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Abstract

Content-associative memories such as Hopfield networks have been studied as a
good mathematical model of the auto-associative features in the CA3 region of the
hippocampal memory system. Modern Hopfield networks (MHN) are generaliza-
tions of the classical Hopfield networks with revised energy functions and update
rules to expand storage to exponential capacity. However, they are not yet practical
due to spurious metastable states leading to recovery errors during memory recall.
In this work, we present a fresh perspective on associative memories using joint
co-occurrence statistics, and show that accurate recovery of patterns is possible
from a partially-specified query using the maximum likelihood principle. In our
formulation, memory retrieval is addressed via estimating the joint conditional
probability of the retrieved information given the observed associative information.
Unlike previous models that have considered independence of features, we do
recovery under the maximal dependency assumption to obtain an upper bound on
the joint probability of occurrence of features. We show that this new approxi-
mation substantially improves associative memory retrieval accuracy on popular
benchmark datasets.

1 Introduction

The hippocampal system in the brain is responsible for long-term declarative memory, which involves
remembering facts and events [WC21]. For any incoming stimulus, the representations forming the
memories are created within the trisynaptic circuit of the hippocampus consisting of distinct regions,
which includes the CA3 region of cells. The existence of recurrent synaptic connections in CA3 led
to the hypothesis that CA3 is an auto-associative network similar to the Hopfield network formulation
of [Hop82]. Several key ideas have emerged from the theoretical analysis of Hopfield networks, and
these have strongly influenced how neuroscientists analyze memory networks [AIL07].

Classical Hopfield networks can store a collection of multidimensional vectors, or memories as fixed
point attractor states of a recurrent dynamical system through Hebbian learning [Hop82]. Despite
their biological plausibility, Hopfield networks have not seen great adoption in content storage
systems due to their limited storage capacity.

The Modern Hopfield Network was introduced as a continuous relaxation of the original Hopfield
network from the 1980s and has been shown theoretically to have exponential storage capacity [KH16,
DHL+17]. However, they are not yet practical because they have a predilection to enter spurious
metastable states, leading to memorizing bogus patterns even while storing a small number of inputs.

In this paper, we revisit associative memories to offer new insights based on joint statistical modeling
to mitigate some of the limitations of Hopfield networks. Specifically, we show that by storing joint
statistics of neuronal activation as an aggregation of information contained in the patterns, we can
later recover accurately when partial evidence for the pattern is provided as a query.
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2 Associative memory modeling using Hopfield network

Associative memory [Pal80, AM88] models the relationship between different entities. It allows
information retrieval for one entity given the information of the associated entity. The Hebbian rule
is a simple yet effective method for neural network learning that is commonly used for associative
memory [Heb05]. It is based on an intuitive concept that neurons firing together should be connected
together. Given a binary dataset X = {x}, the Hebbian rule can be formulated as:

wij =
∑
x∈X

xixj (1)

, where xi ∈ [−1, 1] is the ith feature for sample x. The Hebbian rule was applied in several early
associative memory models such as Associatron [Nak72] besides the Hopfield network [Hop82].
Once the learning is complete, given a neural input x, the Hopfield network updates the neural states
in an iterative fashion. At each iteration, the state of the ith neuron is updated by:

xi =

{
1 if

∑
j ̸=i w

ijxj ≥ 0

−1 otherwise
(2)

When patterns are correctly stored, the converged state corresponds to one stored pattern. In a recent
development, the modern Hopfield network (MHN) significantly improves the theoretical memory
capacity by replacing the quadratic energy function used by the classical Hopfield network with
higher order energy functions [KH16].

2.1 The metastable states in Hopfield Network

Despite the large theoretical memory capacity, MHN is highly sensitive to the choice of parameters,
which may vary widely across different data representations [BR90, RSL+20, BBF18]. Furthermore,
the Hopfield networks are known to enter spurious attractors states due to a combination of similar
looking patterns [RSL+20]. Since Hopfield networks rely on evaluated similarity between queries and
stored memories for accurate associative memory retrieval, poor direct image similarity assessments
tend to produce weak basins of attraction in the Hopfield energy landscape space, leading to meta-
stable formulations. This happens even when storing a small number of patterns as shown in Fig. 2.

3 Statistics-guided associative memories

In this work, we revisit the classical Hopfield network by reformulating the Hebbian rule in a statistical
setting. Basically, the Hebbian rule captures the joint statistics of the input features, which can be
expressed through joint feature histograms.

wij =
∑
x∈X

xixj =
∑

vi∈{−1,1},vj∈{−1,1}

vivjhi,j(x
i = vi, xj = vj) (3)

, where hi,j is the joint feature histogram of ith and jth feature over X .

Given a non-binary dataset X = {x} we can extend the Hebbian rule using joint feature statistics.
Let hij be the first order joint histogram between the ith and the jth feature over X .

hij(v
i, vj) = hji(v

j , vi) =
∑
x∈X

I(xi = vi)I(xj = vj) (4)

I is an indicator function, which equals 1 when the statement is true and 0 otherwise. For an input
vector x, let xO and xU be the visible and hidden features, respectively. A hidden feature u ∈ U can
be inferred from a visible feature based on the first order joint histograms by:

p(xu|xi, i ∈ O) =
hiu(x

i, xu)∑
v hih(xi, xu = v)

∝ hiu(x
i, xu) (5)

For more reliable estimation, the hidden feature should be inferred based on all visible features
p(xu|xO). Although this high order conditional probability is difficult to calculate, it can be ap-
proximated using the first order conditional probability (5). For example, under the independence
assumption, the product rule can be applied:

p(xu|xO) ∼
∏
i∈O

p(xu|xi) (6)
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The Hopfield network can be interpreted as applying a summation rule for the approximation so that
to infer a hidden feature from one visible feature we get

x̄u|i = wiuxi =

1∑
xu=−1

xup(xu|xi) (7)

To infer a hidden feature using all visible features, a simple summation rule is applied as:

x̄u|O =
∑
i∈O

x̄u|i (8)

This is equivalent to applying a summation rule to estimate the joint conditional probability with:

p(xu|xO) ∝
∑
i∈O

p(xu|xi) (9)

With the estimated conditional probability, the hidden feature can be determined by:

xu = argmax
v

p(xu = v|xO) (10)

3.1 Maximal dependency for high order conditional probability approximation

For data with strong inter-feature dependencies, the independent assumption may lead to less accurate
approximation. To address this problem, we propose the approximation derived from the maximal
inter-feature dependency assumption for associative memory applications. The following equations
show the derived upper bound using first order joint histograms.

p(xu|xO) =
p(xu, xO)

p(xO)
≤ mini∈O p(xu, xi)

p(xO)
∝ min

i∈O
hui(x

u, xi) (11)

Unlike the product and summation rules that assume inter-feature independence, the upper bound
approach assumes maximal dependency among visible features, which may better fit imaging data.

4 Experiments

We evaluated the proposed method for associated memory retrieval on images.

In the first experiment, we focused on comparing the effectiveness of the above mentioned higher
order probability approximation methods. Hence, retrieval was done directly through the maximum
likelihood principle in (10), without iterative updates. The CIFAR-100 dataset (50000 colored training
images of size 32× 32) was used. The images were converted to gray scale with integer value in the
range [0, 100]. To simulate performance at various memory capacities, a various number of images
(i.e. 1000, 2500, 5000, 10000, 20000, 50000) were stored, respectively. For retrieval test, every pixel
within the center region of size 16× 16 was hidden and the rest of the image were visible.

For each size of stored images, all pairwise first order joint histograms were calculated using the
stored images, which resulted in 1024× 1023/2 unique first order histograms in total. For evaluation,
two metrics were used: 1) the number of images with at least one hidden pixel incorrectly inferred,
and 2) the average percentage of incorrectly inferred pixels in each image with retrieval errors.

# of stored images 1000 2500 5000 10000 20000 50000
Summation rule (9) 30/7% 210/25% 2928/12% 9866/30% 20000/58% 50000/80%
Product rule (6) 0/0 2/1% 7/5% 292/4% 14223/16% 49993/68%
Upper Bound (11) 0/0 0/0 0/0 0/0 1969/4% 45355/70%

Table 1: Retrieval performance by the three joint conditional probability estimation methods. The
number of images used is shown in the first row. The results are shown in total number of images with
retrieval errors / percentage of incorrectly retrieved pixels within each incorrectly retrieved image.

The results are summarized in Table 1. The summation rule for joint conditional probability estimation
performed the worst, with over 8% images incorrectly retrieved when 2500 images were stored. The
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Figure 1: Example retrieval results produced by our method. The first six examples were tested with
20000 images. The three examples on the left were correctly retrieved, while the next three images
have retrieval errors. The last column shows retrieving errors when tested with 50000 images.

Figure 2: The following sequence showcases image retrieval results by the proposed method and the
Modern Hopfield Network (MHN). Left to right - original image, the query image, an intermediate
update step, the final MHN reconstruction, and the proposed method. For most images, MHN
incorrectly converged to metastatble states, while the proposed method made no retrieval mistake.

error kept increasing as the number of images used in the test increased. The product rule substantially
outperformed the summation rule. Our upper bound approximation consistently performed the best.
Fig. 1 shows a few retrieval results produced by our method.

To compare with the modern Hopfield network (MHN) [KH16], we conducted a second retrieval
experiment using 6000 images from the MS-COCO dataset [LMB+14]. Again, these images were
converted to grayscale and resized to 32× 32. For this test, each image’s upper half was hidden. For
MHN, a dot product-based energy formulation proposed in [KH20] was used. We pre-processed
the images in the same way as previously described and set our β temperature to 150. Recurrent
updates were repeated for 300 iterations, and we compared the final set of recovered images with the
originals in the memory banks. If there were no meta-stable states, the mean squared error (MSE)
and the 1-structural similarity index (SSIM) would be zero. However, we observed that the MHN
energy updates had metastable states (as shown in Figure 2), resulting in 1-SSIM and MSE values of
0.441 and 0.058, respectively. In contrast, the proposed method displayed no meta-stable states with
a 1-SSIM and MSE of 0.0, confirming the advantage of the proposed method in image associative
memory retrieval.

5 Conclusions

We revisited the Hebbian rule and extended it with joint feature statistics for associative memory.
Higher order joint statistics is critical for accurate memory retrieval. Both the product rule and
the summation rule were applied to approximate higher order joint statistics using lower order
statistics under the often oversimplified independent assumption. We proposed to use the upper bound
approximation derived under the maximal dependency assumption as a more accurate alternative. For
testing associative memory retrieval on natural images, we showed that the proposed approximation
significantly improved the retrieval accuracy.
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