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Abstract
Molecules have a number of distinct properties
whose importance and application vary. Often,
in reality, labels for some properties are hard to
achieve despite their practical importance. A com-
mon solution to such data scarcity is to use mod-
els of good generalization with transfer learning.
This involves domain experts for designing source
and target tasks whose features are shared. How-
ever, this approach has limitations: i). Difficulty
in accurate design of source-target task pairs due
to the large number of tasks, and ii). correspond-
ing computational burden verifying many trials
and errors of transfer learning design, thereby iii).
constraining the potential of foundation model-
ing of multi-task molecular property prediction.
We address the limitations of the manual design
of transfer learning via data-driven bi-level opti-
mization. The proposed method enables scalable
multi-task transfer learning for molecular prop-
erty prediction by automatically obtaining the op-
timal transfer ratios. Empirically, the proposed
method improved the prediction performance of
40 molecular properties and accelerated training
convergence.

1. Introduction
Given that a molecule has a number of molecular proper-
ties, basically, molecular property prediction is to predict
a target property among various properties (Wieder et al.,
2020). There are many important applications of molecular
property prediction, including virtual screening and discov-
ery of novel materials and drugs (Christopher et al., 2001;
Atanasov et al., 2021; Gentile et al., 2022; Sadybekov & Ka-
tritch, 2023). Molecular property prediction provides vital
information in making informed decisions throughout the
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discovery and development process so that the development
cycle of the product can be accelerated.

However, in reality, molecular property prediction often
suffers from the data scarcity problem (Hu et al., 2019; Li
et al., 2022; 2021) due to various factors, including the high
cost of experimental data generation (Axelrod & Gómez-
Bombarelli, 2022), the complexity of chemical compounds
(Kumar et al., 2020), and the proprietary nature of phar-
maceutical data (Heyndrickx et al., 2023). As a result, re-
searchers have tried to overcome this limitation, such as
using advanced computational techniques like transfer learn-
ing (Ko et al., 2024b), data augmentation (You et al., 2020),
and other approaches (Lu et al., 2019; Yao et al., 2023; Qian
et al., 2023) that can learn effectively from smaller datasets.

Transfer learning (Pan & Yang, 2010; Zhuang et al., 2019)
allows for the effective generalization of knowledge learned
from source task data distribution to the target task data.
Effective transfer can be fulfilled through learning mutually
informative feature representations between aligned tasks.
GATE (Ko et al., 2024b) introduced a geometric alignment
of various tasks to enhance task alignment for molecular
property prediction. With the proposed geometrical align-
ment, the prediction model can learn geometrically aligned
molecular representations that are applicable from source
task to target task, enabling effective transfer learning and
surpassing the performance of baseline models.

Recently, Ko et al. (2024a) extended GATE to a multi-task
setting by sharing a single latent space among multiple tasks,
applying geometrical alignment regularization within this
shared latent space. In this extended formulation of GATE,
different transfer ratios can be applied for each (source,
target) task pair, which represent a belief in how much a
source task can be helpful to the target task. In Figure 1, we
investigated the effect of different transfer ratios for three
molecular properties: density (ds), heat of vaporization (hv),
and boiling point (bp). Assuming the same transfer ratio
between paired tasks, we conducted a grid search over [0.2,
1.0] for 3 hyperparameters λhv,bp, λds,bp, λhv,ds and found
that overall prediction performance largely varies by the
setting of transfer ratios.

Though the transfer ratio could have a large effect on the
prediction performance, GATE lacks a method for explor-
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Figure 1. Grid search of transfer ratios λ between density (ds),
heat of vaporization (hv), and boiling point (bp). Each axis
λhv,bp, λds,bp, λhv,ds corresponds to the transfer ratio between
(hv, bp), (ds, bp), (hv, ds), assuming λi→j = λj→i. The color of
a point corresponds to the Root Mean Square Error (RMSE) of
model prediction at the end of training with λhv,bp, λds,bp, λhv,ds,
and the best hyperparameter set is marked as a star.

ing transfer ratios but rather uses them as hyperparameters,
which presents several limitations. i. Inaccuracy in predicted
transfer ratios by domain experts: Given the black-box na-
ture of deep learning models, there is no guarantee that the
source task and the corresponding source data chosen by a
domain expert will actually enhance the performance of the
target task. ii. Limited scalability: As the number of tasks
increases, manually setting proper ratios for all possible
transfer interactions between two tasks by a domain expert
becomes infeasible and less optimized. iii. Constraining
the foundation modeling in molecular property prediction:
As different tasks in molecular property prediction funda-
mentally involve comprehending molecular structures, the
performance of tasks with limited data can be improved
by merging existing datasets for extensive multi-task train-
ing. This approach maximizes the benefits of foundational
modeling in predicting molecular properties.

To address these limitations, we propose a novel bi-level
optimization method to automatically obtain the optimal
transfer ratios for given multi-task data. This bi-level opti-
mization replaces previous manual hyperparameter searches
by domain experts through gradient-based learning on the
validation performance. The training algorithm remains the
same during the training phase; the difference occurs in the
validation phase. In the validation phase, gradients flow
from the computed loss to the computation node represent-
ing the transfer ratio and are updated gradient-based on their
contribution to the loss value during the validation phase.
Since the gradient computation is restricted to the transfer ra-
tio, additional time and space costs for the proposed bi-level
optimization are negligible. The proposed gradient-based
bi-level optimization efficiently obtains the optimal transfer

ratio, especially on a large task space, without cumbersome
tuning by domain experts.

Contribution

• We propose a data-driven method to search optimal
transfer ratios for multi-task transfer learning of molec-
ular property prediction.

• The proposed method has improved the performances
on 40 tasks of molecular property regression.

• The proposed method accelerates the convergence of
multi-task transfer learning in molecular property re-
gressions.

2. Preliminary: Multi-task property regression
This section introduces preliminary works for multi-task
property regression. For multi-task transfer learning in prop-
erty regression, we leverage GATE algorithms extended for
multi-task transfer learning (Ko et al., 2024a).

2.1. Multi-task learning extension of GATE

GATE addresses transfer learning among a number of tasks,
introducing additional side tasks to learn mutually useful
features for different tasks in shared manifold M. M is
a manifold where each task-specific model can learn the
general geometrical knowledge of molecular structure. This
strategy guides the model in learning generally useful fea-
tures for molecular property regression, allowing the task
of scarce data to take advantage of knowledge learned from
another data-enriched task.

Figure 2. Training overview of GATE. t, s represents the target
and source tasks for transfer learning. The colors of the arrows
differentiate prediction paths: red corresponds to the path from
Encoders, and blue corresponds to the path from Encodert.
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2.2. Target task regression

When a molecule x is fed into an embedding model as
SMILES (Weininger, 1988), we get a corresponding embed-
ding vector z. Given a target task t, a task-specific encoder
(encodert) embeds z into a latent vector zt on the manifold
for the target task t. Then, the regression head ht predicts
ŷt to calculate the Mean Squared Error (MSE) loss with
respect to target label yt.

zt = encodert(z) (1)
ŷt = ht(zt) (2)

lreg =
1

N

N∑
i

MSE(yt, ŷt) (3)

where N is the number of data points.

2.3. Transfer learning from source task

Let s be another task we can leverage for target task learning.
Thanks to the shared manifoldM, zt can be represented
from a source task representation zs, via transformation
ϕs→M and inverse transformation ϕ−1

M→t.

zs = encoders(z) (4)
zM = ϕs→M(zs) (5)

zt = ϕ−1
M→t(zM) (6)

ŷt = ht(zt) (7)

where ϕs→M(zs) means a transformation of the vector from
the manifold of source task s to shared manifoldM, and
ϕ−1
M→t(zs) means an inverse transformation from the shared

manifoldM to the manifold of target task t.

With a hyperparameter called a mapping ratio λs→t, GATE
conducts transfer learning from source task s to target task
t.

lmap =
∑
s

1

N

N∑
i

λs→tMSE(yt, ŷt) (8)

As the correlation varies across different source-target task
pairs, the effectiveness of multi-task transfer learning is de-
pendent on the proper search of the λs→t. For instance, the
Highest Occupied Molecular Orbital (HOMO) and Low-
est Unoccupied Molecular Orbital (LUMO) tasks would be
deeply correlated, sharing many of the necessary features
representing molecular orbitals. Therefore, a high λs→t

value can accelerate the mutual learning of the HOMO and
LUMO. However, in a multi-task learning setting, the cor-
relation of the target-source task is conditioned on other
tasks, which makes it more difficult to find optimal λ with
many tasks to learn. In this situation, completing the entire
correlation of target-source task pairs is prohibitive even for
experienced domain experts.

2.4. Geometric regularizations

To align manifolds of different tasks to be the shared mani-
foldM, GATE aims to align the geometric representation
of a molecule in different properties through side tasks:
reconstruction, consistency, and distance.

Reconstruction To convince those models can learn gen-
eral geometries useful across tasks,M should have enough
expressiveness to reconstruct z. The following reconstruc-
tion loss

lae =
∑
i

MSE(zi, ϕM→i(ϕ
−1
i→M(zi)), (9)

regularizes GATE to maintain the reconstruction capability.

Consistency Too much divergence between the manifold
of t, s could harm the transfer effect. To regularize the
significant divergence between zt, zs on the shared manifold
M, GATE introduces a loss for consistency,

lcons =
∑
s

MSE(zs, zt). (10)

Distance To learn robust transformation ϕi→M, ϕ−1
M→i

under perturbation, GATE applies a perturbation on z to
have z′. Then regularizes the resulting displacement for
different tasks i to be minimized as

ldis =
1

M

∑
s

Cs

M∑
p=1

MSE(sps , s
p
t ), (11)

where M is the number of perturbed points, superscript p
means p-th perturbed point, Cs is the hyperparameter, and
sps = ∥ϕi→M(encoderi(z))− ϕi→M(encoderi(zp))∥.

Aggregating the losses for geometrical alignments, the total
loss is calculated as

ltot = lreg + lae + lcons + ldis + lmap, (12)

to update model parameters for ϕ, ϕ−1, h, and the embed-
ding model. For brevity, we simply represent the corre-
sponding model parameters as θ.

3. Bi-level optimization of GATE
We interpret the problem of finding optimal λ as a bi-level
optimization problem:

min
λ

lval(θ, λ)

s.t. θ∗(λ) = argmin
θ

ltrain(θ, λ),
(13)

Algorithm 1 depicts the detailed algorithms for the bi-level
optimization of GATE. First, θ is updated using the training
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dataset Dtr and λ in the inner loop, and in the outer loop,
based on the updated θ, λ is updated with respect to the
performance in the validation dataset Dval.

Algorithm 1 Bi-level Optimization for GATE
1: Input: Training data Dtr, validation data Dval

2: Initialize model θ, transfer ratio λ, transfer momentum
m, v

3: repeat
4: θ ← argmin

θ
L(Dtr, θ, λ) {Inner loop}

5: λ← argmin
λ

L(Dval, θ, λ,m, v) {Outer loop}

6: until converged =0

In the inner loop, our objective is to update θ given λ and
Dtr. Given a molecule, x, the embedding model projects
x into the embedding vector z. Subsequently, encoderi
projects z to zi for all tasks i ∈ T ∪S, where T, S represent
sets of target tasks and source tasks, respectively. Then,
we can get two predictions for the target property t; one is
directly from zt and the other is from ϕ−1

M→t(ϕs→M(zs)).
The predicted values are used to calculate the regression loss
lreg and mapping loss lmap, respectively. After summation
of losses lreg and lmap with lae, lcons, ldis, finally θ is updated
from the corresponding gradient.

Algorithm 2 Inner loop
1: Input: Target tasks T = {t1, · · · , tNT

}, Source tasks
S = {s1, · · · , sNS

}, model parameters θ, transfer ra-
tios λ, training data (xi, yi) ∀i ∈ T ∪ S

2: Output: Optimized model parameters θ
3: while Training epoch do
4: ltot = 0
5: z = embedding(x), ∀i ∈ T ∪ S
6: zi = encoderi(z), ∀i ∈ T ∪ S
7: for (t, s) in {(t, s)|t ∈ T, s ∈ S} do
8: lreg = MSE(yt, ht(zt))
9: lmap = λs→tMSE(yt, ht(ϕ

−1
M→t(ϕs→M(zs))))

10: ltot += lreg + lmap + lae + lcons + ldis
11: end for
12: θ ← ∇θltot
13: end while=0

In the outer loop, we aim to search for λ =
min
λ

Lval(θ
∗, λ). The mapping loss between the target and

source task is calculated to get gradient g with respect to the
updated θ through the inner loop. Then g is used to update
the moving average m and the squared moving average v,
with the corresponding hyperparameters β0, β1 ∈ [0, 1). Fi-
nally, the bias-corrected estimate of the first moment and the
second moment, m̂ and v̂, are calculated to update the trans-
fer ratio λ. Markedly, the calculated mapping loss in the
outer loop only updates λ without affecting θ. This proce-

dure is a data-driven hyperparameter search that substitutes
for manual hyperparameter search, which is a bottleneck for
the foundation modeling of multi-task transfer learning for
molecular property regression.

Algorithm 3 Outer loop
1: Input: Target tasks T = {t1, · · · , tNT

}, Source tasks
S = {s1, · · · , sNS

}, model parameters θ, transfer ra-
tio λ, transfer momentum m, v, validation data (xi, yi)
∀i ∈ T ∪ S

2: Output: Optimized λ
3: while Validation epoch do
4: step← step + 1
5: lmap = 0
6: z = embedding(x), ∀i ∈ T ∪ S
7: zi = encoderi(z), ∀i ∈ T ∪ S
8: for (t, s) in {(t, s)|t ∈ T, s ∈ S} do
9: lmap += λsMSE(yt, ht(ϕ

−1
M→t(ϕs→M(zs))))

10: end for
11: g ← ∇λlmap

12: m← β0m+ (1− β0)g, v ← β1v + (1− β1)g
2

13: m̂← m
1−βstep

0

, v̂ ← v
1−βstep

1

14: λ← λ− η m̂√
v̂+ϵ

15: end while=0

4. Experiments
4.1. Dataset

To test in a scaled-up multi-task setting, we collected data
from 40 tasks from PubChem (Kim et al., 2022), Ochem
(Sushko et al., 2011), CCDDS, Yaws Handbook, and Jean-
Claude Bradley. We specified each task and number of data
points in Appendix A. For the robust test, we used scaffold
split of the train and test dataset based on the molecular
structure (Bemis & Murcko, 1996). To avoid the overfitting
of transfer ratio adaptation to the validation dataset, we
interchanged 20% of the train and validation datasets for
every epoch.

4.2. Results

Table 1 shows the performance of GATE with and without
bi-level optimization on 40 different molecular property re-
gression tasks. To evaluate the effectiveness of the proposed
method, other than λ, we used the same model architecture
and hyperparameters of GATE. Performance is measured
in terms of Root Mean Square Error (RMSE), a standard
metric used to measure prediction accuracy. A lower RMSE
indicates better performance. The results show that GATE
with bi-level optimization generally achieves lower RMSE
scores across most tasks than the original GATE method.
This is achieved by learning the transfer ratio λ to min-
imize prediction error described in Equation (8), which
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Table 1. 40 task RMSE of GATE and GATE integrated with bi-level optimization (GATE*). The best case for each task is highlighted in
bold.

TASKS
METHOD CPS LM UFT VS MAS CTP GEF PKA MVS DM

GATE 0.154 0.367 0.497 0.650 0.343 0.402 0.326 0.765 0.250 0.690
GATE* 0.139 0.366 0.475 0.739 0.376 0.373 0.236 0.731 0.233 0.687

SEF CPL HVC FP PAR CT VP LP CPG IP

GATE 0.452 0.252 0.562 0.645 0.241 0.414 0.730 0.134 0.119 0.501
GATE* 0.358 0.133 0.555 0.636 0.281 0.408 0.685 0.135 0.134 0.533

SPA LF ST HF RI AS DS NEC DK MVL

GATE 0.259 0.510 0.409 0.561 0.443 0.754 0.477 0.323 0.591 0.484
GATE* 0.234 0.512 0.420 0.516 0.418 0.807 0.442 0.257 0.559 0.444

HV SAE BP CTV MP HC POL HM AW ROG

GATE 0.478 0.263 0.520 0.284 0.583 0.265 0.307 0.441 0.711 0.552
GATE* 0.431 0.258 0.508 0.237 0.579 0.246 0.285 0.432 0.596 0.548

enables more effective transfer learning than using constant
λ, though given the same data for target task and source
tasks. Specifically, as Section 4.2, the performances were
enhanced in 31 out of 40 tasks, reducing the average RMSE
by 4.4%. This suggests that incorporating bi-level optimiza-
tion in GATE improves prediction accuracy across a wide
range of tasks.

Table 2. 40 task RMSE Improvements by applying bi-level opti-
mization over vanilla GATE

METHOD NO. IMPROVED TASKS AVG RMSE

GATE - 100%
GATE* 31 95.6%

Figure 3. Validation loss curve in learning 40 tasks molecular
property regression, with and without the proposed methods.

In addition, we found that applying bi-level optimization
not only enhances performance but also accelerates loss
convergence. Figure 3 shows that with the same training
epoch, regression loss converges much faster with the pro-
posed method. The fast convergence is due to the learning
of λs→t, which strengthens the transfer between highly cor-

related molecular properties and, at the same time, controls
too much transfer between less correlated molecular prop-
erties. In the end, the variance across the different tasks is
reduced, as shown by the narrower shade of the proposed
method than vanilla GATE.

5. Discussion
Algorithm 3 imply that we can accelerate the outer loop
with reduced GPU memory usage by only backpropagating
the gradient of tasks whose λ is above a threshold. Training
40 molecular property prediction tasks, we found that this
direction is promising, as the 95% of quadratic variations
of λ are under 0.1. This means that updates from many
source and target task pairs do not result in a big update
of the model parameters. We hope this direction guides
future works to improve the time and space complexity of
the proposed method.

6. Conclusion
This study presents a bi-level optimization approach for en-
hancing transfer learning in multi-task property regression
on a large scale. The performance in multi-task transfer
learning is significantly influenced by how the correlation
between the source and target tasks is modeled. Typically,
designing this correlation has relied on domain experts.
However, with increasing tasks, relying solely on domain
experts for correlation design needs impractical time and in-
accurate design due to the exponentially increasing number
of task pair combinations, which can lead to sub-optimal
outcomes. To address this issue, we employ a data-driven
bi-level optimization strategy to identify the optimal corre-
lation design. In our evaluation across 40 tasks, applying
our method decreased RMSE for 31 tasks, with an average
reduction of 4.4%.
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A. Dataset
In this section, we provide the task set used for 40 task molecular property prediction, with their full name and corresponding
number of data points.

Table 3. Dataset configuration used for the experiment of 40 tasks property prediction.
PROPERTY ABBREVIATION DATA POINTS

HEAT OF VAPORIZATION HV 1504
VISCOSITY VS 1307
SURFACE TENSION ST 977
DENSITY DS 3079
BOILING POINT BP 8044
REFRACTIVE INDEX RI 11143
MELTING POINT MP 22901
LOGP LP 28268
ABRAHAM DESCRIPTOR S AS 1915
DIELECTRIC CONSTANT DK 999
DIPOLE MOMENT DM 11224
FLASH POINT FP 9409
IONIZATION POTENTIAL IP 898
PKA PKA 9514
POLARIZABILITY POL 457
VAPOR PRESSURE VP 4262
ABSORBANCE MAXIMUM WAVELENGTH AW 11896
CRITICAL TEMPERATURE CT 2414
HEAT OF COMBUSTION HC 2118
HYDRATION FREE ENERGY HF 648
LOWER FLAMMABILITY LIMIT TEMPERATURE LF 1646
HOMO ENERGY LEVEL HM 97262
LUMO ENERGY LEVEL LM 97262
MOLAR HEAT CAPACITY (LIQUID) CPL 387
MOLAR HEAT CAPACITY (GAS) CPG 264
MOLAR HEAT CAPACITY (SOLID) CPS 218
MOLAR VOLUME (LIQUID) MVL 8513
MOLAR VOLUME (SOLID) MVS 218
HEAT OF VAPORIZATION HVC 1957
CRITICAL PRESSURE CTP 3007
CRITICAL VOLUME CTV 2413
GIBBS ENERGY OF FORMATION FOR IDEAL GAS GEF 1828
MAGNETIC SUSCEPTIBILITY MAS 432
NET STANDARD STATE ENTHALPY OF COMBUSTION NEC 1182
PARACHOR PAR 960
RADIUS OF GYRATION ROG 1370
SOLUBILITY PARAMETER SPA 1509
STANDARD STATE ABSOLUTE ENTROPY SAE 1072
STANDARD STATE ENTHALPY OF FORMATION SEF 1638
UPPER FLAMMABILITY LIMIT TEMPERATURE UFT 1443
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