions as the task to learn syntactic knowledge.
However, there are many other specific syntactic
notions, such as phrase structures and coordina-



tions from which the additional training may bene-
fit, and it is non-trivial to identify the best ones.

Another big issue in balancing the model
and additional knowledge is catastrophic forget-
ting (French, 1999; Kemker et al., 2018), where
additional training causes a significant loss of im-
portant knowledge embedded in the original model.
To tackle this problem, we exploit multiple opti-
mizers and quantitatively observe the balance of
capabilities to predict semantic and syntactic fea-
tures. To the best of our knowledge, our study
is the first to analyze how both the types of addi-
tional syntactic training and its optimizations affect
downstream tasks.

Our contributions in this paper are as follows:

• Designed additional syntactic training with
four syntactic tasks that can help a language
model solve downstream tasks from different
syntactic perspectives.

• Exploited optimization functions that prevent
catastrophic forgetting during the additional
syntactic training, and discovered the trade-
off between retention of original knowledge
and enhancement with additional knowledge.

• Demonstrated that the syntactically enhanced
models improved performances on CoLA,
RTE, MRPC and key phrase extraction tasks,
with qualitative and quantitative discussions to
find the syntactic perspectives that contribute
to each task.

2 Additional Syntactic Training

In additional syntactic training, models mainly
learn syntactic relationships between two tokens.
There have been proposed tasks such as predict-
ing dependencies (Wang et al., 2021a), predicting
parent-child, sibling, or cousin relationships (Tian
et al., 2022), and dependency distance. The de-
pendency structure encompasses a variety of word
relationships, a number of which are important in
application tasks.

For example, in noun phrase extraction (Gu
et al., 2021) and sentiment analysis (Kanayama and
Iwamoto, 2020), the relationship between main and
subordinate clauses and parallel (coordinate) struc-
tures are not handled well. To reflect the syntactic
knowledge missing and required for downstream
tasks in pre-trained models, we need to perform
more diverse additional syntactic training tasks.

Text Syntax Syntax Label
ID form PoS Head deprel phrase main/sub coord
1 We PRON 3 nsubj nsubj main other
2 still ADV 3 advmod advmod main other
3 have VERB 0 root root main other
4 the DET 5 det obj main child
5 traders NOUN 3 obj obj main conj
6 and CCONJ 7 cc obj main cc
7 books NOUN 5 obj obj main conj
8 that PRON 10 obj obj sub other
9 you PRON 10 nsubj nsubj sub other

10 provided VERB 5 acl acl sub other
11 last ADJ 12 amod obl sub other
12 week NOUN 10 obl obl sub other
13 . PUNCT 3 punct punct main other

Table 1: An example of additional syntactic training
tasks. With Tian et al.’s (2022) system, the model
learns Syntax Head and Label simultaneously. Gray
areas denote phrases, main clauses, and coordination
structures.

We therefore develop four pre-training tasks to
predict various syntactic items. Each task predicts
specific syntactic information: 1) deprel prediction,
2) phrase detection, 3) main/subordinate classifica-
tion, and 4) coordination detection. We investigate
which task would be effective on applications.

2.1 Additional Syntactic Training System

Here, we describe our method for additional syn-
tactic training. We customize Tian et al.’s (2022)
system to learn syntactic information.

The system is trained on two tasks in parallel: de-
pendency masking (DM), which predicts whether
there is a dependency between any pair of words
in a sentence, and masked dependency prediction
(MDP), which predicts the type of dependency re-
lationships. We replace the input for MDP with
one of four pre-training tasks.

2.2 Syntactic Tasks

Table 1 illustrates the four variations of our pre-
training tasks. Syntax Head conveys the form of
dependency tree, which is used for DM in the sys-
tem described in Section 2.1 and fixed in this paper.
As MDP, we vary the viewpoint of syntax classifi-
cation with the following four labeling tasks.

Deprel prediction (deprel) The model predicts
dependency labels in the same way as UD (Nivre
et al., 2020) parsing in the task. For additional
syntactic training tasks, we position this task as a
baseline.

Phrase detection (phrase) In this task, a model
predicts the relationship between phrases (the de-
prel label of the head token in the phrase). It is in-
spired by Basirat and Nivre’s (2021) work, and we



follow their definition of phrase-like units. They de-
fined a phrase as the block connected by seven UD
functional relations, such as a determiner and case
marker. Their model achieved high performance in
dependency parsing by phrase-level pre-training.

Main/subordinate classification (main/sub)
The task predicts two labels to classify clauses into
main and sub. We refer to Nikolaev and Pado’s
(2022) method to investigate whether a pre-trained
model can detect subordinate clauses.

Coordination detection (coord) It aims to pre-
dict parallel structures like “A and B” where A
and B can be tokens, phrases, or sentences. Specifi-
cally, it predicts the labels of A and B’s head tokens
(conj), their child tokens (child), parallel conjunc-
tions such as “and” and “but” (cc), and other tokens
(other).

3 Optimization Functions to Prevent
Catastrophic Forgetting

This section describes two optimization functions
that prevent catastrophic forgetting for keeping
original semantic knowledge during additional syn-
tactic training. When the model has already been
trained for a specific task and is then trained for
another task, the performance of the previous task
significantly decreases. This is called catastrophic
forgetting (French, 1999; Kemker et al., 2018).

Although large-scale pre-trained models are
known to be relatively resilient to catastrophic for-
getting (Ramasesh et al., 2022), the problem re-
mains when using small models such as BERT (De-
vlin et al., 2019). Since BERT is still often used in
the real world task due to computational resources,
a variety of methods are developed to prevent catas-
trophic forgetting even in pre-trained models such
as decreasing the learning rate (Kar et al., 2022).

Among these methods, we used Gradient
Surgery (Yu et al., 2020), an optimization function
known in the domain of multi-task learning, and
Elastic Weight Consolidation (Kirkpatrick et al.,
2017), an optimization function commonly used in
continual learning.

3.1 Gradient Surgery (GS)

Gradient Surgery is an optimization function for
solving gradient conflicts in multi-task learning. It
first computes the gradients for each task involved
in the multi-task learning. We then discard adver-
sarial elements of the gradients that conflict with

each other. After that, we sum up the resultant
gradients to obtain a single gradient vector. For
example, given two tasks A and B, if their gradient
vectors gA and gB are in opposite directions (i.e.,
if the cosine similarity of gA and gB is negative),
one gradient gA is projected onto the orthogonal
plane of the other gradient gB as follows:

gA = gA −
gA · gB
‖gB‖2

gB,

where ‖x‖ denotes L2-norm of x.

3.2 Elastic Weight Consolidation (EWC)
Elastic Weight Consolidation is a continuous learn-
ing optimization function in which tasks are learned
in sequence. Given two tasks, A and B, the model
first searches for the optimal solution for task A,
and then for the parameters that perform well in
both tasks A and B. In EWC, when the model is
fine-tuned for B after A, the important parameters
of the task A are updated as little as possible, while
the less important parameters of task A are updated
with larger weights. We use the Fisher information
matrix F (Pascanu and Bengio, 2013), which is a
diagonal matrix, to reduce the computational cost
and to utilize characteristics of F (Pascanu and
Bengio, 2013), though it gives an approximation of
the optimal parameters L(θ) for task A. The loss
function of EWC L(θ) is as follows:

L(θ) = LB(θ) +
∑
i

λ

2
Fi

(
θi − θ∗A,i

)2
,

where LB(θ) is the task B’s loss, λ sets how impor-
tant the task A is compared with the task B, and i
labels each parameter.

In the rest of this paper, we show our experimen-
tal results of three different tasks; additional syn-
tactic training (Section 4), the GLUE benchmark
(Section 5), and key phrase extraction (Section 6)
and explore how syntactic information and differ-
ent optimization functions affect the pre-trained
model itself and downstream tasks.

4 Preliminary Experiment: Additional
Syntactic Training

Here, we first show how well pre-trained models
with semantic information can learn specific syn-
tactic information by additional syntactic training
tasks (See Section 2.2 for detail) using various op-
timization functions while preserving semantic in-
formation.



train dev test
original 12543 2001 2077

after filtering 10271 1471 1485

Table 2: Number of sentences in the UD-EWT corpus
and after filtering for additional syntactic training.

4.1 Settings

Data The data for syntactic training was gener-
ated from UD-EWT Ver 2.10 1. The sentences sat-
isfying any of the following three conditions were
removed as noise: 1) sentences with less than five
tokens, 2) sentences containing foreign languages
tagged as X, and 3) sentences containing undefined
dependency relations labeled as dep. The num-
ber of sentences used in the experiment was the
same across all tasks since these treatments were
applied to all pre-training tasks. Table 2 shows the
statistics.

System We used the syntactic pre-training sys-
tem described in Section 2. We adopted the
pre-trained bert-base-cased model downloaded
from the Hugging Face transformers library (Wolf
et al., 2020) in the following experiments. The mod-
els trained by each of the four additional syntactic
training methods described in Section 2.2 were
compared with the original bert-base-cased
model. Multiple learning rates {1e-4,1e-5,1e-6}
and multiple numbers of max epochs {50,70,100}
were tested.

We experimented with four optimization func-
tions: GS, EWC, AdamW, and SGD. GS and
EWC prevent catastrophic forgetting as described
in Section 3. We used GS implemented by its au-
thors (Tseng, 2020) and EWC by ours, respectively.
For comparison, AdamW (Loshchilov and Hutter,
2019) and SGD (Robbins and Monro, 1951) from
the official PyTorch library (Paszke et al., 2019)
were used.

Models using GS are trained with gradients com-
puted from a small amount of text data used for
Masked Language Modeling (we call them MLM
gradients afterward), while models using EWC
only use MLM gradients for determining the im-
portance of parameters, not for parameter updating.
AdamW and SGD do not consider MLM gradi-
ent information. For training with GS and EWC,
100 sentences were randomly selected from Wiki-

1https://github.com/UniversalDependencies/UD_
English-EWT

syntactic
training

optimization
function

F1 PPL (↓)

none - - 29.10
deprel AdamW 96.22 702.87

SGD 96.13 32392.10
GS 95.43 10.44

EWC 95.13 25.63
phrase AdamW 97.25 1360.61

SGD 95.62 2587.11
GS 95.78 9.68

EWC 95.58 24.17
main/sub AdamW 98.35 720.49

SGD 97.74 1471.63
GS 94.70 11.16

EWC 95.29 23.59
coord AdamW 94.68 2971.79

SGD 89.55 1412.65
GS 91.33 9.56

EWC 91.00 23.78

Table 3: Comparison with different syntactic tasks and
optimization functions in additional syntactic training.
F1 score is the average between syntax head F1 and
syntax label F1. The row “none” means the baseline
model without additional syntactic training.

Text2 (Merity et al., 2017) for each syntactic train-
ing step, in which MLM gradients were computed.

It may be worthwhile to include MLM pre-
training using AdamW/SGD on the corpus used for
additional syntactic training as comparisons. Al-
though it is already known that AdamW (or Adam)
and SGD can cause catastrophic forgetting in both
continual learning and multi-task learning. Also
in multi-task optimization, existing studies such as
GS, Gradient Vaccine (Wang et al., 2021b), and
GradNorm (Chen et al., 2018) showed that models
using Adam or SGD do not perform well.

Evaluation We measured precision, recall, and
F1 score in the additional syntactic training tasks.
To evaluate whether the model retains the origi-
nal semantic knowledge, we used the perplexity
(PPL) (Jelinek et al., 1977) score of the MLM.

4.2 Results

Table 3 reports the highest average F1 scores of
Syntax Head and Syntax Label predictions. There
was a significant difference between different op-
timization functions in the PPL measure of MLM.
AdamW and SGD focus only on improving the per-
formance of the target task (in this case, syntactic

https://github.com/UniversalDependencies/UD_English-EWT
https://github.com/UniversalDependencies/UD_English-EWT


Figure 2: Relationships between syntactic pre-training
F1 score and PPL. The checkpoints at every 10 epochs
are plotted in syntactic pre-training phase. The dotted
line represents PPL of bert-base without additional syn-
tactic training.

training), thus they achieve high F1 scores in the
target task with significantly degrading the previ-
ous task, which was indicated by high PPL scores
(catastrophic forgetting). Much lower PPL scores
in GS and EWC indicate that they retain seman-
tic knowledge gained before additional syntactic
training.

All syntactic pre-trained models achieved over
91% average F1 scores except for the model trained
with SGD on the coord task, indicating that most
models have sufficiently learned syntactic informa-
tion. Especially, there is a small difference in F1
scores between models trained with AdamW and
other optimization functions in the deprel task.

We explain why we use GS and EWC in addi-
tional training and downstream tasks. The relation-
ships between syntactic pre-training F1 score and
PPL are shown in Figure 2. The figure displays the
models that achieved the highest F1 score for each
optimization function, as well as the model with
the smallest learning rate using Adam for reference.
We plot checkpoints at every 10 epochs in syntac-
tic additional training phase. GS and EWC can
keep their PPLs below the bert-base PPL through-
out the learning process, whereas Adam and SGD
have very high PPL during learning (catastrophic
forgetting). From this fact, we conclude GS and
EWC are suitable for retaining both semantic and
syntactic knowledge.

5 Experiment 1: GLUE

We investigate the effects of syntactic pre-trained
models to multiple downstream tasks using GLUE
benchmark (Wang et al., 2018). GLUE has three

types of tasks: single sentence tasks (CoLA, SST-
2), similarity and paraphrase tasks (MRPC, QQP
and STS-B) and natural language inference tasks
(MNLI, QNLI, RTE). We conducted detailed ex-
periments on three tasks for which syntactic infor-
mation seems to be important in solving the tasks:
CoLA (Warstadt et al., 2019), RTE (Dagan et al.,
2006), and MRPC (Dolan and Brockett, 2005). Ex-
periments on other tasks that did not required signif-
icant syntactic knowledge are shown in Appendix.
From experiments of the GLUE subset, it can be
concluded that additional syntactic training is ben-
eficial for tasks involving syntactic knowledge, as
opposed to the tasks mentioned in the Appendix A,
which do not appear to require such knowledge.

5.1 Settings

We evaluated on the official data splits provided by
GLUE. The details and evaluation metrics of each
task are described in Appendix A. As the overall
score for our methods, we took a macro-average
of scores for the tasks. The number of epoch was
set to 5, and other hyperparameters were set to the
default values specified in the code provided by
Hugging Face2.

We trained models for each setting (of four op-
timizers and four syntactic tasks). The training is
conducted over three learning rates and three of
max epochs described in Section 4.1, saving the
checkpoints at every 10 epochs in syntactic pre-
training phase. We then trained all of these models
for the application tasks. Therefore, we trained
approximately 1000 syntactic pre-trained models:
4 optimizers × 4 syntactic tasks × 3 learning rates
× 22 checkpoints3.

For each pair of pre-training task and optimizer,
we selected the best model in terms of the aver-
age score of each GLUE task. To minimize the
computational cost, we adopted the optimal hyper-
parameters used in a previous study (Wang et al.,
2018). The reason we chose this approach was to
determine how much knowledge from MLM and
syntactic structures is needed to achieve good per-
formance in application tasks.

Regarding evaluation, we considered that the
evaluation on dev data is appropriate for this pur-
pose to keep the test data unbiased to our tuning,
following the policy by Suzuki et al. (2023).

2https://github.com/huggingface/transformers/
blob/main/examples/pytorch/text-classification/
run_glue.py

3Every 10 epochs for max epochs of 50, 70, 100.

https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py


Syntactic Training GLUE tasks Pre-train info
CoLA RTE MRPC Avg. lr epoch

Task Optimizer (mc) (acc) (acc / F1)
none - 60.10 64.62 84.56 / 89.23 70.54 - -

deprel AdamW 57.60 66.43 78.19 / 85.85 68.68 1e-5 10/70

SGD 57.80 67.15 85.05 / 89.78 70.79 1e-5 10/50

GS 59.07 67.51 86.02 / 89.98 71.58 1e-4 20/100

EWC 60.57 66.07 85.54 / 89.92 71.45 1e-4 30/70

phrase AdamW 55.98 67.15 78.68 / 86.21 68.53 1e-5 20/70

SGD 58.30 67.87 84.31 / 89.33 71.00 1e-5 10/50

GS 60.86 64.98 84.56 / 89.23 70.91 1e-5 20/70

EWC 60.32 67.15 86.28 / 90.54 71.96 1e-5 20/50

main/sub AdamW 55.73 66.07 77.94 / 85.44 67.83 1e-5 40/70

SGD 57.31 67.51 85.29 / 89.90 70.81 1e-5 10/50

GS 59.10 67.51 85.29 / 89.83 71.39 1e-5 20/70

EWC 60.09 68.23 84.80 / 89.49 71.82 1e-5 20/70

coord AdamW 58.29 63.90 77.45 / 85.16 67.83 1e-5 60/70

SGD 59.31 66.07 83.82 / 88.81 70.56 1e-5 20/70

GS 59.56 68.59 85.54 / 90.02 71.98 1e-5 60/70

EWC 61.10 68.23 85.05 / 89.61 72.22 1e-5 30/50

Table 4: Performance comparison of three GLUE tasks based on additional syntactic training and optimizers. The
highest scores for each additional syntactic training are underlined, and those for each GLUE task are shown in
bold. The row “none” means the baseline model without additional syntactic training.

Optimizer Average
CoLA RTE MRPC

AdamW 56.90 65.88 78.06 / 85.67
SGD 58.18 67.15 84.62 / 89.46
GS 59.65 66.79 85.48 / 89.90

EWC 60.52 67.42 85.42 / 89.89

Table 5: Comparison of model average for each opti-
mizer in three GLUE tasks.

5.2 Results

The results are shown in Table 4. The right block
is the performance in the pre-training with lr and
epoch on syntactic tasks and PPL on MLM task.

The models using GS and EWC, which were
introduced to prevent catastrophic forgetting,
achieved higher scores, as expected, than those
using AdamW and SGD in CoLA and MRPC tasks.
Among the 16 combinations of syntactic tasks and
optimizers, coord with EWC achieved the high-
est average score (72.22), and most of other cases
showed scores above the baseline (70.54) except
for those optimized with AdamW. In the following,
we compare the performance of each optimizer and
each pre-training task by taking the average score
on each feature.

Syntactic
Task

Average
CoLA RTE MRPC

deprel 58.76 66.43 83.82 / 89.02
phrase 58.87 66.79 83.46 / 88.83

main/sub 58.06 67.33 83.33 / 88.66
coord 59.56 66.70 82.97 / 88.40

Table 6: Comparison of model average for each addi-
tional syntactic training in three GLUE tasks.

Comparison of optimizers Table 5 shows the
scores of each optimizer averaged over four syntac-
tic training tasks in Table 4. The model pre-trained
with EWC achieves higher scores on two tasks, and
the model pre-trained with GS has similar scores.
That is, regardless of the type of syntactic train-
ing task, learning syntax using GS and EWC is
effective to enhance the model performance.

As shown in the right block of Table 3 GS and
EWC preserve semantic information with small
sacrifice of additional syntactic training scores. In
the trade-off relationship between these two, Ta-
ble 5 shows the strength of GS and EWC in down-
stream tasks, models with a good balance between
semantic information and syntactic information
achieved high performance.



Syntactic Training Key Phrase Extraction Pre-train Info
Task Optimizer precision recall F1 lr epoch
none - 59.71 74.11 66.14 - -

deprel AdamW 62.41 75.22 68.22 1e-5 10/50

SGD 62.50 74.78 68.09 1e-5 60/100

GS 62.24 75.30 68.15 1e-4 60/70

EWC 61.43 75.97 67.93 1e-5 30/60

phrase AdamW 62.52 75.07 68.22 1e-5 60/100

SGD 62.09 76.64 68.60 1e-4 10/70

GS 62.52 76.34 68.74 1e-6 60/100

EWC 61.77 75.97 68.13 1e-5 40/100

main/sub AdamW 62.40 75.07 68.15 1e-6 30/100

SGD 61.58 75.60 67.8 1e-4 60/70

GS 62.04 75.89 68.27 1e-4 10/50

EWC 61.12 75.45 67.53 1e-5 20/70

coord AdamW 61.68 76.41 68.26 1e-5 10/70

SGD 62.89 75.52 68.63 1e-4 10/70

GS 61.42 75.82 67.87 1e-6 60/100

EWC 62.03 75.60 68.14 1e-5 40/100

Table 7: Performance comparison of key phrase extraction task.

Comparison of additional syntactic training
Table 6 shows the scores of each pre-training tasks
averaged over the four optimizers in Table 4. A
variety of syntactic information contributed to the
performance improvement. In the CoLA task, co-
ord achieved the highest average score. We explain
this using the data grammatical features. Warstadt
and Bowman (2019) compared CoLA performance
for sentences containing major features using dev
data. They defined 13 grammatical major features
and further divided into 59 minor features, and co-
ordination is the most frequent minor feature in a
major feature. They found that in the BERT model,
Matthew’s correlation for sentences containing the
major feature was the second lowest among all
major features. This indicates that the CoLA task
performance was improved because models cap-
tured the coordination structures through additional
additional syntactic training.

The RTE task contains many long sentences, and
we consider that the main/sub pre-trained model
handled long sentences better than the other models
since the model can capture subordinate structures.

For the MRPC task, deprel achieved the highest
average score. Perez et al. (2021) mentioned that
MRPC requires information with various PoS tags
via experiments in which models are trained by
masking words of a specific PoS tag in each GLUE
tasks. As a counter example, for SST-2, sentiment

analysis task, adjectives are much more effective
than other PoS. The deprel task helped the model
learn more comprehensive syntactic information
than the other tasks, which explains our result.

6 Experiment 2: Key Phrase Extraction

In addtion to binary classification tasks in GLUE,
we conducted another experiment on the key phrase
extraction task (Gu et al., 2021). It is a task to de-
tect domain-specific phrases in sentences, and is
considered a good workbench to test the ability to
extract syntactically correct sequences as an appli-
cation close to real-world use cases.

6.1 Settings

We used Gu et al.’s (2021) method in our exper-
iments. They trained a phrase tagger using lan-
guage models by generating silver labels from un-
labeled text and using neither external knowledge
base nor dictionaries. We modified it to work with
BERT since their code worked only with models
using byte pair encoding tokenizers. The number
of epochs was set to 100. Other hyperparameters
followed the default settings in the code.

In experiments by Gu et al. (2021), datasets
KP20k (Meng et al., 2017) and KPTimes (Gallina
et al., 2019) are used. Since we evaluated many
models, we used a small version of the KP20k pro-
vided in their code to reduce computational time.



Statistics train test
# document 10000 1000
# sentence 81340 8144
# words per sentence 21.50 21.48

Table 8: Statistics in KP20k small datasets.

Syntactic
Task

Average
prec rec F1

deprel 62.15 75.32 68.10
phrase 62.23 76.01 68.42
main/sub 61.79 75.50 67.96
coord 62.01 75.84 68.22

Table 9: Comparison of average scores of syntactic pre-
trained models in the key phrase extraction.

KP20k is a dataset created from titles, abstracts,
and key phrases of scientific articles in computer
science. The data statistics are shown in Table 8.
We selected the models in the same manner as we
did in Section 5.1 for the three GLUE tasks.

6.2 Results

The results are shown in Table 7. As well as in
the experiments in Section 5, we fine-tuned the
syntactic pre-treined models for this task. All the
syntactic models achieved higher F1 scores than
the baseline by more than 1.4 points, regardless
of the optimizers. This indicates that a variety of
syntactic information contributes to improving key
phrase extraction, and the effect is bigger than in
the binary classification tasks in GLUE.

Table 9 shows the average scores over for op-
timizers. The results supports that phrase was
the best in all four metrics. As shown in Table 1,
phrase has an intermediate granuality between
deprel and main/sub, and it is intuitive that this
matches well the syntactic knowledge required in
the key phrase extraction task.

6.3 Case Study

We present qualitative analysis for showing how
added syntactic knowledge is reflected in the model
extractions. We observe the difference between the
baseline model without additional syntactic train-
ing and pre-trained model with the phrase task.
The phrase pre-trained model using GS achieved
the best F1 score as observed in Section 6.2.

In Figure 3, we can find that the baseline model
incorrectly detected “reduce business costs” as a
key phrase, because it failed to recognize “reduce”

Figure 3: Phrase extraction 1. The same phrase extrac-
tions among gold answer and two methods are blue-
underlined, different phrase extractions are written in
bold yellow. Wrong output: “reduce business costs.”

Figure 4: Phrase extraction 2. Wrong output: “recog-
nizing overlapping.”

as a verb in this sentence. On the other hand,
phrase pre-trained model successfully detected
“business costs”. In Figure 4, the baseline model
incorrectly detected “recognizing overlapping” as a
phrase. The phrase pre-trained model successfully
avoided a phrase extraction error caused by a word
whose grammatical behavior may be confused, in
this case, between gerund and present progressive.

7 Conclusion

This paper investigated the incorporation of syntac-
tic knowledge into a pre-trained BERT model by
additional training. We designed four additional
syntactic training tasks: deprel prediction, phrase
detection, main/subordinate classification, and co-
ordination detection. We utilized GS and EWC
optimizations for preserving semantic knowledge.

The experimental results showed improvements
of the models empowered with syntactic knowl-
edge in the downstream tasks, and supported our
intuition that each task requires different syntactic
perspectives for more accurate predictions.



Limitations

Our main limitation is that our method is evaluated
on English-only datasets including GLUE bench-
marks and key phrase extraction datasets. The ap-
plicability of our method to other languages can be
investigated by evaluating, for example, a multilin-
gual version of the GLUE task (Liang et al., 2020;
Kurihara et al., 2022).

An additional limitation comes from the pre-
trained model. We used a pre-trained BERT model
with 110M parameters generated for general pur-
pose tasks. The investigation methods in this paper
can be applied to other language models such as
RoBERTa (Liu et al., 2019), though they may show
different trends through further experiments.

Ethics Statement

Our method belongs to additional language
model pre-training. We used publicly available
codes/datasets such as licensed under CC BY-SA
4.0 and MIT to ensure reproducibility of our ex-
perimental results. Using an efficient optimization
function rather than many parameter tuning imple-
mentations to prevent catastrophic forgetting can
help reduce the carbon footprint of model training.

Our method uses pre-trained language models
that may contain gender or abusive data bias. We
need to be careful when using the model to prevent
potential biases in application task outcomes.
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A GLUE task explanation

We describe the details of dataset in our exper-
iments GLUE (Wang et al., 2018), the General
Language Understanding Evaluation benchmark.
GLUE is the common benchmark for language
comprehension. The licence is under CC-BY-4.0.

A.1 Syntactic-related Tasks
Here we explain three GLUE tasks in which addi-
tional syntactic training would be highly useful.

CoLA The Corpus of Linguistic Acceptability
(CoLA) (Warstadt et al., 2019) is composed of En-
glish sentences extracted from books and journal
articles focused on linguistic theory. Each sentence
is annotated to indicate whether it is grammatically
acceptable in English. To evaluate performance,
we utilize the Matthews correlation (mc), a metric
for evaluating binary classification performance,
which accounts for class imbalance and ranges
from -1 to 1, with 0 representing random guess-
ing. For evaluation purposes, we utilize the stan-
dard test set and obtained private labels from the
original authors same as official GLUE evaluation.

RTE The Recognizing Textual Entailment
(RTE) (Dagan et al., 2006) datasets come from
a series of annual textual entailment challenges.
The examples in the datasets are created using
news articles and text from Wikipedia. To ensure
uniformity, all datasets are splitted into a two-class.
In three-class datasets, we combine the "neutral"
and "contradiction" classes into the category of
"not entailment."

MRPC The Microsoft Research Paraphrase Cor-
pus (MRPC) (Dolan and Brockett, 2005) consists
of pairs of sentences extracted from online news
sources. Each pair has been annotated by humans
to indicate whether the sentences are semantically
equivalent. Due to the imbalance in class distribu-
tion (68% positive), we report both accuracy and
F1 score (standard practice).

A.2 Syntactic-unrelated Tasks
The results of those tasks shown in appendix.

SST-2 The Stanford Sentiment Treebank-2 (SST-
2) (Socher et al., 2013), developed by Socher et al.
in 2013, comprises sentences extracted from movie
reviews along with human annotations indicating
their sentiment. The objective is to determine the
sentiment of a given sentence. We employ a binary

classification scheme, distinguishing between pos-
itive and negative sentiments, and utilize only the
labels assigned at the sentence level.

QQP The Quora Question Pairs2 dataset (QQP) 4

consists of a set of question pairs gathered from
the Quora website, where users ask and answer
questions. The objective is to determine whether a
given pair of questions are semantically equivalent.
Similar to MRPC, the distribution of classes in the
QQP dataset is imbalanced, with a majority of 63%
negative instances. Hence, we report both accuracy
and F1 score for evaluation.

STS-B The Semantic Textual Similarity Bench-
mark (Cer et al., 2017) consists of various sentence
pairs obtained from news headlines, video and im-
age captions, and natural language inference data.
Each pair has been assessed by humans and as-
signed a similarity score ranging from 1 to 5. The
objective of the task is to predict these scores. In
our analysis, we evaluate the performance using
Pearson correlation coefficients (pc).

MNLI The Multi-Genre Natural Language Infer-
ence dataset (MNLI) (Williams et al., 2018) is a
collection of sentence pairs of textual entailment.
The task involves predicting whether the premise
sentence entails, contradicts, or is neutral to the
hypothesis sentence. The sentences are extracted
from transcribed speech, fiction, and government
reports and so on. Evaluation is conducted on both
the matched (in-domain,m) and mismatched (cross-
domain,mm) sections.

QNLI The Stanford Question Answering Dataset
(QNLI) (Rajpurkar et al., 2016) is a collection of
question-paragraph pairs designed for question-
answering tasks. The dataset includes questions
generated by annotators and paragraphs sourced
from Wikipedia, with the answer to each question
located within one of the paragraph’s sentences. To
transform the task into sentence pair classification,
the pairs are created between each question and
every sentence within the corresponding context.
The objective is to determine whether the context
sentence contains the answer to the question. We
evaluate accuracy on this task.

4https://www.quora.com/profile/Ricky-Riche-2/
First-Quora-Dataset-Release-Question-Pairs

https://www.quora.com/profile/Ricky-Riche-2/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/profile/Ricky-Riche-2/First-Quora-Dataset-Release-Question-Pairs


Syntactic Training GLUE Tasks
Task Optimizer SST-2 QQP STS-B MNLI m/mm QNLI

(acc) (acc / F1) (pc) m/mm (acc) (acc)
none - 92.66 90.98 / 87.78 89.08 83.71 / 83.34 90.55

deprel AdamW 91.74 90.88 / 87.66 88.00 83.29 / 83.80 90.94
SGD 92.20 91.05 / 87.89 89.27 83.52 / 84.18 90.87
GS 92.32 90.85 / 87.62 89.36 83.28 / 83.70 90.68

EWC 91.51 90.88 / 87.65 89.21 83.12 / 83.69 90.55
phrase AdamW 91.17 90.48 / 87.18 85.49 82.36 / 83.01 90.17

SGD 91.86 90.72 / 87.44 87.17 83.11 / 83.45 90.81
GS 92.43 90.82 / 87.55 88.56 83.53 / 83.86 90.26

EWC 92.09 90.91 / 87.71 89.26 82.93 / 83.57 90.37
main/sub AdamW 89.68 90.10 / 86.65 85.42 81.71 / 82.45 89.11

SGD 91.97 90.84 / 87.59 87.57 83.31 / 83.83 90.19
GS 92.09 90.94 / 87.73 89.35 83.61 / 83.73 90.37

EWC 91.97 90.90 / 87.68 89.15 83.47 / 84.06 90.65
coord AdamW 90.60 89.80 / 86.24 82.67 83.11/ 83.45 87.99

SGD 92.20 90.92 / 87.71 88.15 83.67 / 84.19 90.61
GS 91.86 90.84 / 87.60 89.27 83.45 / 83.55 90.32

EWC 91.86 90.98 / 87.79 89.13 83.43 / 83.66 90.26

Table 10: Performance comparison of five GLUE tasks based on additional syntactic training and optimizers. The
highest scores for each additional syntactic training is underlined, and those for each GLUE task are shown in bold.
The row “none” means the baseline model without additional syntactic training.

B GLUE results

In the downstream tasks listed below, the mod-
els without syntactic information performed higher
than the models with it. Our assumption was sup-
ported by the results in Table 10, where most of
additional syntactic training did not contribute to
the scores as we have seen for our focused tasks in
Table 4.

SST-2 We found that the model without addi-
tional syntactic training showed the highest score.
It can be argued from these results that syntactic
knowledge is rather a handicap for sentiment anal-
ysis of movie reviews. Among the models with
additional syntactic training, the model with GS
scores higher since it does not lose semantics.

QQP QQP (question pair dataset) contains more
sentence pairs that paraphrase or have a completely
different meaning than sentence pairs that have
been syntactically rewritten. Therefore, there is lit-
tle difference between the models with and without
additional syntactic training, and the models with
additional syntactic training score slightly lower.
This result suggests that syntactic knowledge is not
necessary to solve this task.

STS-B Models pre-trained on the GS tend to
have higher accuracy. To explain this, we show
an example of the data (news headline). For exam-
ple, a pair of similar sentences “A plane is taking
off.” / “An air plane is taking off.” has the similar
syntactic structure and difference is only an adjec-
tive. This is because we believe that the model
retaining semantic knowledge performed better.

MNLI For the matched class (two sentences are
sampled from the same source), the models without
additional syntactic training achieved the highest
accuracy, while for the mismatched class (two sen-
tences are from different sources), most models
with additional syntactic training achieved better
performance than those without additional syntac-
tic training. We could not identify the reason for the
difference in accuracy between different classes.

QNLI The models with additional syntactic train-
ing achieved higher accuracy than those without
additional syntactic training, with a trend towards
higher accuracy on the deprel task. This indicates
that the deprel task is effective at capturing the over-
all structure of relatively long answer sentences.
We could not observe any differences in scores
between the different optimizers.


