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ABSTRACT

Prevailing data-driven models for spatio-temporal forecasting excel at interpolating
within known patterns but often falter in critical real-world scenarios. This failure
stems from a fundamental flaw: they learn spurious correlations from raw data,
bypassing the underlying semantic and physical principles that form the true causal
pathways. To address this, we introduce PRISM (Physics-informed Reasoning
and Interpretation for Spatio-temporal Modeling), a framework that performs a
principled causal intervention. PRISM employs a Vision-Language Model (VLM)
to interpret spatio-temporal snapshots into semantic narratives, and a Large Lan-
guage Model (LLM) to reason with these narratives and explicit physical laws,
generating a causally-informed textual guidance. This guidance is then encoded
to steer a downstream numerical predictor. Extensive experiments across fluid
dynamics, weather forecasting, and urban traffic demonstrate that this intervention
significantly enhances model capabilities. By repairing the causal chain, boosts out-
of-distribution (OOD) generalization, improves prediction under data sparsity, and
sharpens extreme event prediction. Our work propose a new paradigm that unifies
the pattern recognition of traditional models with the causal reasoning of large foun-
dation models, paving the way for more reliable AI in science. Codes are available
at https://anonymous.4open.science/status/PRISM-8BF5.

1 INTRUDUCTION

The modeling and prediction of dynamical systems serve as a cornerstone of modern science and
engineering (Li et al., 2022; 2021; Kochkov et al., 2021), exerting a profound influence across
diverse domains ranging from weather forecasting (Bi et al., 2023; Wu et al., 2025; Gao et al.,
2025; Lam et al., 2023) and climate science (Gentine et al., 2021; Bordoni et al., 2025) to urban
traffic (Wang et al., 2020; Wu et al., 2024a) management and fluid dynamics analysis (Wu et al.,
2024b;c). The ability to accurately foresee the future states of these complex systems is crucial to
advance scientific discovery, mitigate disasters, optimize resources, and enable effective decision
making. In recent years, the machine learning community has witnessed a burgeoning development
in leveraging data-driven approaches, particularly deep learning, for spatio-temporal prediction (Wu
et al., 2023; Shi et al., 2015). These methods demonstrate immense potential for capturing intricate
spatial correlations and temporal dependencies directly from observational data.

However, despite these significant advances, applying these data-driven models to real-world scenarios
often exposes their fundamental limitations: an "Achilles heel" that hinders their practical reliability.
❶ A primary challenge is their fragile out-of-distribution (OOD) generalization (Yang et al., 2024;
Ma et al., 2023; Volpi et al., 2018; Kirchmeyer et al., 2022). Trained predominantly on historical
data, these models excel at interpolating within seen patterns but tend to suffer sharp performance
degradation when confronted with novel scenarios, such as unprecedented atmospheric blocking
events (Wang et al.) or anomalous traffic congestion triggered by unforeseen incidents (Wu et al.,
2024a). ❷ Furthermore, real-world observational data are frequently sparse, incomplete, or noisy
due to sensor limitations, network failures, or occlusions (Luo et al., 2024; Lienen & Günnemann,
2022;?). Standard models often struggle to provide reliable predictions under such data scarcity,
as they lack mechanisms for robust contextual inference or for leveraging physical constraints to
intelligently fill information gaps. ❸ Compounding the problem is the inherent difficulty in predicting
extreme events (Shu et al., 2025b; Zhang et al., 2023; Shu et al., 2025a; Wu et al., 2025). These low-
probability, high-impact events are sparsely represented in historical datasets, making it challenging
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for purely data-driven models to learn their triggering mechanisms or accurately identify subtle
precursor signals that domain experts might readily recognize.

S P

Historical Observations True Future State

Model Prediction

Semantic Concepts Physical Concepts

The model learns a direct mapping from 𝑿ℎ𝑖𝑠𝑡 to 𝒀𝑝𝑟𝑒𝑑, ignoring 
the critical intermediate causal variables S (Semantic) and P 
(Physical), leading to poor generalization capability.
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Figure 1: Causal diagrams illustrating the core idea of
PRISM. (a) Traditional models learn a spurious correlation
(red dashed arrow) by ignoring latent semantic (S) and
physical (P ) factors. (b) PRISM performs a causal inter-
vention by using a VLM and LLM to generate a guidance
text (Tguide) that encapsulates these factors, steering the
prediction towards a robust causal path (green arrow).

These persistent challenges collectively
point to a core deficiency in the cur-
rent paradigm: the learning process is
largely confined to statistical correla-
tions on the data’s surface, failing to
grasp the deeper principles governing the
system’s evolution. Specifically, these
models face two fundamental gaps: a
Semantic Gap, where they struggle to
extract high-level concepts from raw
data, and a Physics Gap, where they
lack an explicit understanding of intrin-
sic physical laws.

This neglect of semantics and physics
can be understood more profoundly from
a causal perspective. As illustrated in
Figure 1(a), traditional models attempt
to learn a direct mapping from historical
observations (Xhist) to future predictions
(Ypred). However, this path bypasses the
true drivers of the system’s evolution
the unobserved latent semantic states (S)
and the invariant physical laws (P ). Con-
sequently, the model learns a fragile, su-
perficial spurious correlation. This is
the fundamental reason for their frequent
failures in OOD scenarios, as this statis-
tical shortcut breaks down when the data
distribution shifts.

To address this core causal flaw, we in-
troduce PRISM (Physics-informed Rea-
soning and Interpretation for Spatio-
temporal Modeling), a novel framework
designed to perform a causal interven-
tion, as depicted in Figure 1(b). Instead
of learning the brittle shortcut, PRISM
actively estimates the latent semantic
state S via a Vision-Language Model
(VLM) (Zhang et al., 2024; Zhou et al.,
2022; Guo et al., 2024) and performs
causal reasoning by synthesizing it with
explicit, textualized physical principles
via a Large Language Model (LLM) (Naveed et al., 2025; Zhao et al., 2023). This process gener-
ates a causally-informed guidance text (Tguide) containing state analyses and evolutionary trends.
Finally, in the Multi-Modal Fusion stage, this guidance is encoded and fused with the original
data. This augmented input steers any downstream predictor (e.g., ConvLSTM (Shi et al., 2015),
Transformer (Vaswani et al., 2017; Dosovitskiy et al., 2021), FNO (Li et al., 2020)) to learn a more
robust causal pathway, fundamentally enhancing its generalization and reliability.

The contributions of this paper are summarized as follows: Novel Methodology: We are the first to
systematically design a workflow that leverages a VLM and an LLM to perform a causal intervention
in spatio-temporal forecasting, bridging the semantic and physical gaps. Superior Performance:
Extensive experiments demonstrate that PRISM, as a plug-and-play module, significantly boosts
model performance, especially in tackling the core challenges of OOD generalization, prediction
under data sparsity, and extreme event forecasting. A Pioneering Paradigm: Our work pioneers a
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new paradigm for developing more generalizable and reliable AI for science by unifying the pattern
recognition of traditional models with the causal reasoning capabilities of large foundation models.

2 RELATED WORK

Data-Driven Dynamical System Modeling. Modeling complex dynamical systems has been a
focal point of deep learning research. A diverse array of architectures, including Convolutional Neural
Networks (CNNs) (Gao et al., 2022a), Recurrent Neural Networks (RNNs) (Wang et al., 2022), and
Transformers (Gao et al., 2022b), have been developed to capture intricate spatio-temporal dependen-
cies. More recently, Neural Operators (Li et al., 2021; Hao et al., 2023) have emerged as a powerful
paradigm for learning mappings between infinite-dimensional function spaces, showing promise in
scientific simulations. In a parallel effort, Physics-Informed Neural Networks (PINNs) (Cai et al.,
2021) attempt to embed physical knowledge by incorporating governing equations as soft constraints
during training. However, while these methods excel at pattern recognition and interpolation, they
often function as "black boxes," struggling to reason about unseen scenarios or explicitly leverage
high-level conceptual knowledge, a gap our work aims to fill.

Out-of-Distribution (OOD) Generalization. The ability to generalize out-of-distribution
(OOD) (Ye et al., 2021; Yang et al., 2024) is a critical frontier for machine learning, ensuring model
reliability under real-world distribution shifts. The field has seen rapid progress, with prominent
techniques including invariant causal inference (Wu et al., 2024e;c), which seeks robust predictors
across environments, and various forms of data augmentation (Bai et al., 2021) and domain adapta-
tion (Ding et al., 2022) to expose models to wider data variations. While effective, many of these
approaches operate at the data or feature level. They often lack a mechanism to incorporate external,
symbolic knowledge, such as physical laws, which provides a universal basis for generalization. Our
framework addresses this by using language to inject such principled knowledge.

Large Language and Vision-Language Models. The recent ascendancy of Large Language
Models (LLMs) (Chang et al., 2024; Guo et al., 2025) and Multimodal LLMs (MLLMs) (Lin et al.,
2023; Bai et al., 2025) has revolutionized AI, endowing models with unprecedented capabilities in
reasoning, understanding, and generation across modalities. In the vision-language domain, MLLMs
have demonstrated a remarkable ability to interpret and reason about dynamic visual content, moving
beyond simple perception tasks (Cheng et al., 2024). To date, the power of these foundation models
has been predominantly applied to tasks centered on human language and common-sense reasoning.
Their potential to serve as symbolic reasoning engines for complex scientific domains specifically,
to interpret physical phenomena and guide numerical forecasting models remains largely untapped.
Our work pioneers this novel application, positioning LLMs not as end-point predictors, but as
co-reasoning partners in the scientific modeling loop.

3 METHODOLOGY

Our work aims to address the causal deficiencies inherent in traditional data-driven models for
dynamical system forecasting. To this end, we propose PRISM (Physics-informed Reasoning and
Interpretation for Spatio-temporal Modeling). This section first formalizes the problem domain
and then elaborates on the three core stages of the PRISM framework: (1) semantic perception via
Vision-Language Models, (2) causal reasoning with physical priors, and (3) guided multi-modal
fusion for prediction.

3.1 PROBLEM FORMULATION AND PRISM FRAMEWORK OVERVIEW

Dynamical Systems and Observation Space. We consider a discrete-time dynamical system defined
in a state space S ⊆ RDs . The evolution of the system is governed by a latent, potentially stochastic
Markovian transition kernel P , where a new state st+1 ∼ P(·|s≤t,Θ). Here, s≤t = (s0, . . . , st)
denotes the historical state trajectory, and Θ represents the intrinsic parameters of the system. We do
not directly access the true state st; instead, we obtain projections through an observation operator
O : S → X , which yield observations xt = O(st) in an observation space X ⊆ RH×W×C .
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Figure 2: The Architecture of the PRISM Framework. The framework consists of three core
stages to perform a causal intervention in forecasting. (1) Semantic Perception: A Vision-Language
Model (VLM) interprets raw historical observations and, guided by a prompt, generates a high-level
Semantic Narrative. (2) Physics-Informed Causal Reasoning: A Large Language Model (LLM)
synthesizes this narrative with explicit Physical Prior Knowledge (e.g., governing equations) to
produce a predictive and causally-informed Guiding Text. (3) Guided Spatio-Temporal Prediction:
The guiding text is encoded into a vector, which is then fused with numerical history data via a
cross-attention mechanism. This fused information steers a downstream spatio-temporal (ST) model
to generate a more robust and physically consistent forecast.

The Conventional Forecasting Paradigm and its Causal Limitations. Given a history of P ob-
servations, X(P )

hist = (xt−P+1, . . . ,xt), the forecasting task is to estimate the future sequence of
K observations, X(K)

future = (xt+1, . . . ,xt+K). Conventional data-driven approaches seek to learn a
parameterized function fθ : XP → XK by minimizing the expected loss over a data distribution D:

θ∗ = argmin
θ

E
(X

(P )
hist ,X

(K)
future)∼D

[
L(fθ(X(P )

hist ),X
(K)
future)

]
(1)

As illustrated by the causal diagram in Figure 1(a), this paradigm learns a direct associative path
from Xhist to Xfuture, bypassing the true causal chain mediated by latent semantic structures St and
invariant physical principles Pphys.

PRISM’s Guided Forecasting Paradigm. PRISM performs a causal intervention by introducing
an externally generated guidance variable g. We aim to learn an enhanced prediction model
f∗
ϕ : XP × Rdg → XK , which conditions on both the historical observations and this guidance

variable. The guidance variable g is the output of a sophisticated generation process G, designed to
capture the omitted causal information:

g = G(X(P )
hist ,Pphys;MVLM,MLLM, Etext) (2)

where Pphys is a repository of physical knowledge. The enhanced prediction problem is thus reformu-
lated as optimizing the parameters ϕ of the model f∗

ϕ :

ϕ∗ = argmin
ϕ

E
(X

(P )
hist ,X

(K)
future)∼D

[
L(f∗

ϕ(X
(P )
hist ,g),X

(K)
future)

]
(3)

3.2 STAGE 1: FROM OBSERVATIONS TO SEMANTIC NARRATIVES

This initial stage aims to decode a high-quality estimate of the latent semantic state St from the
high-dimensional observations X(P )

hist using a large Vision-Language Model (VLM),MVLM.

We define the entire VLM operation as a semantic perception operator, Ψsem. First, a visualization
map V : XP → IP renders the numerical grids into a sequence of images, Ihist = V(X(P )

hist ), where I
is the image space. Subsequently, a carefully designed prompting function Πsem : IP → T wraps
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this image sequence into a structured query, where T is the text space. The VLM then generates the
semantic narrative Tsem based on this prompt:

Tsem = Ψsem(X
(P )
hist ) ≜MVLM(Πsem(V(X(P )

hist ))) (4)

Here, Tsem is a natural language text that serves as a concrete instantiation and rich description of the
abstract semantic variable St.

3.3 STAGE 2: CAUSAL REASONING UNDER PHYSICAL CONSTRAINTS

This stage features a causal reasoning operator, Ψreason, implemented by a Large Language Model
(LLM),MLLM. It is designed to synthesize the observational evidence (Tsem) with universal physical
principles (Pphys) to infer future outcomes.

Let Pphys = {pi}Ni=1 be a set of N textualized physical laws. We model the LLM’s reasoning process
as generating a probabilistic description of future states, conditioned on the given evidence and axioms.
The input to the LLM is constructed by a reasoning prompt function Πreason : T × P(T ) → T ,
where P(T ) denotes the power set of text sets. The final guidance text, Tguide, is then generated as
follows:

Tguide = Ψreason(Tsem,Pphys) ≜MLLM(Πreason(Tsem,Pphys)) (5)

Crucially, Tguide transcends simple description, providing instead causal explanations and forward-
looking judgments that offer insights beyond pure statistical patterns.

3.4 STAGE 3: GUIDED MULTI-MODAL FUSION AND PREDICTION

The final stage is responsible for effectively fusing the symbolic guidance information (Tguide)
with the sub-symbolic numerical data (X(P )

hist ). First, a pre-trained text encoder Etext : T → Rdg

maps the guidance text into a dense guidance vector g ∈ Rdg . Concurrently, a data encoder
Edata : XP → (Rdh)P processes the historical observations into a sequence of spatio-temporal
features Hhist = (h1, . . . ,hP ).

We then introduce a Guidance-Attention Module, Aguide, to perform the fusion. This module
employs a cross-attention mechanism where g serves as the Query, and Hhist serves as the Keys and
Values, to compute a guided context representation cguided. Let hi ∈ Rdh be the feature at timestep i.
The fusion process is detailed as:

αi =
exp

(
(gWQ)(hiWK)T√

dk

)
∑P

j=1 exp
(

(gWQ)(hjWK)T√
dk

) , cguided =

P∑
i=1

αi(hiWV ) (6)

where WQ ∈ Rdg×dk , WK ∈ Rdh×dk , and WV ∈ Rdh×dv are learnable projection matrices. The
attention weight αi is interpreted as the importance of the i-th historical timestep for future prediction,
as determined by the guidance signal g.

Finally, the prediction is generated by the decoder of the downstream model, Dϕ. This decoder,
which may consist of components like feed-forward networks and recurrent or attention-based layers,
takes both the original features Hhist and the guided context cguided as input:

X̂
(K)
future = Dϕ(Hhist, cguided) (7)

During training, we minimize the loss function L(ϕ), while the parameters of all large foundation
models (MVLM,MLLM, Etext) remain frozen. This parameter-efficient transfer learning paradigm
allows PRISM to be integrated into existing architectures in a lightweight manner.

4 EXPERIMENTS

To comprehensively evaluate the effectiveness and versatility of our proposed PRISM framework, we
conduct a series of extensive experiments on three benchmark datasets spanning diverse domains:
urban traffic, fluid dynamics, and atmospheric science.
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Datasets and Evaluation Metrics Our experiments are based on three representative public datasets.
TaxiBJ+ (Wu et al., 2024a) is a widely-used benchmark for urban spatio-temporal forecasting,
recording taxi traffic flow in Beijing. The data is processed into a spatial grid of 32 × 32, and the
task is to predict the traffic flow for the next 2 hours based on observations from the past 4 hours.
Navier-Stokes (NS) (Li et al., 2021) is a classic fluid dynamics simulation dataset that models the
vorticity evolution of a 2D incompressible fluid. It features a spatial resolution of 64× 64, and the
task involves forecasting the next 10 timesteps of the flow field given the previous 10 timesteps.
SEVIR (Veillette et al., 2020) is a large-scale meteorological radar dataset focusing on convective
storm events. We use its Vertically Integrated Liquid (VIL) data at a 128× 128 resolution. The task
is to predict storm evolution over the next hour based on observations from the past hour.

To assess performance from multiple perspectives, we employ a variety of evaluation metrics. The
Mean Squared Error (MSE) is used across all tasks to measure pixel-level accuracy. For TaxiBJ+, we
additionally use the Structural Similarity Index (SSIM) to evaluate the visual fidelity of the predicted
traffic patterns. For Navier-Stokes, the Mean Absolute Percentage Error (MAPE) is employed to
assess the relative error. For SEVIR, we use the Critical Success Index (CSI) to precisely measure
the model’s ability to forecast storm regions of varying intensities.

Baselines and Implementation Details To validate the plug-and-play nature of PRISM, we select
ten powerful models covering four mainstream architectural families as downstream predictors
(backbones): CNN-based (ResNet (He et al., 2016), U-Net (Ronneberger et al., 2015)), Transformer-
based (ViT (Dosovitskiy et al., 2021), SWIN Liu et al. (2021)), recurrent spatio-temporal networks
(SimVP (Gao et al., 2022a), PastNet (Wu et al., 2024d)), and neural operators (Fourier Neural
Operator - FNO, Convolutional Neural Operator - CNO (Raonic et al., 2023), U-shaped Neural
Operator - UNO (Rahman et al., 2022)).

In our implementation, the PRISM framework, by default, utilizes GPT-4V for semantic percep-
tion and GPT-4 Turbo for causal reasoning. The resulting guiding text is encoded into a 768-
dimensional vector using a pre-trained BERT-base encoder and is fused with the numerical features
of the downstream model via a standard cross-attention layer. All models are trained using the AdamW
optimizer with an initial learning rate of 1e−3 and a cosine annealing schedule. A key aspect of our
training strategy is that the parameters of the VLM, LLM, and text encoder within PRISM remain
frozen. We only train the fusion module and the downstream predictor, enabling parameter-efficient
transfer learning and lightweight integration.

Experimental Environment All experiments are conducted on a server equipped with four NVIDIA
A100 (80GB) GPUs. Our implementation is based on the PyTorch framework and leverages the
Hugging Face transformers library for interacting with large models. The experimental platform
is Ubuntu 20.04 with CUDA version 11.7.

4.1 ANALYSIS OF MAIN RESULTS

Consistent and Significant Performance Improvement. As demonstrated in Table 1, the PRISM
framework delivers consistent and significant performance improvements across diverse models
and domains. As a plug-and-play module, its effectiveness is validated by numerous strong results.
For instance, in urban traffic forecasting (TaxiBJ+), PRISM enables U-Net to achieve a remarkable
13.1% reduction in MSE (from 0.109 to 0.095), showcasing its ability to compensate for the semantic
limitations of traditional CNNs. In the highly challenging meteorological forecasting task (SEVIR),
its value is even more prominent. When augmenting the powerful SWIN Transformer, PRISM boosts
the critical storm-prediction metric, CSI, by a significant 6.4% (from 0.392 to 0.417). This result
highlights that the causal guidance from PRISM transcends pixel-level optimization, enabling models
to more accurately predict the evolution of critical physical processes.

Universal Applicability and Enhancement of SOTA Models. A core strength of the PRISM
framework lies in its cross-architectural universality. As evidenced in Table 1, PRISM consistently
boosts the performance of diverse architectures, including CNNs, Transformers, recurrent networks,
and neural operators. This versatility is particularly striking in the physics-driven Navier-Stokes
task, where PRISM exhibits strong synergy with neural operators. It enables the CNO to achieve a
remarkable 19.0% reduction in MSE (from 0.116 to 0.094) and the FNO a 17.0% reduction (from
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Table 1: Comprehensive performance evaluation across diverse forecasting tasks. This table com-
pares various baseline models in their original form (Ori) versus their performance when augmented
with our PRISM framework. The ∆ column quantifies the relative improvement in the primary metric
(MSE for TaxiBJ+ and Navier-Stokes, CSI for SEVIR). Best results are in bold, and significant
improvements are highlighted in green denotes model failure.

MODEL
TAXIBJ+ NAVIER-STOKES SEVIR

MSE ↓ / SSIM ↑
∆MSE (%) MSE ↓ / MAPE ↓

∆MSE (%) MSE ↓ / CSI ↑
∆CSI (%)

ORI + PRISM ORI + PRISM ORI + PRISM

CNN-Based Architectures
RESNET 0.101/0.827 0.099/0.842 -2.3 0.712/26.1 0.696/25.3 -2.2 5.12/0.318 5.04/0.332 +4.4
U-NET 0.109/0.821 0.095/0.858 -13.1 0.129/13.8 0.135/12.6 +4.6 4.23/0.351 4.18/0.362 +3.1

Transformer-Based Architectures
VIT 0.074/0.848 0.075/0.857 +0.9 0.138/14.5 0.132/13.8 -4.3 4.01/0.379 3.89/0.392 +3.4
SWIN 0.075/0.872 0.072/0.888 -4.0 0.131/15.9 0.130/14.6 -0.8 3.81/0.392 3.48/0.417 +6.4

Recurrent Spatio-Temporal Architectures
SIMVP 0.036/0.919 0.034/0.925 -4.8 0.095/20.4 0.089/10.1 -6.7 3.52/0.447 3.49/0.461 +3.1
PASTNET 0.031/0.935 0.031/0.938 -0.7 0.115/11.9 0.114/10.9 -1.3 3.42/0.463 3.41/0.465 +0.4

Neural Operator Architectures
FNO 0.052/0.648 0.052/0.648 0.0 0.147/11.8 0.122/10.1 -17.0 —/— —/— —
CNO 0.089/0.860 0.086/0.867 -2.7 0.116/11.4 0.094/10.2 -19.0 4.42/0.331 4.41/0.335 +1.2
UNO 0.051/0.889 0.047/0.908 -8.8 0.120/11.5 0.130/10.2 +8.3 3.69/0.395 3.62/0.404 +2.3

0.147 to 0.122). This suggests that the explicit physical reasoning from PRISM is highly compatible
with architectures designed to solve PDEs. More importantly, PRISM also enhances state-of-the-art
(SOTA) models. For instance, it elevates SimVP, an already strong baseline on the Navier-Stokes
task, to a new SOTA performance by reducing its MSE by 6.7% to a chart-topping 0.089. These
findings confirm that PRISM provides a performance enhancement pathway orthogonal to architectural
innovation, effectively advancing the frontiers of existing SOTA models.

4.2 ABLATION STUDIES

To investigate the sensitivity of the PRISM framework to the choice of foundation models, we
conducted a series of ablation studies, with results detailed in Table 2. The experiments clearly
show that the performance of PRISM is positively correlated with the capabilities of the selected
foundation models. The top-performing combination of GPT-4V and GPT-4 Turbo achieves the
best results across all tasks, notably reducing the MAPE on the Navier-Stokes dataset from 20.42%
to a remarkable 10.12%. This validates that higher-quality semantic perception and causal reasoning
lead to more significant performance gains. More encouragingly, PRISM still demonstrates strong
performance when using entirely open-source model combinations, such as Qwen2.5-VL-Max +
Llama3-70B, which reduces the MAPE on Navier-Stokes to 12.01%. This result highlights the
robustness and practical value of the PRISM framework, proving it is not merely dependent on the
sheer power of specific proprietary models but offers an accessible and effective solution for the
broader research community.

Further analysis of PRISM’s core components confirms the integrity and necessity of its design. First,
by comparing the ablation results of different components, we find that a high-quality semantic
perception stage is the cornerstone of the framework’s performance; even with the strongest rea-
soning model (GPT-4 Turbo), using a weaker perception model (LLaVA-NeXT-34B) leads to
a noticeable performance drop (e.g., CSI on SEVIR decreases from 0.417 to 0.403). Second, the
framework integrity experiment underscores the indispensable nature of the semantic perception
stage. When the VLM module is completely removed, and reasoning relies solely on a simple textual
description of the numerical data, the performance improvement becomes marginal (e.g., the MAPE
on Navier-Stokes remains as high as 18.52%). This provides strong evidence that leveraging a VLM
to transform complex visual patterns into rich semantic narratives is a critical and irreplaceable step
in successfully bridging the gap between raw data and high-level physical concepts.
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Table 2: Ablation study on the choice of foundation models in the PRISM framework. The
performance variation across different VLMs and LLMs highlights the impact of their respective
capabilities on the final prediction accuracy. The baseline models (SWIN for SEVIR, SimVP for
Navier-Stokes) are evaluated without any PRISM guidance.

MODEL CONFIGURATION
SEVIR NAVIER-STOKES

MSE (↓) CSI (↑) MSE (↓) MAPE (%) (↓)

Baseline (w/o PRISM) 3.81 0.392 0.0953 20.42

Best Performance with Proprietary Models
⋆ GPT-4V GPT-4 TURBO 3.48 0.417 0.0887 10.12
⋆ GEMINI 1.5 PRO (VISION) GEMINI 1.5 PRO 3.53 0.413 0.0901 10.35

Ablation on Reasoning Component (LLM)
T GPT-4V LLAMA3-70B 3.55 0.411 0.0915 10.87
T GPT-4V QWEN2-72B 3.57 0.409 0.0921 11.05

Ablation on Perception Component (VLM)
� QWEN2.5-VL-MAX GPT-4 TURBO 3.59 0.408 0.0928 11.42
� LLAVA-NEXT-34B GPT-4 TURBO 3.64 0.403 0.0935 12.18

Performance of Full Open-Source Configurations
� QWEN2.5-VL-MAX LLAMA3-70B 3.63 0.404 0.0931 12.01
� VIDEO-LLAVA-7B LLAMA3-70B 3.69 0.400 0.0940 12.96

Necessity of Semantic Perception Stage
− N/A (Text Description) GPT-4 TURBO 3.75 0.395 0.0948 18.52

4.3 ENHANCING OUT-OF-DISTRIBUTION GENERALIZATION

To rigorously evaluate the capability of PRISM in out-of-distribution (OOD) generalization, we
conduct a specialized experiment on the SEVIR dataset, with results presented in Table 3. The
experiment tests models trained on common storm types against a challenging OOD test set composed
of rare and extreme weather events. The results compellingly demonstrate PRISM’s dual advantages.
First, in terms of absolute performance, models augmented with PRISM consistently outperform
their original counterparts in both ID and OOD scenarios, achieving significantly higher CSI scores
when facing unseen extreme events. More critically, PRISM substantially enhances model robustness
by mitigating performance degradation. For instance, while the original SimVP suffers a severe
26.2% drop in CSI when moving from ID to OOD data, the SimVP + PRISM configuration cuts this
degradation by nearly half, to just 13.7%. This marked reduction in performance decay provides
unequivocal evidence that PRISM’s causal reasoning mechanism translates directly into superior
generalization, ensuring more reliable predictions for challenging and unforeseen phenomena.

Table 3: Out-of-Distribution Generalization on the SEVIR Dataset. Performance comparison
on In-Distribution (ID) and Out-of-Distribution (OOD) test sets. The ∆CSI column quantifies the
percentage drop in CSI from ID to OOD performance, highlighting model robustness.

MODEL
IN-DISTRIBUTION (ID) OUT-OF-DISTRIBUTION (OOD) DEGRADATION

MSE ↓ CSI ↑ MSE ↓ CSI ↑ ∆CSI (% ↓)

SWIN (ORI) 3.81 0.392 5.25 0.285 27.3
SWIN + PRISM 3.48 0.417 4.10 0.355 14.9

SIMVP (ORI) 3.52 0.447 4.98 0.330 26.2
SIMVP + PRISM 3.49 0.461 4.05 0.398 13.7

FNO (ORI) 4.50 0.310 6.80 0.190 38.7
FNO + PRISM 4.20 0.345 5.50 0.265 23.2

4.4 CASE STUDY: FORECASTING NAVIER-STOKES VORTICITY EVOLUTION

To illustrate the internal workflow of PRISM, we present a case study on the Navier-Stokes task
in Figure 3. Our approach hinges on structured prompt engineering: we first guide a VLM to
perform an expert-level interpretation of vorticity snapshots, extracting key physical events like
vortex merging. Subsequently, these visual observations are combined with an explicit, text-explained
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Figure 3: The PRISM framework enhances physical process discovery in Navier-Stokes flow.
(Top) PRISM pipeline: A VLM interprets vorticity inputs; an LLM, using physical priors like the
NS equations, generates textual guidance to empower a downstream prediction model (e.g., FNO).
(Bottom) Results: In Navier-Stokes prediction, compared to the input (first left) and ground-truth
(second left), the original FNO (second right) poorly predicts vorticity evolution in the red-boxed area.
With PRISM integration (FNO + PRISM, first right), predictions, informed by VLM-LLM physical
insights, are significantly improved and closer to the true process.

physical principle (the Navier-Stokes equations) and fed to an LLM. This "phenomenon + principle"
paradigm generates a causally-informed guiding text. The results compellingly demonstrate the
effectiveness of this approach. As shown in the visual comparison, the standard FNO prediction is
overly smooth and loses critical fine-grained structures. In stark contrast, FNO + PRISM successfully
reconstructs these high-frequency details with high fidelity to the ground truth, proving that our
method effectively compensates for the deficiencies of numerical models by injecting symbolic causal
knowledge, thereby enhancing physical realism and accuracy.

5 CONCLUSION

In this paper, we introduced PRISM, an innovative framework to address the poor generalization of
traditional data-driven forecasting models by rectifying their tendency to learn spurious correlations.
PRISM performs a novel causal intervention: it leverages a Vision-Language Model to decode raw
observations into rich semantic narratives, and then employs a Large Language Model to perform
causal reasoning with these narratives and explicit physical principles. This process generates a
symbolic guiding text that steers a downstream numerical predictor. Extensive experiments across
fluid dynamics, meteorology, and urban traffic demonstrate that PRISM, as a plug-and-play module,
significantly enhances model performance, especially in critical challenges like OOD generalization
and extreme event forecasting. Our work pioneers a new paradigm for "AI for Science" by unifying
the powerful pattern recognition of traditional models with the superior symbolic reasoning of large
foundation models, paving the way for more reliable and generalizable AI systems in science.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were not involved in the research ideation or the writing of this paper.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a detailed description of our methodology
in Section 3 and the experimental setup in Section 4. This includes specifics on datasets, evaluation
metrics, and implementation details for all models. Our source code will be made publicly available
upon the acceptance of this paper to facilitate verification and future research.

C TRAINING ALGORITHM

The training process of the PRISM framework follows a parameter-efficient paradigm. The large
foundation models (VLM, LLM, and the text encoder) remain frozen, and only the parameters ϕ of
the downstream spatio-temporal model, including its data encoder, fusion module, and decoder, are
updated. Algorithm 1 details this procedure.

Algorithm 1 PRISM Framework Training Algorithm

Require: Training dataset D = {(X(P )
hist ,X

(K)
future)};

1: Frozen foundation models:MVLM,MLLM, Etext;
2: Physical principles repository Pphys;
3: Number of training epochs Nepochs.

Ensure: Trained parameters ϕ of the downstream spatio-temporal model f∗
ϕ .

4: Initialize the trainable parameters ϕ.
5: for epoch = 1 to Nepochs do
6: for each batch (X

(P )
hist ,X

(K)
future) in D do

7: ▷ Stage 1: Semantic Perception
8: Render numerical grids X(P )

hist into an image sequence Ihist using V .
9: Generate the semantic narrative: Tsem ←MVLM(Πsem(Ihist)).

10: ▷ Stage 2: Causal Reasoning
11: Generate the causally-informed guidance text: Tguide ←MLLM(Πreason(Tsem,Pphys)).
12: ▷ Stage 3: Guided Spatio-Temporal Prediction
13: Encode the guidance text into a dense vector: g← Etext(Tguide).
14: Encode historical observations into features: Hhist ← Edata(X

(P )
hist ).

15: Fuse guidance and numerical features via attention: cguided ← Aguide(Query = g,Keys =
Hhist,Values = Hhist).

16: Generate the future prediction: X̂(K)
future ← Dϕ(Hhist, cguided).

17: ▷ Loss Calculation and Optimization
18: Calculate the prediction loss: L← L(X̂(K)

future,X
(K)
future).

19: Update the trainable parameters ϕ by performing backpropagation on L.
20: end for
21: end for
22: return Trained parameters ϕ.

D EVALUATION METRICS

Mean Squared Error (MSE) measures the average of the squares of the errors—that is, the average
squared difference between the estimated values and the actual value. It is one of the most common
metrics for regression tasks. The formula is:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (8)
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where n is the number of data points (e.g., pixels), Yi is the observed (actual) value, and Ŷi is the
predicted value.

Structural Similarity Index (SSIM) is a perceptual metric that quantifies the visual quality degrada-
tion of a predicted image compared to a reference image. It considers changes in luminance, contrast,
and structure. The formula is:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(9)

where x and y are the two image windows being compared; µx and µy are the pixel sample means of
x and y; σ2

x and σ2
y are the variances of x and y; σxy is the covariance of x and y; and C1, C2 are

stabilization constants to avoid division by a small denominator.

Mean Absolute Percentage Error (MAPE) measures the average magnitude of errors as a percentage
of the actual values. It is often used for assessing the relative error of a forecast. The formula is:

MAPE =
100%

n

n∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣ (10)

where Yi is the actual value and Ŷi is the forecast value. This metric is undefined when any actual
value Yi is zero.

Critical Success Index (CSI), also known as the Threat Score (TS), is used for evaluating the
performance of categorical forecasts (e.g., predicting storm events). It measures the fraction of
correctly predicted events out of all predicted or actual events. The formula is based on the components
of a confusion matrix:

CSI =
TP

TP + FN + FP
(11)

where:

• TP (True Positives): The number of correctly predicted events (Hits).
• FN (False Negatives): The number of events that occurred but were not predicted (Misses).
• FP (False Positives): The number of predicted events that did not occur (False Alarms).

E NOTATION

Table 4 provides a comprehensive summary of the key notations used throughout our methodology.
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Table 4: Summary of notations used in the methodology.

Symbol Description
System State and Observations
S,X State space and Observation space of the dynamical system, respectively.
st ∈ S The true, latent state of the system at time t.
xt ∈ X The observation of the system at time t.
P,K Length of the historical lookback window and the future forecast horizon.
X

(P )
hist Sequence of P historical observations (xt−P+1, . . . ,xt).

X
(K)
future Sequence of K future observations to be predicted (xt+1, . . . ,xt+K).

X̂
(K)
future The model’s predicted sequence of future observations.

St,Pphys Abstract latent semantic structures and invariant physical principles.
D The underlying data distribution.

Model Components and Parameters
MVLM The Vision-Language Model (VLM) used for semantic perception.
MLLM The Large Language Model (LLM) used for causal reasoning.
Etext The pre-trained text encoder for generating guidance vectors.
Edata The data encoder for processing numerical observations.
Aguide The Guidance-Attention Module for multi-modal fusion.
Dϕ The decoder of the downstream spatio-temporal model.
fθ, f

∗
ϕ Conventional prediction model and the PRISM-enhanced model.

θ, ϕ Learnable parameters for the conventional and enhanced models.
WQ,WK ,WV Learnable projection matrices for attention (Query, Key, Value).

Intermediate Representations
T , I The text space and image space, respectively.
Tsem The semantic narrative (text) generated by the VLM.
Tguide The final, causally-informed guidance text from the LLM.
g ∈ Rdg The dense guidance vector encoded from Tguide.
Hhist Sequence of numerical features (h1, . . . ,hP ) from Edata.
cguided The guided context representation from the attention module.
αi The attention weight for the i-th historical timestep.

Operators and Functions
O The observation operator mapping true states st to observations xt.
G The complete process for generating the guidance variable g.
Ψsem The semantic perception operator (Stage 1).
Ψreason The causal reasoning operator (Stage 2).
V The visualization map from numerical grids to images.
Πsem,Πreason Prompting functions for the VLM and LLM, respectively.
L The loss function used for model training.
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