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ABSTRACT

Machine unlearning is the study of methods to efficiently remove the influence
of some subset of the training data from the parameters of a previously-trained
model. Existing methods typically require direct access to the “forget set” – the
subset of training data to be forgotten by the model. This limitation impedes pri-
vacy, as organizations need to retain user data for the sake of unlearning when a
request for deletion is made, rather than being able to delete it immediately. We
first introduce the setting of blind unlearning – unlearning without explicit access
to the forget set. Then, we propose a method for approximate unlearning called
RELOAD, that leverages ideas from gradient-based unlearning and neural network
sparsity to achieve blind unlearning. The method serially applies an ascent step
with targeted parameter re-initialization and fine-tuning, and on empirical unlearn-
ing tasks, RELOAD often approximates the behaviour of a from-scratch retrained
model better than approaches that leverage the forget set. Finally, we extend the
blind unlearning setting to blind remedial learning, the task of efficiently updating
a previously-trained model to an amended dataset1.

1 INTRODUCTION

Machine unlearning poses the problem of removing the influence of certain instances in the train-
ing data on a given statistical model (Bourtoule et al., 2019). Motivated by “right to be forgotten”
provisions, like those in the European Union’s General Data Protection Regulation (GDPR) (Euro-
pean Parliament & Council of the European Union), methods in machine unlearning aim to provide
efficient means to “forget” specific data points from a trained model without requiring that it be
retrained from scratch. As larger models become more prevalent (Achiam et al., 2023), the need to
unlearn specific data instances without retraining from scratch is increasingly important.

Contemporary unlearning methods generally require explicit access to the so-called “forget set” – the
subset of training data to be forgotten by the model. For example, one approach entails performing
steps of gradient ascent on the loss landscape characterized by the forget set in order to remove
its influence on the model weights (Thudi et al., 2022). However, the reliance of these methods
on the forget set introduces a tension in the context of preserving user privacy: in order to enable
unlearning, organizations must retain the complete original set of user data on which the model was
trained. The retention of this data, even for the purpose of unlearning, can expose organizations and
individuals to risks associated with data breaches or unauthorized access. To bridge this gap, there is
a clear need for unlearning methods that operate without requiring access to the forget set. Existing
work aims to reduce the reliance on the forget set, but is limited to the constrained task of forgetting
classes of data, and requires knowing which classes are being forgotten (Tarun et al., 2023).

This work presents an algorithm for machine unlearning in the absence of an explicitly defined forget
set; a setting we establish as “blind unlearning.” Our method, RELOAD, assumes that the modeller
only has access to (a) a model trained on a dataset D, (b) the “retain set,” Dnew ≜ D\Dforget,
and (c) cached gradients from the last iteration of training on D. Notable in its absence from these
requirements is the forget set – this means that RELOAD allows for deletion of instances in Dforget

at the conclusion of training without inhibiting downstream unlearning.

In this vein, our work makes the following contributions:
1A software implementation of our work can be found in this code repository.
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Figure 1: High-level overview of the RELOAD algorithm for blind approximate unlearning and remedial learn-
ing. The algorithm marries a gradient-based unlearning step modified for the blind unlearning setting (Steps (1)
through (3)) with a weight saliency-based selective re-initialization (Step (4)) and subsequent fine-tuning (Step
(5)). Because the blind unlearning setting prohibits taking gradients with respect to Dforget, RELOAD exploits
the linearity of differentiation to treat ∇θ(L(D) − L(Dnew)) as a proxy for ∇θL(Dforget) at the location in
parameter space corresponding to θt. This allows us to apply one gradient step in this direction. Intuitively, this
update in Step (3) removes information about Dforget from all network parameters, while the re-initialization
in Step (4) re-initialises those parameters with a uniquely strong correspondence toDforget (for which a single
ascent step will not fully remove this information). RELOAD achieves state-of-the-art performance on a collec-
tion of unlearning tasks, often outperforming baselines with direct access to Dforget.

1. We introduce RELOAD, an algorithm for approximate blind unlearning in parametric models.
RELOAD marries ideas from gradient-based unlearning algorithms and neural network sparsity
to achieve blind unlearning. We formally show that the requirements of the RELOAD algorithm
satisfy the blind unlearning by not permitting recoverability of instances in the forget set in the
common setting of softmax classification.

2. Empirical evaluations demonstrate that RELOAD effectively tackles machine unlearning in sev-
eral diverse settings, often faithfully approximating the behaviour of a from-scratch retrained
model better than existing unlearning approaches that leverage the forget set.

3. We extend the RELOAD framework to the setting of “remedial learning,” which aims to efficiently
update a statistical model given that some instances in the training data that have been amended
since the model was originally trained. This enables computationally-efficient data correction in
pretrained models without the need for costly retraining.

2 BACKGROUND

2.1 SETTING AND NOTATION

Let D = {(Xi, Yi)}i=1,...,N represent a collection of i.i.d. data, where X ∈ X represents input
covariates and Y ∈ Y represents labels for supervised learning. Then, for some class of models M,
let θ∗ represent the parameters that minimize the empirical loss with respect to training data D,

θ∗ ≜ argmin
θ∈Θ

E(Xi,Yi)∼D L((Xi, Yi); θ). (1)

2
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We denote an instantiation of M trained on D as M(θ∗). After M(θ∗) is trained, assume that some
transformation is applied to D to yield Dnew (e.g., deleting instances from D that are in Dforget).
Then, θ∼ represents the parameters that minimize the empirical loss with respect to Dnew,

θ∼ ≜ argmin
θ∈Θ

E(Xi,Yi)∼Dnew
L((Xi, Yi); θ). (2)

Our general goal, encompassing both unlearning and remedial learning, is transforming M(θ∗) into
M(θ∼) without naively obtaining M(θ∼) by re-training an instance of M on Dnew from scratch.

Machine Unlearning. In the machine unlearning setting, the transformation of D into Dnew

consists of first identifying a subset of the data whose influence to remove, Dforget, and taking
Dnew ≜ D\Dforget. These remaining instances represent the portion of the training data that is
retained – the full training set, less those instances to be forgotten. The goal of approximate unlearn-
ing methods – of which RELOAD is one (see Section 2.2) – is to efficiently learn an approximation
of M(θ∼). The classical setting assumes that the modeller has access to the trained model M(θ∗),
the training dataset D, the remaining data Dnew, and the forget set Dforget (Cao & Yang, 2015).

Remedial Learning. The unlearning setting is subject to the restriction that Dnew ≜ D\Dforget;
however, one may also consider the broader setting wherein Dnew is the result of some arbitrary
item-wise transformation to D. Formally, let f : X × Y → X × Y denote a transformation,
and write (X ′

i, Y
′
i ) = f(Xi, Yi). Then, Dnew represents the result of applying f item-wise to K

elements of D, and applying the identity transform to the remaining N −K elements, as

Dnew = {(X ′
i, Y

′
i )}i=1,...,K ∪ {(Xi, Yi)}i=K+1,...,N . (3)

This represents a generalization of the unlearning problem, as we wish to “unlearn” the influence of
{(Xi, Yi)}i=1,...,K on our original model, and “relearn” the influence of {(X ′

i, Y
′
i )}i=1,...,K . This

setting encompasses the following data transformations, among others:

1. Covariate Correction: Dnew = {(X ′
i, Yi)}i=1,...,K ∪ {(Xi, Yi)}i=K+1,...,N , where X ′

i repre-
sents a corrected version of the features Xi, and indices K + 1, ..., N correspond to those with
erroneous covariates (e.g., data was corrupted during collection/pre-processing).

2. Label Correction: Dnew = {(Xi, Y
′
i )}i=1,...,K ∪ {(Xi, Yi)}i=K+1,...,N , where Y ′

i represents a
corrected version of the label Yi, and indices K+1, ..., N correspond to those that were originally
mis-labelled during annotation.

3. Backdoor Removal: Dnew = {(X ′
i, Yi)}i=1,...,K ∪ {(Xi, Yi)}i=K+1,...,N , where X ′

i represents
a version of the features Xi lacking the injected backdoor pattern, and indices K + 1, ..., N
correspond to those that were originally transformed with a backdoor during processing. Models
trained with backdoors in the training set learn shortcuts (Geirhos et al., 2020), which can be
exploited to induce misclassification.

This work studies how the RELOAD algorithm accomplishes tasks both in the unlearning setting,
and in the setting of remedial learning.

Blind Unlearning / Blind Remedial Learning. In contrast to the classical unlearning (and remedial
learning) settings, in which the modeller has access to the forget set, our setting assumes no such
access. We call this setting blind unlearning (or blind remedial learning). The blind unlearning /
remedial learning setting has access to the trained model MD, the new dataset Dnew, and (poten-
tially) some limited information about the original data, ID, from which which neither Dforget (in
the unlearning setting) or D (in the remedial learning setting) can be fully reconstructed.

2.2 RELATED WORK

Exact and Approximate Unlearning. Exact unlearning refers to the subclass of algorithms that
provide formal guarantees of the extent to which information about Dforget was removed from
the weights of a model. The trivial method for exact unlearning consists of naively retraining the
model from scratch (this is considered the gold-standard for machine unlearning; see Cao & Yang
(2015); Thudi et al. (2022); Shaik et al. (2024)). Other exact unlearning methods include SISA
(Bourtoule et al., 2019), which partitions the data to accelerate retraining, Certified Data Removal

3
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(Guo et al., 2019), which performs a Newton update in the opposite direction of the gradient with
respect to Dforget, and Certified Graph Unlearning (Chien et al., 2022), which builds on Certified
Data Removal using the graph topology to enforce guaranteed unlearning. Unlike exact unlearning
methods, approximate unlearning algorithms (like RELOAD) aim to recover the behaviour of a model
naively retrained on the new set without providing any formal theoretical guarantees. These methods
can be sub-classified into either gradient-based or weight-saliency based algorithms.

Gradient-Based Approximate Unlearning. Many existing approximate unlearning algorithms per-
form an optimization procedure on M(θ∗) using the forget set Dforget and the retain set Dnew. One
simple standard approach applies gradient ascent on the loss with respect to Dforget, in order to
undo the parameter updates induced by those instances during training (Graves et al., 2021; Thudi
et al., 2022). Another gradient-based approach leverages a teacher-student method: “Bad Teacher”
performs knowledge distillation based on one trained model on Dnew (the “good teacher”) and one
a randomly initialised model on Dforget (the “bad teacher”) (Chundawat et al., 2022); SCalable
Remembering and Unlearning unBound (SCRUB) similarly distills a student model from a teacher
trained on D, but the student learns to selectively disobey the teacher by directly maximizing the loss
on Dforget (Kurmanji et al., 2023). A third family directly manipulates the structure of the learned
representation space using gradients: Distance-based Unlearning via Centroid Kinematics (DUCK)
(Cotogni et al., 2023) drives representations of elements in Dforget towards the nearest incorrect
centroid in the feature space, while Boundary Unlearning (Chen et al., 2023) implements class-level
unlearning by shifting the decision boundary corresponding to the class(es) defining Dforget.

Weight Saliency-Based Approximate Unlearning. Another class of approximate unlearning meth-
ods derives from the hypothesis that identifiable substructures in neural networks often correspond to
different subsets of the training data (Pfeiffer et al., 2023). These methods leverage ideas from neu-
ral sparsity (Frankle & Carbin, 2018; Chen et al., 2024) to perform targeted unlearning on specific
parameters. Saliency unlearning (SalUn) uses a threshold on ∇θL(Dforget) to identify parameters
containing the most signal about Dforget and focuses model updates on these parameters (Fan et al.,
2023). Selective Synaptic Dampening (SSD) (Foster et al., 2023) extends this idea to avoid gradient
steps by scaling parameters based on their Fisher Information Matrix importance scores.

Blind Unlearning. This setting involves unlearning without access to Dforget at the instanced of
unlearning. It then reduces to taking a model fit on one dataset D and adapting it to fitting a new
dataset Dnew. This connects to domain adaptation, in which differences in datasets may not be
explicitly defined. In blind unlearning it is not available. An unlearning baseline, Finetuning (FT)
(Warnecke et al., 2023) on the retain-set Dnew fulfills the blind criteria. Catastrophically forgetting
the last k layers (CF-k) and Exact-unlearning the last k layers (EU-k) (Goel et al., 2022) are also
blind. Fisher Forgetting (Fisher) (Golatkar et al., 2020) is also a blind unlearning algorithm, but is
theoretically bound by class unlearning. Both FT and CF-k provide no strong theoretical indication
of unlearning. EU-k does by re-initialising the last k layers of the model. Our method, RELOAD,
provides a stronger indication by selectively re-initialises parameters which know the most about
the knowledge we wish to remove.

3 RELOAD

3.1 ALGORITHM REQUIREMENTS

Assumption 1 (Unlearning from Cached Gradients). In RELOAD, ID = ∇θL(D).

The following lemma demonstrates why this is a valid choice of ID for blind unlearning / remedial
learning in the softmax classification setting, because this choice does not not permit recovery of the
removed instances within Dforget (or of instances in D and not in Dnew in remedial learning) in the
common setting of softmax classification.
Definition 1 (Recoverability). Consider some data, D ∈ D , and consider a transformation f :
D → Q that maps D into an arbitrary output space Q. D is recoverable if f is injective.

Lemma 1 (Dforget is Not Recoverable from ID in Softmax Classification). Consider softmax clas-
sification over C classes, where each Yi ∈ [0, 1]C represents a one-hot encoded vector of class
labels, Ŷi =

[
eZi1/

∑C
j=1 eZj1 , ..., eZiC/

∑C
j=1 eZjC

]
represents predicted probabilities for each class

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

generated from model logits Zi ∈ RC , and L((Xi, Yi), Ŷi) = −
∑

i=1N
∑C

j=1 Yij log Ŷij . The
transformation G : D → Θ s.t. G(D) = ∇θL(D) ≜ ID is not injective.

Proof. Recall from Section 3.2 that we can write ∇θL(D)−∇θL(Dnew) as
∇θL(Dforget). Then, if |Dforget| > 1, the numerator ∇θkL(Dforget) can be written as∑

(Xi,Yi)∈Dforget
∇θkL((Xi, Yi), Ŷi). Because summation is not injective, G is also non-

injective. In the other case, if |Dforget| = 1, we write Dforget = {(X1, Y1)}. Without
loss of generality, Yij = 1 and Yik = 0 for all k ̸= j. Given ∇θkL((X1, Y1), Ŷ1) =

−∇θk

∑C
i=1 Y1i log Ŷ1i = ∇θk log Ŷ1j = 1

Ŷ1j
, we can recover the j’th output of the model,

Ŷ1j . Ŷ1j = eZ1j∑C
i=1 eZ1i

. For any element Z1k of Z1, eZ1k = Ŷ1j ·
∑C

i=1 e
Z1i , this implies that

Z1k = log(Ŷ1j ·
∑C

i=1 e
Z1i) = log(Ŷ1j) + log(

∑C
i=1 e

Z1i)) which cannot be calculated without
knowing the other elements of Z1. Thus, given only Ŷ1j , no elements of Z1 can be obtained, hence
G is also injective in this case.

3.2 ALGORITHM INTUITION

Direction of Movement. The central challenge of blind unlearning is that taking repeated gradients
of L(Dforget) is impossible without access to Dforget. However, from cached gradients of D at the
conclusion of model training, ∇θL(D), we can infer ∇θL(Dforget).
To do so, let Ŷi = M(θ)(Xi) represent the model’s prediction. Then,

∇θL(Dforget) =
∑

(Xi,Yi)∈Dforget

∇θL((Xi, Yi), Ŷi) =
∑

(Xi,Yi)∈D\Dnew

∇θL((Xi, Yi), Ŷi) (4)

where the second equality follows from Dnew = D\Dforget. Equivalently,

=
∑

(Xi,Yi)∈D

∇θL((Xi, Yi), Ŷi)− 1(Xi,Yi)∈Dnew

[
∇θL((Xi, Yi), Ŷi)

]
(5)

=
∑

(Xi,Yi)∈D

∇θL((Xi, Yi), Ŷi)−
∑

(Xi,Yi)∈Dnew

∇θL((Xi, Yi), Ŷi) (6)

= ∇θL(D)−∇θL(Dnew). (7)

Therefore, a gradient-based descent update in the direction of ∇θL(Dforget) moves the model pa-
rameters such that they better fit to Dforget; because our goal is unlearning Dforget, RELOAD
instead begins with a single gradient ascent update step in this direction.

In unlearning, our goal is to obtain a gradient in the direction of Dforget. The remedial learning case
is more general: the goal is to obtain ∇θL(D ∩ Dc

new), a gradient pointing towards the empirical
minimum of the loss on elements that are uniquely contained in D and not in Dnew, and −∇θL(Dc∩
Dnew), a gradient pointing away from the empirical minimum of the loss on elements uniquely
contained in Dnew but not in D. Unlearning represents the special case of this framework in which
D ∩ Dc

new = Dforget and Dc ∩ Dnew = ∅. In the remedial learning setting, the desired gradient
is also ∇θL(D)−∇θL(Dnew); the derivation can be found in Appendix A.1. This informs Step (2
- 3) in Figure 1.

Targeted Parameter Adjustments. Taking a gradient step in this direction, however, is insufficient
for unlearning (or remedial learning) for two reasons. First, we are limited to a single gradient step
in this direction (Assumption 1), and second, theory from network modularity (Rodriguez et al.,
2019) suggests that a small subset of parameters contain a disproportionate amount of the necessary
information to characterize instances in Dforget. While one ascent step may be useful at removing
what little information about Dforget is included across all network parameters, it is less plausible
that this single step will remove information about Dforget from the subset of parameters most
responsible for its characterization.

We therefore perform selective re-initialization of these parameters as follows. Consider the gradient
∇θkL(Dforget), the gradient of the loss with respect to instances in Dforget and with respect to a

5
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particular parameter θk. If this gradient is small, it means that θk is well-optimized to characterize
instances in Dforget; if this gradient is large, it means that θk poorly characterizes these instances.
Although the absolute values of these gradients are largely meaningless, the relative magnitude
of ∇θkL(Dforget) compared ∇θkL(D) is a meaningful representation of the extent to which θk
is responsible for characterizing information about Dforget. We call this the knowledge value of
parameter θk, and formally define it as,

KVθk ≜
|∇θkL(Dforget)|+ ϵ

|∇θkL(D)|+ ϵ
=

|∇θkL(D)−∇θkL(Dnew)|+ ϵ

|∇θkL(D)|+ ϵ
, (8)

where ϵ is a small Laplace smoothing constant. Here the second equality follows from the relation-
ship between ∇θkL(Dforget), ∇θkL(D), and ∇θkL(Dnew) that we derived earlier in this section.
A small knowledge value characterizes a parameter that is knowledgeable about Dforget, so by se-
lectively re-initializing all parameters θk if QUANTILEKV (KVθk) ≤ α (α is a hyperparameter), we
can remove the influence of the parameters uniquely responsible for encoding information about
these data. This thinking extends on lines of work in gradient-based input saliency maps (Smilkov
et al., 2017) and saliency unlearning by Fan et al. (2023). We explore and compare other methods
of identifying knowledgeable weights in Appendix A.5.2. This informs Step (4) in Figure 1.

3.3 THE RELOAD ALGORITHM

Based on this intuition, our RELOAD algorithm contains the following steps. (1) Cache the gradients
∇θL(D) at the end of training. (2) Compute ∇θL(Dnew). (3) Perform one step of gradient ascent in
the direction of ∇θ(L(D)− L(Dnew)). (4) Re-initialize all parameters θk that are smaller than the
α-QUANTILE of knowledge values. Finally, (5) fine-tune until convergence on L(Dnew). A formal
description is shown in Algorithm 1. A software implementation can be found here.

Algorithm 1 The RELOAD Algorithm for Blind Unlearning and Remedial Learning

1: Input:M(θ∗), cached∇θL(D), Dnew

2: Parameters: ηp: priming step learning rate, ϵ: noise parameter, α: reset proportion
3: Output: Trained model approximatingM(θ∼)

4:
5: procedure RELOAD(M(θ∗),∇θL(D;M(θ∗)), Dnew)
6: θ′ ← θ∗ + ηp∇θ(L(D)− L(Dnew)) ▷ Step (2 – 3) (Fig. 1)

7: KV←
{ |∇θk

L(D)−∇θk
L(Dnew)|+ϵ

|∇θk
L(D)|+ϵ

}
θk∈θ

▷ Step (3) (Fig. 1)

8: for θk ∈ θ′ do
9: if QUANTILEKV (KVθk ) ≤ α then

10: θ′k ← INITIALIZE(·) ▷ Step (4) (Fig. 1)
11: end if
12: end for
13: TrainM(θ′) to convergence on Dnew ▷ Step (5) (Fig. 1)
14: end procedure

4 RESULTS AND ANALYSIS

4.1 METHODOLOGICAL INTROSPECTION

Figure 2 introspects on the selected feature maps of a ResNet-18 model when using RELOAD to
unlearn the class “8” from the SVHN dataset. The experiment demonstrates the importance of the
re-initialization step (Step (4) in Figure 1), as even after a single ascent step, the model still finds
“8” to be the most probable class. It is only after the salient weights are identified and re-initialized
that the model emits a lower-entropy distribution classifying the digit as a “2”. This suggests that
the primary utility of the ascent step in our algorithm is in amending the representations of Dforget

in the later layers of the network, while the salient weight re-initialization updates also modify
the representations produced by earlier layers. The findings of this experiment present empirical
confirmation of the intuition used to develop the algorithm (Section 3.2).

6
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Figure 2: Introspecting on selected feature maps of a ResNet-18 model when using RELOAD to unlearn the
class “8”. For brevity, we selected the first channel from each feature map for the sake of visualization, though
the patterns we identify appear to hold more broadly across channels. (Top) The feature maps (activations)
of the first, third, and fifth convolutional layers after the model was initially trained on D (Step (1) in Figure
1). (Middle) These same feature masks after the ascent step has been applied (Step (3) in Figure 1). Observe
how the activations of the model remain largely unchanged, although the logits represent a considerably more
uniform distribution over the digits. (Bottom) These same features masks after the salient weights have been
identified and re-initialized (Step (4) in Figure 1). Observe that the activation of the first convolutional layer is
largely unchanged – this is expected, as the earlier layers of the network correspond to broad feature detectors
(Zeiler & Fergus, 2014)) that may be less unique to the features of any particular class in this data. Notice,
however, that the feature map of the third convolutional layer is substantially different from that of the previous
two stages (it no longer features a hazy “8”), and that the network now emits a significantly lower-entropy
distribution predicting the input image as a “2”.

4.2 UNLEARNING EXPERIMENTS

Baselines. We compare RELOAD against baseline approaches of gradient ascent (GA) (Thudi et al.,
2022), fine-tuning on Dnew (FT) (Warnecke et al., 2023), Selective Synaptic Dampening (SSD)
(Foster et al., 2023), SCalable Remembering and Unlearning unBound (SCRUB) (Kurmanji et al.,
2023), Catastrophically Forgetting the last k layers (CF-k) (Goel et al., 2022), Exact-Unlearning
the last k layers (EU-k) (Goel et al., 2022), SalUn (Fan et al., 2023), and Fisher forgetting (Fisher)
(Golatkar et al., 2020). Of these baselines, the requirements of FT, CF-k, EU-k, and Fisher satisfy
the blind unlearning setting, whereas the others require direct access to Dforget.

Evaluation. As the goal of approximate unlearning is to produce a learned model that mimics the
behaviour of M(θ∼), we employ several evaluation statistics to measure the similarity in perfor-
mance between our learned model and a version of M(θ∼) that we naively train from scratch. The
accuracy on Dnew (NA, ↑) measures how well each learned model fits to the new data. The dif-
ference in accuracy on Dforget (∆FA, ↓) measures the difference in accuracy between our learned
model and M(θ∼) on Dforget, while the difference in error on Dforget (∆FE, ↓) measures the differ-
ence in (cross-entropy) loss between our learned model and M(θ∼) on the Dforget. The difference
in success rates of a membership inference attack on Dforget (∆FMIA, ↓) measures the ability of
the inference attack from Shokri et al. (2017) to identify members of Dforget in the training data
of each leaned model, compared to the baseline rate of identification on M(θ∼). We also report
the AUC of the MIA attack model (∆AUC, ↓). The symmetric KL-divergence on Dnew (NSKL,
↓) measures the dissimilarity in the logits produced by our learned model and M(θ∼) on Dnew,
while the symmetric KL-divergence on Dforget (FSKL, ↓) measures the dissimilarity in the logits
produced by our learned model and M(θ∼) on Dforget. Cost (↓) measures the computational cost
of the method, and is the ratio of time to run the method to the time to naively train M(θ∼).
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RELOAD unlearns randomly-selected samples. In this experiment, we randomly assign 10% of
the training data samples to Dforget, to showcase how well each method can unlearn arbitrary train-
ing samples. The results of this experiment are shown in Table 1. Observe that RELOAD achieves the
highest NA, while maintaining the lowest ∆FA, ∆FE, ∆FMIA, and FSKL of all approaches. This
suggests that RELOAD successfully approximates M(θ∼) better than the baselines. That fine-tuning
achieves a lower NSKL than RELOAD is hardly surprising, as NSKL measures dissimilarity in logits
on Dnew, and fine-tuning adjusts a converged model M(θ∗) to fit a subset of its original task. Simi-
larly, the computational cost of RELOAD, though similar to many baselines, is considerably greater
than either SSD or gradient ascent. The results in Table 1 are produced using a ResNet-18 model on
CIFAR-100; additional results with different models and datasets, and on randomly assigning 30%
of training data samples to Dforget can be found in Appendix A.6.

Method NA (↑) ∆FA (↓) ∆FE (↓) ∆FMIA (↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 99.98±0.01 74.89±2.03 1.06±0.13 0.63±0.20 1.00±0.00 0.00±0.00 0.00±0.00

GA 93.81±0.75 18.77±2.43 0.95±0.14 0.21±0.06 0.00±0.00 0.29±0.09 2.62±0.05

FT 96.00±0.12 16.46±2.47 0.89±0.14 0.19±0.08 0.27±0.00 0.03±0.01 2.11±0.06

SSD 1.01±0.02 74.17±2.04 4.19±0.59 0.15±0.21 0.01±0.00 14.90±1.24 11.81±1.24

SCRUB 93.76±0.74 18.85±2.39 0.95±0.14 0.20±0.06 0.02±0.00 0.29±0.09 2.63±0.06

CF-k 94.75±0.41 18.01±2.60 0.94±0.14 0.20±0.06 0.21±0.00 0.14±0.03 2.47±0.07

EU-k 94.32±0.49 17.93±2.55 0.94±0.14 0.20±0.06 0.21±0.00 0.19±0.05 2.33±0.05

SalUn 99.06±0.22 13.14±2.53 0.11±0.09 7.39±2.60 0.16±0.00 0.06±0.02 0.55±0.04

Fisher 97.76±0.78 22.99±2.30 0.95±0.14 7.27±2.48 1.78±0.04 0.07±0.02 0.56±0.04

RELOAD 99.56±0.11 0.30±0.50 0.04±0.02 0.01±0.01 0.12±0.01 0.15±0.03 1.23±0.11

Table 1: 10% Random Forgetting on CIFAR-100 (ResNet-18). The top row presents the value ofM(θ∼)

on each metric. Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference
in the value of the corresponding method on this metric to the value ofM(θ∼) on the metric. These results
show that RELOAD outperforms all the baselines on NA, ∆FA, ∆FE, ∆FMIA, and FSKL by large margins.
RELOAD performs competitively on the NSKL metric, outperformed by FT and CF-k. RELOAD incurs a higher
computational cost than most baselines, but is cheaper than FT, CF-k, and EU-k.

Method NA (↑) FA (∆↓) FE (∆↓) FMIA (∆↓) Cost (↓) NSKL (↓) FSKL (↓)

Retrain 99.99±0.00 95.12±0.23 0.20±0.01 0.50±0.00 1.00±0.00 0.00±0.00 0.00±0.00

GA 99.57±0.02 4.37±0.25 0.17±0.01 0.05±0.01 0.00±0.00 0.05±0.00 0.52±0.02

FT 99.99±0.00 4.33±0.22 0.17±0.01 0.04±0.01 0.27±0.00 0.00±0.00 0.43±0.02

SSD 12.75±4.69 82.52±4.73 2.12±0.06 0.01±0.01 0.01±0.00 8.55±0.13 7.88±0.12

SCRUB 99.79±0.01 4.44±0.26 0.18±0.01 0.05±0.01 0.03±0.00 0.03±0.00 0.50±0.02

CF-k 99.76±0.01 4.47±0.24 0.18±0.01 0.05±0.01 0.23±0.02 0.03±0.00 0.50±0.02

EU-k 99.63±0.01 4.46±0.25 0.18±0.01 0.05±0.01 0.23±0.02 0.05±0.00 0.47±0.02

SalUn 99.90±0.04 3.14±1.00 0.13±0.03 0.04±0.02 0.17±0.00 0.03±0.00 0.50±0.02

Fisher 99.57±0.02 0.09±0.05 0.00±0.00 0.01±0.00 2.17±0.04 0.05±0.00 0.47±0.02

RELOAD 99.68±0.17 0.25±0.21 0.01±0.01 0.00±0.00 0.12±0.01 0.06±0.02 0.21±0.02

Table 2: 100 In Class Random Forgetting on SVHN (ResNet-18)
↑: the goal is to have as high of a value as possible, ∆↓: the value in the table is the difference between the
result of the unlearning method and retraining (top row) on the metric and the goal is to have a low difference,
↓: the goal is to have as low of a value as possible. The top row presents the value ofM(θ∼) on each metric.
Subsequent rows for ∆FA (↓), ∆FE (↓), and ∆FMIA (↓) present the absolute difference in the value of the
corresponding method on this metric to the value ofM(θ∼) on the metric. These results show that RELOAD
outperforms all the baselines on ∆FA, ∆FE, ∆FMIA, and NSKL by large margins. RELOAD performs com-
petitively on NA and FSKL but is outperformed by FT. RELOAD also incurs a higher computational cost than
the other baselines.

RELOAD efficiently unlearns correlated samples. We next randomly assign 100 samples from
a single class of the training data to Dforget, to evaluate how well each method can unlearn
arbitrary but related training samples. The results of this experiment are shown in Table 2.

Figure 3: The “Cross Pattern
Backdoor” inserts the above pat-
tern (right) in all images from
two classes in D, then removes
this shortcut to create Dnew.

RELOAD achieves the lowest ∆FMIA and FSKL of all approaches
and very close to the lowest ∆FA, ∆FE, and NSKL of all ap-
proaches, suggesting that again, RELOAD learns to closely approx-
imate M(θ∼) in this setting. RELOAD is marginally outperformed
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by Fisher in these settings, but is far more realistic, as Fisher over
twice as much time as retraining. Although RELOAD achieves an
NA competitive with that of most baselines, naive gradient ascent,
CF-k, and EU-k yield a marginally higher NA; this is surprising for
gradient ascent as it typically yields lower NA values. This can be
attributed to the small number of unlearning samples; optimizing
to maximize the loss on these samples does not provide much of
a gradient update. CF-k and EU-k both make few parameter up-
dates to M(θ∗), which leads to a high NA but poor performance on

unlearning metrics like ∆FA and ∆FE.

4.3 REMEDIAL LEARNING EXPERIMENTS

Baselines. The remedial unlearning setting admits different baselines than the unlearning setting.
“Original” represents a baseline model trained on D, and “Retrain” represents a baseline model
trained directly on Dnew. Then, because gradient ascent does not directly translate to the task of
remedial learning (because there is no “forget set” on which to ascent) we introduce two variants
of gradient ascent to serve as baselines. Gradient Ascent Relearn (GAR) performs 10 epochs of
gradient ascent on D, followed by 10 epochs of gradient descent on Dnew. Gradient Difference
Ascent (GRDA) calculates ∇L(D)−∇L(Dnew) on each step and performs a gradient update in the
opposite direction, fitting Dnew. It performs 10 epochs of such updates.

Metrics. We evaluate remedial learning as follows. The accuracy on a held-out test split of Dnew

(Acc. D(test)
new , ↑) represents how well the model fits the distribution of Dnew (without the backdoor;

see next section). The accuracy on a held-out test spit of Dnew with backdoors added to each
instance (Acc. D(test,§)

new ) measures the reliance of the model on the backdoor pattern in classification.
Specifically, a low accuracy on D(test,§)

new suggests that the model is over-reliant on the backdoor
pattern that was injected into its training data.

Method Acc. D(test)
new (↑) Acc. D(test,§)

new (↑) Cost (↓)

Original 82.68±0.45 19.81±0.03 N/A

Retrain 92.48±0.00 91.90±0.00 1.00±0.00

GAR 57.29±34.88 56.54±34.12 0.08±0.01

GRDA 62.87±28.47 62.34±27.80 0.05±0.00

FT 86.87±4.39 86.50±4.14 0.37±0.02

SSD 30.25±22.90 23.94±13.43 0.01±0.00

SCRUB 12.43±3.45 12.42±3.44 0.04±0.01

CF-k 66.56±24.27 66.29±23.80 0.29±0.03

EU-k 66.75±24.08 66.41±23.63 0.29±0.03

RELOAD 90.81±0.99 90.51±0.82 0.08±0.06

Table 3: Cross Pattern Backdoor Removal on CIFAR-10
(ResNet-18). ↑: the goal is to have as high of a value as
possible, ↓: the goal is to have as low of a value as possible.
These results show that RELOAD outperforms all baselines
on Acc. D(test)

new and Acc. D(test,§)
new . The small differences

between these accuracy values for RELOAD indicate that it
successfully removed the influence of the backdoor pattern.
RELOAD incurs a higher computational cost than most base-
lines, but is cheaper than FT, CF-k, and EU-k.

RELOAD corrects erroneous data (re-
moving shortcuts). In this setting, we se-
lect 2 classes from the data (here, CIFAR-
10) and inject cross-patterns into the cor-
ners of their training samples to construct
D. An example of this backdoor can be
seen in Figure 3. The inclusion of this
backdoor influences a model trained on
this dataset to rely on the cross-patterns as
strong indicators of class membership. To
construct Dnew we then replace the cross-
patterned samples with their original in-
stances, removing the backdoor. The goal
of remedial learning here is to un-learn the
model’s reliance on the backdoor, and re-
learn the salient representations needed to
accurately predict on the affected classes.
The results of this experiment are shown
in Appendix A.9. Observe that the effect
of this backdoor attack produces a trained
model (Original; trained with the back-
door) with poor performance on D(test,§)

new ,
because the model learned to treat the backdoor pattern as a strong indicator of class membership for
certain classes. Further, notice that RELOAD successfully remedies this vulnerability, achieving the
highest accuracy (aside from Retrain; retrained from scratch without the backdoor) on D(test)

new , and
the highest accuracy of all models on D(test,§)

new . This suggests that RELOAD is capable of efficiently
correcting the predictive behaviour of a model trained on erroneous data.
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5 DISCUSSION

This work introduces the setting of blind unlearning, machine unlearning without direct access to the
“forget set”. This setting allows for improved privacy procedures in practical settings, by enabling
the immediate deletion of data when an unlearning request is received rather than retaining the data
for the purpose of downstream unlearning. Our method, RELOAD, combines insights from gradient-
based unlearning (to remove top-level information from all parameters) with selective parameter
re-initialization. The blind setting ensures that as long as practitioners store the last step gradients
of their model on the training set, they have the capacity to unlearn data when it is removed from
their system. We recommend that future work study the performance of RELOAD at larger scales,
such as those presented by modern large language models (Achiam et al., 2023), and investigate the
utility of other choices for ID beyond the cached gradients used in RELOAD.

Despite operating in the blind setting, RELOAD outperforms benchmark machine unlearning algo-
rithms that enjoy direct access to Dforget, suggesting that it is an empirically effective unlearning
algorithm. However, RELOAD admits a modest tradeoff between computational efficiency and per-
formance in this regime. We finally observe that machine unlearning represents a special case of
remedial learning, a setting that is especially important for efficiently correcting errors in the train-
ing data used to train models. RELOAD remains an efficient, performant method in this regime,
suggesting that our work may contain generalizable insights about about learning to fit arbitrary
downstream transformations of data.
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