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Abstract

Red teaming—i.e., simulating attacks on computer systems to identify vulnerabili-
ties and improve defenses—can yield both qualitative and quantitative information
about generative AI (GenAI) system behaviors to inform system evaluations. This
is a very broad mandate, which has led to critiques that red teaming is both every-
thing and nothing. We believe there is a more fundamental problem: various forms
of red teaming are more commonly being used to produce quantitative information
that is used to compare GenAI systems. This raises the question: (When) can the
types of quantitative information that red-teaming activities produce actually be
used to make meaningful comparisons of systems? To answer this question, we
draw on ideas from measurement theory as developed in the quantitative social
sciences, which offers a conceptual framework for understanding the conditions
under which the numerical values resulting from a quantification of the properties
of a system can be meaningfully compared. Through this lens, we explain why
red-teaming attack success rate (ASR) metrics generally should not be compared
across time, settings, or systems.

1 Introduction

Evaluating an AI system2 requires making value judgments. Is the system good enough (for its
intended purposes)? Is it better or worse than it was before an algorithm update? Is it better or worse
than another system (designed for the same intended purposes)? Making such value judgments neces-
sarily entails comparisons: comparing something about the system’s behaviors (and associated capa-
bilities or risks) to a particular value or threshold, to its own behaviors at an earlier point in time, or to
another system’s behaviors. Of course, we cannot make such comparisons without information about
that system’s behaviors and, in some cases, those of other systems. Such information can be either
qualitative, as in the case of interviews with users about their experiences using the system, or quantita-
tive, as in the case of computing accuracy rates for answering yes-no questions. In either case, though,
such information must facilitate meaningful comparisons for it to useful for system evaluation [23].

Red teaming—i.e., simulating attacks on computer systems to identify vulnerabilities and improve
system defenses [e.g., 11]—has emerged as a widely used approach for surfacing both qualitative and
quantitative information about system behavior in evaluations of generative AI (GenAI) systems. The
expanding variety of both red-teaming practices and the information they produce makes the exact role
of red teaming in evaluation difficult to pin down. This slipperiness has been the focus of multiple stud-
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2We use the term “system” to refer either to a single model integrated with software and hardware that

enables its use for inference, or to a hosted software service that incorporates one or more models to do the same.
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ies that have attempted to clarify the main purposes of red teaming [e.g., 8, 9, 14]. Despite this com-
plexity, red-teaming procedures have tended to rely on a common metric for estimating and comparing
system vulnerabilities: attack success rate (ASR). In this paper, we study ASR in order to try to clarify
how red teaming fits into the GenAI evaluations landscape. Rather than trying to capture exactly what
red teaming currently is or is not, we attempt to answer and draw lessons from a very specific question:

Can ASRs be meaningfully compared across time, different systems, or different settings?

To answer this question, we discuss, from first principles, what types of information red teaming
would need to produce in order to facilitate meaningful comparisons of different systems. To ground
our discussion, we briefly survey prior work in GenAI that explains how the expanding boundaries of
red teaming make it difficult to understand what red teaming is (Section 2). We highlight that this
issue, in turn, makes it difficult to understand what information can and cannot be obtained from red
teaming. This analysis surfaces several key questions that must be answered to understand how red
teaming could potentially play a role in making meaningful comparisons between systems, with a
particular focus on comparing ASRs. To assist with identifying answers, we find it useful to turn to
measurement theory from the social sciences (Section 3). Measurement theory can serve as a lens for
critically examining red teaming, helping us disentangle when the information obtained from red
teaming can facilitate meaningful comparisons and when it cannot (Sections 4).

2 Red teaming and its internal tensions

Red teaming—i.e., simulating attacks on computer systems to identify vulnerabilities and improve
system defenses3—comes from the world of cybersecurity [5, 9, 19, 22]. The AI community has
adopted red teaming as a key stage of GenAI system evaluation. In doing so, the community
has expanded what constitutes red teaming to encompass a wide range of practices for probing
GenAI systems for a wide range of issues [8, 9, 14], including security vulnerabilities, privacy leaks,
memorization of intellectual property, stereotyping of marginalized groups, hate speech, and so
on [12, 15, 17, 18, 20]. For brevity, we refer to all of these properties generically as “undesirable
behavior.” In this section, we discuss the ever-expanding surface area of red-teaming approaches
and their fundamental limitations. We introduce attack success rate (ASR), which exemplifies these
challenges and which will be our running example in the sections that follow for discussing numerical
comparisons across systems.

Ever-expanding surface area. Red teaming practices vary along a number of dimensions. In the
context of cybersecurity, red teaming is typically performed manually by teams of humans [2, 9].
However, in the context of GenAI, semi- or fully-automated approaches for red teaming are increas-
ingly common [4, 24, 25]. GenAI systems are now routinely used both to generate attack inputs
and to automatically determine whether an attack was successful by assessing system outputs using
established success criteria [4, 6, 20].

Separate from the human versus automated red-teaming axis, there are several other dimensions along
which red-teaming practices can vary, which we summarize from existing surveys: (1) expertise of
participants in a red-teaming exercise (e.g., are red teamers domain experts, crowd-source workers,
undergraduate students, etc?); (2) diversity of participants (e.g., which countries are red teamers
from?); (3) system modality (e.g., text-based chatbots, text-to-image systems); and (4) scope of the
red-teaming exercise (e.g., open-ended tasks or focused on specific undesirable behaviors) [9, 14, 19].
These dimensions suggest an enormous design space for possible red-teaming exercises. And this
design space continues to expand: the range of each of these dimensions continues to grow over
time, and altogether new dimensions get introduced into the mix. In all, there remains what the
Frontier Model Forum has described as “a lack of clarity on how to define ‘AI red teaming’ and what
approaches are considered part of the expanded role it plays in the AI development life cycle” [22].

Fundamental limitations. While on the one hand, red teaming is critiqued for having an enormous
and expanding mandate, on the other, many have simultaneously argued that red teaming is inherently
limited. For instance, Friedler et al. [10] combine observations about the Generative AI Red Team
(GRT) challenge at DEFCON 2023 with a review of the literature to argue that red teaming “cannot

3One of the earliest usages of the term in a GenAI context refers to red teaming as “continuously interrogate
the model’s capabilities for possible problems (e.g., bias, misuse, safety concerns, etc.)” [21, p. 2].
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effectively assess and mitigate the harms that arise when [AI] is deployed in societal, human settings.”
Frontier model developers like Anthropic have similarly argued that red teaming has gaps; Anthropic
has characterized red teaming as a “qualitative approach” that “can serve as a precursor to building
automated, quantitative evaluation methods” [3], rather than an approach that constitutes such
evaluations on its own. This presents a contradiction: red-teaming practices and their adoption in
new contexts both continue to grow, and yet this growth is occurring without fully attending to
known limitations or uncovering unknown limitations of existing uses. This contradiction muddles
understandings about what can be learned from red teaming; it is partly why there are often conflicting
views on what red teaming is (and is not), and when it does (or does not) work. Without first resolving
this contradiction, we cannot reasonably understand what can be gleaned from red-teaming practices
and their their connections to other approaches to evaluating GenAI for undesirable behavior.

Attack success rates as metrics for GenAI system comparison. The slippage between red teaming
and other forms of evaluation comes into stark relief when one examines how attack success rates
(ASR) from red teaming activities get (mis)used in making comparative claims about GenAI systems.
It is fairly common in red-teaming research papers to have some (automated or manual) binary
classifier determine if a particular attack was successful at inducing a system to exhibit an undesirable
behavior [e.g. 12, 16, 24]. These attack success rates are often used as metrics: aggregating attack-
success bits into per-system averages over attacks, and comparing these averages across different
systems to judge overall and relative robustness. For example, HarmBench [16] develops a suite
of attacks, computes average ASR across open-source models, and then directly compares these
averages. At face value, as an average of bits, it may seem like ASR is relatively straightforward to
compute. However, the details of defining attack success—of determining the values of particular
bits—requires great care. As we discuss in more detail in Section 4, without exercising great care,
ASR metrics cannot be meaningfully compared across time, different systems, or different settings.

3 Using measurement theory for valid measurement

When can attack success rate (ASR) metrics be meaningfully compared? To answer this question we
must first more clearly understand what is being asked. Consider a concrete hypothetical example in
which a group engages in manual red-teaming activities conducted on two systems, L1 and L2. The
team obtains an ASR of a1 = 0.1 for L1 and an ASR of a2 = 0.2 for L2. What can we say about
the systems L1 and L2 on the basis of these ASRs? What comparative statements are we justified in
making? There is no doubt that, as numbers, a2 = 0.2 > 0.1 = a1: the ASR reported for system L2

is higher than that reported for system L1. This is a descriptive statement summarizing the outcomes
of the specific sets of attacks, observed system outputs, and determinations of success. But can we
conclude from these results that system L2 is more vulnerable than L1?

This question is akin to, but (in certain ways) more complex than, familiar questions arising in
observational and experimental studies. Consider a hypothetical randomized controlled trial where
upon discharge patients are randomized to either the current standard of care or a new treatment. For
the control group, we observe a 30-day hospital readmission rate of a2 = 0.2, compared to a1 = 0.1
for patients in the treatment group. Is the treatment effective at reducing hospital re-admission? Once
again, there is no doubt that, as numbers, a2 = 0.2 > 0.1 = a1: the control group patients in our
study were twice as likely to be re-admitted as treatment group patients. This is a descriptive statement
about the observed outcomes among study participants. When asking about treatment effectiveness,
however, we are not asking about the study sample. We are instead asking an inferential question about
whether the expected readmission rate under treatment in the broader population, α1, is lower than the
expected readmission rate under standard of care α2. The observed rates, a2 and a1 are estimates of
these population parameters. At minimum, we would want to conduct a hypothesis test and/or report
a confidence interval to determine whether we have sufficient evidence to conclude that α2 > α1.

Just as the question of treatment effectiveness is an inferential question—asking whether the study
provides sufficient evidence to draw conclusions beyond the study sample itself—the question
of comparing ASRs from red-teaming activities also has an inferential flavour. But meaningful
comparison relies on more than simply accounting for sampling variation between estimates, aj , of
population parameters, αj . For a more complete picture, we turn to prior work from measurement
theory in the quantitative social sciences.

3



Measurement theory. Measurement refers to the systematic quantification of properties of entities
or events, resulting in numerical values—i.e., measurements—that can be meaningfully compared.
Specifically, to be able to compare measurements, we require a high degree of measurement validity,
which is the the extent to which a a measurement procedure measures what it purports to measure.
The remainder of this section provides an overview of measurement theory and measurement validity.

Measurement approaches lie along a spectrum between representational measurement and pragmatic
measurement. Representational measurement refers to expressing objects and their relationships
using numbers. For example, metrology, the study of measurement in the physical sciences, is largely
representational, giving rise to the familiar units such as length, mass, and time, that underpin scien-
tific inquiry. Pragmatic measurement focuses on measuring abstract concepts that are not amenable
to direct observation in ways that yield measurements with the “right sort of properties for [the]
intended use” [13]. Pragmatic measurement most commonly arises in the social sciences, where
many quantities of interest reflect concepts that are abstract, complex, and sometimes contested.
Examples include the Gross Domestic Product (GDP) constructed to reflect the health of a country’s
economy, the Apgar score used to evaluate the condition of a newborn immediately after birth, and
the various measures of democracy used in political science.

Many of the measurement tasks entailed in evaluating GenAI systems can be viewed as exercises in
pragmatic rather than representational measurement. This is because the concepts to be measured—
regardless of whether they are concepts related to a system’s capabilities, like intelligence and
reasoning, or concepts related to a system’s risks, like stereotyping and anthropomorphism—are
abstract, complex, and sometimes contested, much like the health of a country’s economy, the
condition of a newborn immediately after birth, and the democracy of a nation [23].

Quantification is not the same as valid measurement. The primary purpose of measurement is to
facilitate meaningful comparisons: for example, to compare something (e.g., the temperature of the
earth, the GDP) to itself over time; to compare something (e.g., the height of a child, a newborn’s
Apgar score) to a particular numerical value; and to compare multiple things (e.g., the weights of
three bicycles, two nations’ democracy scores) to one another.

Clearly, not all numbers produced by examining an entity can or should be meaningfully compared.
For instance, the 3rd digit of of a bike’s serial number is a number, but does not reflect a property
that yields insight if compared across bikes. As a less trivial example, consider administering the
Stanford-Binet intelligence test (SB5) to two 5 year-old children, Jane who scores 117 and Ruslan
who scores 82. The SB5 has been developed and validated as a test of certain cognitive abilities, and
is a prominent example of a measurement instrument in the psychometric tradition. Even so, if we
then learn that the test was administered in English, a language that Jane speaks but Ruslan does
not, it would still not be meaningful to compare the children’s scores. Ensuring that the procedures
adopted produce quantities that can be meaningfully compared—i.e., ensuring that we are doing valid
measurement—is the primary challenge.

To assess measurement procedures for validity and to develop more reliable and valid procedures,
social scientists rely on measurement theory. Measurement theory provides a conceptual framework
for systematically moving from a concept of interest to measurements of that concept [1]. Measure-
ment theory also provides a set of lenses for interrogating the reliability and validity of measurement
instruments and their resulting measurements, including test–retest reliability, inter-rater reliability,
face validity, content validity, convergent validity, discriminant validity, predictive validity, hypoth-
esis validity, and consequential validity. Each lens constitutes a different source of evidence; together
the evidence collected using these lenses can paint a comprehensive picture of reliability and validity.

Measurement framework. The core measurement framework applied within the social sciences
involves four levels: the background concept or “broad constellation of meanings and under stand-
ings associated with [the] concept;” the systematized concept or “specific formulation of the concept,
[which] commonly involves an explicit definition;” the measurement instrument(s) used to produce
instance-level measurements; and, finally, the instance-level measurements [1]. As shown in the
“Concept” column of the measurement framework shown in Figure 1, these levels are connected via
three processes: systematization, operationalization, and application. For example, when measuring
the prevalence of hate speech in a conversational search system deployed in the UK, the background
concept might be a set of high-level definitions of hate speech like those provided above; the system-
atized concept might be a set of linguistic patterns that enumerate the various ways that speech acts

4



AmountPopulationInstanceConcept*
Background Concept

“The broad constellation of 
meanings and 
understandings associated 
with [the] concept.”

Background Instance
The unit of the [Background 
Population].  This defines 
what a row of our data set 
represents.

Background Population
General description of the 
setting we want our 
measurements to reflect.  

Background Amount
The desired quantifier of the 
amount, extent, and/or 
distribution of the  
[Background Concept] in 
the [Background 
Population].

Systematized Concept
An explicit definition of the 
concept: The specific 
formulation of the concept 
to be used in the task.  

Systematized Instance
Description of the metadata 
& features recorded for 
each instance—what we 
want the columns of our 
data set to represent.

Systematized Population
The types of [Background 
Instances] we interested in. 
This is the population we 
want our measurements to 
be representative of or 
generalize to.

Target Parameter(s)
Mathematical expression(s) 
defining a target quantity in 
terms of the [Systematized 
Concept] and 
[Systematized Population].  
This is the metric.  

Measurement Instruments
The operational 
procedure(s) to be 
employed in labeling or 
scoring instances based on 
their [Data Representation].  

Data Representation
The operationalized 
instance.  A description of 
how an instance will be 
defined, and precisely how 
feature values and 
metadata will be 
calculated/obtained. 

Sampling Design
The population we have 
access to (study 
population); the unit that 
will be sampled (sampling 
unit); and how those units 
will be sampled (sampling 
procedure).

Statistical Estimator(s)
One or more  functions that 
take a [Data Set] and return 
an estimate of the [Target 
Parameter].  Also, 
procedures for other 
inferential tasks (e.g., 
confidence intervals) 

Instance-level 
measurements

Label(s) or score(s) 
obtained by applying the 
[Measurement Instruments] 
to a [Data Point] (instance).

Data Point
A single observed 
instance—i.e., a row of the 
[Data Set].

Data Set
A set of [Data Points] 
obtained by applying the 
[Sampling Design]. 

Measurement(s)
The estimate(s) of the 
[Target Parameter] obtained 
by applying the [Statistical 
Estimator(s)] to the [Data 
Set]

Task: measure the [amount] of a [concept] in [instances] from a [population]

Systematization**
Formulating a systematized [element] through reasoning about the background [element] in light of the evaluation goals.

Operationalization
Developing one or more procedures for obtaining realizations of the systematized [element].

* Concept column is adapted from Figure 1 of Adcock and Collier (2001), with minor terminology changes to better 
facilitate discussion of measuring GenAI systems’ capabilities, risks, ad impacts.  
** Systematization is often called conceptualization when describing the process of producing a systematized concept.

RT: Full measurement framework

Application
Applying operationalization to obtain observations or realizations.
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Figure 1: Measurement framework developed for tasks of the form: measure the [amount] of a
[concept] in a [population] of [instances]. The Concept column is adapted from prior work in
political science [1]. The Instance, Population, and Amount elements are new. We use the term
Context to refer to the Instance and Population elements. The table is reproduced with modification
from related work by the authors [7].

can promote violence; the measurement instrument might be an LLM fine-tuned to identify those
linguistic patterns; and the instance-level measurements might be a set of counts indicating number
of linguistic patterns found in each conversation from a data set of conversations in the system’s
real-world deployment context. Validity issues arise as systematic gaps across the four levels, such
as using a US-centric systematization of hate speech when evaluating a system in the UK context.

Applying the same measurement procedure is not necessary or sufficient for valid measurement.
Applying different measurement procedures, or applying the same procedure in different settings,
also does not invalidate our measurements. To understand why, consider two illustrative examples:

Sufficiency Repeating the same procedure in different settings is not sufficient for concluding
that we have obtained valid measurements of the concept in both cases. Suppose we obtain a
performance metric by running our system on a “validated” static benchmark. Several months
later, a new system version is released, and we run the same benchmark and calculate performance.
Unbeknownst to us, the system-development team included the benchmark corpus in the data
used to train the latest system. This has invalidated the measurement instrument (benchmark),
making it unusable for comparing the two system versions.
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Necessity Repeating the same procedure is also not necessary for valid measurement and compar-
ison. For instance, we may want to evaluate stereotype risk for a system deployed in Canada,
which has two official languages, English and French. While we require a common systemati-
zation of stereotyping, we need different operationalizations (measurement instruments) for the
two different languages and cultural contexts. The systematization needs to be broad enough
to cover hate speech as it presents in both contexts. The measurement instruments, however, need
to be suitably tailored to each target setting—at minimum, they need to use different languages.

Figure 1 introduces three other elements that, like the concept, need to be systematized, operational-
ized, and applied when performing measurement tasks: instance- and population-level context and the
amount. This framework, which we developed in the process of evaluating GenAI systems [7], struc-
tures the process of developing and validating measurement tasks of the form: measure the [amount]
of a [concept] in a [population] of [instances]. For instance, we can frame the hate speech example
as measuring the prevalence (amount) of hate speech (concept) in a conversational search system’s
responses (instances) in the current UK deployment (population). Alternatively, if we are interested
in specifically adversarial interactions, we could specify the target population as “adversarial probing
of the system in the current UK deployment.” Whatever the task specification is, the framework helps
us assess the validity of our resulting measurements—to determine whether they are indeed numbers
that can be meaningfully compared—by clearly specifying each of the four levels for each element,
and thus helping to surface gaps between them.

We devote remainder of the paper to examining red teaming through the lens of measurement theory.
We focus specifically on determining when the information obtained from red teaming can facilitate
meaningful comparisons across ASRs—and thus be used to make value judgments about GenAI
systems—and when it cannot.

4 Red teaming through the lens of measurement theory

We now demonstrate how measurement theory can help us understand red-teaming practices in terms
of entailed concept(s), context(s), and metric(s), with respect to ASR. Rather than inventorying the
considerations relevant to planning or documenting red-teaming activities [9, 10, 14], we structure
the task of understanding what (if anything) a given red-teaming activity is measuring.

We briefly provide two framing notes for the discussion that follows. First, we are using a very specific
notion of measurement, as articulated in Section 3. The ability to do valid measurement—to compare
metrics across systems or settings—comes not from running the same procedure, but from ensuring
that we are targeting the same systematized concept using the same quantifier (metric) through
appropriately tailored measurement instruments (operationalizations). Second, we emphasize that not
all red-teaming activities can or should be interpreted as measurement—much less used as such. For
example, red-teaming activities can function as “existence proofs,” producing examples of undesirable
behavior [e.g., 6, 17]. This section is therefore concerned with running attacks that culminate in
quantities that one might try to—justifiably or not—compare across time, systems, or settings. To
ground our discussion, Figure 2 provides an instantiation of the four column measurement framework
in the setting of a generic single-turn attack red teaming activity. For clarity in presentation, we
proceed in a different order from the columns in Figure 2, beginning with population.

Population: What is an “attack”, and what kinds of attacks are we interested in? Red-teaming
activities also vary widely in the types of attacks they use, thereby involving different distributions
over possible input prompts and, as a result, producing quantities that are reflective of different
population-level “contexts.” In other words, these activities vary in their underlying threat models.
We can show this with a very simple example. Consider two activities that differ only in their number
of prompts allowed per attack, 10 or 1000. These are arguably two different threat models. Even if
two attacks are identical for the first 10 prompts, the latter has 990 more turns to “succeed” where
the former has failed. (For more on attack “success,” see Concept, below.) As a result, these attacks
involve different distributions over inputs and produce results for different populations.

Some activities focus on red-teaming exercises whose population-level contexts are more reflective of
expected user behavior, whereas others focus on adversarial attacks. For manual or semi-automated
red teaming, team composition has a large impact [2]. For example, diverse teams will generally
have greater coverage of the input space; subject-matter experts will probe undesirable behavior in
different ways than laypeople.
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Instance: How is the target system output generated during a red-teaming activity? This is
another important component when thinking about the evaluation context—specifically, the instance-
level context. One such consideration is the number of tokens generated by the target system for
a single attack. “Success” (discussed below) can hinge on such decisions. For example, Mazeika
et al. [16] demonstrate how attack success rate drastically decreases as they increase the number
of tokens generated.

Concept: What does it mean for an attack to “succeed”? Most red-teaming activities aim to
identify undesirable behavior. We can view “undesirable behavior” as the common background
concept for defining attack success. Activities range widely in what systematized concepts—i.e.,
different, precisely defined behaviors—are being targeted. Many activities fail to precisely specify
an attack target altogether; they lack a clear threat model.

In automated red teaming, this presents as a leap straight from a background concept to an oper-
ationalization, i.e., a classifier for determining attack success—skipping the critical systematization
step altogether. This can be especially problematic when the attack target falls under dissentive risk
(i.e., “outcomes [that] are complex or contested” [9]), such as stereotyping or hate speech. This is
because systematization plays an important role in resolving the types of definitional conflicts that
are endemic to dissentive risk. Without systematization, these conflicts remain unresolved, which
can lead to unclear or incorrect operationalizations. Even for consentive risks (i.e., where attack
success conditions are clearly defined), such as divulging of personally identifiable information (PII),
where one might argue there is a “natural” broadly understood systematization, activities often vary
in their operationalizations.

Amount: How is the ASR metric calculated? The primary metric reported in red teaming is the
attack success rate (ASR). ASR is defined as the proportion of attacks that elicit undesirable behavior
from the target system. In automated red teaming, where success is assessed with a classification
model rather than through manual inspection, it is common to describe different classifiers as
giving rise to different ASR metrics (e.g., see the discussion of robust metrics in Mazeika et al.
[16]). Within the measurement theory framework (Section 3), different classifiers arise as different
operationalizations of the focal concept.

Having provided some analysis of red teaming through the lens of measurement theory, we can now
revisit the question posed at the beginning of the paper.

Can attack success rates be meaningfully compared across time, different systems, or different
settings? In general, NO. By the time the conditions are satisfied to answer YES, we are arguably no
longer performing “red teaming,” as it tends to be conducted in the literature, but rather are engaged
in a formal measurement exercise.

Consider the simple case represented in Figure 2 of single-turn attacks where we get to observe a
system output Y = L(X) generated by system L in response to an input prompt, X . Let

s(Y ;X) = I(Y is undesirable;X),

be the indicator that the attack has succeeded. Here s(Y ;X) is an “oracle” function that encodes
the systematized concept criteria for determining whether observing system output Y in response
to input X constitutes undesirable behavior. Given a threat model that specifies the distribution of
possible attacks (inputs), X ∼ D, we can define the target attack success rate metric as,

α(s, L,D) := PX∼D(s(L(X);X) = 1). (1)

This quantity depends on three things: the system, L, being evaluated; the attack success criterion, s;
and the input distribution, D. In this setup, we can view the observed attack success rate from a given
red-teaming activity (represented in the Statistical Estimator(s) and Observed ASR cells of Figure 2)
as estimates of α(s, L,D).

Now suppose we are interested in evaluating whether a new system, L2, has a lower rate of undesirable
behavior than system L1. As discussed in the previous section, red-teaming activities differ widely
in how they specify the success criterion, s, how they operationalize this criterion, s̃, and in the
input distribution, D. If either the success criteria or attack input distribution (threat model) is
different between the red-teaming activities used for the two systems (i.e., s1 ̸= s2 or D1 ̸= D2),
then comparing observed attack success rates ASR tells us little about which system is more prone to
undesirable behavior. This is because comparing even the “true” target attack success rate metrics,
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AmountPopulationInstanceConcept
Background Concept

Set of undesirable 
behaviors.

Background Instance
A single attack.

Background Population
General description of the 
threat model and setting we 
want the red teaming 
activity to be reflective of.

Background Amount
Rate of undesirable 
behavior across attacks.

Systematized Concept
An explicit, specific, and 
comprehensive definition of 
“undesirable behavior”.  An 
“oracle” function,
! ";$
= &("	)!	*+,-!)./01-;$)

Systematized Instance
Description of the metadata 
& features to be recorded 
for each attack.  Input	$; 
system response	"; add’l 
features/metadata 3	(e.g., 
attacker demographics)

Systematized Population
A distribution over attacks, 
which may rely on an 
explicit specification of the 
attacker’s goals, 
knowledge, resources, 
capabilities, and strategies.

Target ASR metric
Attack success rate metric,

4 !, 6,7 =	
ℙ!∼# ! ";$ = 1 ,

where Y = 	6 $  is the 
system response to input $.

Attack success function
Procedure(s)—manual, 
semi-automated, or fully 
automated—for 
determining whether an 
attack is successful in 
eliciting undesirable system 
behavior.  A function,

!̃ ";$

Interaction Representation
A precise description of 
how feature values and 
metadata will be 
calculated/obtained, e.g.,  
details of the decoding 
method for obtaining 
system outputs.

Red-teaming protocol
The complete protocol 
governing the red-teaming 
activity.  Including how 
human red teamers are 
selected, the specific 
automated tools used, and 
instructions provided. 

Statistical Estimator(s)
Observed attack success 
rate based on the red 
teaming activity, 

ASR !̃; = = $
%∑!̃ "&; $& ,

where = = { "&, $&, 3& }&'$% .

Observed single attack 
success indicator

0/1 indicator of attack 
success for a single attack 

!̃ A(; B(

Observed attack
A single observed attack, 

A(, B(, C(
with input B(, output A( and 
C( are additional 
features/metadata

Observed red-teaming 
activity

Collection of observed 
attacks, 

!! = 	 { %" , '" , (" }"#$%

Observed ASR
Attack success rate for the 
observed  red teaming 
activity, 

ASR !̃; =( = 1
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Figure 2: Measurement framework instantiated for a generic single-turn red teaming activity as a
measurement task. We view the observed attack success rate, ASR(s̃, D0), as an estimate of a target
attack success rate metric, α(s, L,D), that is defined wrt a distribution over attacks.

α(s1, L1,D1) and α(s2, L2,D2), would not provide meaningful insight into which system is more
prone to undesirable behavior. The observed ASRs are, at best, good estimates of these target α’s,
and are thus no more meaningful to compare.

But what if we have standardized our red-teaming activity using an automated approach to ensure that
attacks come from the same distribution, D0 and that their success is assessed using the same criterion,
s0? In this case, comparing α(s0, L1,D0) to α(s0, L1,D0) could provide meaningful insight into
undesirable behavior. But we could still have validity issues to contend with, for example, if the red-
teaming protocol relied not on a fresh set of attacks drawn from D0 but instead reused a previous set
of inputs that been used in training or putting safeguards on L2, but not L1, as discussed in Section 3.

5 Conclusion
Red teaming has grown to encompass a broad range of practices for probing GenAI systems for a wide
range of vulnerabilities and undesirable behavior. This broad mandate has led to critiques that it is
both everything and nothing. In this paper, we focused on the question: (When) can the types of quan-
titative information that red-teaming activities produce (in particular, ASRs) actually be used to make
meaningful comparisons of systems? We drew on ideas from measurement theory from the social sci-
ences to answer this question, exploring the the conditions under which the numerical values resulting
from a quantification of the properties of a system can be meaningfully compared and explaining why
red-teaming ASR metrics generally should not be compared across time, settings, or systems. Having
articulated the scope of this problem, in future versions of this work we will articulate procedures
for more meaningful comparisons of ASRs across time, different systems, and different settings.
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