
Tensor Proxies for Efficient Feature Cross Search

Anonymous Author(s)
Affiliation
Address
email

Abstract

Feature crossing is a popular method for augmenting the feature set of a machine1

learning model by taking the Cartesian product of a small number of existing2

categorical features. While feature crosses have traditionally been hand-picked by3

domain experts, a recent line of work has focused on the automatic discovery of4

informative feature crosses. Our work proposes a simple yet efficient and effective5

approach to this problem using tensor proxies as well as a novel application of the6

attention mechanism to convert the combinatorial problem of feature cross search7

to a continuous optimization problem. By solving the continuous optimization8

problem and then rounding the solution to a feature cross, we give a highly efficient9

algorithm for feature cross search that trains only a single model for feature cross10

searching, unlike prior greedy methods that require training a large number of11

models. Through extensive empirical evaluations, we show that our algorithm12

is not only efficient, but also discovers more informative feature crosses that13

allow us to achieve state-of-the-art empirical results for feature cross models.14

Furthermore, even without the rounding step, we obtain a novel DNN architecture15

for augmenting existing models with a small number of features to improve quality16

without introducing any feature crosses. This avoids the cost of storing additional17

large embedding tables for these feature crosses.18

1 Introduction19

The idea of introducing nonlinear augmentations of feature sets to improve model quality is a widely20

used technique in machine learning, with various powerful instantiations of this idea ranging from21

the classic kernel trick to more complex methods for image augmentation. For categorical features,22

one version of this technique is feature crossing, in which one introduces the Cartesian product of23

existing categorical features as a new feature. For instance, if a training example consists of two24

features x and y, then the pair (x, y) is formed as a new feature. It is well-known that this additional25

nonlinearity is a powerful method for improving the predictive capacity of machine learning models.26

Traditionally, feature crosses are constructed manually by domain experts and require extensive27

human intervention. While this is a successful approach in many cases, it is far more desirable to28

construct informative feature crosses algorithmically. Thus, a recent line of work has focused on29

developing efficient algorithms for feature cross search [LWZ+19, LLZ20, CEF+21].30

A key challenge for feature cross search algorithms is in the combinatorial nature of the problem, in31

which one must search over a space of size
(
m
k

)
in order to find an optimal cross of k features among32

a pool of m base features. Thus, the search space is exponential in k, and in fact, certain versions of33

the feature cross problem have been shown to be NP-hard even to approximate to a superconstant34

factor [CEF+21]. Thus, heuristics and greedy algorithms are usually considered in order to obtain35

tractable algorithms [LWZ+19, LLZ20, CEF+21]. However, even such greedy approaches require36

one to form many feature crosses and train many models, which makes application to large-scale37

settings difficult.38

Submitted to ICML 2023 Workshop: Sampling and Optimization in Discrete Space. Do not distribute.



1.1 Our contributions39

In this work, we propose a novel algorithm for efficient feature cross search through the use of tensor40

proxies. At a high level, this approach introduces a continuous proxy for feature crosses that can be41

optimized via standard gradient-based optimization techniques, and rounds this proxy to a feature42

cross at the end of training this model. The tensor proxies that we introduce are solely a function of43

the feature embeddings of the original base features, and are therefore much more computationally44

efficient compared to their feature cross counterparts, which typically require introducing large45

trainable embedding tables for each candidate feature cross. Furthermore, in many cases, we show46

that our method in fact provides model quality improvements without rounding the tensor proxies,47

which leads to further efficiency improvements. We highlight that our techniques for augmenting48

models with feature crosses and tensor proxies are especially useful in settings where we have a base49

deep neural network (DNN) under consideration that we would like to improve, but we do not want50

to change the model substantially; this could be, for example, if the base DNN has already been51

heavily optimized in various aspects, or is tied to specific hardware. In such settings, introducing a52

small number of feature crosses or tensor proxies allows for lightweight changes to the model that53

can substantially improve prediction quality.54

Our algorithm builds on the standard method of using feature embeddings to map categorical features55

to numerical vector-valued features (see, e.g., [WDL+09, NMS+19]). That is, for a categorical56

feature with a vocabulary size of q and an embedding dimension d, we consider an embedding matrix57

E ∈ Rq×d and map the categorical feature value j ∈ [q] to the vector e>j E ∈ Rd given by the j-th58

row of E. This allows us to replace the categorical feature by a d-dimensional vector-valued feature,59

which allows for the application of a standard DNN model on top of these embedded features. The60

embedding matrix E is often trained together with the DNN that consumes these embedded features.61

1.1.1 Tensor proxy features62

With feature embeddings of categorical features in hand, we can now introduce the idea of tensor63

proxies. Suppose that we have a set of k features to cross. Then, instead of forming the Cartesian64

product of the k features and then embedding this cross feature, we consider the following proxy65

feature cross that is formed only as a function of the embeddings of the original base features.66

Definition 1.1 (Tensor proxy features). Let x(1),x(2), . . . ,x(k) ∈ Rd be a set of k vector-valued67

features in d dimensions. Let B ∈ Rd×d×···×d be an order-k core tensor that has dimension d in each68

of its k modes. Then, we define the tensor proxy feature associated with the core tensor B to be69

TPB(x
(1),x(2), . . . ,x(k)) := B ×1 x

(1) ×2 x
(2) · · · ×k x(k)

where B ×i x
(i) denotes the tensor-vector multiplication of B and the vector x(i) along mode i.70

Figure 1: Tensor proxy features for efficiently approximating higher-order feature interactions.

In our tensor proxy features of Definition 1.1, we take the core tensor B to be simultaneously trained71

together with the DNN model consuming these tensor proxy features. Thus, our objective is to learn a72

combinatorial feature which captures k-th order interactions between k features using just the feature73

embeddings of the original base features, without forming the feature cross of the k features. This74

2



tensor proxy feature is intended to serve as a cheap proxy to capture the information captured by the75

feature cross of these k features.76

Note that introducing the core tensor B is often far more efficient than introducing a new embedding77

table E for the feature cross. Indeed, a typical setting might involve the crossing of three features,78

each with a vocabulary size of, say, q = 1000, which are each embedded into a dimension of d = 10.79

Then, the embedding table E for the feature cross of these features could be as large as d · q3 = 1010.180

In contrast, the core tensor B would only involve introducing an additional d3 = 103 parameters.81

Remark 1.2. In Definition 1.1, we have introduced a tensor proxy model that is inspired by a Tucker82

tensor decomposition. However, one can just as easily define a number of other variants of our tensor83

proxy features based on other common tensor decompositions such as the CP decomposition and84

general tensor networks [MWZ22]. We leave the exploration of variations on the parameterization of85

the tensor in tensor proxy features as an exciting direction for future work.86

While tensor proxies are just one way of defining a model architecture for representing a surrogate87

feature cross, our empirical evaluations suggest that by modeling the Cartesian product in feature88

crosses by a tensor product, we obtain an especially effective model architecture for this task. Indeed,89

we compare our method with a similar method which uses a small DNN to serve as a proxy to feature90

crosses, and we show that tensor proxies provide superior empirical performance.91

1.1.2 Learning tensor proxy features92

While tensor proxies (Definition 1.1) allow us to avoid forming and embedding feature crosses, we93

are still left with a combinatorial optimization problem where we must optimize a set function over94

subsets of [m] of size k. In Section 2, we introduce our various approaches for this combinatorial95

optimization problem of learning tensor proxies. In particular, we discuss the following algorithms:96

• Greedy search: Much of the prior work on feature cross search focused on greedy algo-97

rithms [LWZ+19, LLZ20, CEF+21] based on learning an order-k feature cross by iteratively98

learning order j feature crosses for j ∈ [k]. In this algorithm, given a feature cross S ⊆ [m]99

of order-j, one constructs a feature cross of order j + 1 by evaluating m feature cross100

candidates S ∪ {i} for i ∈ [m] and selects the best candidate. This is closely related to a101

heuristic known as beam search. While these algorithms perform quite well in practice, they102

require training mk models, which can be prohibitively expensive in large-scale settings.103

• Sequential Attention for tensor proxy search: In order to speed up greedy search al-104

gorithms for feature selection, the recent work of [YBC+23] introduced the Sequential105

Attention algorithm, which uses a variation on the attention mechanism to efficiently sim-106

ulate the greedy algorithm. In particular, this work shows that the greedy process of107

considering m individual feature candidates and then selecting the best candidate can be108

simulated by training a single model that multiplies each of the m feature candidates by109

a trainable softmax mask (or “attention weights”), and then selecting the feature with the110

largest attention weight. We consider an adaptation of this algorithm to the setting of111

learning tensor proxies. Note that this idea reduces the number of model trainings to just k,112

which is substantially more efficient than a naïve greedy search algorithm.113

• Simultaneous tensor proxy search: Finally, inspired by the use of the attention mechanism114

in the Sequential Attention algorithm [YBC+23], we consider a novel attention-based search115

algorithm which takes advantage of the tensor structure of the tensor proxy features in order116

to train tensor proxy features in a single model training. In this algorithm, we construct a117

single tensor proxy feature that uses an attention-inspired architecture to simultaneously118

search over the space of all k vector-valued features, bypassing the greedy search process119

used in the previous two algorithms. Our algorithm has the potential to discover powerful120

new feature crosses that are “hidden” to greedy algorithms, whose informative value only121

appears when all k features of the feature cross are crossed together, but not when only a122

subset of the k features are crossed. Further, the efficiency improvements of this algorithm123

are even more marked when we wish to discover multiple feature crosses, and only requires124

a single round of model training to discover t feature crosses, whereas the prior two greedy125

1Large vocabulary sizes are often dealt with by hashing the vocabulary into a smaller set [WDL+09]. Trade-
offs concerning the hash table size are outside the scope of this work, and our discussion will ignore this aspect
for simplicity, although our experiments do use hashing.

3



methods require training t times as many models; that is, the prior two algorithms require126

training mkt and kt models, respectively, while the simultaneous tensor proxy search only127

requires 1 model training (see Table 3).128

1.1.3 Rounding tensor proxy features129

As a final component of our tensor proxy framework for feature cross search, we show that by mapping130

the tensor proxy features discovered by the algorithms discussed previously to their corresponding131

actual feature crosses and retraining the resulting model, we obtain state-of-the-art feature cross-132

augmented models. Thus, this demonstrates that our proposed tensor proxy features of Definition 1.1133

provide high quality proxies that allow us to replace the expensive operation of constructing feature134

crosses and the associated combinatorial optimization problem with computationally inexpensive135

proxies, which can be efficiently optimized using continuous optimization techniques.136

In fact, we show that even without the rounding step, tensor proxy features provide a novel model137

architecture that can be used to augment existing models in a computationally inexpensive way. This138

augmentation can significantly improve model quality, and in some cases even outperform feature139

cross models. This is because tensor proxies are inexpensive to optimize over and use in the model,140

as they do not require the large embedding matrices that are typically used for feature crossing.141

1.2 Novelty and comparisons to related work142

The problem of designing efficient model architectures for prediction on categorical data is a ubiq-143

uitous problem with important applications including recommendation systems, natural language144

processing (NLP), and click-through-rate (CTR) prediction, and has been studied intensely in many145

works. In particular, our work is partially inspired by a long line of work initiated by [Ren10], which146

observes that DNN architectures that form polynomials of feature embeddings provide a powerful way147

to efficiently improve model quality [WFFW17, XYH+17, GTY+17, LZZ+18, NMS+19, SSX+19,148

CSH20, WSC+21, CWL+21]. This problem has also been referred to as the problem of learning149

feature interactions or combinatorial features [SSX+19].150

Prior work on forming higher-order combinatorial features typically takes the approach of designing151

some feature combination layer that represents a degree-2 polynomial, and then composing these152

layers by stacking them on top of each other like a DNN. However, this type of model architecture153

precludes their use in our application for efficient feature cross search, since this makes it difficult to154

isolate the contribution of a fixed order-k feature cross (or some proxy of the feature cross). Thus,155

one point of novelty in our work lies in our new parameterization of these combinatorial features via156

our tensor proxy feature definition, which exploits a novel tensor-based structure and allows us to157

directly use these polynomial features as proxies for feature crosses.158

Another important line of work that is closely related to our work is the idea of using the atten-159

tion mechanism for DNN architectures [VSP+17]. In the context of learning feature interactions,160

[SSX+19] explored the idea of using self-attention to form linear combinations of features that are161

the most relevant to each feature. In [YBC+23], a substantially simplified version of the attention162

mechanism is used for a feature selection algorithm.163

While our attention-based algorithms for tensor proxy search are inspired by the work of [YBC+23],164

we depart from their approach in multiple important ways, as we discuss further in Section 2. Most165

notably, our simultaneous tensor proxy search algorithm uses the structure of the tensor proxy feature166

to simultaneously optimize over (a relaxation of) the space of all
(
m
k

)
tensor proxy features, and167

avoids the greedy process that is prone to missing features that provide informative value only when168

all k features are crossed together, but not informative on any smaller subset of features.169

Finally, tensor proxies (Definition 1.1) are inspired by a long line of work on the study of using tensor170

decompositions for efficient machine learning [KLK+20, SBK+20, KKP+21, MSM+21, FFG22,171

GFFM23]. While prior work has focused on the direct application of tensor decompositions to172

compress and denoise a dataset or weight tensor, our central contribution in this work is to provide a173

novel connection between tensor decompositions and feature crosses, which allows us to exploit the174

continuous and algebraic structure of tensors to efficiently solve the combinatorial problem of feature175

cross search.176

4



2 Algorithms for learning tensor proxy features177

In this section, we discuss our proposed algorithms for learning tensor proxy features. For the178

analogous problem of feature cross search, natural greedy search algorithms have been considered in179

many prior works [LWZ+19, CEF+21]. This immediately translates to an algorithm in the setting of180

tensor proxy features. However, in this work, we seek algorithms which are much more efficient, by181

exploiting the algebraic structure of tensor proxy features.182

2.1 Sequential Attention for tensor proxy search183

We first consider a more efficient method of implementing the greedy search algorithm, based on184

the Sequential Attention algorithm in [YBC+23]. In this algorithm, suppose that we have already185

selected a subset S ⊆ [m] of j features to be included in the final tensor proxy feature. Then, we186

select the (j + 1)-th feature as follows. We first form m candidate tensor proxies given by187

TPBi({x(`)}`∈S∪{i}), i ∈ [m].

At this point, the algorithm is still the same as the classical greedy search algorithm, and the greedy188

algorithm would proceed by evaluating the m models (each of which consumes one tensor proxy189

candidate) and selecting the best one. However, instead, the Sequential Attention algorithm trains a190

single model that consumes m tensor proxy features given by191

softmax(w)i · TPBi({x(`)}`∈S∪{i}), i ∈ [m], (1)

where w ∈ Rm are trainable weights. Intuitively, this allows the model to simultaneously consider all192

m tensor proxy candidates, and continuously add weight to the most informative tensor proxy. At the193

end of training, we select the tensor proxy with the largest attention weight to include in our model.194

Algorithm 1 Sequential Attention for tensor proxy search.
1: function SEQATTTP(dataset X ∈ Rn×m×d, labels y ∈ Rn, tensor proxy order k)
2: S ← ∅ . Selected features
3: for ` ∈ [k] do
4: Let w ∈ Rm and Bi ∈ Rd×d×···×d for i ∈ [m] be trainable weights
5: Train a model using the features X and softmax(w)i ·TPBi({x(`)}`∈S∪{i}) for i ∈ [m]
6: S ← S ∪ {argmax(softmax(w))}
7: return S

While this algorithm is more efficient than classic greedy algorithm, note that it still does not exploit195

the structure of tensor proxy features, and in fact immediately implies a corresponding algorithm for196

the standard feature cross problem as well, just by replacing each tensor proxy with the corresponding197

feature cross. Another shortcoming of this approach is that, naïvely, the Sequential Attention198

algorithm for tensor proxy search requires training k models. As suggested by [YBC+23], it is199

possible to run this algorithm in one model training just by using a 1/k fraction of the training set200

to select each of the k features. However, this decreases the amount of training data used to train201

each feature, and could be disadvantageous in some settings. Furthermore, the greedy structure of202

the Sequential Attention algorithm poses the possible problem that if an important feature cross of203

order k has the property that any subset of k−1 of its features does not provide an informative feature204

cross, then it is unlikely to be discovered (see discussion of this phenomenon in, e.g., [CEF+21]).205

Another problem occurs when we want to add t feature crosses to the model instead of just one, in206

which case we must repeat this entire algorithm t times.207

2.2 Simultaneous tensor proxy search208

To address the shortcomings of a naïve greedy search for tensor proxies as well as the Sequential209

Attention-based optimized greedy algorithm, we consider a novel attention-based algorithm to210

simultaneously search over the space of order-k tensor proxy features.211

The key idea lies in using the attention weights in a different way than in Equation (1). Instead212

of using the attention weights at the level of the tensor proxies, our crucial insight is to use the213

5



attention weights at the level of the feature embeddings. That is, we introduce k sets of weights214

w(1),w(2), . . . ,w(k) ∈ Rm, and consider k mixed attention-weighted feature embeddings given by215

m∑
j=1

softmax(w(`))j · x(j), ` ∈ [k].

Then, we train a single model that consumes a single tensor proxy feature given by216

TPB




m∑
j=1

softmax(w(`))j · x(j)


k

`=1

, (2)

where each of the k feature crosses used by the tensor proxy feature is an independent attention-217

weighted feature embedding. Intuitively, the attention weights will give more weight towards the218

features that provide the most predictive value when used as a component of the tensor proxy. Finally,219

at the end of training, we round the attention weights to a selection of k tensor proxy features which220

only take k pure feature embeddings as input.221

Algorithm 2 Simultaneous tensor proxy search.
1: function SIMULTANEOUSTP(dataset X ∈ Rn×m×d, labels y ∈ Rn, tensor proxy order k)
2: Let w` ∈ Rm for ` ∈ [k] and B ∈ Rd×d×···×d be trainable weights
3: Let X(j) = X[:, j, :] ∈ Rn×d be the j-th feature for j ∈ [m]
4: Let Z(`) ←

∑m
j=1 softmax(w`)j ·X(j) for ` ∈ [k]

5: Train a model using the the features X and TPB(Z
(1),Z(2), . . . ,Z(k))

6: S ← {argmax(softmax(w`)) : ` ∈ [k]} . Selected features
7: return S

Finally, note that unlike the greedy and Sequential Attention algorithms, extending Algorithm 2 to222

discover t feature crosses rather than one is trivial—we just train our base model with t independent223

units TPB(Z(1),Z(2), . . . ,Z(k)) added to its feature set (see Line 5), rather than just one.224

2.2.1 Connections to learning monomials225

We note that our simultaneous tensor proxy search algorithm can be viewed as a generalization of a226

natural algorithm for learning monomials. Indeed, we can consider the natural problem of learning227

an order-k monomial f over m variables given by228

f(x) =
∏
`∈S

x`,

for some subset S ⊆ [m] of size k, when we are given a dataset X ∈ Rn×m as well as observations229

of the monomial f as evaluations yi = f(e>i X) for each example i ∈ [n]. This is a specific instance230

of the problem of learning monomials [ADHV19] and sparse polynomials [APVZ14a, APVZ14b]231

from their evaluations, which has received much attention in the theory community.232

One possible algorithm for learning the monomial f is to optimize the (nonconvex) function233

min
w(1),w(2),...,w(k)∈Rm

n∑
i=1

L

(
k∏

`=1

〈
e>i X,w(`)

〉
,yi

)
, (3)

where L(·, ·) is some loss function. Note that in the setting where we have noiseless observations234

yi = f(e>i X) and L is a nonnegative loss function that vanishes only when its two arguments are235

equal, such as the `2 distance, then setting the w(`) for ` ∈ [k] to e` for ` ∈ S provides a global236

minimizer of this objective. Thus, solving the optimization problem given by (3) and then rounding237

the variables w(`) to standard basis vectors is a natural approach to learning monomials.238

In fact, it is not hard to see that this monomial learning algorithm exactly corresponds to our tensor239

proxy framework when all embedding dimensions are d = 1, and the softmax masks softmax(w(`))240

in (2) are replaced by their logits w(`). One interesting question is whether this algorithm can241

6



indeed recover monomials or not, when the observations X ∈ Rn×m are given by i.i.d. Gaussian242

random variables. While we do not resolve this question, we believe it is an interesting direction of243

future research. In fact, this problem may be interesting even for the order k = 2 case and the least244

squares loss. Note that this case is a special case of rank-1 matrix sensing, for which recent work245

on nonconvex optimization has succeeded in showing that for design matrices with the restricted246

isometry property, SGD on the rank-1 factors can successfully recover the desired optimal rank 1247

matrix (see, e.g., [BNS16, GJZ17]). However, showing analogous results for the monomial learning248

problem may be difficult due to the lack of a restricted isometry property for the Khatri–Rao power of249

a Gaussian matrix, even though a Gaussian matrix itself does satisfy the restricted isometry property.250

3 Experiments251

In this section, we provide extensive empirical evaluations of our tensor proxy-based feature cross252

search algorithms. Our experiments are conducted on 7 popular public datasets for categorical253

classification tasks that have been considered in many prior works. The size and sources of our254

datasets and other details concerning the experiments are provided in Appendix A.255

In Tables 1 and 2, we first evaluate the performance of 9 baseline algorithms including those256

introduced in the works of [WFFW17, WSC+21, CWL+21, NMS+19, CSH20, SSX+19, GTY+17,257

LZZ+18]. These baseline algorithms are some of the most popular and successful model architectures258

for prediction on categorical datasets. We note that these baselines simply propose a DNN model259

architecture for a given set of features, and thus are independent of feature crosses.260

Table 1: Baseline AUC performance of benchmark algorithms.

Adult Bank Credit Employee Frappe Avazu Criteo

MLP 0.8985 0.9298 0.8624 0.7590 0.9816 0.7315 0.7926
DCN [WFFW17] 0.8845 0.9298 0.8620 0.7239 0.9819 0.7314 0.7915

DCNv2 [WSC+21] 0.8976 0.9260 0.8611 0.7808 0.9802 0.7326 0.7923
EDCN [CWL+21] 0.9043 0.9154 0.8635 0.7196 0.9790 0.7324 0.7934
DLRM [NMS+19] 0.8659 0.9269 0.8604 0.7163 0.9806 0.7305 0.7905

AFN [CSH20] 0.9097 0.9324 0.8633 0.7459 0.9771 0.7286 0.7892
AutoInt [SSX+19] 0.9001 0.9253 0.8604 0.7188 0.9761 0.7316 0.7914

DeepFM [GTY+17] 0.8951 0.8799 0.8600 0.8064 0.9806 0.7283 0.7890
xDeepFM [LZZ+18] 0.9004 0.8954 0.8588 0.7964 0.9806 0.7313 0.7903

Table 2: Baseline loss performance of benchmark algorithms.

Adult Bank Credit Employee Frappe Avazu Criteo

MLP 0.3914 0.2645 0.1775 0.2252 0.1843 0.4093 0.4684
DCN [WFFW17] 0.4439 0.2696 0.1777 0.2199 0.1810 0.4186 0.4691

DCNv2 [WSC+21] 0.4171 0.2619 0.1774 0.2150 0.1858 0.4143 0.4685
EDCN [CWL+21] 0.5726 0.3716 0.1771 0.2612 0.1834 0.4214 0.4685
DLRM [NMS+19] 0.5392 0.3421 0.1783 0.2227 0.1931 0.4061 0.4762

AFN [CSH20] 0.3131 0.2333 0.1781 0.2862 0.1880 0.3951 0.4789
AutoInt [SSX+19] 0.4578 0.3310 0.1778 0.2579 0.2033 0.4176 0.4686

DeepFM [GTY+17] 0.3605 0.2724 0.1789 0.2076 0.1903 0.4051 0.4730
xDeepFM [LZZ+18] 0.3735 0.3158 0.1796 0.2040 0.1903 0.4196 0.4788

In Table 4 and Table 5, we evaluate the best models achieved by using tensor proxies (TP). In order261

to evaluate whether our TPs offer improved approximations of feature crosses over traditional neural262

networks, we also compare TPs to an analogous algorithm which uses a small neural network as the263

feature cross proxy, which we call neural network proxies (NP). In NPs, the interactions between k264

features is modeled by feeding the k feature embeddings through a small neural network.265

7



In our experiments, we consider the addition of t = 5 feature crosses of order k = 3 to all of the266

baseline models considered in Tables 1 and 2. We also provide a comparison to the AutoCross267

feature crossing algorithm [LWZ+19] implemented with improved efficiency by combining with268

the Sequential Attention algorithm [YBC+23], as described in Algorithm 1 and Section 2. We269

note that almost all of the datasets that we consider consist of at least m = 10 features, and270

thus directly implementing the AutoCross algorithm would require sequentially training at least271

mkt = 10 ·3 ·5 = 150 models, which is too inefficient for our purposes. Using the idea in [YBC+23]272

(see Algorithm 1), we bring this number down to kt = 3 · 5 = 15 models, which is substantially more273

scalable (see Table 3). Our novel attention-based search algorithm of Algorithm 2 further allows us274

to reduce this to training just a single model. Thus, compared to AutoCross [LWZ+19], which is the275

previously best known algorithm for feature cross search to the best of our knowledge, our algorithm276

provides at least a 150× improvement in the efficiency of feature cross search, as measured by the277

number of required model trainings, for this natural setting of parameters. Even compared to the278

more efficient version of AutoCross using Sequential Attention that we consider (Algorithm 1), we279

obtain a 15× improvement in the number of model trainings.280

Table 3: Resources required to search for t order k feature crosses with m base features with
vocabulary size q and embedding dimension d.

Algorithm Model Trainings Parameters Added

AutoCross mkt dqk

AutoCross + Seq. Att. + Feature Cross (Alg. 1) kt mdqk

AutoCross + Seq. Att. + Tensor Proxy (Alg. 1) kt mdk

Simultaneous Tensor Proxy Search (Alg. 2) 1 t(md+ dk)

In terms of model quality, we show in Tables 4 and 5 that, in almost all cases, at least one of either the281

tensor proxy model or the rounded tensor proxy model discovered by Algorithm 2 outperforms all of282

the non-feature cross baselines considered in Tables 1 and 2, as well as our efficient implementation283

of AutoCross [LWZ+19] given in Algorithm 1. Thus, our experimental results show that our tensor284

proxy framework for feature cross search together with Algorithm 2 not only offers substantial285

efficiency improvements, but also finds higher quality feature crosses in many cases. Tables 4 and 5286

also include comparisons to a similar algorithm that uses a proxy-based feature cross search algorithm,287

but uses a small neural network to serve as the feature cross proxy rather than the tensor proxies that288

we define in Definition 1.1. Our results show that the tensor proxies outperform the neural network289

proxies in almost all cases, thus demonstrating the value of using tensor proxies in our proxy-based290

feature cross search framework.291

Table 4: AUC of feature cross algorithms. For entries without results (–), the experiments are too
expensive for the computational resources available to us. (FC = Feature Cross, TP = Tensor Proxy,
NP = Neural Network Proxy)

Adult Bank Credit Employee Frappe Avazu Criteo

Best Baseline 0.9097 0.9324 0.8635 0.8064 0.9819 0.7326 0.7934
Algorithm 1, FC 0.9047 0.9402 0.8572 0.8370 0.9817 – –

Algorithm 1, TP 0.9021 0.9304 0.8623 0.8354 0.9837 0.7357 0.7924
Algorithm 2, TP 0.9098 0.9366 0.8642 0.7988 0.9823 0.7360 0.7936

Algorithm 2, TP, rounded 0.9045 0.9399 0.8620 0.8487 0.9814 0.7335 0.7883

Algorithm 1, NP 0.9046 0.9333 0.8626 0.8242 0.9815 0.7368 0.7916
Algorithm 2, NP 0.9062 0.9369 0.8637 0.8241 0.9817 0.7356 0.7944

Algorithm 2, NP, rounded 0.9055 0.9369 0.8609 0.8135 0.9772 0.7328 0.7879

8



Table 5: Loss feature cross algorithms. For entries without results (–), the experiments are too
expensive for the computational resources available to us. (FC = Feature Cross, TP = Tensor Proxy,
NP = Neural Network Proxy)

Adult Bank Credit Employee Frappe Avazu Criteo

Best Baseline 0.3131 0.2333 0.1771 0.2040 0.1810 0.3951 0.4684
Algorithm 1, FC 0.3624 0.2583 0.1818 0.2161 0.1269 – –

Algorithm 1, TP 0.3856 0.2766 0.1773 0.2163 0.1740 0.4072 0.4682
Algorithm 2, TP 0.3124 0.2218 0.1763 0.2146 0.1788 0.3929 0.4677

Algorithm 2, TP, rounded 0.3483 0.2457 0.1777 0.2097 0.1241 0.3995 0.4733

Algorithm 1, NP 0.3966 0.2471 0.1772 0.2172 0.1851 0.4017 0.4688
Algorithm 2, NP 0.3319 0.2289 0.1766 0.2118 0.1805 0.3935 0.4676

Algorithm 2, NP, rounded 0.3682 0.2472 0.1777 0.2082 0.1470 0.4002 0.4741

While the results presented previously explore a wide range of parameters and hyperparameters with292

a single run each, we provide a final evaluation of the improvements that we obtain over baseline293

algorithms using tensor proxies over multiple seeds in Figure 2. We select the best hyperparameters294

and baseline algorithms found by the investigations in Tables 4 and 5, and repeat the training over 10295

seeds. We note that the model quality of feature cross models compares more favorably when all296

models are compared with the best 50% of seeds, and thus we provide this comparison as well.297

BL TP TP+R

0.900

0.905

AU
C

Adult

BL TP TP+R
0.90

0.92

0.94

AU
C

Bank

BL TP TP+R

0.860

0.862

AU
C

Credit

BL TP TP+R

0.70

0.75

AU
C

Employee

BL TP TP+R

0.978

0.980

AU
C

Frappe

BL TP TP+R
0.7250

0.7275

0.7300

0.7325

AU
C

Avazu

BL TP TP+R

0.7936

0.7938

0.7940

AU
C

Criteo
AUC of Baseline Algorithms and Tensor Proxy Algorithms

BL TP TP+R0.33

0.34

0.35

0.36

Lo
ss

Adult

BL TP TP+R

0.2

0.4

0.6

Lo
ss

Bank

BL TP TP+R

0.18

0.19

Lo
ss

Credit

BL TP TP+R
0.20

0.25

0.30

Lo
ss

Employee

BL TP TP+R
0.175

0.200

0.225

0.250

Lo
ss

Frappe

BL TP TP+R

0.40
0.41
0.42
0.43

Lo
ss

Avazu

BL TP TP+R0.4680

0.4685

0.4690

Lo
ss

Criteo
Loss of Baseline Algorithms and Tensor Proxy Algorithms

BL TP TP+R
0.902

0.904

0.906

0.908

AU
C

Adult

BL TP TP+R

0.925

0.930

0.935

AU
C

Bank

BL TP TP+R

0.860
0.861
0.862
0.863

AU
C

Credit

BL TP TP+R

0.75

0.80

AU
C

Employee

BL TP TP+R

0.979

0.980

0.981

AU
C

Frappe

BL TP TP+R

0.730

0.732

AU
C

Avazu

BL TP TP+R0.7938

0.7940

0.7942

AU
C

Criteo
AUC of Baseline Algorithms and Tensor Proxy Algorithms, Best 50% of Seeds

BL TP TP+R0.320

0.325

0.330

0.335

Lo
ss

Adult

BL TP TP+R0.20

0.25

0.30

Lo
ss

Bank

BL TP TP+R
0.175

0.180

0.185

Lo
ss

Credit

BL TP TP+R0.215

0.220

0.225

0.230

Lo
ss

Employee

BL TP TP+R0.145

0.150

0.155

0.160

Lo
ss

Frappe

BL TP TP+R

0.395

0.400

0.405

Lo
ss

Avazu

BL TP TP+R0.4680

0.4685

0.4690

Lo
ss

Criteo
Loss of Baseline Algorithms and Tensor Proxy Algorithms, Best 50% of Seeds

Figure 2: AUC and loss comparisons. (BL = Baseline, TP = Tensor Proxy, TP+R = TP, Rounded)

4 Conclusion298

In this work, we propose an efficient feature cross search algorithm inspired by a novel connection299

between tensor decompositions and feature crosses, which we call tensor proxy features. We first300

propose a natural surrogate-based framework for feature cross search, in which we use proxies for301

feature cross that are computed only as a function of the feature embeddings of the original base302

features. Next, we introduce tensor proxy features (Definition 1.1), a specific instantiation of the303

feature cross proxy framework that uses a Tucker decomposition-like architecture to model higher-304

order feature interactions. Finally, we propose a novel search algorithm inspired by the attention305

mechanism (Algorithm 2), which discovers t features crosses of order k among m base features306

in a single model training, which substantially improves over prior greedy methods that required307

training mkt models. Our empirical evaluations demonstrate that in addition to being efficient,308

our techniques allow us to discover feature crosses and feature cross proxies that outperform all309

considered benchmark algorithms in many cases.310

9



Bibliography311

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig312

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,313

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal314

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat315

Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,316

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay317

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin318

Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on319

heterogeneous systems, 2015. Software available from tensorflow.org.320

[ADHV19] Alexandr Andoni, Rishabh Dudeja, Daniel Hsu, and Kiran Vodrahalli. Attribute-efficient321

learning of monomials over highly-correlated variables. In Aurélien Garivier and Satyen322

Kale, editors, Algorithmic Learning Theory, ALT 2019, 22-24 March 2019, Chicago,323

Illinois, USA, volume 98 of Proceedings of Machine Learning Research, pages 127–161.324

PMLR, 2019.325

[APVZ14a] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning polynomials326

with neural networks. In Proceedings of the 31th International Conference on Machine327

Learning, ICML 2014, Beijing, China, 21-26 June 2014, volume 32 of JMLR Workshop328

and Conference Proceedings, pages 1908–1916. JMLR.org, 2014.329

[APVZ14b] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning sparse330

polynomial functions. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth331

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,332

USA, January 5-7, 2014, pages 500–510. SIAM, 2014.333

[BNS16] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local334

search for low rank matrix recovery. In Daniel D. Lee, Masashi Sugiyama, Ulrike von335

Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural Information336

Processing Systems 29: Annual Conference on Neural Information Processing Systems337

2016, December 5-10, 2016, Barcelona, Spain, pages 3873–3881, 2016.338

[CEF+21] Lin Chen, Hossein Esfandiari, Gang Fu, Vahab S. Mirrokni, and Qian Yu. Feature Cross339

Search via Submodular Optimization. In Petra Mutzel, Rasmus Pagh, and Grzegorz340

Herman, editors, 29th Annual European Symposium on Algorithms (ESA 2021), volume341

204 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:16,342

Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.343

[CSH20] Weiyu Cheng, Yanyan Shen, and Linpeng Huang. Adaptive factorization network:344

Learning adaptive-order feature interactions. In The Thirty-Fourth AAAI Conference345

on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of346

Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educa-347

tional Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February348

7-12, 2020, pages 3609–3616. AAAI Press, 2020.349

[CWL+21] Bo Chen, Yichao Wang, Zhirong Liu, Ruiming Tang, Wei Guo, Hongkun Zheng, Weiwei350

Yao, Muyu Zhang, and Xiuqiang He. Enhancing explicit and implicit feature interac-351

tions via information sharing for parallel deep CTR models. In Gianluca Demartini,352

Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong, editors, CIKM ’21:353

The 30th ACM International Conference on Information and Knowledge Management,354

Virtual Event, Queensland, Australia, November 1 - 5, 2021, pages 3757–3766. ACM,355

2021.356

[DG17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.357

[FFG22] Matthew Fahrbach, Gang Fu, and Mehrdad Ghadiri. Subquadratic Kronecker regression358

with applications to tensor decomposition. Advances in Neural Information Processing359

Systems, 35:28776–28789, 2022.360

[GFFM23] Mehrdad Ghadiri, Matthew Fahrbach, Gang Fu, and Vahab Mirrokni. Approximately361

optimal core shapes for tensor decompositions. arXiv preprint arXiv:2302.03886, 2023.362

10



[GJZ17] Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank363

problems: A unified geometric analysis. In Doina Precup and Yee Whye Teh, editors,364

Proceedings of the 34th International Conference on Machine Learning, ICML 2017,365

Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine366

Learning Research, pages 1233–1242. PMLR, 2017.367

[GTY+17] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: A368

factorization-machine based neural network for CTR prediction. In Carles Sierra, editor,369

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,370

IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 1725–1731. ijcai.org,371

2017.372

[KKP+21] Arinbjörn Kolbeinsson, Jean Kossaifi, Yannis Panagakis, Adrian Bulat, Animashree373

Anandkumar, Ioanna Tzoulaki, and Paul M. Matthews. Tensor dropout for robust374

learning. IEEE J. Sel. Top. Signal Process., 15(3):630–640, 2021.375

[KLK+20] Jean Kossaifi, Zachary C. Lipton, Arinbjörn Kolbeinsson, Aran Khanna, Tommaso376

Furlanello, and Anima Anandkumar. Tensor regression networks. J. Mach. Learn. Res.,377

21:123:1–123:21, 2020.378

[LLZ20] Zhaocheng Liu, Qiang Liu, and Haoli Zhang. Automatically learning feature crossing379

from model interpretation for tabular data, 2020.380

[LWZ+19] Yuanfei Luo, Mengshuo Wang, Hao Zhou, Quanming Yao, Wei-Wei Tu, Yuqiang Chen,381

Wenyuan Dai, and Qiang Yang. Autocross: Automatic feature crossing for tabular382

data in real-world applications. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer383

Rosales, Evimaria Terzi, and George Karypis, editors, Proceedings of the 25th ACM384

SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD385

2019, Anchorage, AK, USA, August 4-8, 2019, pages 1936–1945. ACM, 2019.386

[LZZ+18] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and387

Guangzhong Sun. xdeepfm: Combining explicit and implicit feature interactions388

for recommender systems. In Yike Guo and Faisal Farooq, editors, Proceedings of the389

24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,390

KDD 2018, London, UK, August 19-23, 2018, pages 1754–1763. ACM, 2018.391

[MSM+21] Anuj Mahajan, Mikayel Samvelyan, Lei Mao, Viktor Makoviychuk, Animesh Garg,392

Jean Kossaifi, Shimon Whiteson, Yuke Zhu, and Animashree Anandkumar. Tesseract:393

Tensorised actors for multi-agent reinforcement learning. In Marina Meila and Tong394

Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,395

ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine396

Learning Research, pages 7301–7312. PMLR, 2021.397

[MWZ22] Arvind V. Mahankali, David P. Woodruff, and Ziyu Zhang. Low rank approximation for398

general tensor networks. CoRR, abs/2207.07417, 2022.399

[NMS+19] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan400

Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G.401

Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghu-402

raman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie403

Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy. Deep404

learning recommendation model for personalization and recommendation systems.405

CoRR, abs/1906.00091, 2019.406

[Ren10] Steffen Rendle. Factorization machines. In Geoffrey I. Webb, Bing Liu, Chengqi407

Zhang, Dimitrios Gunopulos, and Xindong Wu, editors, ICDM 2010, The 10th IEEE408

International Conference on Data Mining, Sydney, Australia, 14-17 December 2010,409

pages 995–1000. IEEE Computer Society, 2010.410

[SBK+20] Jiahao Su, Wonmin Byeon, Jean Kossaifi, Furong Huang, Jan Kautz, and Anima411

Anandkumar. Convolutional tensor-train LSTM for spatio-temporal learning. In Hugo412

Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien413

11



Lin, editors, Advances in Neural Information Processing Systems 33: Annual Confer-414

ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,415

2020, virtual, 2020.416

[SSX+19] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and417

Jian Tang. Autoint: Automatic feature interaction learning via self-attentive neural418

networks. In Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui, Elke A. Runden-419

steiner, David Carmel, Qi He, and Jeffrey Xu Yu, editors, Proceedings of the 28th ACM420

International Conference on Information and Knowledge Management, CIKM 2019,421

Beijing, China, November 3-7, 2019, pages 1161–1170. ACM, 2019.422

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N423

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in424

Neural Information Processing Systems, 30, 2017.425

[WDL+09] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg.426

Feature hashing for large scale multitask learning. In Proceedings of the 26th Annual427

International Conference on Machine Learning, pages 1113–1120, 2009.428

[WFFW17] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad429

click predictions. In Proceedings of the ADKDD’17, Halifax, NS, Canada, August 13 -430

17, 2017, pages 12:1–12:7. ACM, 2017.431

[WSC+21] Ruoxi Wang, Rakesh Shivanna, Derek Zhiyuan Cheng, Sagar Jain, Dong Lin, Lichan432

Hong, and Ed H. Chi. DCN V2: improved deep & cross network and practical lessons433

for web-scale learning to rank systems. In Jure Leskovec, Marko Grobelnik, Marc434

Najork, Jie Tang, and Leila Zia, editors, WWW ’21: The Web Conference 2021, Virtual435

Event / Ljubljana, Slovenia, April 19-23, 2021, pages 1785–1797. ACM / IW3C2, 2021.436

[XYH+17] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. Atten-437

tional factorization machines: Learning the weight of feature interactions via attention438

networks. In Carles Sierra, editor, Proceedings of the Twenty-Sixth International Joint439

Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,440

2017, pages 3119–3125. ijcai.org, 2017.441

[YBC+23] Taisuke Yasuda, Mohammadhossein Bateni, Lin Chen, Matthew Fahrbach, Gang Fu, and442

Vahab Mirrokni. Sequential attention for feature selection. In The Eleventh International443

Conference on Learning Representations, 2023.444

12



A Additional experimental details445

All experiments were implemented using the TensorFlow framework [AAB+15], and the code is446

available at https://anonymous.4open.science/r/tensor-proxy-2847/.447

Table 6: Datasets used in experiments. For datasets with an asterisk, only the first 10% of the data is
used, so the original dataset is 10 times larger.

Dataset # training examples # features

Adult 28,000 14
Bank 33,000 10
Credit 120,000 10

Employee 26,000 9
Frappe 200,000 10
Avazu 2,800,000∗ 22
Criteo 3,300,000∗ 39

Datasets and data splits. The three datasets Frappe, Avazu, and Criteo, were obtained from448

preprocessed versions uploaded by the experiment implementations of [CSH20], provided at the449

link https://github.com/WeiyuCheng/AFN-AAAI-20 and links referenced therein. Splits for450

training data, validation data, and testing data are provided by the authors. The Adult dataset was451

obtained from the UCI machine learning repository [DG17], provided at the link https://archive.452

ics.uci.edu/ml/datasets/adult. The Adult dataset provides a split between training and test453

data, so we split the training data into training and validation data using random.sample in Python454

with a fixed seed of 2023, with 1/8 of the training data being reserved for the validation data. The455

Bank, Credit, and Employee datasets were obtained from Kaggle, provided at the following links:456

• Bank: https://www.kaggle.com/datasets/brijbhushannanda1979/bank-data457

• Credit: https://www.kaggle.com/c/GiveMeSomeCredit/data458

• Employee: https://www.kaggle.com/c/amazon-employee-access-challenge/data459

These datasets do not have splits, so we again use random.sample in Python with a seed of 2023 to460

randomly split the data into training data, validation data, and testing data as an 80-10-10 split.461

Base MLP model architecture. All of the baseline algorithms that we consider in this work are462

based around a base MLP model with an embedding layer, with additional modifications built on463

top of this model. In all experiments, we use a three layer MLP with 400 neurons each. All numeric464

features are discretized into buckets with exponentially increasing/decreasing boundaries, so all465

inputs can be considered to be categorical. These categorical features are then embedded into an466

embedding dimension of 10. When we form feature crosses, we hash the resulting vocabulary into467

107 buckets using tf.keras.layers.HashedCrossing, and also embed these features into 10468

dimensions. The MLP consists of a batch normalization layer and a dropout layer between each of469

the layers, and uses ReLU activations in the hidden layers and a sigmoid activation for the final layer.470

Training. We use the Adam optimizer and a binary cross entropy loss. The learning rate is reduced471

on an AUC plateau in the validation data using tf.keras.callbacks.ReduceLROnPlateau.472

Hyperparameter tuning. We tune all models with a grid search over the learning rate ∈473

{10−2, 10−3}, embedding regularizer ∈ {5 · 10−2, 10−2, 10−3, 10−4, 10−5}, learning rate reduction474

factor for tf.keras.callbacks.ReduceLROnPlateau ∈ {0.1, 0.15, 0.2, 0.3}, and dropout rate475

∈ {0.1, 0.3}.476

Compute. We run our experiments on CPU.477

Variations on Algorithm 2. In addition to the basic version of our Simultaneous Tensor Proxy478

search algorithm in Algorithm 2, we additionally consider a number of possible modifications which479

may improve performance in certain cases:480

13

https://anonymous.4open.science/r/tensor-proxy-2847/
https://github.com/WeiyuCheng/AFN-AAAI-20
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/datasets/brijbhushannanda1979/bank-data
https://www.kaggle.com/c/GiveMeSomeCredit/data
https://www.kaggle.com/c/amazon-employee-access-challenge/data


• Attention activation: Inspired by suggestions in [YBC+23], we consider the replacement of the481

softmax activation in Algorithm 2 by other possible activation functions, including signed softmax,482

`1 normalization, and no activation.483

• Bias: We consider adding an extra trainable bias to the attention-weighted features in Line 4.484

• Sequential selection: Inspired by the Sequential Attention algorithm of [YBC+23], we addition-485

ally consider the sequential selection of t feature crosses. Unlike the findings of [YBC+23], we do486

not find a consistent improvement in model quality, although it does seem to help in some cases.487

For all of these additional degrees of freedom, we do not find a clear pattern for when certain choices488

improve the performance of our algorithm, and treat these as additional hyperparameters to be tuned.489

A.1 Results over multiple seeds490

We provide the numbers used to generate Figures 2 below, in Tables 7 and 8.491

Table 7: AUC and Losses used to generate Figure 2.

Adult Bank Credit Employee Frappe Avazu Criteo

Baseline AUC 0.9033 (0.0013) 0.9111 (0.0078) 0.8607 (0.0004) 0.6963 (0.0139) 0.9805 (0.0002) 0.7301 (0.0007) 0.7938 (0.0001)
Baseline Loss 0.3467 (0.0071) 0.4148 (0.0958) 0.1914 (0.0027) 0.2845 (0.0256) 0.1860 (0.0015) 0.4049 (0.0040) 0.4685 (0.0001)

TP AUC 0.9058 (0.0006) 0.9263 (0.0021) 0.8614 (0.0004) 0.7086 (0.0163) 0.9804 (0.0003) 0.7269 (0.0012) 0.7938 (0.0001)
TP Loss 0.3419 (0.0074) 0.2490 (0.0056) 0.1847 (0.0024) 0.2332 (0.0069) 0.1856 (0.0015) 0.4066 (0.0067) 0.4688 (0.0001)

TP, Rounded AUC 0.8998 (0.0009) 0.9232 (0.0038) 0.8509 (0.0004) 0.7464 (0.0134) 0.9779 (0.0003) 0.7291 (0.0010) 0.7882 (0.0001)
TP, Rounded Loss 0.4105 (0.0077) 0.2912 (0.0096) 0.1802 (0.0010) 0.2242 (0.0019) 0.2268 (0.0119) 0.4168 (0.0021) 0.4737 (0.0002)

Table 8: AUC and Losses used to generate Figure 2, best 50% of seeds.

Adult Bank Credit Employee Frappe Avazu Criteo

Baseline AUC 0.9062 (0.0007) 0.9262 (0.0006) 0.8617 (0.0001) 0.7319 (0.0131) 0.9810 (0.0002) 0.7320 (0.0005) 0.7940 (0.0001)
Baseline Loss 0.3295 (0.0026) 0.2854 (0.0191) 0.1845 (0.0021) 0.2284 (0.0006) 0.1820 (0.0010) 0.3953 (0.0024) 0.4683 (0.0000)

TP AUC 0.9073 (0.0004) 0.9313 (0.0002) 0.8622 (0.0001) 0.7546 (0.0094) 0.9811 (0.0002) 0.7301 (0.0004) 0.7940 (0.0001)
TP Loss 0.3257 (0.0028) 0.2370 (0.0075) 0.1787 (0.0010) 0.2201 (0.0026) 0.1815 (0.0009) 0.3973 (0.0005) 0.4684 (0.0000)

TP, Rounded AUC 0.9026 (0.0004) 0.9331 (0.0027) 0.8602 (0.0005) 0.7827 (0.0132) 0.9788 (0.0002) 0.7316 (0.0010) 0.7883 (0.0001)
TP, Rounded Loss 0.3906 (0.0077) 0.2644 (0.0049) 0.1782 (0.0002) 0.2197 (0.0011) 0.1525 (0.0027) 0.4019 (0.0010) 0.4732 (0.0002)

14


	Introduction
	Our contributions
	Tensor proxy features
	Learning tensor proxy features
	Rounding tensor proxy features

	Novelty and comparisons to related work

	Algorithms for learning tensor proxy features
	Sequential Attention for tensor proxy search
	Simultaneous tensor proxy search
	Connections to learning monomials


	Experiments
	Conclusion
	Bibliography
	Additional experimental details
	Results over multiple seeds


