
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Unmasking the Web of Deceit: Uncovering Coordinated Activity
to Expose Information Operations on Twitter

Anonymous Author(s)

ABSTRACT
Social media platforms, particularly Twitter, have become piv-
otal arenas for influence campaigns, often orchestrated by state-
sponsored information operations (IOs). This paper delves into the
detection of key players driving IOs by employing similarity graphs
constructed from behavioral pattern data. We unveil that well-
known, yet underutilized network properties can help accurately
identify coordinated IO drivers. Drawing from a comprehensive
dataset of 49 million tweets from six countries, which includes
multiple verified IOs, our study reveals that traditional network
filtering techniques do not consistently pinpoint IO drivers across
campaigns. We first propose a framework based on node pruning
that emerges superior, particularly when combining multiple be-
havioral indicators across different networks. Then, we introduce a
supervised machine learning model that harnesses a vector repre-
sentation of the fused similarity network. This model, which boasts
a precision exceeding 0.95, adeptly classifies IO drivers on a global
scale and reliably forecasts their temporal engagements. Our find-
ings are crucial in the fight against deceptive influence campaigns
on social media, helping us better understand and detect them.

ACM Reference Format:
Anonymous Author(s). 2024. Unmasking the Web of Deceit: Uncovering
Coordinated Activity to Expose Information Operations on Twitter. In We-
bConf ’24: ACM Web Conference, May 13–17, 2024, Singapore. ACM, New
York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Social media have become a fertile ground for the orchestration and
execution of influence campaigns. These manipulative efforts are
designed to shape public perception by disseminating fabricated
and deceptive information, typically to promote a specific political
viewpoint or ideology. Such initiatives are most prevalent during
pivotal geopolitical events [37, 41], such as elections or crises, where
the drivers of these campaigns exploit the naturally-occurring on-
line chatter to spread politically biased content, sow division among
opposing factions, or target influential users [42, 47, 52]. Among
their possible forms, influence campaigns can take the shape of
state-sponsored information operations (IOs), wherein government-
backed actors collaboratively disseminate propaganda and misinfor-
mation aligned with their own ideologies or aimed at undermining
opposing viewpoints.
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for profit or commercial advantage and that copies bear this notice and the full citation
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A substantial body of research links orchestrated campaigns by
state-sponsored entities to attempts at manipulating public opinion
on social networks during pivotal political events [3, 16, 43]. The
2016 U.S. Presidential Election, targeted by Russian IO, exemplifies
this, with bots and trolls disseminating content on social media
platforms [4, 57]. Similarly, IOs by the Chinese Communist Party
(CCP) allegedly use coordinated actors on social media to influence
public opinion [23, 24].

An influence operation’s life cycle1 involves three steps. Initially,
operations create fake and automated accounts to mimic genuine
users [13, 27, 33]. These personas then generate and spread content,
often in coordination [30, 39, 54]. Organic users might engage with
this content, amplifying its reach, sometimes even to mainstream
media [9, 28, 29]. This study zeroes in on the second step, avoiding
the identification of independent inauthentic personas or modeling
organic user susceptibility. IOs are typically coordinated efforts
by multiple inauthentic users [38, 40, 46]. We term this group IO
drivers, following [38]. These actors use various techniques, includ-
ing artificially boosting content, manipulating platform feeds, and
engaging key users [36, 37, 47].

Extensive research aims to detect online coordination by identi-
fying unexpected similarities in user actions [5, 32, 36, 39, 40, 54].
These similarities span behaviors like co-retweeting and synchro-
nized posting. Such patterns form the foundation for networks that
depict user similarities using edge weights. The premise is that con-
nections between similar users can unveil coordinated user clusters.
To improve accuracy in identifying orchestrated campaign accounts
and minimize organic user misclassification, current methods filter
low-weight edges in similarity networks by setting high similarity
thresholds. This choice is also driven by the absence of ground
truth in previous studies.

Contributions of this work
With the release of datasets on Twitter IOs [18], this paper evalu-
ates existing methods, investigates new cues to detect coordinated
actions, and introduces novel techniques to identify influence cam-
paigns from multiple countries. We aim to surpass known filtering
approaches by leveraging topological features and properties of
similarity networks, like node embedding and centrality, relying
upon five behavioral traces to build similarity networks. The paper
addresses the following three Research Questions (RQs):
RQ1: To what extent can known edge-weight filtering approaches

identify IO drivers? Is there a specific behavioral trace that
consistently enables IO drivers’ detection for every IO? : We
demonstrate that edge-weight filtering approaches exhibit
limited capabilities in consistently detecting IO, even when
their parameters are optimized, highlighting the need for
alternative approaches to advance the state of the art.

1We use Influence Operation and Information Operation interchangeably.
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RQ2: Does centrality-based node pruning yield better classification
performance compared to edge filtering approaches? Does
combining network similarities result in improved classifica-
tion performance? : We show that node pruning surpasses
edge-weight filtering across different IOs and behavioral
traces, demonstrating how node centrality signals IO dri-
vers more accurately than edge weights. Nevertheless, our
analysis underscores the necessity of solutions that can
integrate various behavioral traces to detect diverse IOs.
We provide evidence of the beneficial impact of combin-
ing siloed similarity networks in a unique network that
accurately identifies coordinated actors based only on their
centrality in this fused network (AUC = 0.84, F1 = 0.77).

RQ3: Can similarity networks’ embeddings enable the detection
of coordinated accounts across multiple interacting influence
campaigns? Can these network representations be used to
predict users’ involvement in an IO? : By generating a vector
representation of the fused similarity network, we intro-
duce a supervised machine learning approach capable of
detecting IO drivers across various campaigns using only
behavioral traces (AUC = 0.95, F1 = 0.83). This approach
was also tested in challenging scenarios, wherein our con-
servative model successfully classifies IO drivers on a global
scale and accurately predicts their involvement over time
with a precision exceeding 0.95.

Using a data set comprising 49M tweets from the Twitter Infor-
mation Operations archive [18], this article performs an analysis
of influence campaigns that originated in six different countries.
Our study evaluates existing methods and proposes novel com-
putational models to identify coordinated networks of IO drivers.
Overall, we provide foundational insights and novel directions to
research endeavors focused on harnessing behavioral trace similar-
ities to uncover coordination within influence campaigns.

2 RELATEDWORK
IO detection has been approached from various perspectives: either
by analyzing individual inauthentic users or by examining the
collective behavior of malicious account networks.

2.1 State-sponsored IOs and their identification
Research has extensively analyzed individual account activities to
detect participation in influence campaigns, focusing on entities
such as bots (software-controlled accounts) and trolls (state-backed
human operators) [14, 33].

For bots, solutions have used various features and machine learn-
ing strategies to identify bot characteristics [8, 10, 56]. Botometer
[55, 56] has been instrumental in scaling bot activity research on
Twitter. However, recent studies emphasize that IO coordination
isn’t solely automated [21, 36].

Research on state-sponsored trolls has been categorized into
three categories based on detection features: content-basedmethods
[1, 2, 22], behavioral-based approaches [26, 31, 45], and sequence-
based techniques [12, 38]. Unlike these methods, our paper focuses
on group-level coordination, emphasizing orchestrated campaigns
over isolated inauthentic efforts.

2.2 Coordination Detection
Automated detection of coordinated IOs has employed various
strategies. Temporal methods, like the Rapid Retweet Network ap-
proach [39, 47], focus on synchronized posting times as indicators
of suspicious activities [6, 7, 32, 39, 40, 48].

Content-based techniques, such as the Tweet Similarity [39, 47]
and Hashtag Sequence methods [5], analyze shared content among
users. Others focus on shared URLs [17] or news articles [19].

Interaction-based methods, like the Co-Retweet [36, 40], examine
user interactions such as retweets and mentions. State-of-the-art
methods explore latent coordination signals [11, 35, 49, 51, 54]: For
instance, Vargas et al. [51] use time-series analysis, while Sharma
et al. [45] focus on mutual influence leading to collective behavior.

Our approach differs from existing methods, which primarily
construct similarity networks based on a single behavioral trace.
We harness the topological properties of the similarity network,
emphasizing node centrality and embedding. We aim to capture
coordinated actors across a broad IO spectrum by evaluating diverse
user similarities and their combinations.

3 DATA
In our quest to uncover coordinated actions behind influence cam-
paigns, we center our analysis on IOs on Twitter. The platform has
suspended accounts associated with these operations for violat-
ing their terms of service, which describe platform manipulation
as attempts to artificially amplify conversations using tactics like
multiple accounts, fake accounts, and automation.2

To foster transparency and research, Twitter has shared over 141
IO datasets from 21 countries, detailing every tweet from each IO
driver since account inception.

IO campaign data. Our analysis focuses onto six countries: China,
Cuba, Egypt & UAE, Iran, Russia, and Venezuela. These countries
were selected based on the extensive scale of their IOs, evident from
their vast user base. In line with recent studies [26, 53], we exam-
ine IOs at the country level, combining campaigns from the same
country, as outlined in Table 1. This approach mirrors real-world sit-
uations where multiple campaigns and organic conversations from
a single country might intersect. Notably, based on Twitter’s in-
sights [18] and prior research [53], we’ve combined accounts linked
to both Egypt and the UAE, as their IOs predominantly targeted
Iran and Qatar.

Control data. For a comprehensive evaluation of coordination
detection methods, we need a control group of organic users. We
employ the dataset by Nwala et al. (2023) [38], comprising tweets
from genuine users discussing similar topics in the same time frames
as the IO drivers. This dataset was curated by extracting hashtags
from IO drivers and querying them in Twitter’s academic search
API. Results were filtered to pinpoint accounts active during the
IO drivers’ active periods, and up to 100 tweets from these control
users during the respective IO were compiled.

4 METHODS
This section delves into both existing and proposed methodologies
for detecting coordinated activities in IOs. We begin by elucidating
2https://help.twitter.com/en/rules-and-policies/platform-manipulation
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Country (no. of
campaigns)

Accounts
Lifespan

IO
Drivers
[tweets]

Control
Users

[tweets]

China (1) 2010-2019 5,191 76,286
[13.8M] [3.5M]

Cuba (1) 2010-2020 503 30,099
[4.8M] [1.4M]

Egypt & UAE (2) 2011-2019 240 370
[1.5M] [0.4M]

Iran (5) 2010-2020 209 16,885
[9.9M] [2.5M]

Russia (5) 2010-2020 3,487 31,317
[9.8M] [4.4M]

Venezuela (2) 2010-2019 33 3,865
[9.5M] [0.7M]

Table 1: IOs examined in this work. For each IO, we report
their accounts’ life span, the number of IO drivers, control
users, and their corresponding volume of tweets

Figure 1: Construction of similarity graphs from behavioral
traces

the foundational assumptions and strategies for constructing simi-
larity networks from various behavioral traces. Subsequently, we
detail the techniques we have developed, rooted in these similarity
networks, and their potential applications.

4.1 Framework Overview
At the core of coordination detection methods lies the assump-
tion that genuine users operate independently, exhibiting limited
similarities in their online behaviors [39]. Thus, any unexpected
convergence in behavior can hint at potential coordination among
users [40]. Building on this assumption, existing techniques harness
user activity features, termed here as behavioral traces, to gauge
similarity between users. In our study, we incorporate five distinct
behavioral traces, including sharing identical links, hashtags, or con-
tent, re-sharing the same tweets, or exhibiting automation-enabled
actions such as rapid retweeting [34, 39].

These coordinated behaviors are often tactics in IOs, aiming to
artificially boost content, fabricate a sense of consensus, or manip-
ulate platform algorithms [15, 40, 47]. Each behavioral trace (§4.2)
helps to create a similarity network (§4.3), where user similarities
are represented through edge weights. Using these networks, we

identify coordinated groups via three methods: (𝑖) a popular unsu-
pervised technique based on edge filtering (§4.4.1); (𝑖𝑖) our novel
unsupervised approach centered on node pruning (§4.4.2); and (𝑖𝑖𝑖)
a new proposed supervised strategy rooted in graph embedding
(§4.6).

4.2 Behavioral Traces
Next, we delineate the behavioral traces used in our study, then
outline the process of creating each corresponding similarity graph.
We have identified five primary behavioral traces:

• Co-Retweet: The act of re-sharing identical tweets.
• Co-URL: Disseminating the same link or URL.
• Hashtag Sequence: Using an identical sequence of hashtags

within tweets.
• Fast Retweet: Quickly re-sharing content from the same

users.
• Text Similarity: Posting tweets with closely resembling tex-

tual content.
While this list captures the primary traces we have focused on,

it is by no means exhaustive. Other potential similarities, such
as temporal patterns and synchronized posting times [40], were
assessed. However, they were excluded from our framework due to
their limited effectiveness in pinpointing coordinated IO drivers. In
the future, we will operationalize and assess additional behavioral
traces associated with IOs.

4.3 Constructing Similarity Graphs
The process of creating a similarity graph is largely consistent
across most behavioral traces, as illustrated in Figure 1. We start
by forming a bipartite graph between users and entities, the latter
representing the specific behavioral trace under consideration (e.g.,
for the Co-URL trace, entities are the URLs). This bipartite net-
work links users to entities based on their sharing activities, with
weights assigned using TF-IDF to reflect the popularity of each
entity. Consequently, each user is depicted as a TF-IDF vector of the
shared entity. This bipartite graph is subsequently transformed into
a similarity network, connecting users based on their behavioral
trace similarities. The connections are weighted, with the weight
determined by the cosine similarity between the TF-IDF vectors.

For the Co-Retweet, Co-URL, and Hashtag Sequence traces, the
construction process is analogous but utilizes distinct inputs. For the
Co-Retweet network, a bipartite graph is formed between users and
tweets, linked by retweet activity. For Co-URL, URLs within tweets
are extracted to form a bipartite graph. The Hashtag Sequence trace
employs an ordered sequence of hashtags, with an added parameter
to set the minimum number of hashtags in a sequence. The Fast
Retweet network focuses on rapidly repeated retweets, using a time
threshold to classify a retweet as “fast”. From this refined set, a
bipartite network is constructed, which is then weighted using TF-
IDF based on the popularity of each targeted user, and subsequently
projected onto a similarity network.

The Text Similarity trace diverges from the above strategy. In-
stead of a bipartite graph, a direct similarity network is formed,
weighted by the cosine similarity of users’ shared textual content.
This content, excluding retweets, undergoes a cleaning process to
remove punctuation, stopwords, emojis, and URLs. Only tweets

3
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with a minimum of four words are considered, as shorter texts were
found to be less relevant and risked introducing noise. We employ
the Sentence Transformer stsb-xlm-r-multilingual from Hugging
Face for text embeddings, calculating cosine similarity using the
efficient FAISS algorithm [25]. To optimize computational efficiency,
we assess similarities within a one-year sliding window. A simi-
larity threshold, set at 0.7 according to previous research [39, 47],
ensures that only tweets that are the most similar are considered.
The resulting Text Similarity network connects users if they post
at least one pair of similar tweets, with the average text similarity
serving as the edge weight.

4.4 Unsupervised Coordination Detection
through Network Dismantling

This section elucidates unsupervised methodologies that utilize the
inherent properties of similarity networks to identify coordinated
IO drivers. We delve into two primary strategies: edge filtering and
node pruning.

4.4.1 Low-weight Edge Filtering. Edge filtering is a predominant
technique in detecting coordinated activities [5, 39, 40, 47]. It oper-
ates on the premise that the strength of similarity between users
can spotlight coordinated entities. In this context, the weight of
an edge in a similarity network signifies the strength of similarity
between two users. By setting a similarity threshold, prior research
has filtered out weaker connections to reveal clusters of coordinated
users. Notably, users who remain unconnected post-filtering aren’t
deemed coordinated. Given the absence of ground truth in many
studies, a conservative threshold has traditionally been used to
exclude potentially independent users. In our study, we evaluated
this method on different IOs, both by adhering to this conservative
threshold and by optimizing it to improve detection accuracy (§5.1).

4.4.2 Network Pruning based on Node Centrality. We introduce a
novel strategy that emphasizes node pruning in similarity networks
based on centrality measures. The fundamental idea is that IOs,
involving multiple accounts, often manifest a pronounced collec-
tive similarity. In a similarity network, this is evident when a node
(representing an IO driver) connects to numerous other nodes. As il-
lustrated in Figure 2A, IO drivers typically occupy central positions
in the similarity network, while organic users are more peripheral.
Panels B and C of Figure 2 further differentiate IO drivers from or-
ganic users based on edge weight and node centrality, respectively.
While edge weight distributions reveal discernible differences be-
tween the two user types, node centrality seems even more potent
in distinguishing them.

Our analysis leverages eigenvector centrality, which has demon-
strated superior discriminative power compared to other centrality
measures. A comprehensive comparison is available in Appendix
Fig. 10. For nodes absent in certain similarity networks, a cen-
trality value of 0 is assigned. After computing centralities, nodes
with lower eigenvector centrality are pruned. Like edge filtering,
we evaluated this method in different IOs, presenting results with
optimized and conservative centrality thresholds to pinpoint coor-
dinated actors (§5.2).

A B

C

Organic user

IO driver

Figure 2: Panel A: Co-Retweet similarity network of users
from Egypt & UAE. Blue nodes indicate IO drivers, whereas
orange nodes represent organic users. Panel B and C depict
the CDF of edge weight and eigenvector centrality of the two
classes of accounts, respectively

4.5 Network Fusion for Enhanced Similarity
Detection

Traditional methods often analyze a single similarity network or a
limited subset in isolation. However, we posit that relying solely
on one behavioral trace might not comprehensively identify all
IO drivers. This is grounded in the understanding that individual
accounts might employ a diverse array of strategies, leading to
different user groups orchestrating varied coordinated actions.

To address this, we introduce the concept of a Fused Network,
which combines multiple similarity networks, encompassing Fast
Retweet, Text Similarity, Co-Retweet, Co-URL, and Hashtag Se-
quence. This fusion aims to enhance the detection accuracy and
generalizability by capturing a broader range of coordinated behav-
iors.

In our exploration of the fusion process, we assess various strate-
gies for integrating these networks, applicable to both edge-filtering
and node-pruning methods. These strategies range from aggregat-
ing normalized weights to choosing the maximum centrality of
individual similarity networks. The most effective approach we
found links two nodes in the Fused Network if they are connected in
any of the individual similarity networks. Although there are many
other possible fusion strategies, our focus remains on underscor-
ing the advantages of amalgamating multiple similarity metrics to
enhance the detection of coordinated IO activities (§5.2).

4.6 Supervised Detection Using Coordination
Signatures

While Section 4.4 explored unsupervised techniques suitable for
contexts without ground truth, this section focuses on supervised
models. These models leverage labeled data to craft classifiers that
pinpoint IO drivers using coordination indicators. Given the rich
information embedded in the similarity networks, our supervised
approach seeks to harness their topological nuances, both individu-
ally and in a combined fashion.

4
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Behavioral Trace Prior Work (AUC) Optimized (AUC)
(parameters, pt) (pt) percentile (pt)
Fast Retweet 0.53 ± 0.03 0.62 ± 0.13
(time interval) (10s) 50-th (60s)
Co-Retweet 0.55 ± 0.03 0.69 ± 0.09
(percentile) (99.5-th) 80-th
Co-URL 0.61 ± 0.04 0.72 ± 0.09
(percentile) (99.5-th) 80-th
Hashtag Sequence 0.59 ± 0.07 0.68 ± 0.16
(no. hashtags) (5) 65-th (3)
Text Similarity 0.47 ± 0.04 0.52 ± 0.05
(cosine similarity) (0.7) 96-th (0.95)

Table 2: Average AUC of prior work when using their param-
eters (pt) vs. optimized ones

However, directly applying machine learning to network struc-
tures poses challenges. To overcome this, we employ node embed-
dings, specifically using Node2Vec [20]. This technique translates
the network’s structure into a more digestible, low-dimensional
space, producing vector representations of length 128. For each
node, we initiate 16 walks, each spanning 16 steps, to derive its
embedding. With these embeddings in hand, we deploy standard
machine learning algorithms for several classification tasks:

Task 1: Distinguishing users involved in separate IOs, utilizing both
individual and fused similarity networks.

Task 2: Classifying users on a global scale, accounting for potential
overlaps and similarities among multiple IOs.

Task 3: Forecasting user participation in IOs over varying years of
activity.

These tasks underscore the potential of supervised models that
rely on representations derived from the similarity network. They
are particularly relevant in real-world scenarios (§5.3) where so-
cial media platforms release annotations sporadically and IOs can
intersect with a mix of genuine and coordinated discussions.

5 EVALUATION
In this section, we delve into the performance metrics of our un-
supervised methods for detecting coordinated activity, specifically
focusing on edge filtering and node pruning. Subsequently, we shift
our attention to the results from the supervised embedding-based
model across the three previously outlined classification tasks. Our
evaluation metrics encompass Precision, Recall, F1, and AUC.

5.1 Assessing IO Detection via Edge Filtering
(RQ1)

In RQ1, we examine the efficacy of common edge filtering tech-
niques in detecting a variety of IOs. Our analysis adopts parameters
established in prior studies: for Co-Retweet and Co-URL, the 99.5-
th percentile of cosine similarity in co-sharing activities [36, 40];
for Hashtag Sequence, a minimum sequence of 5 hashtags [40]; for
Fast Retweet, a 10-second window [39]; for Text similarity, a cosine
threshold of 0.7 [39, 47].

Next, we refine these parameters to optimize the AUC classifi-
cation performance. We also employ a TF-IDF-weighted bipartite

Figure 3: Improvement in the classification performance by
using node pruning instead of edge filtering

graph framework across all behavioral traces, ensuring a uniform
metric of cosine similarity. In line with prior research, we individu-
ally assess the five behavioral traces and their associated similarity
networks.

Table 2 contrasts the classification performance (AUC) between
the prior work and our optimized parameters. The parameters from
prior work [36, 39, 40, 47], appear to be more stringent than our
optimized set on most behavioral traces, with the exception of text
similarity. This cautious approach likely stems from a desire to
reduce false positives in contexts without a clear ground truth. Im-
portantly, our study is the first to evaluate edge filtering techniques
in a context where IO annotations are available.

Furthermore, even post-optimization, the AUC performance ex-
hibits considerable variability, ranging from 0.52 to 0.72 depending
on the behavioral trace. This disparity underscores that, while a
particular behavioral trace might be adept at detecting certain IOs,
it might falter with others. A deeper dive into the performance met-
rics across various IOs and countries reinforces this observation.
For a more granular breakdown, the reader is directed to Fig. 12 in
the Appendix.

Key Insights. The edge filtering technique, particularly the low-
weight variant, demonstrates inconsistent efficacy in detecting a
wide range of IOs. Even with parameter optimization for each
similarity network, the method showcases potential in pinpointing
actors in specific influence campaigns, but struggles to maintain
this accuracy universally across all IOs.

5.2 Comparative Analysis: Node Pruning vs.
Edge Filtering (RQ2)

Historically, research has emphasized edge weights to detect coordi-
nated IO drivers, based on the strength of similarity between users.
However, this approach may miss out on capturing the broader
behavioral similarities users might exhibit along different axes,
especially smaller ones, if taken individually. To address this, we
introduce node centrality within a similarity network as a more
encompassing measure.

Initially, we evaluated our node pruning approach against the
traditional edge filteringmethod. For a fair comparison, bothmodels
are optimized for their best parameters, to maximize precision
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Figure 4: AverageNMI score between groups of users involved
in different coordinated actions

(resp., recall), shown in the left (resp., right) panel of Fig. 3. We
observe comparative improvements in precision and recall when
transitioning from edge filtering to node pruning. Our findings
indicate that node pruning enhances precision by an average of
0.42 while maintaining comparable recall levels. This improvement
is consistent across various campaigns and similarity networks,
with only a few deviations. This is a rather important feature of our
model, sincemisclassifying organic users has a higher cost, resulting
in potential penalties (e.g., account suspension) to innocent users.

A deeper dive into performance metrics across diverse IOs and
similarity networks confirms that no single behavioral trace con-
sistently captures different IOs across all countries. For example,
while the Co-URL similarity graph effectively identifies Chinese,
Russian, and Venezuelan coordinated accounts, it struggles with
IOs from Cuba and Iran. Moreover, different groups of users within
an IO may employ a diverse suite of strategies. This observation
is confirmed in Figure 4, which illustrates the Normalized Mutual
Information (NMI) score between groups of users engaged in vari-
ous coordinated actions. NMI scores close to zero indicate minimal
overlap between groups. As a result, a particular similarity network
can only identify a subset of users within the IO drivers’ spectrum
(see Table 3). This variability suggests that IO campaigns employ a
diverse range of tactics and that a single similarity network might
only capture a subset of these coordinated actions.

To address this limitation, we introduce a fused similarity net-
work that combines multiple behavioral traces. This fusion, as
illustrated in Figure 5, enhances the generalizability of the model
across various campaigns. The fused approach does not necessar-
ily improve the classification performance for each campaign, but
ensures consistent accuracy across various IOs.

In summary, our fused network approach achieves an average
AUC of 0.83 and an F1 of 0.76. Notably, these results are based on
an unweighted version of the eigenvector centrality. When weights
of the fused similarity network are considered for computing node
centrality, the classification performance does not improve. Sim-
ilarly, various combinations of edge filtering and node centrality,

Proportion of IO Drivers
Country FR CR CU HS TS Fused

Egypt & UAE 11% 76% 89% 70% 81% 96%
Cuba 71% 94% 44% 82% 73% 97%
Iran 22% 62% 61% 25% 64% 87%
Russia 34% 59% 94% 60% 90% 97%
China 12% 58% 77% 17% 32% 84%
Venezuela 61% 85% 91% 38% 77% 96%

Table 3: Proportion of IO drivers captured by each similarity
network in IOs from Egypt & UAE, Cuba, Iran, Russia, China,
and Venezuela. FR = Fast Retweet, CR = Co-Retweet, CU =
Co-URL, HS = Hashtag Sequence, TS = Text Similarity

Figure 5: AUC ROC of siloed and fused similarity networks

or alternative approaches based on multiscale filtering methods
[44] as suggested in [36, 48], do not appear to offer substantial
improvements in predictive performance and may even result in
performance degradation (see Table 4 in the Appendix). Exploring
this further is earmarked for future research.

Key Insights. Our node pruning methodology demonstrates su-
perior performance over traditional edge filtering techniques in
identifying coordinated IO drivers. The results emphasize the need
for a holistic approach, combining multiple behavioral traces, to
capture the various tactics employed by IO campaigns. This method
can be applied unsupervised when ground truth data is unavailable.
For optimal results, we advocate for the fusion of multiple similarity
networks and recommend a conservative centrality threshold.3

3Based on our experiments, a centrality threshold of 10−2 ensures a Precision > 99%,
while maintaining an average AUC > 70%.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Unmasking the Web of Deceit: Uncovering Coordinated Activity to Expose Information Operations on Twitter WebConf ’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 6: Classification performance of the siloed and fused similarity networks

5.3 Harnessing Embeddings from Similarity
Networks for Classification (RQ3)

To address RQ3, we transition from raw similarity networks to a
more compact representation using node embeddings, converting
users into 128-dimensional vectors. This transformation aims to
encapsulate the intricate topological structure of the similarity
network, thereby facilitating our three classification tasks (cf., §4.6).

5.3.1 Task 1: IO Drivers Detection. The potential of our embedding
approach is visually captured in Figure 7, where the node embed-
dings from the fused similarity network are projected into a 2D
space using t-SNE [50]. A clear demarcation between IO users and
organic ones is evident, underscoring the method’s efficacy.

We employ this approach on both siloed and fused similarity
networks, using a Random Forest classifier with a 10-fold cross-
validation to ensure the robustness of our results. Figure 6 presents
the classification metrics, with the fused network approach consis-
tently outperforming individual networks. On average, the fused
approach achieves an AUC of 0.94, an F1-score of 0.82, and a re-
markable precision of 0.96.

An ablation study further elucidates the contribution of each
similarity graph within the fused network. While each trace adds
value, the co-Retweet and Fast Retweet networks emerge as the
most and least influential, respectively (see Appendix Fig. 13).

5.3.2 Task 2: Classification on aGlobal Scale. Broadening our scope,
we combine interactions and similarities from all IO drivers into
a unified fused similarity network. Figure 8 visualizes this global
embedding space, revealing distinct clusters based on countries and
potential inter-state collaborations. Temporal patterns also emerge,
hinting at the longevity and strategy of different IO campaigns.

For classification, we replicate the Task 1 methodology but on
this global fused network. The results are encouraging, with a
precision of 0.95, recall of 0.70, F1-score of 0.78, and AUC of 0.92.

5.3.3 Task 3: Forecasting Users’ Engagement in IOs. Finally, we
assess the predictive capabilities of our approach. Using data from
prior years, we aim to predict users who will engage in IOs in
subsequent years. This evaluation is set in the global context of
Task 2, adding another layer of complexity.

Figure 7: t-SNE visualization of node embeddings of the fused
similarity network for different IOs

The results, presented in Figure 9, indicate a steady improve-
ment in classification performance as more data become available.
Notably, our model consistently achieves near-perfect precision
and an F1 score exceeding 0.70 by 2017. This is a particularly signif-
icant result, considering that a substantial proportion of IO drivers
became active in 2018 and 2019 (see Fig. 14 in the Appendix).

Key Insights. The embeddings derived from the fused similarity
network prove instrumental in detecting IO drivers on a global
scale and forecasting their future engagements. This supervised
technique is best suited for scenarios where some ground truth data
is available. For optimal results, we advise amalgamating various
similarity networks to ensure a high-precision model.
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Figure 8: t-SNE of global node embeddings for IO drivers

Figure 9: Performance of model trained on historical data.
We classify users who will engage in an IO after a specific
year based solely on the users active in the preceding years

6 CONCLUSIONS
In this paper, we introduce novel models for identifying coordinated
actors driving IOs. Our approach proposes a paradigm shift from
conventional coordination detection techniques. By prioritizing
network properties, such as node centrality, we emphasize the
detection of accounts that exhibit similarities with many others
(node centrality). This diverges from earlier methods that focused
on accounts highly similar to at least one other (edge weight). This
shift in perspective allows us to leverage even weak similarity
signals, resulting in more precise IO drivers’ identification (42%
improvement). Recognizing the need for a comprehensive approach

that can generalize across campaigns from diverse countries, we
propose the fusion of multiple behavioral indicators. Through a
vector representation of a network combining five similarity traces,
we propose a supervised approach that accurately distinguishes
organic users from IO drivers in complex scenarios where diverse
campaigns are intertwined. Our findings pave the way for novel
methods that utilize user similarities to expose IOs, setting the stage
for future research on the detection of state-backed IOs.

Limitations. Our work, while promising, has limitations. First,
our definition of IO drivers is based on users identified by Twit-
ter, but the exact mechanisms Twitter used for this identification
remain opaque. Potential biases in data collection and possible mis-
classification of accounts can impact the detection efficacy of our
models. Second, the activities or keywords used by control users
might differ in frequency from those of IO drivers. These differ-
ences could imply that control users inherently constitute separate
networks, not solely because of their non-IO status. Third, the set
of behavioral traces is not exhaustive and may include additional
indicators. In our future work, we will explore these along with a
broader range of potentially coordinated IOs.

Ethical Considerations. To prioritize user privacy, we ensured
that all control data were anonymized prior to analysis. It is crucial
to note that our model’s predictions might occasionally misclassify
genuine accounts as coordinated, underscoring the need for careful
interpretation of results. On the contrary, IO drivers mislabeled
as control accounts might persist in disseminating misleading nar-
ratives or scams. As such, our model should serve as one among
several tools to more accurately differentiate between IO drivers
and genuine accounts. Note: This study is IRB-approved.
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APPENDIX
Figure 10 displays the Cumulative Distribution Function of four
centrality measures of the co-retweet similarity network for both
IO drivers and organic users from Egypt & UAE. This distribution
pattern is consistent across all the countries and similarity networks
we examined, leading us to choose eigenvector centrality as the
selected centrality measure.

Figure 11 depicts the comparative improvements in F1 and AUC
when transitioning from edge filtering to node pruning. Our find-
ings indicate that node pruning boosts F1 and AUC by an average
of 0.17 and 0.11, respectively.

Figure 12 displays the performance of the edge filtering approach
with varying parameters for each behavioral trace. It’s worth noting
that while a specific behavioral trace might effectively detect certain
IOs, it may not perform as well with others. As expected, there is a
consistent trade-off between precision and recall.

Table 4 shows the classification performance of a multiscale
filtering method, which does not yield enhancements in predictive
performance.

Table 5 displays the classification performance of the node prun-
ing approach for each behavioral trace and country under investi-
gation. While it might not necessarily enhance the classification
performance for every campaign, the fused approach does improve
the model’s generalizability across different campaigns.

Figure 13 portrays an ablation study of the supervised model
based on node embedding of the fused similarity network. The
results indicate that each behavioral trace contributes positively to
the fusedmodel, and removing any of them can reduce classification
accuracy. Specifically, the co-Retweet and Fast Retweet similarity
networks appear to be the most and least relevant inputs to the
fused network, respectively.

Figure 10: Cumulative Distribution Function of four network
centralities (i.e., degree, eigenvector, betweenness, closeness)
of a similarity network of users from Egypt & UAE.

Figure 11: Improvement in AUC and F1 classification perfor-
mance by using node pruning instead of edge filtering.

Similarity Network Recall Precision F1 AUC

Co-Retweet 0.47 0.85 0.54 0.72
± 0.26 ± 0.20 ± 0.16 ± 0.12

Co-URL 0.29 0.66 0.33 0.62
± 0.38 ± 0.33 ± 0.37 ± 0.15

Fast Retweet 0.22 0.69 0.27 0.60
± 0.25 ± 0.23 ± 0.26 ± 0.12

Hashtag Sequence 0.28 0.69 0.35 0.63
± 0.27 ± 0.29 ± 0.26 ± 0.13

Text Similarity 0.00 0.00 0.00 0.00
± 0 ± 0 ± 0 ± 0

Table 4: Average classification performance of backbone
method.

Figure 14 illustrates the number of IO drivers who initiated their
activity between 2010 and 2019.
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Figure 12: Precision and Recall of the edge filtering approach

Country FR CR CU HS TS Fused

Cuba 0.72 0.96 0.84 0.89 0.95 0.97
Iran 0.54 0.77 0.66 0.58 0.77 0.77
Russia 0.62 0.72 0.89 0.75 0.78 0.89
China 0.51 0.76 0.84 0.53 0.62 0.82
Venezuela 0.74 0.89 0.90 0.64 0.87 0.88
Egypt & UAE 0.52 0.79 0.80 0.84 0.78 0.70

Table 5: AUC of the node pruning approach for IOs from
Egypt & UAE, Cuba, Iran, Russia, China, and Venezuela. FR =
Fast Retweet, CR = Co-Retweet, CU = Co-URL, HS = Hashtag
Sequence, TS = Text Similarity.

Figure 13: Ablation study: Average F1 and AUC of the super-
vised model based on the fused similarity network, and its
possible variations

Figure 14: New active IO drivers per year
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