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Abstract

In this work, we revisit the generalization error of stochastic mirror descent for
quadratically bounded losses studied in Telgarsky (2022). Quadratically bounded
losses is a broad class of loss functions, capturing both Lipschitz and smooth
functions, for both regression and classification problems. We study the high
probability generalization for this class of losses on linear predictors in both
realizable and non-realizable cases when the data are sampled IID or from a
Markov chain. The prior work relies on an intricate coupling argument between
the iterates of the original problem and those projected onto a bounded domain.
This approach enables blackbox application of concentration inequalities, but
also leads to suboptimal guarantees due in part to the use of a union bound
across all iterations. In this work, we depart significantly from the prior work of
Telgarsky (2022), and introduce a novel approach for establishing high probability
generalization guarantees. In contrast to the prior work, our work directly analyzes
the moment generating function of a novel supermartingale sequence and leverages
the structure of stochastic mirror descent. As a result, we obtain improved bounds
in all aforementioned settings. Specifically, in the realizable case and non-realizable
case with light-tailed sub-Gaussian data, we improve the bounds by a log T" factor,
matching the correct rates of 1/7 and 1/+/T, respectively. In the more challenging
case of heavy-tailed polynomial data, we improve the existing bound by a poly T’
factor.

1 Introduction

Along with convergence analysis of optimization methods, understanding the generalization of models
trained by these methods on unseen data is an important question in machine learning. However,
despite the number of works attempting to answer it, the problem has not been fully understood, even
in the simplest setting of linear predictors constructed with the standard stochastic gradient/mirror
descent. A great part of prior works [33} 115} 130, 31} 132]] focus only on the generalization on linearly
separable data and/or of models trained with specific losses with exponentially decaying tails such as
logistic loss. The question of what we can guarantee beyond these settings remains open.
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Recently, [35] proposes a new approach to analyze the generalization error with high probability of
stochastic mirror descent for a broad class of quadratically bounded losses, beyond the realizable
setting. This class of losses encapsulates both Lipschitz and smooth functions, for both regression
and classification problems. The obtained bounds complement existing in-expectation bounds [[12]]
and nearly match the counterpart of convergence rates in optimization. While this result pushes
forward the state of the art, the obtained guarantees do not completely resolve the problem. The
central piece of the proposed approach is a “coupling” technique between the iterates of the original
problem and those projected onto a bounded domain. In this technique, one first constrains the
problem in a bounded domain with a well chosen diameter. The bounded domain diameter allows to
apply concentration inequalities as a blackbox and obtain bounds in high probability. Then using
an inductive argument and a union bound across all iterations, one can show that the iterates in
the original problem coincide with the ones in the constrained problem. Due to the union bound,
the success probability decreases from 1 —  to 1 — 7', where T is the number of iterations in the
algorithm. This loss translates to a milder log 7" factor loss in the guarantee in the case of realizable
data , and a more significant poly T factor loss in the non-realizable setting when the data has
polynomial tails. Thus a natural question arises of whether we can obtain a stronger analysis that
closes these remaining gaps.

In this paper, we revisit these generalization bounds for quadratically bounded losses by [35]. We
introduce a novel approach to analyze the generalization errors of stochastic mirror descent in both
realizable and non-realizable cases when the data are sampled IID or from a Markov chain. In all
these cases, we remove the need to use the union bound argument, thus preventing the loss in the
success probability. This translates to the following improvements:

— In the realizable, and the non-realizable cases with sub-gaussian tailed data and Markovian data,
we improve the bounds by a log T" factor. This improvement comes from analyzing the moment
generating function of a martingale difference sequence with well-chosen coefficients. In these cases,
we also remove the necessity of using the coupling-based argument used in the same work by [35]].
Instead, by solely making use of the problem structure, we arrive at the same conclusion that with
high probability, the iterates of stochastic mirror descent for quadratically bounded losses behave as
if the problem domain is bounded.

— In the non-realizable case with polynomial tailed data, we improve the existing bound by a poly T’
factor. Due to the polynomial dependency on %, being able to maintain the same success probability
through all iterations is crucial in this case. Unlike the previous work, we rely on a truncation
technique. Using a more refined analysis of the truncated random variables, in combination with
suitable concentration inequalities and the coupling technique, we improve the existing bounds
significantly.

1.1 Related Work

Broadly speaking, there is a rich body of works in optimization and generalization that provide
convergence guarantees and generalization bounds for stochastic methods. Earlier works often focus
on in-expectation bounds [8} 124} 26 18} [12} 3], and bounds in high probability [16} 28} {14} [13]] for
problems with bounded domains or under various additional assumptions such as strong convexity,
noise with light tails. Recent developments for optimization [25} 10} 20} 23}, [1 1,17, 9, [19} 129, 22| [21]]
are able to handle unconstrained problems and relax these assumptions, but also require changes to
the algorithm such as gradient clipping.

In generalization error analysis, specifically, a number of prior works, including [33} 15 30} 31} 32],
focus only on linearly separable data. Among these, [33} 15, 32] only deal with exponentially tailed
losses while [30, [31]] show generalization bounds for general smooth convex losses. Our work,
similarly to [35]], goes beyond the realizable setting and specific losses. We show high probability
generalization bounds in both realizable and non-realizable settings for the broad class of quadratically
bounded losses, for both regression and classification problems.

Other related works include the line of works that examine generalization errors via algorithmic
stability. The works by [[12, 1516, 12 [1]] show the generalization error of an arbitrary algorithm via a
quantity called uniform stability. By bounding this quantity for specific algorithms on a fixed training
dataset, they derive generalization bounds. Our work focuses on a different setting where we assume
the algorithm has access to a fresh data sample in each iteration. In this regard, the setting in our work,



as well as the prior work by [35], stays closer to the world of optimization. However, in contrast
to the optimization world in which we commonly impose assumptions on the stochastic gradients
(such as having bounded variance or sub-gaussian noise), we make assumptions on the data (such
as sub-gaussian or polynomial tailed data). This difference introduces several challenges which we
overcome in our work.

s

The main point of reference for this paper is the work by [35]. This work develops a “coupling’
technique to bound the generalization error of stochastic mirror descent for quadratically bounded
losses. This technique has been employed in prior works [[10, [L1} 9, [29] 27} 22] to obtain high
probability convergence bounds of stochastic methods in optimization. Our work improves their
results by using a different approach that takes a closer look at the mechanism of the concentration
inequalities and leverages the problem structure. When the data are bounded or have sub-gaussian
tails, analyzing the moment generating function of a novel martingale difference sequence allows us
to maintain the same success probability, without using either the coupling technique or the union
bound. This new analysis, however, does not change the observation by [35] that the iterates of the
unconstrained and the constrained problems coincide with high probability. When the data have a
polynomial tail, we rely on a truncation technique. In this case, the coupling technique is necessary
but not the union bound, and we are still able to significantly improve the success rate.

In terms of techniques, the work by [21] for optimization is the closest to ours. In this work, the
authors develop the whitebox approach to analyzing stochastic methods for optimization with light-
tailed noise. In this work, we study generalization errors. Moreover, in all settings, our choice of
martingale difference sequences and coefficients are a significant departure from the prior work. In
particular, in [21]] the choice of coefficients only depends on the problem parameters whereas in the
realizable case, our coefficients depend also on the historical data. Our approach also allows for a
flexible use of an induction argument without decreasing the success probability, while in [21] the
bounds are simpler and can be easily achieved in a single step.

2 Preliminaries

In this section, we provide the general set up and necessary notations before analyzing stochastic
mirror descent in the subsequent sections. Overall, we closely follow notations used in [35].

Domain and norms. In this work, we consider X—the domain of the problem—to be a closed
convex set or R%. We will use ||-|| to denote an arbitrary norm on X' and let ||-|, be its dual norm. We
define the Bregman divergence as D, (w; v) = ¢(w) — ¢ (v) — (Vi) (v), w — v) where ¢ : R? — R
is a differentiable function that is 1-strongly convex with respect to the norm ||-||.

Loss functions. Each loss function £ : R x R — R>( in our consideration can be written using
a convex scalar function ¢ in one of the two following forms: 1) ¢(y,y) = ((sign(y)y) where

sign(y) = 1if y > 0 and = —1 otherwise; and 2) ¢(y,y) = ¢(y — y). The first form captures
classification losses and the second regression losses. We will assume that subgradients 9¢ of ¢ in
the second argument always exist, and let ¢/ denote a subgradient in 9¢. For a function f, we also
use |0f (w)]| :==sup{||g]| : g € Of(w)}. We further make the following assumptions, introduced in
[35] as quadratic boundedness and self-boundedness.

Assumption 1. We assume that ¢ is (C, C5)-quadratically-bounded, for some constants C, Cy > 0,
ie., forall y, iy

[(y,9)| < Cr+ C2 (lyl + 191) -
This condition captures both classes of Lipschitz and smooth functions. Indeed, Lemma 1.2 from
[33] shows that «-Lipschitz functions are («, 0)-quadratically-bounded while S-smooth functions

are (‘8(7(0)

, B)-quadratically-bounded.

Assumption 2. In the realizable setting, we assume that { is p-self-bounding, i.e., { satisfies

0'(2)? < 2pl(z) forall z € R.
The second assumption is a generalization of smoothness. This assumption is satisfied by smooth
losses but also certain non-smooth losses such as the exponential loss. This condition is necessary in

the current analysis to prove 1/7 rates in the realizable setting. The readers can refer to [34] [35] for
more detailed discussion on this assumption.



Algorithm 1 Stochastic Mirror Descent

Input wy, step size n
Fortinl...T
gt € 0l (w—1)
Wy = arg Minyex {<779t7 w> + Dy (w; wt71>}

Assumptions 1 and 2 are satisfied by commonly used loss functions in machine learning. These
include the logistic loss £(y, §) = In(1 + exp(—yy)) and the squared loss £(y, ) = 3(y — J)? (see
Lemma 1.4 in [35]]).

For the loss function ¢ and the configuration w, and sample (x,y) where = denotes the attribute and
y the label, we will write ¢, ,, = ((y, w’'x). We state the following crucial lemma which is the same
as Lemma A.1 in [35], whose proof will be omitted.

Lemma 1 (Lemma A.1 in ([35])). Suppose ¢ is (C1, Cs)-quadratically-bounded and B, > 0 is
given. Given (z,y) such that max {||z|\, , |y|} < By and any u,v,

10,y (W), < Be (C1 + C2By (14 [lul]))
by (0) = Lay (0)] < By [[u = 0| (Cr + C2 By (1 + [|ul])) -

Risk, IID and Markovian data. When sample (z;,y;) arrives in iteration ¢ of an algorithm,
we will use the notation £;(w) = ¢(y;,wz;). For an algorithm of 7T iterations, we use F; =
o((z1,91),- .., (z¢,y:)) to denote the natural filtration up to and including time ¢. When the data
are [ID and generated from a distribution 7, we define the risk

R(U}) = E(l‘,y)f\/ﬂ' [g(z%wa)] 5

In contrast to IID data, Markovian data come from a stochastic process. This setting has also been
considered in [4]. We let Pst be the distribution of (x4, y;) at iteration ¢ conditioned on F;. We make
the following assumption regarding the uniform mixing time of the stochastic process. Note that
similar assumptions have also appeared in [35} 4].

Assumption 3. We assume that for some ¢, 7 > 0 of our choice, there is a distribution 7 such that

sup sup TV (Ptt+T,7T) <e
tGZZO Fi

We refer to the triple (7, 7, €) as an approximate stationarity witness. We then define the risk according
to the approximate stationary distribution 7: R(w) = E(y ) r [((y, w? z)] .
Algorithm. Stochastic Mirror Descent is given in Algorithm|I] In this algorithm, for the simplicity of

the analysis, we consider a fixed step size 7). In each iteration, we pick a subgradient g, € 9¢;(w;_1)
and perform the update step.

We finally introduce a standard lemma used in the analysis of Stochastic Mirror Descent.
Lemma 2. Fort > 0 and wyer € X, we have

2
Dy (wref; Wi1) — Dy (Wrer; wi) <0 (bp1 (Wret) — Lot (wr)) + % Igesall?

Other notations. We will use w,s to refer to a comparator of interest. For the simplicity of the
exposition, we let Dy = Dy (wrer; wo), and R* = inf,cx R(v). For a loss function ¢ that is
(C1, Cy)-quadratically-bounded, we let Cy = C + Ca(1 + ||wyet]])-

3 Generalization bounds of SMD for IID data

In this section, we distinguish between two cases: the realizable case and the non-realizable case. In
the realizable case, there exists an optimal solution w* € X such that R(w*) = 0. We will show that
under mild assumptions, the risks of the solutions output by Algorithm|l|are bounded by O(1/T"). In
the non-realizable case, we will show, on the other hand, a weaker statement that the excess risks of
the solutions are bounded by O(1/v/T).



3.1 Realizable case

In the realizable case, the comparator w;.¢ is not necessarily the global minimizer. To show the 1/T
rate, we will assume wyer satisfies R(wyer) < pDy (Wrer; wo) /T and that the loss at wyer is bounded.
The guarantee for the iterates of Algorithm|l]is provided in Theorem 3]

Theorem 3. Suppose { is convex, (C1, Cs)-quadratically-bounded, and p-self-bounding. Given T,
(x4, yi)) i<t are IID samples with max {||z.||, , |y¢|} < 1 almost surely, wyer satisfies R(wyef) <
Dy (Wref; wo) /T, and maxycr L1 (wWrer) < Cs almost surely. Then for n < i, with probability
at least 1 — 26, forevery0 < k <T —1

k
1 16D¢ (U)mf; wk+1)
<
1<:+1;R(wt)Jr 5(k+ 1y —k+1

where C' = % log %\ / %Do + 4n~yCs + (%DO + %703) with v = max {1,10g %}

The analysis of Theorem 3 relies on the use of concentration inequalities. In contrast to existing
works that utilize concentration inequalities as a blackbox, we will make use of the mechanism for
proving concentration inequalities in order to obtain stronger guarantees. The type of concentration
inequalities we consider are shown by analyzing the moment generating function of suitably chosen
martingale sequences. We will use Lemma [T4] (Appendix) which gives a basic inequality that bounds
the moment generating function of a bounded random variable. To start the analysis, we use Lemma
[2land Assumption 2 to obtain

+ SR(wrCf) .

Lemma 4. Forallt > 0, we have

Dw (wref; wt+1) - D'gb (wref; wt) S 77€t+1 (wref) - gEtJrl(wt)u

t t

and hence, Dw (wref; wt) S Dw (wreﬁ wO) +77 Z Ei (wref) = DO + n Z K'L (wref) .
=1 =1

First, let us pay attention to the term 22:1 £; (wrer). Recall that the terms ¢; (wyof) are non-negative
and bounded by a constant C'5 almost surely. We can analyze the term ZZ;I £; (wyer) Which upper

bounds all sums Zf.:l £; (wyer) by studying its moment generating function (or via a concentration
inequality). We state this bound in the next lemma and defer the proof to the appendix.

Lemma 5. With probability at least 1 — ¢, ZiT:1 £; (Wret) < %TR(wref) + C3log %.

Lemma [ and lemma [5]and the assumption that R (wye¢) = O (1/T) imply that with probability at
least 1 — 0, Dy, (wyer; wy) is bounded. In other words, with probability at least 1 — §, the iterates w;
all lie in a bounded region. One could therefore proceed to assume that the problem domain is simply
this bounded ball around w;e¢. This is the basic idea behind the “coupling” technique demonstrated
in [35]. However, the important question is how to obtain a bound for the risk of all iterates even
when we are working with a problem with unbounded domain. Here, not paying close attention to
the structure of the problem and the blackbox use of concentration inequalities lead to suboptimal
bounds. On the other hand, as discussed above, a crucial novelty in our analysis is the choice of a
supermartingale difference sequence, defined in the proof below. By working from first principles
using moment generating function of this sequence, we derive two conclusions: 1) an improved risk
bound can be obtained, and 2) the coupling technique is not necessary.

Proof Sketch. Towards bounding the risk Zf:() R(w¢), we define random variables

1
Ly = 52%77 (R(wt) - R(wref) - €t+1 (wref)) + 2t (Dw (wref; wt+1) - Dw (wref§ wt))

3
~ 164" (R(wyet) + R(wy)), VO<t<T -1
1 1
;oY= max{l,log 5}

7704 \/277703 + 2D0 + 277 Zle ZZ (wref)

where z;




and we let S; = ZEZO Z;; Y0 <t < T — 1. The reason to define these variables is because from
Lemma] we can bound

E[exp (Z:) | Ft] X exp (136zm (R(wref) + R(wt))>

<E [eXp (;zm (R(ws) — R(wret) — Lit1 (Wret)) + 24 (nftﬂ (Wret) — th+1(wt))) | ]:t:|

=E {GXp <;zm (R(wy) — R(wret) + b1 (Wref) — €t+1(wt))) \ ft]

where now inside the expectation, we have the term R(w;) — R(wyet) + L1 (Wret) — L1 (we)
which has expectation 0. Let Cy = Cy + Ca(1 + ||wyet]]), we can bound

|7 (R(we) = R{wret) + 11 (i) = e (w0))| < nCi e — i

and z; < Now we can apply Lemma (Appendix) to bound

-1
"704”wrcf7wt H :

Elex (2) | 71 x exp (500 (Rluwnr) + R(w0)

=P (ZinE [(R(w0) = R(wrer) + s (wher) = Lo () | F, tD

3
<exp (16237721[‘3 {(ﬁtﬂ(wref) — L1 (w)? | ftD

3
<exp (16225277204 [lwret — we || E [€rp1 (wres) + Lep1(wy) | ft])

3
<oxp (0 (R(ur) + Riwr) )
Therefore IE [exp (Z;) | F¢] < 1 and hence (exp (S¢)),~ is a supermartingale. By Ville’s inequality,
we have with probability at least 1 — §, forall 0 < k <T-1

b 1
E Z; < log =
)

t=0

Expanding this inequality, in combination with Lemma|[5] we obtain the conclusion. O

Remark 6. The new analysis does not change the conclusion observed in [[35]]—that is, with high
probability, the iterate sequence (wt)tZ(] behaves as if the domain of the problem is bounded. We

improve the probability that this event happens.

3.2 Non-realizable case

In the non-realizable case, we do not aim for 1/7" but only 1/+/T rates. Hence we do not assume that
the comparator w.r satisfies R (wyef) < pD.y (wrer; wo) /T but rather the following assumption on
the excess risk:

Assumption 4. Let R* = inf,cx R(v), assume that R (wef) — R* < W

We also relax the assumption on the data samples. In the previous case, the data are bounded, i.e
{llz]l, ;s |y|} <1 a.s. We will consider in this section two settings, one when the data come from a
sub-Gaussian distribution and one when the data distribution has a polynomial tail.

Remark on Theorem 10 in [35]. There seems to be an issue with the proof of Theorem 10 in [33].
The proof uses a variant of Azuma’s inequality ([37]], Problem 3.11) which allows the ranges of
the random variables to not be specified up front. However, when bounding the range of relevant
random variables, the proof uses Z; 1, which is correlated with the data ||xs41]|, and ys41. Thus
the condition of Azuma’s inequality is not satisfied. We do not see an immediate way to resolve this
problem. In the following, we consider separately the two cases of sub-Gaussian and polynomial



tailed data for which we use different proof techniques to show the error bounds. In the first case
of IID data with sub-Gaussian tails, we proceed by bounding the moment generating function of a
well-chosen martingale sequence. In the second case of IID data with polynomial tails, we introduce
a truncation technique. In both cases, we are able to obtained better bounds compared with [35].

3.2.1 IID data with sub-Gaussian tails

We will show the following guarantee:
Theorem 7. Suppose { is convex, (C1, Ca)-quadratically-bounded. Given T, ((x¢,y:))i<T are IID

samples with (); = max {17 [l z s |yt \2} and there exists o > 0 such that for all A

max {E [exp (A (Q7 —E [Q7]))] . E [exp (A (Q: — E[Q4]))]} < exp (\?0?)

Let iy = E[Q:] and us = E [Qﬂ Suppose that wyet satisfies Assumption 4. Then for n <
L , with probability at least 1 — 20, for every 0 < k <T —1

402\/T,u2+26\/T10g%
k
1 Dw (wref; wk+1) R2
ST (R(w) — R +
k+1;< (we) ) nk+1)  ~nk+1)

where R? = 16C3 (o2 + 443) log %772T+4D0(1+77\/T)+4n202 (T,uz + 204/T log %) = 0O(1).

Remark 8. For zero-mean sub-Gaussian variable X, the definition E [exp (AX)] < exp (A\?¢?) for
all A is equivalent to E [exp (A2X?)] < exp (A?0?) forall 0 < A < I (see [38])). The lemma
below shows a property of sub-Gaussian variables under scaling and translating. First let us consider

Z;’le Q?. Similar to Lemma by bounding the moment generating function of this term, we have
the following (see also Section B4 in [35]]).

Lemma 9. With probability at least 1 — 8, Y1_, Q? < Tpug + 20/ T log 3

Proof of Theorem [/} The proof of this Theorem uses the technique developed in [21]]. We will also
analyze the moment generating function of a suitable martingale sequence. However, the choice
of the coefficients will differ significantly from the previous proof. In this case the structure of the
problem is deeply integrated into the analysis of the martingale. We define

Zy = zn (R(we) — R(wret)) + 2t (Do (Wrep; Wig1) — Dy (Wrep; wy))
1
_ 5Zm2 \|gt+1||z — 4220*C (02 + 4/&) D (wWrer; we) VO<t<T -1
1
a2C2 (02 +4p2) (T +t + 1)
and let S; = Z’;:O Zi; Y0O<t<T-—1. By Lemma we have
Zy + 42i0°C3 (02 + 4u7) Dy (wrer; wi) < 200 (R(wy) — Rlwyer) + Ly (Wrer) — by (wy))

V-1<t<T -1

where z; =

where we have E [(R(w:) — R(wret) + Le+1 (Wref) — Le41 (wy))] = 0, and using the same notation
Cy = C1 4 Ca(1 + ||wyet]), by Lemmall]

|(R(we) = R(wret) + Leg1 (wret) — Legr (we))]
St (wree) = Lot (we)| + [R(we) — R(wret)|
< les1 (wret) = Lesr (we)| + E [[lay (wr) — Loy (wret) ]
<(Q 4 1) lwret — wel| Cy = ((Qr — pa) + 2p11) [[wrer — we]| Ca
Hence applying Lemma [[5]we have
E [exp (Z;) | Fi] exp (4270°CF (02 + 4puT) Dy (Wrer; wy))
=E [exp (21 (R(wi) — R(Wret) + Leg1 (Wree) — Lig1 (wy))) | Fi



<exp (22377205 [wees — we|* (0 + 4@)
<exp (4zfnch (02 + 4,u%) Dy (Wrer; wt))

Therefore I [exp (Z;) | F¢] < 1 and hence (exp (S¢)),~ is a supermartingale. By Ville’s inequality,
we have with probability at least 1 — 4, forall 0 < k <T-1

b 1
g Z; <log —
)

t=0

Expanding this inequality we have
k
Z 2N R(wy) + 2p Dy (Wrer; Wi1)
t=0
1 k 1k
<log 3 + z2_1Do 4+ NR(wret) Z z + 3 Z zn’ ||9t+1||i
t=0 t=0

:
+ ) (2 +420°CF (0% + 4p17) — 21-1) Dy (wret; wy)
=0

<0

(@ 1 a 1o
< log = + 2-1D0 + 7R (tret) > oa+ 3 >z lgen i
t=0 t=0

where for (a), by the choice of z

1
we have z;_1 — 2z >
49203 (02 +4p3) (T+1+1) t=1 to=

422n*C3 (02 + 4,u%) . We highlight that this is where the structure of the problem comes into
play. That is, by setting appropriate coefficients, we can leverage gain in the distance in the
martingale difference sequence ((z; — z¢—1) Dy (wref; we)) to cancel out the loss from bounding the
moment generating function (4277>C% (02 + 4p3) Dy (wref; wy)). Another important property of
the sequence (z;) is that it is a decreasing sequence and j—; < 2 for all ¢, k. Hence we have

k
n Z (R(wt) - R*) + D1/1 (wrcf; wk+1)
t=0

k
1
17 (T 14 k) +2D0 + 2 (R(wier) = R*) (k1) + 77 D llgea |2

t=0
Combined with Lemma@], with probability at least 1 — 29, forall 0 < k < T — 1

<4C% (02 + 4/@) log

k
n Z (R(wt) - R*) + Dd) (wref; wk+1)
t=0

k
1
<ACT (0% +4pi) log 5n* (T + 1+ k) +2D0 + 2 (R(wrer) = RY) 0k + 1)+ Y _ llgess [
t=0
k+1 1
and ZQ? <Tus+ QUN/Tlogg

t=1
Conditioned on this event, we will prove by induction that

Dy (Wres; W)

1 1
<R? :=16C] (0 + 413) log 5n2T + 4Dy + 4DonV'T + 47> C? (T,ug + 204/ T log 5)

For the base case k = 0, it is trivial. Suppose for all ¢ < k we have D, (Wret; wy) < R2, now we
prove for t = k + 1. By Lemmall]

k k k
23 Ngentll? <7 Q% (Co+ Co (L+ wnll))® < 0?7 Q24 (Ca + Ca [y — wiee)?
t=0 t=0 t=0



k+1 k
<WPCEY QF+20°C5 Y Q7 [[wr — e

t=1 t=0

1
<n*(2CF +4C3R?) <T,ug + 204/ Tlog 5)
1
Dy (Wret; wt1) < 8CF (02 + 4443) log S772T + 2Dy + 2 (R(wret) — R*) n(k + 1)
1

+ 1 (205 + AC3R?) (TW + 204/ T log 5)
R2 22 1 2 2

< 74—477 C5 | Twe + 20 Tlogg R* < R”.

Finally we obtain, n Zf:o (R(wi) — R*) 4+ Dy (Wret; wit1) < R?, as needed. O

Therefore

3.2.2 IID data with polynomial tails
Theorem 10. Suppose ¢ is convex, (C1, Ca)-quadratically bounded. Given T, ((zy,y:))i<T are IID
samples with (); = max {17 ||xt||i , |yt|2} and for some p > 2 there exists M > £ such that for all
A
max{_swp (£[Q: - E1QI} s {5l -E[0}]]}} <
<r<p

2<r<2p

Let iy = E[Q:] and us = E [Qﬂ Suppose that wyet satisfies Assumption 4. Then for n <
L , with probability at least 1 — 30, for every 0 < k <T —1

Cg\/e(TﬂngzMﬁ(%)%)

k
1 o Dy (Wret; Wiy1) R?
-y _ <
F1< (R(wi) = R%) + nk+1)  —2m(k+1)

0
where R = max{\/6 (Do (1 +77\/T) + 202 (Tlm +2Mﬁ(%)%)),6(§7(7(%)1/2p I

2 + \/log 2Tz ) } = O (1), 7 = max {1, log 2}.

1
Remark 11. Since p > 2, the rate is O(ﬁ log% + ﬁ(%) 2,,)_ This rate improves over

1
the O((ﬁ + ﬁ (%) 2’)) log %) rate by [35] by a polynomial factor T log % in the high

probability regime where 6 = SOy (T

We will give a proof sketch for this theorem. The full proof is deferred to the appendix.

Proof Sketch. The heavy tailed distribution of the data does not allow us to analyze the moment
generating function. In this case, we rely on the coupling technique as in [35]. Since it is not
possible to apply Azuma’s inequality due to the bounds on the variables being not measurable, and
the variables are heavy tailed, we use truncation technique. We define,
vy =arg min  {(ngi(ve—1),w) + Dy (w;v4-1)}
[lw—wret | <R

where we use g;(v;—1) to denote the gradient at v;_; using the same data point (z,y;) when
computing w; and we define

Ui = (R(vt) — R(wret) + Lit1 (Wrer) — Lev1 (ve))



“7 V(A + 2u1) RCysign (U;)  otherwise

MT\ P
where A = (5> and B, = U; — P,.
We can write
k k k k
U=> (P-E[P|F)+Y E[P|F]+> B
t=0 t=0 t=0 t=0

We bound Zf:o (P, — E[P; | Fi]) by applying Freedman’s inequality. The terms Zf:o E [P | Fi]
and Zf:o B, are both the bias terms can be bounded by analyzing the tail of the distribution and

Markov’s inequality. We also use Lemmato bound Zf:o l|ge+1(v)||. Finally, using the induction
technique, we can prove that w; = v, with high probability and obtain the desired result. O

1
Lemma 12 (Lemma A.5 from [33]). With probability > 1 — 8, 3°;_, Q? < Tz +2MVT (2)7.

4 Generalization bounds of SMD for Markovian data

The final result we present in this paper is the following theorem for the case when the data are
sampled from a Markov chain.

Theorem 13. Suppose { is convex, (C1,Cs)-quadratically bounded. Given T, ((x¢,y:))i<T are

sampled from a Markov chain with max { |l ||f s |ye |2} <1land (w, T, €= %) is an approximate
1

stationarity witness. Suppose that w,.s satisfies Assumption 4. Then for n < ————, with
y PP ref 5fi P forn < 202\/T(T27')

probability at least 1 — 79, forevery0 < k <T — 1

k
1 Dw (wref;wk+1) R2
— R —R*)+ < :
k+1t:0( () ) nk+1)  ~2n(k+1)

where R = max {\/6 <2Do +2nDoVT + 16n2C3T7log 1 + 2Tm2C3 + 47727'TC’Z> ,6(2nTCy +
2nCyeT + 47]704)} =0 (1)and Cy = C1 + Co(1 + ||wret|])-
We will give a proof sketch for this theorem.

Proof Sketch. The proof of this Theorem follow similarly to that of Theorem|[7] The difference here
is we need to bound 7 different martingale difference sequences in the form of

E [ET(¢+1)+]’ (wref) | fn‘+j]—E [57(1:+1)+j (wm'+j) \ ]:'ri+j]+‘€~r(i+1)+j (wref)_gr(i+1)+j (wri+j)

for0<j<7-1,0<: < @ We also need the assumption on the approximate stationarity
witness to see that

IR(wt) — R(wret) — E[leir (wret) | Fe] + E [leyr (wr) | Fi]| <CuRe.

Now we only need the union bound over 7 sequences, instead of all iterations. The success probability
will decrease from 1 — § to 1 — 74. O

5 Conclusion

In this paper, we show a new approach to analyze the generalization error of SMD for quadratically
bounded losses. Our approach improves a logarithmic factor for the realizable setting and non-
realizable setting with light tailed data and a poly T factor for the non-realizable setting with
polynomial tailed data from the prior work by [35]. An inherent limitation of the current approach is
the assumption that we can obtain a fresh sample in each iteration, whereas the setting with finite
training data is still not well understood. In the realizable setting, we require that the data is bounded,
as opposed to more relaxed assumptions in the non-realizable settings. We leave the question of
resolving these issues for future works.
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A Concentration Inequalities

Lemma 14. Let X be a random variable such that E [X] = 0 and | X | < R almost surely. Then for
0<A< %
SASR

E [exp (AX)] < exp (iAQE [X2]> .

The following lemma is similar to Lemma 2.2 in [21]].

Lemma 15. Suppose that Q) satisfies for all 0 < A < %, E [exp (A2Q2)] < exp ()\202) . Then for
variable X such that E[X] =0 and | X| < a (Q + b) for some a > 0 then for all A > 0

E [exp (AX)] < exp (2A%a® (0® 4+ b%)) .

In particular, if b = 0 we can have a tighter constant: E [exp (AX)] < exp (\%a?0?) .

Proof. We consider E [exp (AX)]

If0 < X < 2 then using exp (z) < @ + exp (2°)

E
<E [exp ()\2a2 Q@+ b)zﬂ
<E [exp (2/\2a2Q2 + 2/\2a2b2)}
<ex (2/\2(1262) E [exp (2)\2(12622)]
<

p
exp (2/\2(12 (02 + b2))

Otherwise % < \M2a

X2
2.2 2
Elexp (A X)] <E {exp ()\ a‘c” + 4a202)]

o920
402
< exp (\?a20?) E [exp <Q22:262)]

2 2 2 b? 1
gexp()\aa)exp 292 exp 3

< exp (A2a202) exp ()\2a2b2) exp ()\2a202)
< exp (2)\2a2 (02 + b2)) .

< exp ()\2a202) E

O

Theorem 16 (Freedman’s inequality [7, 36]). Let (X;);>1 be a martingale difference sequence.
Assume that there exists a constant ¢ such that | X;| < c almost surely for all t > 1 and define
o} =E[X}? | Xi-1,...,X1]. Thenforallb >0, F >0and T > 1

T

> X

t=1

T
> band 02 <F
t=1

Pr|3T>1:

b2
<2exp |-’ ).
= eXp( 2F+20b/3>

B Missing Proofs

Proof of Lemma 2| Using the optimality condition
(nge41 + Vi (wig1) = Vo (we), wrer — wig1) = 0
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we have

<779t+17 Wy — wref> = <779t+1, W41 — wref> + <Tlgt+1, wy — wt+1>
< A(Vp(wig1) — V(we), Weet — Weg1) + (NGe41, W — Weg1)
= Dy (Wrer; wr) — Dy (Wret; wit1) — Dy (wig1;we) + (MGtg1, W — wign)

1
< Dy (Wref; i) — Dy (Wres; wey1) — 3 [ wy — W ||* + (g1, wp — weps)

2
n
< Dq/; (wref; wt) - Dw (wref;wt+1) + ? ”gt-&-l”i

Hence
772 2
D¢ (wref; wt+1) - sz (wref;wt) < <ngt+1awref - U/t> + E ||9t+1||*

2
n
<N (g1 (Wref) — Leg1 (we)) + 5 ||gt+1H3

as needed. O
Proof of Lemma[] We have

2
Dy (wWret; Wit1) — Dy (Wret; we) < 0 (Leg1 (Wref) — ey (we)) + % ||9t+1||i

2
<0 (bpg1 (Wref) — Lig1 (wy)) + % £+1(wt)2

<0 (beg1 (Wret) — Lot (we)) + 0° plygr (wy)
= lir1 (Wrer) — g€t+1(wt) < by (Wret) -

Summing up, we have, forany 0 <t <7T

t

t
Di/) (wrcf; wt) S D1/1 (wrcf; wO) + nZ£1 (wrcf) - DO + 772& (wrcf) .
i=1 i=1

O

Proof of Lemma[3] We have |{; (wyef) — R(wref)| < max {l; (wrer) , R(wrer)} < Cj thus by
lemma|14} for A < Z-

E [exp (A (¢; (wref) — R(wrer)))]

<exp (iAQE [(62 (Wret) — R(wref))ﬂ)

(%) exp <i)\2E [&- (wref)2]>

® (3, 3
< exp 1/\ CSR(wref) < exp ZAR(wref) ,

where for (a) we use E [(X —-E [X])z} < E [X?] and for (b) we use {; (wye) < Cs. Since £; (wyer)
are independent random variables, we have

E [exp ()\ Z (gz (wref) - R(wref))>

i=1

T T
= H E [exp (A (4; (wrer) — R(wyer)))] < Hexp (i)\R(wref)> = exp (i)\TR(wref)> .

i=1

15



Hence by Markov’s inequality
Pr|A E (wret) — R(wref)) > *3/\TR(U} £) + log =
re: re - re 6

T
=Pr [exp (AZ (€; (wret) — R(wref))> > %exp <i)\TR(wref))]
=1

E |exp )\ZiT: (€; (wret) — R(Wref))
< { ( lexpl(§)\TR(wref)) ﬂ =0

Choose A\ = z; we have with probability at least 1 — 1)

1
(wref)) < §T72(wref) + Cslog g

T
Z wref =4
O

=1

Proof of Theorem[3] Towards bounding the risk Zf:o (w¢), we define random variables

Cog1 (Wrer)) + 26 (D (Wref; Wig1) — Doy (Wref; wy))

1
Zt = 52’{/} (R(wt) — R(wref) —
- %zm (R(wet) + R(wy));  MO<t<T—1
1 1
;Y =max {1,log 5}
(wref)

where z; =
1Ca \/ 20yCs +2Do + 20 5, 4

t
and Sy =Y Z;  VO<t<T-1

The reason to define these variables is because from Lemma[d] we can bound

Elex (2) | £ x exp (o (Rlun) + R(w)

<& [oxp (oun (Rew) ~ R fess () + ¢ (111 ) = o) ) 1 7]

E {exp (1zm (R(we) — R(wret) + rg1(Wre) — €t+1(wt))) \ ft]

where now inside the expectation, we have the term R(w;) — R(wyet) + L1 (wrer) — Ly (wy)
which has expectation 0. This reminds us of Lemma To use this lemma, we notice that, by the
.»yl} <1 and Lemmall}

assumption that the samples are IID with max {||z||
- gw,y(wt)‘ < lwrer — we| (Cl + Co(1 + eref”))
Cy

‘gw,y(wref)

We also have
g%y(wtm < Oy [|wret — w|

|R(wf) - R(w!'ef)| = |IE [éac,y(wref) -

Therefore
|2 (R(we) = Rweer) + s (wrer) = o (w0))]| < 0Cs |1wres = e
1

By the choice of z; we have
= 1Cy4 || wret — wy|

1
t
7704 \/27703 +2Dg + 2n Zi:l 4; (wref)

2D1/) (wref; wt)

2y <
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Now we can apply Lemma[T4]to bound

Elex (20 | 71 x oxp (500 (Rluwnr) + R(w0)

<exp (Z leztn E [(R(w ) — R(wet) + Les1(Wret) — b1 (wy))? | ft])

3
<o (SeAPE [(Ea(unen) — s (w)* | 7] )

3
<xp (6 Ca s — il B () + e (1) | 7))

<exp (136Zt77 (R(wret) + R(wt)))

Therefore I [exp (Z;) | F¢] < 1 and hence (exp (S¢)),~ is a supermartingale. By Ville’s inequality,
we have with probability at least 1 — 4, forall 0 < k <T-1

b 1
E Z; < log =
)

t=0

Expanding this inequality, we obtain

k
S
> 16 2R (W) + 2eDy (Wret; wiet1)
t=0
1
<log = + 20Dy (wre; wo) + 7,]73 Wref Z et szém Wref)
k
+) (2 — 2-1) Dy (Wers wy) (1
tle—/
<0
@ 1 11 1o Ci g1 (Wre
< log 5 + 20Dg + l—ﬁnR(wref)(k +1)zp+ = M1 (Wret) -
=0 nCiy/20Cs + 2D0 + 20 1 4 (wyer)
() 1 11 a Nles1(Wret)
<log — D — R (wyer) (kK + 1 2
< log = + 20 Do + 757 (wret) (K + )ZO+2nC 2

4320 \/2Do + 2n ZZI} 4; (wref)

For (a) we use the fact that (z;) is a decreasing sequence and R(wyer) < "Tﬂ. For (b) we
N1 (Wrer) <
V2Dot2n T b wre)

\/2D0 +2n ZtH i (Wret) — \/QDO +2n Zle £; (wrer) and sum over ¢ we obtain

use the assumption ;1 (wyef) < Cs. Now notice that we can write

k
5
T62kn ;R(U}t) + szw (wref; warl)
k+1
1 ll(k + 1)R(wref) 1
<log = + D + ‘gz Wre
) 0 16C4/2nyC5+2Dy  +/2nC4 ’ 77; ()
Hence
k 16
ZR(wt) + 57D1p (wref; warl)
t=0 K
16C, 1 11(k + 1)R(wret) 1 -
< 1 - D él re
=75 |5 T T6CovmnGs 120 | Vants OM; (e
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T

X 277’}/03 + 2D0 + 277 Z 61 (wref)
=1

By Lemma [5] with probability at least 1 — § we have

<

N

pDo + Csry

SN

T
S0 () < TTR () + O log

i=1

Therefore with probability at least 1 — 2§

y 16
ZR(wt) + wa (wref; wk+1)
t=0 577

<

16C, . 1 11(k+1) 8\/15 \/15
log = + ———n—2 R (wret) + —1/ — Do + 277C — Dy + 4y C:
( 5085 T 5 oy p oDy wret) T g\ Do+ 2mCs [y Do+ dm G

16C. 1 /15 6 32
=— L log 5 ZDo +4nyC3 + (nDo + 5’703) +3(k + 1)R(wref)-

which gives us the conclusion. O

Proof of Theorem|[I0] First we consider the bounded domain case. Let

vp=arg  min _ {(nge(vi—1),w) + Dy (w;v4-1)}
[lw—wrer || <R

where we use ¢:(v;—1) to denote the gradient at v;_; using the same data point (z;,y;) when
computing w; and we choose

2\ ¥
R= max{ 6 <Do +n2C3% (Tug +2MVT <5> )),
2 MT\Y? [~ 2
6 (37 (7 <6) + 2,ul> +1/log 5T,ug> 7]04}

|(R(Ut) - R(wref) + it (wref) — Ll (Ut))|
<|le1 (wret) = Legr (ve)] + [R(ve) — Rwrer )|
<(Qt + 1) ||wrer — ve|| Ca < (Q¢ + p1) RCy 3

Let us define the following variables

Ui = (R(v) — R(Wret) + i1 (Wret) — Leg1 (vr))

We have

"7 V(A + 2u1) RCysign (U;)  otherwise
MT 1/2p
where A = (5> and Bt = Ut — Pt-

In words, U, is the variable of our interest and P; is the truncated version of U; and B, is the bias.
We would want to control these terms in order to bound Zf:o U;. We start with the following
decomposition

k k k
(P, —E[P | R+ > E[P | F]+ Y B
=0

t=0 t=0

k
> 0 =
t=0

First, we consider the term Zf:o E [P | Fi].

t
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E[Pt|ft]:]E[Pt—Ut|ft]§]E[|Pt—Ut||ft]

—E| |P, — U] (1[Ui] < (A+ 240)RC4]
+3 " 1[(k — 1)ARCy + 2u1 RCy < |Uy| < kARCY + 2ch4])
k=2
=E

Z |P, — Uy 1[(k — 1)ARCy + 2u1 RCy < |Uy| < kARCY + 2111 RCY]
k=2

Mg

(EARCy 4 2111 RCy — (A +2p1) RCy) RC4E[1[|Uy]| > (k — 1)ARCy + 2111 RCy]]

=
I|
N

Mg

kARC4E [ [(Qt + Ml) RC4y > KARCy + 2,u,1RC4H (due to ’

=
Il
—

KARCyPr(Q, > kA+ m) < ARC, Y kPr [|Qt —w|? > (kA)ﬂ
k=1

M T

e
Il
—_

oo

Mk ad
A = A1*2PRC4MZ k12 < 2AV-2PROM

k=1 k=1

<ARCy

where the last inequality is because p > 2. We obtain
k
> E[P, | Fi] < 24" RC,MT
=0
The term Zt 0Bt < Zt olBe| < Z |Bt| will be bounded by Markov inequality. From the
above deduction,

T—1 T-1
STIBl| =) E[Bf] = > E[E[U, - P| | Fi]] < 24' P RC,MT
t=0 t=0
With probability at least 1 — 9,
T-—1 MT
> B <21A QPRC4M5 = 2RC, A% ( 5 )
t=0

Finally, we will use Freedman’s inequality to bound the remaining term Zf:o (P —E[P | Ft)).
First, notice that

E[|P—E[P | 7P | 7] <E[P?| F]

<E[UF| F] S E[(0sr (wrer) = o1 (v0))* | F]

< R’CIE [Q]] < R*Cjpo.
We have (P, —E[P;|F]) is a martingale difference sequence with [P, —E[P; | F]| <
2 (A +2u1) RCy. We can apply Freedman’s inequality,

k
>aand Y B[P -E[R| R | F| <F
t=0

Pr|(dk>0:

k
> P -E[P|F)
t=0

—2a?
<2
=2exp <2F F4(AT2m) RC’4a/3>
If we select
F =TuyR*C3
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2 2 2
and a = 3 log 3 (A+2p1) RCy + RC4\/10£-£67TMQ

we obtain with probability atleast 1 — 4§, forall k > 0

2 2
ZPt E[P; | F] < log 5 (A+2u1) RCy + RCyy [log 5The

Therefore with probability at least 1 — 35 we have the following event £ : forall £ > 0

k

2 2 MT
YU < 3 log 5 (A+2M1)RO4+R04,/1og§Tu2 + 4RC4 A 2?( 5 )
t=0

2 MT\Y?* [ 2
gfy <7 <5 ) + 2#1) RC4 + RCyy/log gTﬂz

k+1 1
and ZQt <Tu2+2Mf( )

A

IN

where we denote v = max {1, log 2 }. Furthermore

2 k

n n

? Z ||9t+1 Ut S ?
t=0

2
Q41 (Cr + Ca (14 [lue])))?

o~
= HM»
o

[~}

< LY Q2 (Cat Calor — wiet])?
t=0
k+1
<n’CEYQF +nCs ZQM lve — wree
t=1 t=0

2\ ¥
<n?(Ci + C3R?) (T/LQ +2MVT (5) >

Now we will proceed by induction to show that conditioned on the event E, w; = v;. For the base
case, we have wy = vg. Suppose that we have w; = v, for all ¢t < k. We will show that wy 1 = vgy1.
From Lemma[2] we have

277 (R(wt) = R*) + Dy (Wret; Wi+1)

<D0+Zn (wret) — R*)

k 9 k
1) (R(we) = Rlwnet) + bt (wrer) = bt () + - > [l giea
t=0 t=0
k ? k
<Dy + U\/TDO + UZ U + 5 Z ||gt+1 Ut
t=0 t=0
<Dy (1 + m/f)

2 MT\'?* [ 2
+ <3’)/ <7 (6) + 2#1) + log 6T,[L2> ?7R04

2\ 7
+n? (C + C3R?) <Tu2 +2MNT (5> )
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Thus ||wgt1 — Wret]| < R. And thus wy41 = vg41. Finally, we can conclude that with probability
atleast 1 — 36, forall 0 < k<T —1

k
1 Dy (Wret; Wit1) R?
R - R re + S .

Proof of Theorem[I3] For 0 < j < 7 — 1, we define
Z] = zringn (B [Crip1)15 Wret) | Frovs] = B [lripayrg (wring) | Frivs])
+ Zrig i (o i1y 15 (Weet) = ooty (Writg)) — 8 (2rigjn)? CIDy (Wret; Wrisj)

vogigﬁ
T

i NS r—1-j
;=N zivo<k<s——7
=0

—
where
1
= V-1<t<T-1
T RPCI(T 1+ 1) ==
We bound
E [Crii1y4s (Wret) | Frivg] = E [br(igry+j (Wrins) | Frivs]
+lr(ig1)+g (Wret) = Lr(ir1)j (Writj)
S204 ||wref - w‘riJer

By LemmalI3]

E [exp (Zf) | ]:n‘ﬂ}

=exp (—8 (Z”‘+J"I])2 Csz (wref; w-,—iJrj))
x E leXp <zn-+j77 (E [Criryrs (Weet) | Frivg] —E [Criynyrs (Wrigg) | Frivg]
+ e (ir1)45 (Wret) = Lriig1)+j (Writj) )) | -7'—71'+j‘|

< exp (=8 (2ri4)° CIDy (wrei wrie) ) exp (4 (2riagn) CF s = wrigs ) <1

Therefore E [exp (Zf ) \ J:THJ} < 1 and hence (exp (Si))k is a supermartingale. By Ville’s
>0
inequality, we have with probability at least 1 — §, forall 0 < k < k

k ] 1
77 < log =

By union bound over j = 0,...,7 — 1, and with probability at least 1 — 7§ we have for all
0<k<T-7-1

k
D 20 Ellisr (wrer) | Fo] = E [l (we) | Fi] 4 lesr (wret) = borr (w0))
t=0
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o

We will proceed to prove by induction that Dy, (wyer; wy) < %RQ

For the base case ¢t = 0, this holds trivially. Suppose that this is true for all 0 < ¢ < k, we now show
fort =k + 1.

IfkE<rt-1,

M=

N (R(wi) = R*) + Dy (Wret; Wrt1)

t

<Dg + Z N (R(wref) — R¥)

Il
o

k 9 k
+ ;nm(wo R(wret) + Lrs1 (wret) — Ligr (wr)) %; lgeral
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7 7
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t=0 t=0
7
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t=0
<n?C2 (k4 1) +n*C2R*(k +1)
<7 (Ci + C3R?)
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Ifk >,
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k
S (R(wref R* + Z Ztn (wFEf))
t=0
a ZH? 2 b
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t=0 t=0
k k
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t=0 t=k—7+1
k—1

+ > zn (R(wi) — R(wrer) = E [Crgr (wret) | Fo] + E [legr (we) | Fi])
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+ Z 261 (B [leyr (Wret) | Ft] — E [ligr (we) | Foe] + Lpr (Wret) — Lpr (w1))

k
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t=0
k—1
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where in the last inequality we use z; = to see that z; + 8 (zm)2 C’Z < z;_1. Notice

1
8n2C3(T+1+t)
that, & < 2, and (R(wrer) — R*) < \f we have
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+ 17> gl +20 ) epr (we) = bepr (wigr 1))

=0 =0
c D
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Now we bound each term. For A
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For C, similarly to before
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-1 - 1
<2nC4R <(T ) (l; T+1) + 7') <4ntC4R

Sum up we have
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as needed. Finally we have

Dw (wref;wk+1) < R2

1 & .
mgm“"”‘m* nk+1)  ~mk+1)

25



	Introduction
	Related Work

	Preliminaries
	Generalization bounds of SMD for IID data
	Realizable case
	Non-realizable case
	IID data with sub-Gaussian tails
	IID data with polynomial tails


	Generalization bounds of SMD for Markovian data 
	Conclusion
	Concentration Inequalities
	Missing Proofs

