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Abstract

Personalised federated learning (FL) aims at collaboratively learning a machine
learning model tailored for each client. Albeit promising advances have been
made in this direction, most of existing approaches do not allow for uncertainty
quantification which is crucial in many applications. In addition, personalisation
in the cross-silo and cross-device setting still involves important issues, especially
for new clients or those having small number of observations. This paper aims at
filling these gaps. To this end, we propose a novel methodology coined FedPop by
recasting personalised FL into the population modeling paradigm where clients’
models involve fixed common population parameters and random effects, aiming
at explaining data heterogeneity. To derive convergence guarantees for our scheme,
we introduce a new class of federated stochastic optimisation algorithms which
relies on Markov chain Monte Carlo methods. Compared to existing personalised
FL methods, the proposed methodology has important benefits: it is robust to client
drift, practical for inference on new clients, and above all, enables uncertainty
quantification under mild computational and memory overheads. We provide non-
asymptotic convergence guarantees for the proposed algorithms and illustrate their
performances on various personalised federated learning tasks.

1 Introduction

Federated learning (FL) is a recent machine learning paradigm in which distributed clients holding
siloed data collaborate in solving a learning problem, usually under the coordination of a central server
(Wang et al., 2021; Kairouz et al., 2021). One of the main focus of FL is on so-called cross-device
applications where a large number of personal electronic devices such as mobile phones, wearable
devices or home assistants collect and store data at the edges of a decentralised network (McMahan
et al., 2017).

While standard FL methods (McMahan et al., 2017; Alistarh et al., 2017; Karimireddy et al., 2020;
Horváth et al., 2019; Li et al., 2020) have focused on training a global model that can be applied to
individual agents, the relevance of such inferences has recently been questioned due to statistical
heterogeneity between clients. Indeed, the considered common model may not generalise well on
a client with a local data distribution that differs significantly from the global data distribution,
especially if that client has not participated in the training process. In fact, it might even be better for
such clients to derive a local model from their own data set. To circumvent these issues, a number of
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personalised federated learning approaches have recently been proposed, that use local models to
fit client-specific data distribution while capturing some shared knowledge via a federated scheme
(Tan et al., 2022). Personalisation has previously been approached using multi-task learning (Smith
et al., 2017), meta-learning (Jiang et al., 2019; Khodak et al., 2019), client clustering (Briggs et al.,
2020), data interpolation (Mansour et al., 2020), model interpolation (Hanzely and Richtárik, 2020;
Hanzely et al., 2020) or partially local models (Singhal et al., 2021; Collins et al., 2021). While
these methodologies are promising, they only partially solve the personalisation problem in highly
heterogeneous federated settings and have no means of quantifying uncertainty. In addition, cross-
device FL also faces other important challenges such as (extreme) partial device participation, small
local data sets, limited upload bandwidth and device capabilities (Kairouz et al., 2021). Addressing
these problems for personalised FL requires new paradigms regarding how model knowledge is
shared and personalisation is performed locally.

Proposed Approach. In this paper, we adopt a novel perspective to model the problem of personalised
FL. This paradigm, called mixed-effects modeling (also known as multi-level or population approach)
is widely used to analyse data that have a clustered or nested structure, as in medical or biological
research where multiple observations per patient are available (Gelman and Hill, 2007; Long, 2011;
Lavielle, 2014). Although the hierarchical structure of FL has already been noted (Plassier et al.,
2021; Grant et al., 2018; Hong et al., 2022), the mixed-effects paradigm has interestingly never
been considered. Leveraging this framework, we develop a new model for personalised FL called
FedPop and propose an efficient computational solution to perform inference under this model. More
precisely, we introduce a novel class of federated stochastic approximation algorithms based on
parallel Markov Chain Monte Carlo (MCMC) methods. In the proposed framework, we also pay
special attention to the cross-device setting by taking into account partial client participation, and
by addressing the communication bottleneck with both multiple local updates and the use of lossy
compression operators.

Benefits. Up to the authors’ knowledge, FedPop is the first personalised FL approach that allows
cheap uncertainty quantification with a theoretically-grounded methodology. The proposed frame-
work also comes with other interesting properties. First, in contrast to most of personalised FL
methods that only consider “fixed-effects” models (Collins et al., 2021; Hanzely et al., 2021; Smith
et al., 2017), FedPop provides credibility information (via credibility regions) and allows more
accurate inference for clients with small and heterogeneous local data via partial pooling (Gelman
and Hill, 2007). In addition, inference for new clients which did not participate in the training phase
can be easily performed by sampling from the prior over the local random effects. Second, contrary to
existing Bayesian FL approaches that aim to provide credibility information by sampling from a target
posterior distribution (Hong et al., 2022; Yoon et al., 2018; Vono et al., 2022; El Mekkaoui et al.,
2021), FedPop allows to perform personalisation and cheaper on-device uncertainty quantification
taking an empirical Bayes prediction approach. Finally, an important benefit of FedPop is its ability
to allow for multiple local updates without suffering from the client-drift phenomenon (Karimireddy
et al., 2020).

Outline and Contributions. Our contributions are fourfold. First, in Section 2, we propose a
novel probabilistic methodology, which we call FedPop, to address personalisation under the cross-
device FL paradigm. To perform efficient inference under this model, we introduce a general class
of stochastic approximation algorithms based on MCMC. Second, we provide in Section 3 non-
asymptotic convergence guarantees for the proposed methodology. Then, we perform in Section 4 a
comparison between the proposed approach and exisiting works. Finally, we illustrate in Section 5
the benefits of our methodology on several federated learning benchmarks involving both synthetic
and real data.

2 Proposed Approach

In this section, we present the statistical estimation problem we are considering and the proposed
methodology called FedPop to address it.

Problem Formulation. We are interested in the cross-device FL setting involving a large number
b ∈ N∗ of clients, potentially unreliable i.e. not necessarily available at each communication round.
These clients are assumed to own sensitive local data sets {Di}i∈[b]. In this framework, we aim to
make both uncertainty quantification and personalised statistical inference by learning a local model
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tailored to each client. To this end, and inspired by the population approach used in the biological
and physical sciences (Lavielle, 2014), we consider mixed-effects modeling for each client leading to
the local marginal likelihood function defined, for any i ∈ [b], by

p(Di | φ, β) =

∫
Rd

p(Di | φ , z(i))p(z(i) | β)dz(i) , (1)

where φ ∈ Φ ⊆ RdΦ stands for a fixed effect and {z(i)}i∈[b] ∈ Z, Z =
∏b
i=1 Rd, represent

random effects aimed at explaining statistical heterogeneity between local data sets {Di}i∈[b].

Figure 1: DAG for FedPop.

The objective of the fixed (i.e. constant across all clients) part
is to capture a common representation (e.g. same features across
different classes of images) while the random part, which is typically
low-dimensional, performs personalisation and is assumed to be
drawn from a population prior whose variance aims at modeling
data heterogeneity.

Figure 1 illustrates this statistical framework, referred to as FedPop,
by showing its directed acyclic graph (DAG) where grey-filled
shapes indicate observed variables, white-filled shapes unknown
variables and squared shapes variables to be estimated.

When the size of the local data set Di is small, this common prior leverages information from other
clients to limit the risk of overfitting and is often called partial pooling in the multi-level statistical
literature (Gelman and Hill, 2007, Section 12). Examples of model architectures involving φ and
{z(i)}i∈[b] include for instance composition-based architectures p(Di | φ, z(i)) = p(Di | hφ ◦ hz(i))
where hφ and hz(i) are two neural networks (Collins et al., 2021; Arivazhagan et al., 2019). For the
sake of generality, we propose to adopt a flexible energy-based prior distribution of the form for each
i ∈ [b],

p(z(i) | β) =
1

Z(β)
exp

{
−E(z(i);β)

}
, where Z(β) =

∫
Rd

exp
{
−E(z(i);β)

}
dz(i) .

Here, Z(β) is a normalising constant and E(·;β) represents an energy function, typically a neural
network, parameterised by a set of parameters β ∈ B ⊆ RdB (LeCun et al., 2006). This framework is
particularly interesting in the cross-device setting where the number of clients b is large as it allows
for efficient enrichment of the model. However, in the case where b is small, the inference of the
parameter β is difficult. In this situation, a more pragmatic solution is to consider a common prior
for the local random effects {z(i)}i∈[b] which is held fixed, i.e. p(z(i) | β) ∝ exp{−E(z(i))} for any
β ∈ B. Finally, for completeness, we allow the use of a prior model p(φ, β) for the hyperparameters
{φ, β}. Using Bayes’ rule (Robert, 2001) and by denoting D = tbi=1Di the global data set, the
posterior distribution associated with these hyperparameters admits a probability density function
which can be written as

p (φ, β | D) ∝ p(φ, β)
b∏
i=1

[∫
Rd

p(Di | φ, z(i))p(z(i) | β)dz(i)

]
.

Set θ = {φ, β} ∈ Θ with Θ = Φ× B. In the sequel, we will be interested in solving the maximum a
posteriori problem given by

θ? ∈ arg max
θ∈Θ

log p(φ, β | D) , (2)

log p(φ, β | D) = log p(φ, β) +

b∑
i=1

[
log

∫
Rd

p(Di | φ, z(i))p(z(i) | β)dz(i)

]
+ C , (3)

where C ∈ R is a constant independent of θ. Once we have estimated θ?, using an empirical Bayesian
approach, we can perform “for free” on-device uncertainty quantification for each client i ∈ [b] by
sampling from the local posterior distribution p(z(i) | Di, φ

?, β?), which is typically designed to be
low-dimensional.

Algorithm. To solve the optimisation problem (2), we can either use an alternating maximisation
algorithm or perform global maximisation over Θ. Since the former approach requires more upload
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bandwidth, in this work we consider the second alternative which is more suitable for FL. The gradient
of the objective function (3) being intractable, we propose to resort to the stochastic approximation
framework (Robbins and Monro, 1951) which iteratively defines (φk, βk)k∈N, starting from any
(φ0, β0) ∈ Θ, via the recursions for any k ∈ N,

βk+1 = ΠB

(
βk + η

(1)
k+1

[
∇β log p(φk, βk) +

b∑
i=1

g(i)
k (φk, βk)

])
,

φk+1 = ΠΦ

(
φk + η

(2)
k+1

[
∇φ log p(φk, βk) +

b∑
i=1

h(i)
k (φk, βk)

])
,

where ΠC denotes the projection onto C ∈ {Φ,B}, (η
(1)
k , η

(2)
k )k∈N∗ are sequences of step-sizes, and

{g(i)
k : i ∈ [b] , k ∈ N∗} and {h(i)

k : i ∈ [b] , k ∈ N∗} are estimators of the intractable gradients
(φ, β) 7→ ∇β log p(Di | φ, β) and (φ, β) 7→ ∇φ log p(Di | φ, β) at (φk, βk), where p(Di | φ, β) is
defined in (1) for any i ∈ [b].

The choices of the estimators {g(i)
k : i ∈ [b] , k ∈ N∗} and {h(i)

k : i ∈ [b] , k ∈ N∗} are motivated
by the Fisher identity. More precisely, under mild regularity assumptions, and using the Lebesgue
dominated convergence theorem, we have for any, (φ, β) ∈ Θ, i ∈ [b]

∇β log p(Di | φ, β) =

∫
Rd

[
∇β log p(Di, z

(i) | φ, β)
]
p(z(i) | Di, φ, β)dz(i) ,

∇φ log p(Di | φ, β) =

∫
Rd

[
∇φ log p(Di, z

(i) | φ, β)
]
p(z(i) | Di, φ, β)dz(i) ,

which suggests to consider

g(i)
k (φ, β) =

1

M

M∑
m=1

∇β log p(Z
(i,m)
k | β) , (4)

h(i)
k (φ, β) =

1

M

M∑
m=1

∇φ log p(Di | Z(i,m)
k , φ) , (5)

where M ∈ N∗ and Z(i,1:M)
k = (Z

(i,m)
k )m∈[M ] are approximate samples from p(z(i) | Di, φ, β).

More precisely, we consider a family {Q(i)
γ,θ : γ ∈ (0, γ̄], θ ∈ Θ} where for any step-size γ, Q(i)

γ,θ

is a Markov kernel which targets a close approximation of p(z(i) | Di, θ) with θ = {φ, β}. As an
example, we can use overdamped Langevin dynamics (Roberts and Tweedie, 1996; Welling and Teh,
2011) to generate these samples. In this case, Q(i)

γ,θ is associated with a Gaussian probability density

function q(i)
γ,θ(z

(i), ·) with mean z(i) − γ∇z log p(z(i) | Di, θ) and variance 2γId. Note that the
number of Monte Carlo draws per iteration k is considered constant here but we can easily generalise
our scheme to the non-constant setting. In addition, our scheme can also be generalised by taking
into account stochastic gradient estimators of (4) and (5). For the sake of simplicity, we present our
approach with standard gradients.

In this framework, we present the main steps of the corresponding stochastic approximation algorithm,
called FedSOUK, in Algorithm 1. Since we consider the cross-device federated setting, note that only
a random subset Ak+1 of active (i.e. available) clients communicates with the central server at each
iteration k ∈ N. In addition, due to limited upload bandwidth, the potentially high-dimensional
gradient estimator (5) is compressed locally via an unbiased stochastic compression operator Ck+1

before being sent to the central server (Alistarh et al., 2017; Philippenko and Dieuleveut, 2020).

Stateful and Stateless Versions. Depending on local memory constraints and the participation rate,
we allow for a possible warm-start strategy across communication rounds to improve the convergence
properties of the proposed algorithm so that the proposed algorithm becomes stateful, see steps 4− 7
in Algorithm 1. In cases the participation rate is very low (e.g. each client might only participates once
to the training process), we replace this warm-start strategy by the initialisation Z(i,0)

k ∼ p(· | βk)
for any i ∈ [b] and k ∈ {0, . . . ,K − 1}. This yields a stateless version of our algorithm more
suitable to the cross-device setting. Obviously, compared to the previously proposed warm-start
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strategy, the performances of Algorithm 1 will be affected negatively if we are using the same number
of local iterations M . We end up with an interesting trade-off between local computations and
communication: if client-server communication is a bottleneck, the stateless version of the algorithm
allows to reduce the communication overhead at the price of longer sampling procedures on each
client. Such analyses will be illustrated empirically in Section 5.

Computation Complexity. Compared to standard FL methods, our approach has an additional
computational cost on the client side associated with Monte Carlo approximations {I(i)

k } and {J (i)
k }.

In practice, this cost is negligible. Indeed, in our experiments, we found that using a small value of
M ∈ [1, 10] was sufficient to obtain state-of-the-art results in terms of accuracy on the test dataset.
We would like to emphasize that this additional computational cost has also two side advantages
compared to existing FL approaches: (1) it allows us to communicate less frequently with the central
server and (2) it allows us to converge faster when the number of local iterations increases since
Monte Carlo approximation becomes better.

Communication Overhead. As pointed out in Table 1, our methodology FedPop improves upon
existing FL approaches regarding the communication overhead. Indeed, FedPop offers the flexibility
to use both compression for sending updates to the server, and multiple local steps to reduce the
communication frequency. As such, depending on the bandwidth and local computational power, the
practitioner can adapt the number of local iterations and the parameter of the compression operator.
Up to our knowledge, this work is the first one combining compression and multiple local steps for
personalised FL.

Robustness to client drift. For simplicity, we will take the example of FedSOUL (see Algorithm 1)
which uses the Markov kernel associated with Langevin Monte Carlo to compute gradient estimates
of the local marginal likelihood. However, our answer holds for general Markov kernels (adjusted or
unadjusted). In this scenario, M steps of Langevin Monte Carlo are performed on each device to draw
samples {Z(i,m)

k } used to compute Monte Carlo estimates {I(i)
k } and {J (i)

k }. Increasing the number
of local steps M does not slow down convergence but instead allows for more accurate Monte Carlo
integration and hence better convergence properties. In contrast, the client drift phenomenon for
classical FL approaches (e.g. FedAvg proposed in McMahan et al. (2017)) slows down convergence
as the number of local iterations M increases.

Simple inference on new clients. Typical personalized FL approaches such as DITTO or FedRep
require additional local training for inference on new clients. In contrast, the proposed methodology
FedPop allows for a cheaper two-step approach once we have estimated θ? = (φ?, β?), as detailed
below for a new client b+ 1 with feature vector x:

1. Sample {Z(l)
b+1}l∈[L] in a i.i.d. manner.

2. Estimate the posterior predictive function by p(· | x) ≈ L−1
∑L
l=1 p(· | φ?, Z

(l)
b+1, x).

The prior p(zb+1 | β?) is typically chosen so that sampling is computationally cheap, e.g. a Gaussian
with diagonal covariance matrix as in our experiments, see Section 5.

3 Theoretical Guarantees

In this section, we present non-asymptotic convergence guarantees for Algorithm 1 when the family
of Markov kernels {Q(i)

γ,θ : γ ∈ (0, γ̄], θ ∈ Θ, i ∈ [b]} is associated to unadjusted, i.e. without
Metropolis acceptance step, overdamped Langevin dynamics (Durmus and Moulines, 2017; Dalalyan,
2017). The bounds we derive allow to showcase explicitly the impact of FL constraints, namely
partial participation and compression. Results for general unadjusted Markov kernels are postponed
to the supplement.

To show our theoretical results and resort to standard assumptions made in the stochastic approxima-
tion literature, we consider a minimisation problem and rewrite the opposite of the objective function
(3) for any θ ∈ Θ as

f(θ) = b−1
b∑
i=1

fi(θ) , where fi (θ) = − log p(φ, β)− b log p (Di | φ, β) . (6)
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Algorithm 1 FL via Stochastic Optimisation using Unadjusted Kernel (FedSOUK)

1: Input: nb. outer iterations K, nb. local iterations M , Markov kernels {Q(i)
γ,θ}γ,θ,i, step-sizes

{η(1)
k , η

(2)
k }k∈[K],i∈[b] and initial points Z(0)

0 ∈ Rd, β0 ∈ B and φ0 ∈ Φ.
2: for k = 0 to K − 1 do
3: Server sends {βk+1, φk+1} to clients belonging to Ak+1.
4: for i ∈ Ak+1 // On active clients Ak+1 do
5: // Warm-start of the SA scheme if possible
6: if k ≥ 1 then
7: Set Z(i,0)

k = Z
(i,M)
k−1 .

8: end if
9: // Computation of key quantities using MCMC

10: for m = 0 to M − 1 do
11: Draw Z

(i,m+1)
k ∼ Q(i)

γ,θk

(
Z

(i,m)
k , ·

)
.

12: // For Langevin dynamics
13: // Draw ξ

(i,m+1)
k ∼ N(0d, Id).

14: // Set Z
(i,m+1)
k = Z

(i,m)
k + γ∇z log p(Z

(i,m)
k | Di, φk, βk) +

√
2γξ

(i,m+1)
k .

15: end for
16: // Communication with the server
17: Set I(i)

k = 1
M

∑M
m=1∇β log p

(
Z

(i,m)
k | βk

)
.

18: Set J (i)
k = 1

M

∑M
m=1∇φ log p

(
Di | Z(i,m)

k , φk

)
.

19: Send I(i)
k and Ck+1

(
J

(i)
k

)
to the central server.

20: end for
21: Set βk+1 = ΠB

(
βk + η

(1)
k+1

[
∇β log p(φk, βk) + b

|Ak+1|
∑
i∈Ak+1

I
(i)
k

])
.

22: Set φk+1 = ΠΦ

(
φk + η

(2)
k+1

[
∇φ log p(φk, βk) + b

|Ak+1|
∑
i∈Ak+1

Ck+1

(
J

(i)
k

)])
.

23: end for
24: Output: {φK , βK} and samples {Z(1:b,m)

K−1 }Mm=1.

Non-Asymptotic Convergence Bounds. For the sake of better readability, we only detail in the
main paper assumptions regarding the objective function, compression operators and the partial
participation scenario. Technical assumptions related to the Markov kernels {Q(i)

γ,θ} are postponed to

the supplement. In spirit, we require, for any i ∈ [b], θ ∈ Θ and γ, that Q(i)
γ,θ satisfies some ergodic

condition and can provide samples sufficiently close to the local posterior distribution p(z(i) | Di, θ).
For the sake of simplicity, we also assume that for any k ∈ N∗, η(1)

k = η
(2)
k = ηk, see Algorithm 1.

We make the following assumptions on Θ and the family of functions {fi : i ∈ [b]}.

H1. Θ is convex, closed subset of RdΘ and Θ ⊂ B(0, RΘ) for RΘ > 0.

H2. For any i ∈ [b], the following conditions hold.

(i) The function fi defined in (6) is convex.
(ii) There exist an open set U ∈ RdΘ and Lf > 0 such that Θ ⊂ U, fi ∈ C1(U,R) and for any
θ1, θ2 ∈ Θ,

‖∇fi(θ2)−∇fi(θ1)‖ ≤ Lf ‖θ2 − θ1‖ .

The assumption below requires compression operators {Ck}k∈N∗ to be unbiased and to have a
bounded variance. Such an assumption is for instance verified by stochastic quantisation operators,
see Alistarh et al. (2017).

H3. The compression operators {Ck}k∈N∗ are independent and satisfy the following conditions.

(i) For any k ∈ N∗, v ∈ Rd, E[Ck(v)] = v.
(ii) There exists ω ≥ 1, such that for any k ∈ N∗, v ∈ Rd, E[‖Ck(v)− v‖2] ≤ ω ‖v‖2.
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We finally assume that each client has probability p ∈ (0, 1] to be active at each communication
round. We would like to point out that this partial participation assumption can be associated to a
specific compression operator satisfying H3.
H4. For any k ∈ N∗, Ak = {i ∈ [b] : Bi,k = 1} where for any i ∈ [b], {Bi,k : k ∈ N∗} is a family
of i.i.d. Bernouilli random variables with success probability p ∈ (0, 1].

Under these assumptions, the next result establishes that (θ̄k)k∈N defined by θ̄k =∑k
j=1 ηjθj/(

∑k
j=1 ηj) converges towards an element of arg minΘ f .

Theorem 1. Assume H1-H4 along with A8 detailed in the supplement and let for any k ∈ [K],
ηk ∈ (0, 1/Lf ]. Then, for any K ∈ N∗, we have

E
[
f(θ̄k)− f(θ?)

]
≤ E

[∑K
k=1 ηk{f(θk)− f(θ?)}∑K

k=1 ηk

]
≤ A(γ) +

EK∑K
k=1 ηk

,

where EK depends linearly on (ω/p)
∑K
k=1 η

2
k; and A(γ) = Cγα with α > 0 and C is independent

of ω, p and (ηk). Closed-form formulas for these constants are provided in the supplement.

An interesting feature of Algorithm 1 is that convergence towards a minimum of f is possible and
the impact of partial participation and compression vanishes when limk→∞ ηk = 0. More precisely,
lim supk→∞EK/(

∑K
k=1 ηk) = 0 and limγ→0+ A(γ) = 0 which shows that we can tend towards a

minimum of f with arbitrary precision ε > 0 by setting the step-size γ to a small enough value.

4 Related Works

As pointed out in Section 1, many different approaches have been proposed to address personalisation
and uncertainty quantification under the federated learning paradigm. This section reviews the main
related existing lines of research and shows that the proposed methodology provides many benefits;
see Table 1. Interestingly, we also show that FedPop encompasses some of the existing FL models.

Bayesian FL. One of our main motivations is the possibility to perform grounded uncertainty
quantification in FL by resorting to the Bayesian paradigm. In the recent years, many works
have suggested to adapt serial workhorses stochastic simulation approaches such as MCMC or
variational inference to the FL setting (Chen and Chao, 2020; Liu and Simeone, 2021b,a; Vono
et al., 2022; El Mekkaoui et al., 2021; Corinzia et al., 2019; Bui et al., 2018; Plassier et al., 2021;
Deng et al., 2021a). Although some of these approaches address important FL challenges such as
the communication bottleneck, partial participation or limited computational device resources, they
are not suitable for uncertainty quantification in the cross-device FL scenario. Indeed, all these
approaches assume that the posterior distribution targeted by each client is parametrised by a single
potentially high-dimensional parameter of size dΦ + d, see (1). This prevents a sufficient number
of samples from being stored locally to perform uncertainty quantification and Bayesian model
averaging, especially when the model is a large neural network. In contrast, our approach decouples
this unique high-dimensional parameter into a fixed part φ and a low-dimensional random part z(i),
significantly reducing the memory footprint of local sample storage.

In addition, Bayesian FL methods aim at sampling a random parameter from a target probability
distribution where π(θ) ∝ e−f(θ) where f = (1/b)

∑b
i=1 fi denotes the negative log-likelihood

associated to the i-th client. On the other hand the proposed methodology considers a mixed-effects
modeling approach where parameters are divided into two categories: a fixed component and a random
one for each client. As such, the mixed-effects approach is in essence an empirical Bayesian/marginal
likelihood approach (Casella, 1985; Robbins, 1992). It corresponds to a hierarchical model that
aims to combine the modeling flexibility and uncertainty assessment of Bayesian inference with
computational pragmatism. More precisely, a part of the parameters (fixed-effects ) are estimated via
marginal likelihood maximisation and the rest (random effects) using common Bayesian techniques,
which are in most cases low dimensional. As a result, up to our knowledge, the model and approach
that we propose is novel in FL and comes with many benefits as shown in Table 1.

Personalised FL. Beside uncertainty quantification, we also aim at providing each client with a
dedicated personalised model. Among the numerous existing personalised FL approaches, those
related to FedPop can be broadly classified into two groups: meta-learning and partially local
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Table 1: Overview of the main existing personalised FL (top rows) and Bayesian FL (bottom
rows) approaches related to the proposed framework. Column “PP” refers to partial participation,
“perso.” to personalised approaches, “bounds” to available convergence guarantees, “UQ” to available
uncertainty quantification, “com.” to the scheme (multiple local steps and/or compression) used to
address the communication bottleneck and “memory” to the client memory footprint where M stands
for the number of samples.

METHOD PP PERSO. BOUNDS UQ COM. MEMORY FedPop INSTANCE

Per-FedAvg X X X 7 LOCAL STEPS d+ dΦ 7
pFedMe 7 X X 7 LOCAL STEPS d+ dΦ 7
FedRep X X X 7 LOCAL STEPS d+ dΦ X
DITTO X X X 7 LOCAL STEPS d+ dΦ 7
LG-FedAvg X X X 7 LOCAL STEPS d+ dΦ 7

QLSD X 7 X X COMPRESSION M(d+ dΦ) 7
FSGLD 7 7 X X LOCAL STEPS M(d+ dΦ) 7
FedBe X 7 7 X LOCAL STEPS M(d+ dΦ) 7
DG-LMC 7 7 X X LOCAL STEPS M(d+ dΦ) X

FedPop X X X X BOTH Md+ dΦ –

methods. Meta-learning based FL methods aim at training a global model conducive to fast training
of personalised models. Such a goal can be achieved, for example, by local fine-tuning (Fallah et al.,
2020), regularisation of local models towards their average (Hanzely and Richtárik, 2020; Hanzely
et al., 2021) – or the opposite (Li et al., 2021), and model interpolation (Liang et al., 2019). On the
other hand, FL methods based on partial decoupling take an approach similar to ours by splitting the
initial model into a backbone component and a local one aimed at personalisation (Collins et al., 2021;
Arivazhagan et al., 2019; Pillutla et al., 2022). This partial decoupling could also enhance privacy as
discussed in Singhal et al. (2021). The main difference with FedPop is that such approaches based
on empirical risk minimisation cannot provide credibility information.

FedPop: A Compromise between Standard and Personalised FL. Interestingly, we show here
that the FedPop framework allows existing FL approaches to be retrieved in certain regimes. To this
end, we assume that the prior p(z(i) | β) is Gaussian with mean µ and covariance matrix σ2Id so
that β = {µ, σ}. If σ → 0+, then this Gaussian prior tends towards the Dirac distribution centered
at µ and the local likelihood becomes p(Di | φ, µ), which corresponds to the local objective of
standard FL approaches such as FedAvg (McMahan et al., 2017). On the other hand, when σ →∞,
no common information β is used to locally regress z(i) and we end up with the FedRep algorithm
(Collins et al., 2021). This shows that FedPop stands for a subtle compromise between standard
and personalised FL which should benefit clients with small data sets by pooling information via a
common prior. Finally, in the extreme scenario where φ is the null vector, our approach amounts to
the Bayesian FL approach DG-LMC proposed in Plassier et al. (2021).

5 Numerical Experiments

In this section, we illustrate the benefits of our methodology on several FL benchmarks associated to
both synthetic and real data. Since existing Bayesian FL approaches are not suited for personalisation
(see Table 1), we only compare the performances of Algorithm 1 with personalised FL methods. In
all our experiments, we use overdamped Langevin dynamics to sample locally and call this specific
instance of Algorithm 1, FedSOUL. In addition, we set p(z(i) | β) = N(µ, σ2Id) with β = {µ, σ} for
simplicity. To be comparable with existing personalised FL approaches that only consider periodic
communication via multiple local steps, we do not resort to the proposed compression mechanism
although the latter could be of interest for real-world applications. Additional experiments and details
about experimental design are provided in the supplement.

Synthetic Data. We start by showcasing the benefits of FedSOUL for clients having small and highly
heterogeneous data sets as pointed out in Section 1 and Section 2. To this end, we consider a similar
experimental setting as in Collins et al. (2021) where synthetic observations {y(i)

j }j∈[Ni] ∈ Di
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are generated via the following procedure: x(i)
j ∼ N(0k, Ik) and y(i)

j ∼ N(z
(i)
trueφ

>
truex

(i)
j , 0.1).

The ground-truth parameters z(i)
true ∈ Rd and φtrue ∈ Rk×d have been randomly generated

beforehand with (d, k) = (2, 20). Compared to Collins et al. (2021), we use heterogeneous
data partitions across clients so that 90% of the b = 100 clients have small data sets of size
5 and the remaining 10% have data sets of size 10. We compare our results with FedRep
(Collins et al., 2021) and FedAvg (McMahan et al., 2017) since they stand for two limiting in-
stances of the proposed methodology, see Section 4 and Gelman and Hill (2007, Section 12).

FedRep FedAvg FedSOUL0
5

10
15
20
25
30
35

l2 norm of the estimation error

0 100 200 300 400 500

10−1

100
Principal Angle Distance

FedRep
FedAvg
FedSOUL

Figure 2: Small data sets - synthetic data.

Figure 2 compares the different ap-
proaches by computing the princi-
ple angle distance1 (respectively the
`2 norm) between φtrue (respectively
z

(i)
true) and its estimated value; the

lesser the better. In contrast to its main
competitors and based on both met-
rics, FedSOUL provides an impressive
improvement. This illustrates the ben-
efits of the introduction of a common
prior p(z(i) | β) which allows to pre-
vent from overfitting on clients with small data sets while performing personalisation. Additional
results with other choices for (b, d, k) and data partitioning strategies are available in the supplement.

Moreover, to compare our algorithm with a non-FL setting, we perform a non-distributed and non-
federated stochastic approximation algorithm to find θ∗ using a large number of iterations to get an
accurate approximation of the optimal parameter θ∗. Then, we use FedPop to obtain an estimate θ̃∗

and measure the relative error in l2- distance between θ∗ and θ̃∗. For some outer iterations T = 100,
the relative error was less than 10−3, which illustrates the relevance of our theoretical results. We
also test the performances of the proposed approach when the warm-start strategy is not used. In this
case, we have to set M = 50 to achieve the same performances as in the stateful variant of FedSOUL.

Real Data. We consider now real image data sets, namely CIFAR-10 and CIFAR-100 (Krizhevsky,
2009). For our likelihood model defined by p(Di | φ, z(i)), we use 5-layer convolutional neural
networks and perform personalisation for the last layer. We set b = 100 for convenience and control
data heterogeneity by assigning to each client Ni images belonging to only S different classes.
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Figure 3: (right) CIFAR-10 with S = 5 and (left) CIFAR-
100 with S = 20. The x-axis refers to the percentage of
clients having Ni ∈ {5, 10} images.

Small data sets. Under this setting,
we first consider (10%, 50%, 90%)
of clients having small data sets of
size either Ni = 5 or Ni = 10;
while remaining clients have larger
data sets of size Ni = 25. We com-
pare our approach with FedRep since
it stands for the state-of-the-art person-
alised FL approach. The algorithms
are trained fulfilling the same com-
putational budget. Figure 3 shows
the average accuracy across clients for
the two approaches on both CIFAR-
10 and CIFAR-100. We can see that FedSOUL is consistently better than FedRep over different
configurations.

Full data sets. In addition to show that the proposed approach achieves state-of-the-art performances
on small data sets (which is common in the cross-device scenario), we now illustrate that FedSOUL
is also competitive on larger data sets. To this end, we use all training images in CIFAR-10 and
CIFAR-100 image data sets and consider the same data partitioning as in Collins et al. (2021). More
precisely, in this case the number of observations and the number of classes per client are uniformly
shared over the clients. Table 2 shows our results in comparison with state-of-the-art personalised
FL approaches. We can see that that our model outperforms other methods on both CIFAR-10

1defined in (Collins et al., 2021, Definition 1)
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Table 2: Real data - Full data sets. Accuracy (in %) on test samples. FedAvg and SCAFFOLD are not
personalised FL approaches but stand for well-known FL benchmarks.

CIFAR-10 CIFAR-100

(# clients b, # classes per client S) (100, 2) (100, 5) (100, 5) (100, 20)

Local learning only 89.79 70.68 75.29 41.29

FedAvg (McMahan et al., 2017) 42.65 51.78 23.94 31.97
SCAFFOLD (Karimireddy et al., 2020) 37.72 47.33 20.32 22.52

LG-FedAvg (Liang et al., 2019) 84.14 63.02 72.44 38.76
Per-FedAvg (Fallah et al., 2020) 82.27 67.20 72.05 52.49
L2GD (Hanzely and Richtárik, 2020) 81.04 59.98 72.13 42.84
APFL (Deng et al., 2021b) 83.77 72.29 78.20 55.44
DITTO (Li et al., 2021) 85.39 70.34 78.91 56.34
FedRep (Collins et al., 2021) 87.70 75.68 79.15 56.10
FedAvg + fine-tuning (FT) 85.63 71.32 79.03 56.19

FedSOUL (this paper) 91.12 79.48 79.56 59.73

and CIFAR-100 by a large margin. Additional results with other personalised FL algorithms are
postponed to the supplement.

Uncertainty Quantification on Real Data. As highlighted in Table 1, one advantage of the
proposed approach compared to existing personalised FL methods is the ability to perform uncertainty
quantification by sampling locally from the posterior p(z(i) | Di, φK , βK), see Algorithm 1. We
illustrate this feature by computing on CIFAR-10 calibration curves and scores (e.g. expected
calibration error aka ECE) on a specific client; and by performing an out-of-distribution analysis
on MNIST/FashionMNIST data sets. Figure 4 shows that the proposed approach provides relevant
uncertainty diagnosis. Additional results on uncertainty quantification can be found in the supplement.
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Figure 4: (right) Calibration on CIFAR-10 for a specific
client and (left) OOD analysis with MNIST training &
FashionMNIST inference – one curve corresponds to one
client.

6 Conclusion
In this paper, we proposed a general
Bayesian methodology based on a nat-
ural mixed-effects modeling approach
to model personalisation in federated
learning. Our FL method is the first
that allows for both personalisation
and cheap uncertainty quantification for
(cross-device) federated learning. By in-
troducing a common prior on the local pa-
rameters, we tackle the local overfitting
problem in the scenario where clients
have highly heterogeneous and small
data sets. In addition, we have shown that
the proposed approach has favorable con-
vergence properties. Some limitations of
FedPop pave the way for more advanced
personalised FL approaches. As an ex-
ample, our model does not allow for training heterogeneous architectures across clients because of
the introduced common prior, and only satisfy first-order privacy guarantees. Regarding the latter,
further works include for instance deriving differentially private versions of our framework.
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