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Model-agnostic Multi-Domain Learning with Domain-Specific

Adapters for Action Recognition

Kazuki OMI', Jun KIMATA, Nonmembers, and Torn TAMAKI', Member

SUMMARY In this paper, we propose a multi-domain learning model
for action recognition. The proposed method inserts domain-specific
adapters between layers of domain-independent layers of a backbone net-
work. Unlike a multi-head network that switches classification heads only,
our model switches not only the heads, but also the adapters for facilitating
to learn feature representations universal to multiple domains. Unlike prior
works, the proposed method is model-agnostic and doesn’t assume model
structures unlike prior works. Experimental results on three popular action
recognition datasets (HMDBS51, UCF101, and Kinetics-400) demonstrate
that the proposed method is more effective than a multi-head architecture
and more efficient than separately training models for each domain.

key words: multi domain learning, action recognition, domain-specific
adapters, domain-independent layers, multi-head

1. Introduction

Video recognition tasks [1], especially recognition of human
actions, has become important in various real-world applica-
tions, and therefore many methods have been proposed. In
order to train deep models, it is necessary to collect a variety
of videos of human actions in various situations, therefore
many datasets have been proposed [2]-[4]. The distribution
of a training dataset is called domain, and the difference in
distribution between two domains is called domain shift [S]-
[7]. A domain is greatly characterized by the process of col-
lecting the dataset of the domain, therefore, it is necessary to
collect training samples in several different domains for rec-
ognizing actions in various situations. Usually recognition
models are trained on a single given dataset (or domain) for
performance evaluation, but they often face to the difficulty
of performing well in a cross-dataset situation, which means
that they perform well on samples of the same domain but
don’t well generalize on samples of other domains.

A possible approach might be domain adaptation (DA)
[5S]-[7]. DA approaches adapt a model trained on samples
of a source domain to samples of a target domain in or-
der to cope with situations where training and test domains
are different. However, when there are more than two do-
mains, it would be better to use Multi-Domain Learning
(MDL) [8], [9], which built a single model that can be used
in multiple domains. Recently, many-domain problems have
been attracted their attention for images (such as Visual De-
cathlon [10] and Medical Segmentation Decathlon [11]) as
well as videos (Video Pentathlon [12]). In these cases, MDL
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Fig. 1: Two types of multi-domain learning architectures.
(a) Adapter type: after pre-training of domain-independent
parameters (blue), they are fixed and domain-specific pa-
rameters (red) are trained for each domain separately. (b)
Multi-head type: domain-independent (blue) and domain-
specific parameters (red) are trained simultaneously for all
domains. Note that (x4, §4) are input and prediction of the
sample from domain d.

has advantages over pair-wise domain adaptation approaches
as the number of domains increases.

MDL models have two types of trainable parameters;
one is domain-independent parameters that are shared by all
domains, and the other is domain-specific parameters such
that different domains have different ones. A model with
fewer domain-specific parameters will be computationally
less expensive even when more domains are added, while
more domain-independent parameters are expected to im-
prove the ability to represent features common for different
domains. There are two main architectures of MDL as shown
in Figure 1; domain-specific and independent parameters are
trained separately [9], [10], or simultaneously [13]. In the
former, domain-independent parameters are fixed after pre-
training and domain-specific parameters are trained on each
domain separately. In the latter, all parameters are trained
on multiple domains at once.
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Action recognition involves a variety of domains, how-
ever, the development of MDL models has received less
attention than image recognition tasks so far, although some
DA methods for action recognition have been proposed [14]—
[17]. Itis important to develop MDL models for video recog-
nition tasks because the computation cost of action recogni-
tion models often become large, and a single MDL model
would be more efficient than using different models for dif-
ferent domains. In this paper, we propose a new MDL model
for action recognition. The proposed method, inspired by the
prior work [9], inserts adapters with domain-specific param-
eters between domain-independent layers. The contributions
of this work are as follows;

* We propose a method of multi-domain learning for ac-
tion recognition. To the best of the authors’ knowledge,
this is the first attempt at MDL for action recognition.

e Our proposed method uses adapters between layers,
which can be applicable to many of existing action
recognition models, unlike prior works [8],[10] that
restrict the model to be a ResNet with resblocks.

* The proposed adapter has (2+1)D convolutions that pro-
cesses temporal and spatial information jointly while
reducing parameters.

e We show experimental results with three differ-
ent datasets (HMDBS51, UCF101, and Kinetics400)
demonstrating the effectiveness of the proposed
method.

2. Related Work
2.1 Action recognition and domain adaptation

Action recognition has been an actively studied topic [1] over
the last two decades, and various models have been devised
to capture the temporal information, such as X3D [18] with
3D CNN, as well as recent models [19] based on Vision
Transformer [20]. However, they all require one model per
domain and usually each dataset is used to train and validate
models separately for performance evaluation.

Domain adaptation (DA) for action recognition has been
studied to capture the difference of the appearance informa-
tion as well as the temporal dynamics, which makes recog-
nizing videos difficult compared to images. For example,
TA3N [14] introduces a domain discriminator to achieves
an effective domain alignment with adversarial training.
TCoN [15] uses a cross-domain attention module to avoid
frames with low information content and focus on frames
commonly important both in the source and target domains.
SAVA [16] is a model that responds to human actions rather
than the background for adapting domains with different
backgrounds. MM-SADA [17] performs adaptation for each
of RGB and optical flow domains. These DA approaches
however don’t handle more than two domains.

2.2 Multi-domain learning

To handle multiple domains, an approach similar to multi-
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Fig.2: An overview of our proposed method, which trains
domain-independent backbone layers (blue) and domain-
specific adapters (red) for all domains simultaneously. Un-
like other multi-head and adapter models, this model has
adapters for each domain between backbone layers.

— YD

task learning would be taken, that is, using multi-heads [13].
As shown in Fig.1(b), the model has a single feature extrac-
tor used for all domains and multiple classification heads
for each domain. In this case, the feature extractor has
domain-independent parameters, while each head has its own
domain-specific parameters. However, as more domains are
involved, it will become more difficult for a single extractor to
extract universal features for multiple domains, particularly
for complex video domains.

Another approach is to insert adapters in a backbone
network [8]-[10] as shown in Fig.1(a). First, the backbone
model is pre-trained to fix the domain-independent parame-
ters. Then adapters, which are domain-specific parameters,
are inserted to the backbone network. Finally, the modified
network is trained on each domain. One drawback of this
approach is that the backbone network is assume to have a
ResNet structure to insert adapters in parallel or series in-
side the resblocks [8],[10]. Hence it is difficult to apply
the adapter approach to other models, even though a vari-
ety of pre-trained models [18],[21] are currently available.
To alleviate this issue, CovNorm [9] doesn’t assume model
structures and inserts model-agnostic adapters between lay-
ers. However, the training is not end-to-end because adapters
need the dimensionality reduction of features offline by prin-
cipal component analysis.

In contrast, our method doesn’t assume the model struc-
ture, like as [9], while the training is done in an end-to-end
manner. In addition, the proposed method fine-tunes all
the parameters during the training with multiple domains,
whereas prior works using adapters [8], [10] have fixed pre-
trained domain-independent parameters (of the backbone
network) during the training with multiple domains.

3. Method
3.1 Architecture

Figure 2 shows the overview of the proposed method. The
core idea is the use of adapters between layers like as
CovNorm [9], but different adapters are used for different
domains like as classification heads in a multi-head net-
work [13]. First, we pre-train a backbone model that has N
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Fig. 3: Three types of adapters; (a) frame-wise 2D convolutions, (b) 3D convolution, and (c) (2+1)D convolution.

layers (or stages, blocks), each of which is shown as blue
modules in Fig.2. This is the same with the top of Fig.1(a)
where only the backbone model is shown.

Let M¢ be the £-th layer in the backbone, that takes input
f€ e RTXC/xH xW* 44 output ft’+1 € RTXCH xHxwi!
Here H? and W are spatial dimensions (width and height) of
f¢ with C? channels. The first layer takes an input video clip
x=fle RTX3xH ' xW! , where T is the number of frames in
the clip, assuming that the layers doesn’t change the temporal
extent of the input. The last layer M’ predicts the softmax
score §j € [0, 1]V of N categories. Using these notations, the
backbone network is assume to be a type of stacking layers;

M*(M'(x)) ). (1

Note that this type is widely used in many architectures, such
as 3D ResNet [22] and X3D [18].

Next, we insert adapter A/, between layers M‘ and M‘*!
for £ = 1,..., L —2. Thus the adapter takes f¢*! and output
a transformed feature g“l of the same shape, which is then
passed to the next layer M‘*!. Here d is the index of domains
d € {l,...,D} = D. This means that we use different
adapters A’ for different domain d;

§=ME(ME( -

Ja = ME(MEH (AL MP(AL (M (x2))) - ).

@

Note that we don’t insert adapters just before the head M 0’;
because the head itself is domain-specific.

As shown in Fig.2, when the network input is a sam-
ple x4 = fg} from domain d, then the data passes through
domain-specific adapters A, A%,... AL between the
domain-independent backbone layers M' M? ..., ML~
during the forward and backward computations. At the end
of the network, there are multiple heads M L each for domain
d, predicting scores §j; € [0, 1]V¢ where Ny is the number
of categories in domain d. This is the same as the multi-head
architecture (Fig.1(b)), but our method switches not only the
heads but also the adapters for each domain depending on
from which domain the sample comes.

3.2 Loss

Then, we train the whole network, that is, all of the domain-
specific parameters (adapters Ag and classification heads
M 5) as well as the domain-independent parameters (back-
bone layers M¢). Let (x; 4,yi.q) is i-th input-output pair

of domain d. Note that domain d of each sample is given.
Then, we minimize the following cross entropy loss;

L=Eq.pE y-alLcea(§,y)] &)

~ E g Lcea(§i,as Yi,d)s 4)
7

assuming that the domain is sampled from a discrete uniform
distribution.

Naively implementing this empirical loss is however
inefficient when different samples come from different do-
mains, causing the network to switch adapters for each sam-
ple. Instead, it would be more efficient if all samples in
a batch come from the same domain because the forward
computation of the batch uses adapters of the same domain
without adapter switching. Therefore, we introduce the fol-

lowing loss to minimize for a sampled batch {x;, y; }l 0

L= Ed~DE{x1',yi}IB:1~d

B
Z LCE,d(yi»yi)l , )

i=1

where B is the batch size.

In our implementation, a domain is selected sequen-
tially (rather than randomly), and a batch is sampled from
the domain, then the loss of the domain is computed. The
gradient is updated only after batches sampled from all do-
mains have been used for backward computations. In other
words, parameters are only updated once after every D back-
ward computations.

3.3 Spatio-temporal adapters

We proposed to use the following three types of adapters (i.e.,
2D, 3D, and (2+1)D) that spatially and temporally transform
features.

Frame-wise 2D conv. The 2D adapter performs convolu-
tions for each frame separately. Let f € RTXC*H*W pe the
input feature, and f? € REH*W be the feature of ¢-th frame
fort =1,...,T. 2D adapters perform 2D convolution Asp
to each frame separately;

g =Ape®f, 6)

where ® represent convolutions. This is implemented by 3D
convolutions Asp with the kernel of size RC*!X¥knxku,

9=Ap® f, (N
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Fig. 4: The structure of adapters. The “conv” layer is either
2D, 3D, or (2+1)D convolutions.

to produce the output g.

3D conv. Unlike the 2D adapter that doesn’t transform fea-
tures temporally, the 3D adapter uses 3D convolution on the
3D video volume (Figure 3(b)). An adapter Asp is applied as
in the same with Eq.(7) with the kernel of size RC>*k>*kn>xkw
(2+1)D conv. 3D convolution is expected to model the tem-
poral information of actions because it considers both spatial
and temporal dimensions simultaneously. However, as the
number of adapters increases with the number of domains,
adapters are required having fewer parameters. Inspired by
separable convolution [23]-[25], we introduce (2+1)D con-
volution adapters that use two convolutions in series; one

for spatial and the other for temporal. First, frame-wise 2D
RC><1><k,,><k

convolutions with the kernel of size size w are
applied;
g =Apef, fort=1,...,T, 8)

then a 1D convolution with the kernel of size RC*kx1x1
aggregates the outputs of 7 frames along the temporal direc-
tion;

g=Ap®[g. ... g ] )

3.4 Adapter structure

Figure 4 shows the structure of adapters. Each adapter has a
batch normalization (BN) after either of 2D, 3D, or (2+1)D
convolutions described above, followed by skip connection
and ReLU. In Fig.4, the red plate represents an adapter A%,
that is switched for each domain d. In addition, we place a
layer normalization (LN) as additional domain-independent
parameters after the output of these adapters. Adapters out-
put domain-specific features, which may differ for each do-
main. We expect LN to make the domain-specific adapter
outputs more domain-independent for facilitating the train-
ing of the next layer.

4. Experiments

We show experimental results using three domains, and com-
pare the proposed method with multi-head and non-MDL
approaches.

4.1 Setting

(1) Datasets

HMDBS51 [4] consists of 3.6k videos in the training set and
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Fig.5: Structures of (a) the backbone X3D-M, and (b) our
model with adapters and heads for each domain.

1.5k videos in the validation set, with 51 human action cate-
gories. Each video is collected from movies, web, Youtube,
etc., and the shortest video is less than 1 second and the
longest is about 35 seconds, while most videos are between
1 and 5 seconds long, with an average length of 3.15 seconds.
The first split was used in this experiment.

UCF101 [3] consists of 9.5k videos in the training set
and 3.5k videos in the validation set, with 101 human action
categories. Each video was collected from Youtube, and the
video length is 1 second for the shortest and 30 seconds for
the longest, while most videos are between 3 and 10 seconds
in length, with an average length of 7.21 seconds. There
are three splits for training and validation, and we report the
performance of the first split as it is usually used.

Kinetics400 [2] consists of 22k videos in the training
set, 18k videos in the validation set, and 35k videos in the
test set, with 400 human action categories. Each video was
collected from Youtube and trimmed to a 10 second long
segment corresponding to one of the action categories.

(2) Model

We used X3D-M [18] pre-trained on Kinetics400 as the
backbone network. Figure 5(a) shows the structure of X3D-
M, which has the stem conv block M!, followed by four
ResBlock stages M?,...,M> and a conv block M®, and
finally a classification head M7 (hence L = 7). The proposed
model used in the experiments is shown in Fig.5(b). This
model has D = 3 classification heads M; at the end of the
network, and five adapters per domain Afl (fort=1,...,5)
between the backbone modules.

We used the following adapter parameters. For frame-
wise 2D conv, the kernel size was k;, X k,, = 3 X 3. For
3D conv, the kernel size was k; X kp X ky,, = 3 X3 X 3.
For (2+1)D conv, the kernel size for spatial convolution was
kp X ky =3 % 3 and for temporal convolution k; = 3.

In the following experiments, unless otherwise denoted,
we used the (2+1)D adapters, which were inserted to all five
locations (the “all” row in Tab.3), for the proposed method
(Fig.2, the “train&train” row in Tab.2) with X3D-M as a
backbone.
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(3) Training

Training video files of different datasets differ in fps.
Therefore, we used the following protocol, following
pytorchvideo [26]. From one video in the training set,
we randomly extracted consecutive frames corresponding to
a specified duration starting from a randomly decided po-
sition, and created a clip by sampling 16 frames uniformly
from the extracted frames. We used the duration of about
2.67 seconds (corresponding to 80 frames in 30 fps) because
of the setting of X3D-M (using 16 frames with a stride of 5
frames). The short sides of extracted frames were randomly
resized to [224, 320] pixels and resized while maintaining
the aspect ratio. Then we randomly cropped 224 x 224 pixels
and flipped them horizontally with a probability of 50%.

The backbone X3D-M model were pre-trained on Ki-
netics400, so were the domain-independent parameters.
We trained from scratch the adapters and heads (domain-
specific parameters), as well as LN layers (added as domain-
independent parameters).

The term “epoch” doesn’t make sense because we train
the models on three datasets simultaneously and different
datasets have different number of samples. Therefore, in the
experiments, we trained models for 42,000 iterations, cor-
responding to 14,000 iterations for each dataset. The batch
size was set to 32, therefore the effective numbers of train-
ing epochs were about 2 for Kinetics400, 48 for UCF101,
and 128 for HMDBS51. The input clips for training were
taken from the three datasets in turn for each batch. In other
words, the first batch of 32 clips was taken from the first
dataset, the second batch was taken from the second dataset,
the third batch was taken from the third dataset, and so on,
for 42,000 batches. When training a batch of dataset d, the
batch is passed through adapters Afl and head M 5, as well as
domain-independent layers M ¢ to compute the loss Lcg 4.
The gradient is back-propagated using layers and adapters
only used in the forward computation. However, parame-
ters are not updated until the gradients of batches of three
datasets have been back-propagated. In this experiment, pa-
rameters were updated once every three batches, each from
three different datasets.

We used an SGD optimizer with momentum of 0.9. The
initial learning rate was set to 0.001 and reduced to 1/10 at
8,000 and 12,000 iterations.

(4) Inference

In validation, we performed a multi-view test as in prior
works [27]. For each video in the validation set, we repeated
the clip sampling 10 times to sample 10 clips. Then we
resized the frames while maintaining the aspect ratio so that
the short side was 256 pixels, and cropped to 224 X 224 at the
right, center, and left. This generated 30 clips (30 views),
and we averaged these results to compute a single prediction
score.

Table 1: The top-1 performance with different adapter types.
Number of parameters are also shown for the backbone
model (base), heads, and adapters.
params (M)

total base head adap.
545 297 1.13 1.34
5.89 297 1.13 1.79
8.12 297 1.13 4.02

HMDB UCF K400
73.07 95.93 69.94
74.77 96.25 69.84
75.03 95.77 70.08

adapter
2D

2+1)D
3D

average
79.65
80.29
80.29

Table 2: The top-1 performances by fixing or fine-tuning
domain-independent layers. Note that the number of train-
able parameters are shown. The first row corresponds to the
architecture shown in Fig.1(a), and the second row to Fig.2.
params (M)

M’ A%, ML | HMDB UCF K400 | average | total base head adap.
fix  train 73.07 95.19 67.54| 78.60 |291 — 1.13 1.79
train  train ‘ 74.77 96.25 69.84‘ 80.29 ‘5.89 2.97 1.13 1.79

4.2 Results
4.2.1 Adapter types

First we compare three types of adapters. Table 1 shows
the performances for each adapter type. As expected, 3D
and (2+1)D adapters performed better than 2D adapters be-
cause of the ability to model the temporal information. In
the following experiments, we used (2+1)D conv because it
has fewer parameters while both 3D and (2+1)D performed
similarly.

4.2.2 Fixing or fine-tuning domain-independent parame-
ters

In the prior works with adapters [8]-[10], the domain-
independent parameters of the backbone were pre-trained
on some domain, then fixed during training with multiple
domains. In contrast, our model fine-tunes those parameters
to jointly train with adapters. Table 2 shows the performance
comparison of these two settings. The first row shows the
performance of our model with adapters inserted, but the
domain-independent backbone layers were not trained dur-
ing multi-domain learning. As expected, the performance
is better when all parameters are trained jointly, indicating
that training adapters only is insufficient to support multiple
domains. The backbone layer should extracts more generic
domain-independent features, which makes the feature trans-
formation with adapters more effective.

4.2.3 Adapter locations in the backbone

Here we investigate the different configurations of adapter
insertion. Table 3 shows the performances by chang-
ing positions where we insert adapters in the backbone
model. “Early-x” used adapters Ail, .. .,Aj between the
early layers of the backbone, while “late-x” inserted adapters



Table 3: The top-1 performance with different adapter con-
figurations for the validation sets. The row “multi head”
corresponds to the architecture shown in Fig.1(b).
params (M)
#config |HMDB UCF K400 | average | total base head adap.
early-1 74.77 96.38 71.00| 80.72 |4.13 2.97 1.13 0.02
early-3 74.64 96.19 70.75| 80.53 |4.23 2.97 1.13 0.13
late-3 7490 95.90 70.45| 80.42 |5.85 297 1.13 1.75
late-1 73.27 96.03 70.86| 80.29 |5.44 297 1.13 1.33
multi-head | 73.99 96.25 70.62| 79.98 |4.11 297 1.13 —
all 74.77 96.25 69.84| 80.29 |5.89 2.97 1.13 1.79

Az_z_(x_l), ..., AL7? between the late layers. These config-

urations also have domain-specific heads M L but “multi-
head” is the case using only the heads but no adapters. “All”
is the full model that uses all of the adapters.

On average, the multi-head type shows the least perfor-
mance, indicating that that domain-specific parameters are
needed not only at the final heads, but also between layers
as adapters. The best performance was obtained by early-1,
which has the first adapter A}d only in addition to the heads
as domain-specific parameters. As the positions of adapters
inserted in the backbone becomes deeper, the performance
deteriorates gradually, which is consistent with the fact that
the multi-head has domain-specific parameters only at very
the end of the network.

The prior work [8] has reported that better performances
were obtained when adapters were inserted in the late layers
rather than the early layers. The differences between our
work and theirs are that videos come from similar datasets,
all the parameters are trained jointly, and a specific backbone
model is not assumed. Three datasets in this experiments
have similar categories, and most videos were taken from
third-person views. Therefore adapters in the early layers
might be enough to transform low-level temporal informa-
tion of videos in these datasets. We would have different
results with other datasets of first-person views, such as
SSv2 [28] and Epic-Kitchen [29], which are significantly
different domains. Another factor may be the use of X3D
pre-trained on Kinetics as the backbone. Its structure was
explored in a greedy way, so adding adaptors and heads for
multiple domains may be suboptimal.

4.2.4 Number of domains

In MDL, the number of domains is the important factor.
Table 4(a) shows the results when different numbers of do-
mains were involved for the “all” configuration in Tab.3, and
Table 4(b) for the “early-1” configuration. Rows of “# do-
mains 17 are the cases using a single domain, which means
that the network have adapters between layers and a single
head, and is trained on the domain only. The performance
of HMDB increases as more domains are used, demonstrat-
ing that MDL is beneficial for smaller datasets by leveraging
information from other larger datasets. In contrast, perfor-
mances of UCF and Kinetics decreases when other datasets
were used. In particular, performances dropped significantly
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Fig. 6: Performance over training epochs of using (a) a single
domain, or (b) three domains.

when HMDB, the smallest one, was used jointly as shown
in rows of “# domains 2”. This issue of dataset sizes may
caused by several factors. Currently we assume that the
domain was sampled from a uniform distribution, regard-
less of the dataset size, as in Eq.(4). Also we minimize the
sum of losses of different datasets without any weights. We
would investigate the effects of these factors in future, by in-
troducing non-uniform domain distributions or importance
sampling.

Figure 6 shows the performance of the validation sets
of three datasets when the network was trained on a single
domain (“# domains 1" in Tab.4(a)) or on three domains (“#
domains 37). Note that the validation performance is of a
single view (not 30 views as mentioned before), and horizon-
tal axes Fig.6(a) and (b) should be interpreted differently as
in Fig.6(b) a single iteration refers to a single gradient update
after back-propagation of three domains. The performance
of HMDB deteriorates as training progresses when trained
on a single domain, but this is not the case when trained on
multiple domains. This is in agreement with the observation
in Tab.4(a) above.

Note that Tab.4(a) also shows the performances of the
backbone network without any adapters in rows with “—" in
the domain column. This shows that our model with adapters
doesn’t work better than the backbone itself, even for a single
domain. This might be due to the increase of the parameters
to be trained while fixing the training iterations. But we
should note that three backbone networks are needed for
three domains to train separately and have more parameters
(about 10M in total), whereas our method requires a single
model of fewer parameters (about 5.8M).

4.3 Using another backbone model

Our proposed method is model-agnostic and applicable to
any models that have a structure like Eq.(1). We have used
X3D-M [18] in the experiments above, and here we show
results of 3D ResNet [22] pre-trained on Kinetics400. It
has the same structure with X3D-M; it has the stem conv
block M, four ResBlock stages M2, ..., M, a conv block
M?®, and a head M7 (hence L = 7). As like in Fig.5(b), this
model has a head and five adapters per domain for the “all”
configuration.

Results shown in Tab.5(a) show that the all configu-
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Table 4: Effect of the number of domains on the top-1 perfor-
mance with the X3D backbone of (a) the all and (b) early-1
configurations. Note that “—" in the left-most column shows
the cases using no adapters.

params (M)
#dom | HMDB UCF K400 | total base head adap.
— 75.62 — — 3.08 297 0.10 —
— — 9728 — 3.18 297 021 —
— — — 7243 | 379 297 0.82 —
1 7327 — — 3.68 2.97 0.10 0.60
1 — 9688 — 3.78 297 0.21 0.60
1 — — 71.80 | 439 2.97 0.82 0.60
2 7458 9590 — 448 297 031 1.19
2 7425 — 7021 | 5.10 2.97 092 1.19
2 — 9634 70.77 | 5.19 297 1.03 1.19
3 7477 9625 69.84 | 5.89 297 1.13 1.79
(a)
params (M)
#dom | HMDB UCF K400 | total base head adap.
1 74.18 — — 3.09 297 0.10 0.01
1 — 9667 — 3.19 297 0.21 0.01
1 — — 7200 | 3.80 2.97 0.82 0.01
2 73.73 9627 — 330 297 031 0.01
2 7444 — 7099 | 391 297 092 0.01
2 — 96.56 7148 | 4.02 297 1.03 0.01
3 7477 9638 71.00 | 4.13 2.97 1.13 0.02

(b)

ration considerably increases the number of parameters be-
cause 3D ResNet have larger channels (1024) than X3D-M
(192), which leads to 150 times more parameters of adapters
for 3 domains, and the deterioration of the performance.

In contrast, the early-1 configuration shown in Tab.5(b)
have fewer parameters and better performance. Again, this
observation supports the discussion in Sec.4.2.3 that the early
layers play an important role for transforming low-level tem-
poral information of different domains.

5. Conclusion

In this paper, we propose a multi-domain learning model for
action recognition that inserts domain-specific adapters be-
tween layers. The proposed method enables an end-to-end
learning with multiple domains simultaneously, and exper-
imental results showed that the proposed methods is more
effective than a multi-head architecture, and more efficient
than training a model for each domain separately. Our future
work includes the further investigation on the inserting loca-
tions and structures of adapters to facilitate extracting com-
mon features across different domains, as well as domain-
specific features suitable for each domain. In addition, other
datasets [28], [29] which are largely different from datasets
used in the experiments of this paper, are planned to be used
for further experiments.
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Table 5: Effect of the number of domains on the top-1 per-
formance with the 3D ResNet backbone of (a) the all and
(b) early-1 configurations. Note that “—” in the left-most
column shows the cases using no adapters.

params (M)

#dom | HMDB UCF K400 total  base head adap.
— 73.07 — — 31.74 31.63 0.10 —
— — 9611 — 31.84 31.63 021 —
— — — 7095 3245 31.63 0.82 —
1 6634  — — 81.93 31.63 0.10 50.19
1 — 9418 — 82.03 31.63 0.21 50.19
1 — —  69.12 82.65 31.63 0.82 50.19
2 65.56 9289 — 132.33 31.63 0.31 100.38
2 64.71 —  67.99 | 13294 31.63 0.92 100.38
2 — 9352 68.27 | 133.04 31.63 1.03 100.38
3 63.33 9329 67.80 | 183.34 31.63 1.13 150.58

(a)
params (M)

#dom | HMDB UCF K400 total base head adap.
1 7359  — — 31.78 31.63 0.10 0.04
1 — 9566 — 31.88 31.63 0.21 0.04
1 — — 70.77 | 3249 31.63 0.82 0.04
2 71.57 9482 — 32.02 31.63 0.31 0.08
2 71.18 — 69.98 | 32.63 31.63 0.92 0.08
2 — 96.14 7022 | 32.74 31.63 1.03 0.08
3 7190 96.30 69.39 | 32.88 31.63 1.13 0.11

(b)
Number JP22K12090.
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