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ABSTRACT

Building upon advancements in Large Language Models (LLMs), the field of au-
dio processing has seen increased interest in training audio generation tasks with
discrete audio token sequences. However, directly discretizing audio by neural
audio codecs often results in sequences that fundamentally differ from text se-
quences. Unlike text, where text token sequences are deterministic, discrete audio
tokens can exhibit significant variability based on contextual factors, while still
producing perceptually identical audio segments. We refer to this phenomenon as
Discrete Representation Inconsistency (DRI). This inconsistency can lead to a
single audio segment being represented by multiple divergent sequences, which
creates confusion in neural codec language models and results in omissions and
repetitions during speech generation. In this paper, we quantitatively analyze the
DRI phenomenon within popular audio tokenizers such as EnCodec. Our ap-
proach effectively mitigates the DRI phenomenon of the neural audio codec. Fur-
thermore, extensive experiments on the neural codec language model over Lib-
riTTS and large-scale MLS dataset (44,000 hours) demonstrate the effectiveness
and generality of our method. The demo of audio samples is available online 1.

1 INTRODUCTION

Recently, speech Large Language Models (LLMs) (Zhan et al., 2024; Anastassiou et al., 2024;
Du et al., 2024b) have demonstrated significant strides in generating high-quality speech, largely
due to the contributions of neural audio codecs in high-fidelity audio reconstruction (Zeghidour
et al., 2021; Défossez et al., 2022; Yang et al., 2023). The neural codec language model (Wang
et al., 2023; Yang et al., 2024; Zhang et al., 2024) employs the neural audio codec as the audio
tokenizer to quantize continuous audio signals into discrete tokens, and it can generate discrete
tokens autoregressively (Zhang et al., 2023a; Yang et al., 2024), and then detokenize them back to
audio signals by the neural audio codec. Despite the advantages of autoregressive modeling can
assist those works to achieve better zero-shot performance and naturalness, the synthesized speech
frequently yields higher Word Error Rate (WER) due to the issue of instability in discrete token
generation (Song et al., 2024; Xin et al., 2024; Du et al., 2024a).

The discrete sequence of text is context-independent. In contrast, acoustic discrete representations
are encoded by integrating the contextual information. The advantage of this approach is that dis-
crete audio tokens consider a larger receptive field of information, thus achieving a higher compres-
sion ratio of information. However, the drawback is that the representation itself becomes more
fragile, sensitive, and easily affected by minor signal changes, leading to drastic drifts in the entire
sequence as demonstrated in Figure 1.

The previous work (Yang et al., 2024) has noticed that audio segments containing the same sound
events aren’t encoded into completely consistent discrete acoustic tokens by the neural audio codec.
In this paper, we call this phenomenon Discrete Representation Inconsistency (DRI), and further
dig into the problem with Vector Quantization (VQ) (Défossez et al., 2022) based acoustic tokens
due to its popularity as an audio tokenizer and its high-quality reconstruction capabilities. We com-
pare the consistency of the discrete sequences of audio segments with and without context on a large

1https://consistencyinneuralcodec.github.io
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Figure 1: Discrete Representation Inconsistency (DRI) phenomenon. Subfigure (a) shows that text,
whether it includes contextual information or not, can be encoded by the text tokenizer into identical
text tokens. In contrast, Subfigure (b) illustrates that audio, with or without contextual information,
is encoded by the audio tokenizer into different audio tokens. The DRI phenomenon within the audio
tokenizer poses a many-to-one mapping problem, and the complexity of this many-to-one mapping
raises the uncertainty for neural codec language models in predicting the next token.

amount of audio. Our quantitative analyses reveal that the existing audio tokenizers suffer from low
consistency. In particular, we find that for Residual Vector Quantization (RVQ) (Défossez et al.,
2022) approaches, consistency declines significantly with deeper layers of codebooks.

Although audio with or without contextual audio is encoded into different discrete audio token
sequences, both sequences can be used to reconstruct the original audio information, which leads to
a many-to-one mapping problem that becomes more complex as the sequence length increases. This
complexity results in increased uncertainty for neural codec language models in predicting the next
token. One direct approach to address this issue is to prevent the audio tokenizer from considering
contextual information during sequence encoding, such as by setting the convolutional layer’s kernel
size to 1 in the encoder. While this method allows for independent discretization of each audio
frame, it also significantly reduces encoding efficiency and degrades the quality of the reconstructed
audio. Therefore, this study aims to maintain the original receptive field while enabling the model to
address the trade-offs between audio reconstruction quality and resolving the many-to-one problem.
To achieve this objective, we introduce the slice-consistency method, wherein a segment of audio
is randomly sliced, and the encoded representation from this sliced segment is required to closely
approximate the corresponding representation obtained from the entire audio. In addition, in order
to further alleviate the issue of many-to-one mapping, we propose the perturbation-consistency
method, whereby the representation of an audio and its representation after applying slight spectral
perturbation should closely align. Compared to EnCodec (Défossez et al., 2022), our method has
shown an average consistency improvement of 21.47%, 29.17%, and 36.29% in the first layer, the
first 3 layers, and the first 8 layers, respectively. Extensive experiments on the neural codec language
model (e.g., VALL-E (Wang et al., 2023)) on LibriTTS (Zen et al., 2019) dataset (960 hours) and
large-scale MLS (Pratap et al., 2020) dataset (44,000 hours) confirm that improving consistency
results in better performance. Our contributions are summarized as below:

• We shed light on the Discrete Representation Inconsistency (DRI) phenomenon and con-
duct quantitative analyses for various neural audio codecs. We find that the existing audio
tokenizers suffer from low consistency.
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Figure 2: Results of consistency accuracy for popular neural audio codecs under different layers and
slice lengths. Subfigures (a), (b) and (c) show slice lengths across 0.2s, 0.3s and 0.4s, respectively,
and all of them exhibit similar conclusions that consistency accuracy declines significantly in the
deeper layers of codebooks, indicating that the DRI phenomenon becomes more pronounced with
layers in neural audio codecs increasing.

• Inspired by our analyses, we propose two methods, the slice-consistency method and the
perturbation-consistency method, to enhance the consistency of the neural audio codec
from two particular perspectives and mitigate the many-to-one problem.

• Experiments show that our method achieves an average consistency improvement of
21.47%, 29.17%, and 36.29% in the first layer, the first 3 layers, and the first 8 layers,
respectively. Additionally, we conduct extensive experiments on the neural codec lan-
guage model, VALL-E, on the LibriTTS dataset (960 hours) and further expand the training
dataset to the large-scale MLS dataset (44,000 hours), resulting in 3.72% WER reduction
and 5.68% speaker similarity improvement. These findings confirm that enhancing consis-
tency leads to improved performance.

2 ANALYSIS ON CONSISTENCY OF NEURAL AUDIO CODECS

In this section, we extract discrete audio tokens from audio segments with and without context using
popular neural audio codecs (Défossez et al., 2022; Yang et al., 2023; Zhang et al., 2023b; Du et al.,
2024c; Kumar et al., 2024; Ju et al., 2024) to analyze the DRI phenomenon. First, we introduce the
overall experiment design. Then we propose using consistency accuracy as an evaluation metric to
conduct quantitative analyses. Finally, we analyze the results and discuss the potential implications
of the DRI phenomenon.

2.1 EXPERIMENTAL DESIGN ON DRI PHENOMENON

Recent advancements on neural audio codecs have adopted an encoder-decoder architecture com-
bined with the RVQ module to effectively compress continuous audio signals into discrete audio
tokens (Défossez et al., 2022; Yang et al., 2023; Zhang et al., 2023b; Du et al., 2024c; Kumar et al.,
2024; Ju et al., 2024), which is typically composed of 3 components: (1) An encoder, composed of
convolutional layers to capture contextual information, maps the audio signal into a latent represen-
tation Z. (2) An RVQ module contains N quantization layers to quantize the latent representation
Z into the discrete audio tokens at each time step. (3) A decoder reconstructs the quantized latent
representation back to the audio signal.

To analyze the DRI phenomenon, we use popular neural audio codecs (Défossez et al., 2022; Yang
et al., 2023; Zhang et al., 2023b; Du et al., 2024c; Kumar et al., 2024; Ju et al., 2024) as audio tok-
enizers to quantize both the entire audio and an audio segment within that audio, and then compare
the results of their corresponding discrete audio tokens. Obviously, these two audio segments are
exactly identical with the only difference being whether there is context, and we expect that both
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discrete audio tokens should be identical after quantization. But the encoders in current neural audio
codecs introduce the contextual information that gives rise to the DRI phenomenon, leading to both
discrete audio token sequences showing significant differences.

2.2 CONSISTENCY ACCURACY

To quantitatively analyze the degree of the DRI phenomenon in neural audio codecs, we propose
using consistency accuracy as an evaluation metric:

Accconsistency =
1

T

1

N

T∑
t=1

N∑
i=1

I(RVQ(Zslice)[t, i] = RVQ(Z)[t, i]), (1)

where Z is the latent representation of the original audio after encoding by the encoder, and N
represents the number of codebooks in the RVQ module. We randomly extract an audio segment of
length T from the original audio, and encode it by the encoder to obtain Zslice.

2.3 RESULTS AND ANALYSIS

Audio tokenizer vs. text tokenizer. As shown in Figure 1 (a), regardless of whether the context is
included, the same text is tokenized into the same text tokens, indicating that the text tokenizer is
context-independent. In contrast, Figure 1 (b) demonstrates that using a neural audio codec as the
audio tokenizer produces different discrete audio token sequences for identical audio segments. Al-
though it is difficult for human auditory perception to distinguish the reconstructed audio from both
sequences, the many-to-one mapping caused by the DRI phenomenon still increases the difficulty
for model training, leading to a decline in speech reconstruction and generation performance.

The results of consistency accuracy. To quantitatively analyze the DRI phenomenon, we calculate
the consistency accuracy for popular neural audio codecs under different layers and slice lengths.
The results are shown in Figure 2 and the low consistency accuracy reveals that the DRI phenomenon
is present in the current neural audio codecs (Défossez et al., 2022; Yang et al., 2023; Zhang et al.,
2023b; Du et al., 2024c; Kumar et al., 2024; Ju et al., 2024). Furthermore, we find that with deeper
layers of codebooks, neural audio codecs demonstrate lower consistency. This may be attributed
to the fact that audio tokens in shallow layers exhibit a high alignment with context-independent
semantic information, resulting in better consistency. In contrast, deeper layers focus on more fragile
and sensitive acoustic information that can easily change due to minor perturbations, leading to a
decrease in consistency accuracy (Zhang et al., 2023b).

The potential implications of the DRI phenomenon. There are many minor perturbations that can
cause the DRI phenomenon, such as contextual information and phase perturbation (Lee et al., 2023)
that do not alter the auditory perception of the reconstructed audio but can lead to changes in the
discrete audio token sequences, which can greatly confuse models. Especially when neural codec
language models need to predict different audio tokens due to the DRI phenomenon, this confusion
can cause the predicted probability distributions of the next token to converge towards uniformity,
resulting in inaccurate predictions and negatively impacting overall performance. Therefore, it is
necessary to ease the many-to-one mapping problem to improve the consistency of neural audio
codecs, which in turn enhances the performance of downstream speech generation.

3 METHOD

According to the analysis in Section 2, we can draw a conclusion that an ideal neural audio codec
should balance the trade-offs between high audio reconstruction quality and addressing the many-
to-one problem. To achieve this objective, we introduce two consistency constraint methods: the
slice-consistency method and perturbation-consistency method, which enhance the consistency
of the neural audio codec from two particular perspectives. Since these methods can be integrated
into any neural audio codec, we demonstrate their application using a neural audio codec based on
RVQ which utilizes an encoder to transform the audio signal into the latent representation Z and
reconstructs the waveform from the quantized latent representation.
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Figure 3: The overview of the proposed consistency constraint method. For the slice-consistency
method, a segment of audio is randomly sliced, and its encoded representation must closely match
the representation derived from the entire audio. For the perturbation-consistency method, the rep-
resentation of an audio and its representation after slight spectral perturbation should be closely
aligned.

3.1 CONSISTENCY CONSTRAINT METHODS

Slice-consistency requests that audio segments with and without context should be encoded into
consistent latent representations. To achieve this object, as shown in Figure 3, we slice a segment of
audio from the original audio, and then encode it using the encoder in the neural audio codec to ob-
tain the latent representation Zslice. Compared with the latent representation Z from the entire audio,
Zslice is not influenced by contextual information. To reduce the influence of context on the latent
representation Z, we use Mean Squared Error (MSE) as a constraint to enhance the consistency
between Zslice and the corresponding latent representation in Z:

Lslice =
1

T

T∑
t=1

MSE(Zslice[t], Z[t]). (2)

As analyzed in Appendix 8.1 about the receptive field, the convolutional layers in the encoder of
neural audio codecs introduce contextual information, leading to identical audio segments being
tokenized into different discrete audio token sequences. It is clear that reducing the kernel size of
the convolutional layers in the encoder can enhance consistency, but this can also result in a decline
in both reconstruction efficiency and quality. Therefore, applying the slice-consistency method is
necessary to maintain the original receptive field while enabling models to balance the trade-offs
between audio reconstruction quality and alleviating the DRI phenomenon.

Perturbation-Consistency refers to the latent representations of audio, which should remain consis-
tent before and after being applied imperceptible perturbations to human ears. Specifically, as shown
in Figure 3, we slightly adjust the phase of the the original audio without significantly altering the
waveform structure, and encode it using the encoder in the neural audio codec to obtain the latent
representation Zperception. Since human ears have a limited ability to directly perceive phase changes,
we hope that the robustness of the model can also eliminate inconsistency caused by such slight per-
turbations. Therefore, we utilize MSE to maintain consistency of both latent representations with
and without phase perturbation (Lee et al., 2023):

Lperception = MSE(Zperception, Z). (3)

It is evident that the perturbation-consistency method differs from audio-based data augmentation
methods. Data augmentation methods such as SpecAugment (Park et al., 2019) and environment
noise (Snyder et al., 2015) significantly alter the original audio to create new audio. The newly
generated audio has a considerable difference in perception compared to the original audio, which
aims to expand the training data and increase the robustness of models. In contrast, the perception-
consistency method requires that changes to audio should be imperceptible to human ears to avoid
severe perturbations that disrupt the audio reconstruction quality. Since the phase is difficult to be

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

perceived by human, we apply phase perturbation (Lee et al., 2023) as a slight perturbation method,
which can enhance the perturbation-consistency without expanding the training data.

3.2 IMPLEMENTATION DETAILS

In order to satisfy both methods and enhance training efficiency, we align the latent representa-
tion Zperception obtained by the slice-consistency method and the latent representation Zperception

obtained by the perturbation-consistency method:

Lconsistency =
1

T

T∑
t=1

MSE(Zslice[t], Zperception[t]). (4)

By introducing consistency constraint Lconsistency, our method can be applied to any neural audio
codec and we build our method on RVQ-GAN framework (Kumar et al., 2024) that also includes
reconstruction loss Lrec, adversarial loss Ladv, feature matching loss Lfm, and commit loss Lrvq:

L = Lrec + λadvLadv + λfmLfm + λrvqLrvq + λconLconsistency. (5)

4 EXPERIMENT SETTING

4.1 EXPERIMENTAL CONFIGURATION

Datasets. During the training process of the neural audio codec and the neural codec language
model, we utilize LibriTTS (Zen et al., 2019) dataset, which comprises 960 hours of transcribed
speech data. The test set of LibriTTS (Zen et al., 2019) is used as test data, which is randomly se-
lected 2,300 audio samples to verify the consistency of neural audio codecs and 350 audio samples
to validate speech generation performance. To verify the effectiveness of data scaling on our pro-
posed method, we expand the training dataset to 44,000 hours from large-scale MLS (Pratap et al.,
2020) dataset for both speech reconstruction and speech generation tasks.

Training settings. To validate effectiveness of consistency constraint in speech reconstruction,
we apply it on the RVQ-based neural audio codec (denoted as Ours) that uses the Adam opti-
mizer (Diederik, 2014), with an initial learning rate of 3e-4 and beta parameters set to (0.5, 0.9),
to train for 350,000 iterations. All audio samples are truncated to a fixed length of 1.28 seconds
and resampled to 16 kHz with the batch size of 384. In the loss function 5, the weights are set as
λadv = 0.11, λfm = 11.11, λrvq = 1.0, and λcon = 10.0 when consistency constraint is applied.

To demonstrate the effectiveness of our method for the downstream speech generation task, we take
the neural audio codec based on our method as the audio tokenizer for the neural codec language
model, VALL-E (Wang et al., 2023) that generates audio by predicting the first layer of audio tokens
in an autoregressive manner, and then predicting the remaining audio tokens in a non-autoregressive
manner. The reproducted VALL-E (Wang et al., 2023) is trained for 1,300,000 steps with the batch
size of 56 and optimized by the Adam optimizer (Diederik, 2014), with parameters β = (0.9, 0.95).

Baseline models. For speech reconstruction, we use the official open-source checkpoints from
EnCodec (Défossez et al., 2022), HiFiCodec (Yang et al., 2023), SpeechTokenizer (Zhang et al.,
2023b), DAC (Kumar et al., 2024), and FunCodec (Du et al., 2024c) as baseline models. To ensure
fair comparison, we set the bandwidth of different neural audio codecs closely to 4.0 kbps or 8.0
kbps. For speech generation, we employ the SOTA neural codec language models as baselines,
including SpeechGPT (Zhang et al., 2023a), SpeechTokenizer-based USLM (Zhang et al., 2023b),
AnyGPT (Zhan et al., 2024), VoiceCraft (Peng et al., 2024) and XTTS v2 (Casanova et al., 2024).

4.2 EVALUATION METRICS

4.2.1 EVALUATION OF SPEECH RECONSTRUCTION

We adopt consistency accuracy across all layers of neural audio codecs to measure the DRI phe-
nomenon. Given that the codewords in the first few layers of the neural audio codec store the most
information, their consistency significantly affects the performance of downstream neural codec lan-
guage models. Therefore, we especially present the first 3 layers’ consistency accuracy. Since the
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Table 1: The speech reconstruction results on LibriTTS test set. Bold means the best result, and
underline means the second-best result. Ours denotes the neural audio codec with consistency
constraint. The subscripts of the neural audio codecs denote the training data scale.

Neural
Audio Codec Bandwidth Sampling

Rate
Number of
Codebooks Consistency↑ First 3 Layers’

Consistency↑ ViSQOL↑ PESQ↑

EnCodec2690h
4.5 kbps

24kHz
6 47.43% 61.49% 4.25 2.41

6.0 kbps 8 40.46% 61.49% 4.35 2.73
8.25 kbps 11 32.77% 61.49% 4.44 3.02

HiFiCodec1122h 3.0 kbps 24kHz 4 40.77% 46.92% 4.32 2.76

SpeechTokenizer960h 4.0 kbps 16kHz 8 14.70% 26.91% 4.36 2.62

DAC2740h 4.0 kbps 16kHz 8 39.14% 48.43% 4.44 2.68

FunCodec960h
4.0 kbps 16kHz 8 6.86% 16.39% 4.47 3.26
8.0 kbps 16 3.58% 15.49% 4.57 3.62

Ours960h
4.0 kbps 16kHz 8 71.03% 88.82% 4.45 3.25
8.0 kbps 16 56.32% 90.66% 4.64 3.59

conclusions obtained from different lengths are generally consistent, we set T in the consistency
accuracy to 0.2. In addition, we also use ViSQOL (Chinen et al., 2020) and PESQ (Rix et al., 2001)
to measure the quality of the reconstructed speech (Défossez et al., 2022; Zeghidour et al., 2021),
with higher scores indicating the better speech quality.

4.2.2 EVALUATION OF SPEECH GENERATION

Objective evaluation. We use Whisper (Radford et al., 2023) model to transcribe the generated
speech and calculate the WER. To evaluate speaker similarity, we firstly use 3D-speaker (Chen
et al., 2024) toolkit to extract speaker embeddings from the generated speech and reference speech,
and then compute the cosine similarity between the normalized embeddings. We also employ UT-
MOS (Saeki et al., 2022) as an automatic Mean Opinion Score (MOS) prediction system to assess
the naturalness of the speech.

Subjective evaluation. We randomly select 50 audio samples from the LibriTTS (Zen et al., 2019)
test set to conduct MOS (Chu & Peng, 2006) and Similarity Mean Opinion Score (SMOS) (Chu &
Peng, 2006) test. MOS assesses the naturalness of the generated speech, while SMOS measures the
similarity between the generated speech and the original speaker’s voice. Both MOS and SMOS
range from 1 to 5, with higher values indicating better speech quality and greater speaker similarity.

5 RESULT

In this section, we evaluate the effectiveness of the slice-consistency method and the perturbation-
consistency method. Firstly, we compare the speech reconstruction results of the neural audio codec
wiht consistency constraint and baseline models. Then, we demonstrate that introducing our method
to speech generation model like VALL-E (Wang et al., 2023) can effectively enhance speech gen-
eration performance on both small-scale and large-scale data. Finally, we conduct ablation studies
to illustrate the effects of the slice-consistency method and the perturbation-consistency method,
respectively.

5.1 SPEECH RECONSTRUCTION RESULTS

We evaluate the effectiveness of our method from the perspectives of consistency and reconstructed
speech quality. First, we compare the consistency accuracy between the neural audio codec with
consistency constraint and baseline models. The results presented in Table 1 demonstrate that the
neural audio codec based on our method can reconstruct speech with superior consistency accuracy
compared to baseline models, achieving 71.03% across all layers at the bandwidth setting of 4.0
kbps and 90.66% across the first 3 layers at the bandwidth setting of 8.0 kbps. In contrast, the
baseline models suffer from low consistency accuracy, indicating that the same audio segments are
encoded into different discrete audio token sequences.
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Table 2: The speech generation results on LibriTTS test set. Bold means the best result, and
underline means the second-best result. Ours and Ours w/o consistency constraint denote the
same neural audio codecs with and without consistency constraint. The subscripts of the neural
codec language models (e.g., 330M, 44Kh) denote the model size and data scale.

Neural
Audio Codec Bandwidth Neural Codec

Language Model
Objective Subjective

WER↓ SIM↑ UTMOS↑ MOS↑ SMOS↑

Ground Truth / / 1.37 / 4.15 4.43 4.23

mHuBERT 0.5 kbps SpeechGPT72Kh 13.39 11.87% 4.10 3.08 1.63

EnCodec 2.2 kbps VoiceCraft330M,9Kh 2.57 71.05% 3.55 3.58 3.47
VoiceCraft830M,9Kh 2.80 78.26% 3.76 3.72 3.43

Mel VQ-VAE / XTTS v227Kh 1.64 83.96% 3.92 3.58 3.85

SpeechTokenizer 4.0 kbps
USLM960h 6.86 43.36% 3.05 3.07 2.90

AnyGPT57Kh 18.93 34.60% 3.15 2.77 2.63

Ours w/o
consistency constraint 4.0 kbps VALL-E960h 4.73 76.95% 4.10 3.73 3.50

VALL-E44Kh 5.09 78.46% 4.14 3.92 3.40

Ours 4.0 kbps VALL-E960h 1.84 83.71% 4.31 3.97 3.73
VALL-E44Kh 1.37 84.14% 4.30 4.02 3.95

Figure 4: Consistency accuracy of each
layer in neural audio codecs. Ours de-
notes the neural audio codec with con-
sistency constraint.

As shown in Figure 4, we can observe that consistency
accuracy declines significantly in the deeper layers of
codebooks, particularly in baseline models. This ob-
servation may stem from the fact that the semantic in-
formation in the shallow layers of codebooks is rele-
vant to text that is more context-independent, resulting
in higher consistency accuracy. In contrast, the acous-
tic information in the deeper layers is more fragile and
sensitive, making it more susceptible to contextual influ-
ences, which may pose challenges for downstream neu-
ral codec language models when predicting audio tokens
from these deeper layers (Zhang et al., 2023b). More
details about the accuracy of each layer can be found in
Appendix 8.4. Then we evaluate ViSQOL (Chinen et al.,
2020) and PESQ (Rix et al., 2001) to evaluate the re-
constructed speech quality. The results in Table 1 show
that the ViSQOL (Chinen et al., 2020) of the neural au-
dio codec based on our method surpasses all baseline
models, achieving the score of 4.64. Additionally, its
PESQ (Rix et al., 2001) is also comparable to that of the
baseline models, with only 0.03 lower than the best re-
sult. This suggests that our method can be confidently
applied to neural audio codecs without negatively im-

pacting reconstruction performance.

5.2 SPEECH GENERATION RESULTS

In this section, we utilize the neural audio codec both with and without the consistency constraint to
replicate VALL-E (Wang et al., 2023). From both subjective and objective perspectives, we evaluate
the generated speech to demonstrate the effectiveness of our method for the downstream speech
generation task. Furthermore, we increase the training data from 960 hours of LibriTTS (Zen et al.,
2019) dataset to 44,000 hours of large-scale MLS (Pratap et al., 2020) dataset to verify that our
method is equally effective on larger scale datasets.

Objective Evaluation. According to Table 2, we have the following observations: (1) VALL-
E (Wang et al., 2023), which is based on our method and trained by large-scale MLS (Pratap et al.,
2020) dataset, outperforms all other baseline models on WER, SIM and UTMOS, indicating that
our method can help speech generation models synthesize speech with better intelligibility, sim-
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Table 3: Ablation study on the slice-consistency method and perturbation-consistency method. In
the Slice column, the percentage (e.g., 20%) represents the proportion of the sliced audio segments
to the entire audio. In the Perturbation column, phase perturb means whether to use perturbation-
consistency method.

Neural Audio Codec Neural Codec Language Model

Slice Perturbation Consistency↑ First 3 Layers’
Consistency↑

Objective
WER↓ SIM↑ UTMOS↑

20% phase perturb 76.75% 90.66% 1.84 83.71% 4.31

/ phase perturb 7.03% 16.20% 2.24 77.09% 4.15
20% / 75.91% 90.85% 2.36 81.84% 4.14

/ / 6.94% 15.49% 4.73 76.95% 4.10

40% phase perturb 64.74% 85.44% 1.90 82.81% 4.27
60% phase perturb 31.79% 60.95% 3.02 82.41% 4.25

ilarity and naturalness. (2) Compared to the VALL-E model without the consistency constraint,
our method can help VALL-E achieve significant improvement in intelligibility and similarity, with
3.72% WER reduction and 5.68% SIM improvement. This indicates that improving the consistency
of the neural audio codec can reduce the complexity of predicting discrete audio tokens and result
in better performance. (3) The results show that VALL-E (Wang et al., 2023), which is based on
our method and trained by 44,000 hours, shows superior speech generation results than that trained
on 960 hours, achieving the average reduction of 0.47 in WER and improvement of 0.43% in SIM,
illustrating the scalability of our method across different dataset scales.

Subjective Evaluation. In subjective evaluation, we conduct MOS and SMOS tests to assess speech
quality and speaker similarity for all of the neural codec language models, as shown in Table 2. The
results of MOS and SMOS show similar outcomes to objective evaluations, indicating that VALL-
E (Wang et al., 2023) based on our method achieves higher speech quality and speaker similarity.

5.3 ABLATION STUDY

In this section, we conduct ablation experiments to verify the effects of the slice-consistency method
and the perturbation-consistency method, respectively. As shown in Table 3, we use the case of slic-
ing the audio at 20% and applying perturbation-consistency method as a reference, which achieves
the best results in both speech reconstruction and speech generation. Then we remove the design
of slice-consistency method or perturbation-consistency method. The drop in all evaluation metrics
demonstrates that both slice-consistency method and perturbation-consistency method are benefi-
cial for speech reconstruction and generation. Finally, we conduct ablation studies on the proportion
of slicing audio segments, and the results show that the slice percentage of 20% outperforms the
model with the slice percentages of 40% and 60%. This suggests that shorter audio segments con-
taining less contextual information can effectively alleviate the contextual dependence of original
audio representation during the alignment process, thereby enhancing its consistency and ultimately
leading to better performance in the downstream speech generation model. We also observed that
although the consistency improvement brought by phase perturbation is small, it brings significant
improvement to the downstream speech generation performance. We think that applying phase per-
turbation alone may help decouple information within the audio by altering the structure of acoustic
information, thereby preventing the model from overfitting to unimportant features. This suggests
that consistency is not the sole determining factor for speech generation performance.

Considering the better consistency in shallow layers of codebooks, we further analyze VALL-
E (Wang et al., 2023) based on our method with fewer codebooks in Appendix 8.5. The experimental
results demonstrate that our method is effective across different numbers of codebooks, indicating
the generalizability of the proposed method.

9
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6 RELATED WORK

Discrete speech representations. Discrete speech representations can be categorized into semantic
and acoustic tokens. Discrete semantic tokens are extracted from self-supervised speech models
like HuBERT (Hsu et al., 2021) and WavLM (Chen et al., 2022), or Automatic Speech Recognition
(ASR) models like SenseVoice (SpeechTeam, 2024). K-means or VQ models serve as information
bottlenecks, filtering out paralinguistic information while retaining semantic information. In con-
trast, discrete acoustic tokens are encoded by neural audio codecs, preserving complete acoustic
information and aiming to reconstruct high-fidelity audio. SoundStream (Zeghidour et al., 2021)
and EnCodec (Défossez et al., 2022) adopt RVQ framework to encode speech into multi-level dis-
crete acoustic tokens. SingleCodec (Li et al., 2024) and Disen-TF-Codec (Jiang et al., 2023) utilize
a reference encoder to capture global time-invariant information, thereby reducing the number of
codebooks. SpeechTokenizer (Zhang et al., 2023b) and FACodec (Ju et al., 2024) decouple speech
into different attributes, making discrete tokens more suitable for downstream speech modeling
tasks. However, the synthesized speech from the neural codec language model, which relies on
discrete audio tokens, often leads to a higher WER (Song et al., 2024; Xin et al., 2024; Du et al.,
2024a). This is because these discrete audio tokens are fragile and sensitive, easily affected by minor
changes in the audio signal. Inspired by the context-independent text tokens, we propose enhancing
the consistency of audio token sequences to address the many-to-one mapping problem and improve
the stability of discrete audio tokens.

Audio tokenizers and neural codec language models. After tokenizing continuous audio signals
into discrete tokens by a neural audio codec, a neural codec language model can be trained on these
discrete audio tokens. VALL-E (Wang et al., 2023) and SpearTTS (Kharitonov et al., 2023) employ
EnCodec (Défossez et al., 2022) and SoundStream (Zeghidour et al., 2021) as audio tokenizers to
extract discrete acoustic tokens, aiming to retain all acoustic information. SpearTTS (Kharitonov
et al., 2023) and SoundStorm (Borsos et al., 2023) adopt a coarse-to-fine approach to generate dis-
crete acoustic tokens. VoiceCraft (Peng et al., 2024) rearrange audio tokens through an autoregres-
sive way to perform speech generation and editing tasks. LLM-Codec (Yang et al., 2024) represents
audio tokens with words or subwords from the vocabulary of LLMs, aligning audio modality with
text modality. Although LLM-Codec (Yang et al., 2024) has noticed that even when audio segments
contain the same sound events, the discrete tokens generated by the audio tokenizer may still ex-
hibit inconsistency. Therefore, to address this DRI phenomenon, we propose the slice-consistency
method and perturbation-consistency method to enhance the consistency within neural audio codecs,
thereby improving the performance of downstream speech generation.

7 CONCLUSION

We conduct a detailed analysis on the consistency of the discrete audio token sequences, and shed
light on the Discrete Representation Inconsistency (DRI) phenomenon within the existing neural
audio codecs. To mitigate the DRI phenomenon, we propose two consistency enhancement meth-
ods: (1) The slice-consistency method requires that the representation from a randomly sliced audio
segment should match the corresponding representation from the entire audio. (2) The perturbation-
consistency method aims to align the representation obtained from the audio after applying slight
spectral perturbations with that from the original audio. Experimental results indicate that our pro-
posed methods can successfully increase the consistency of discrete audio token sequences, thereby
enabling the neural codec language model based on these audio tokens to outperform the SOTA
speech generation model and show better performance by scaling up data. For future work, we plan
to try more consistency enhancement methods and apply our method to various modalities to assess
its generalizability.
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Pietquin, Matt Sharifi, Marco Tagliasacchi, and Neil Zeghidour. Speak, read and prompt: High-
fidelity text-to-speech with minimal supervision. Transactions of the Association for Computa-
tional Linguistics, 11:1703–1718, 2023.

Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. High-
fidelity audio compression with improved rvqgan. Advances in Neural Information Processing
Systems, 36, 2024.

11

https://arxiv.org/pdf/2403.19971
https://arxiv.org/pdf/2403.19971
https://arxiv.org/abs/2407.05407
https://arxiv.org/abs/2407.05407


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Junhyeok Lee, Seungu Han, Hyunjae Cho, and Wonbin Jung. Phaseaug: A differentiable augmen-
tation for speech synthesis to simulate one-to-many mapping. In ICASSP 2023 - 2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2023.
doi: 10.1109/ICASSP49357.2023.10096374.

Hanzhao Li, Liumeng Xue, Haohan Guo, Xinfa Zhu, Yuanjun Lv, Lei Xie, Yunlin Chen, Hao Yin,
and Zhifei Li. Single-codec: Single-codebook speech codec towards high-performance speech
generation. arXiv preprint arXiv:2406.07422, 2024.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and
Quoc V Le. Specaugment: A simple data augmentation method for automatic speech recognition.
arXiv preprint arXiv:1904.08779, 2019.

Puyuan Peng, Po-Yao Huang, Daniel Li, Abdelrahman Mohamed, and David Harwath. Voicecraft:
Zero-shot speech editing and text-to-speech in the wild. arXiv preprint arXiv:2403.16973, 2024.

Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and Ronan Collobert. Mls: A
large-scale multilingual dataset for speech research. arXiv preprint arXiv:2012.03411, 2020.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International conference on ma-
chine learning, pp. 28492–28518. PMLR, 2023.

Antony W Rix, John G Beerends, Michael P Hollier, and Andries P Hekstra. Perceptual evaluation
of speech quality (pesq)-a new method for speech quality assessment of telephone networks and
codecs. In 2001 IEEE international conference on acoustics, speech, and signal processing.
Proceedings (Cat. No. 01CH37221), volume 2, pp. 749–752. IEEE, 2001.

Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi, and Hi-
roshi Saruwatari. Utmos: Utokyo-sarulab system for voicemos challenge 2022. arXiv preprint
arXiv:2204.02152, 2022.

David Snyder, Guoguo Chen, and Daniel Povey. Musan: A music, speech, and noise corpus. arXiv
preprint arXiv:1510.08484, 2015.

Yakun Song, Zhuo Chen, Xiaofei Wang, Ziyang Ma, and Xie Chen. Ella-v: Stable neural codec lan-
guage modeling with alignment-guided sequence reordering. arXiv preprint arXiv:2401.07333,
2024.

Tongyi SpeechTeam. Funaudiollm: Voice understanding and generation foundation models for
natural interaction between humans and llms. arXiv preprint arXiv:2407.04051, 2024.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing
Liu, Huaming Wang, Jinyu Li, et al. Neural codec language models are zero-shot text to speech
synthesizers. arXiv preprint arXiv:2301.02111, 2023.

Detai Xin, Xu Tan, Kai Shen, Zeqian Ju, Dongchao Yang, Yuancheng Wang, Shinnosuke Takamichi,
Hiroshi Saruwatari, Shujie Liu, Jinyu Li, et al. Rall-e: Robust codec language modeling with
chain-of-thought prompting for text-to-speech synthesis. arXiv preprint arXiv:2404.03204, 2024.

Dongchao Yang, Songxiang Liu, Rongjie Huang, Jinchuan Tian, Chao Weng, and Yuexian Zou.
Hifi-codec: Group-residual vector quantization for high fidelity audio codec. arXiv preprint
arXiv:2305.02765, 2023.

Dongchao Yang, Haohan Guo, Yuanyuan Wang, Rongjie Huang, Xiang Li, Xu Tan, Xixin Wu, and
Helen Meng. Uniaudio 1.5: Large language model-driven audio codec is a few-shot audio task
learner. arXiv preprint arXiv:2406.10056, 2024.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
stream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 30:495–507, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J. Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu.
Libritts: A corpus derived from librispeech for text-to-speech, 2019. URL https://arxiv.
org/abs/1904.02882.

Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou, Dong Zhang, Zhigeng Liu, Xin Zhang, Ruibin
Yuan, Ge Zhang, Linyang Li, et al. Anygpt: Unified multimodal llm with discrete sequence
modeling. arXiv preprint arXiv:2402.12226, 2024.

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
Speechgpt: Empowering large language models with intrinsic cross-modal conversational abil-
ities. arXiv preprint arXiv:2305.11000, 2023a.

Dong Zhang, Xin Zhang, Jun Zhan, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechgpt-gen:
Scaling chain-of-information speech generation. arXiv preprint arXiv:2401.13527, 2024.

Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified
speech tokenizer for speech large language models. arXiv preprint arXiv:2308.16692, 2023b.

8 APPENDIX

8.1 ANALYSIS OF INCONSISTENCY CAUSED BY RECEPTIVE FIELD SIZES

Table 4: The parameters of the convolutional layers and the receptive field size in the neural audio
codec’s encoder.

Layer ID Kernel Size Stride Dilation Strides of
Previous Layers Receptive Field Size

1 7 1 1 0 7

2 3 1 1 1 7 + (3− 1)× 1 = 9

3 1 1 1 1 9 + (1− 1)× 1 = 9

4 1 1 1 1 9 + (1− 1)× 1 = 9

5 4 2 1 1 9 + (4− 1)× 1 = 12

6 3 1 1 2 12 + (3− 1)× 2 = 16

7 1 1 1 2 16 + (1− 1)× 2 = 16

8 1 1 1 2 16 + (1− 1)× 2 = 16

9 8 4 1 2 16 + (8− 1)× 2 = 30

10 3 1 1 8 30 + (3− 1)× 8 = 46

11 1 1 1 8 46 + (1− 1)× 8 = 46

12 1 1 1 8 46 + (1− 1)× 8 = 46

13 10 5 1 8 46 + (10− 1)× 8 = 118

14 3 1 1 40 118 + (3− 1)× 40 = 198

15 1 1 1 40 198 + (1− 1)× 40 = 198

16 1 1 1 40 198 + (1− 1)× 40 = 198

17 16 8 1 40 198 + (16− 1)× 40 = 798

18 7 1 1 320 798 + (7− 1)× 320 = 2718

The size of the receptive field is related to the number of convolutional layers and pooling layers:

RFi = RFi−1 + (k − 1)× Si,
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where RFi represents the receptive field size of the current layer, and RFi−1 denotes the recep-
tive field size of the previous layer. Si represents the product of the strides of all previous layers
(excluding the current layer), and is given by:

Si =

Li∏
i=1

stridei.

As shown in Table 4, a larger receptive field in the encoder of neural audio codec brings more
contextual information. Although this can enhance audio quality and improve encoding efficiency,
it also leads to a significant decline in consistency and gives rise to the DRI phenomenon. Therefore,
it is crucial to preserve the original receptive field while allowing the model to balance the trade-offs
between audio reconstruction quality and addressing the many-to-one problem.

8.2 EVALUATION BASELINES

SpeechGPT 2 (Zhang et al., 2023a) is a neural codec language model based on HuBERT (Hsu et al.,
2021) with conversational abilities, capable of providing various styles of speech responses based
on context and human instructions.

USLM 3 (Zhang et al., 2023b) is built upon SpeechTokenizer (Zhang et al., 2023b) and consists of
both autoregressive and non-autoregressive models to hierarchically model information in speech.
The autoregressive model captures the content information, while the non-autoregressive model
complements it by adding paralinguistic information.

AnyGPT 4 (Zhan et al., 2024) is an any-to-any multimodal neural codec language model that utilizes
discrete representations for various modalities, including speech, text, images, and music. It also
uses SpeechTokenizer (Zhang et al., 2023b) to quantize speech.

VoiceCraft 5 6 (Peng et al., 2024) is a token-infilling neural codec language model. It introduces
a token rearrangement procedure that combines causal masking and delayed stacking to enhance
voice cloning ability.

XTTS v2 7 (Casanova et al., 2024) is a multilingual speech generation model and employs a VQ-
VAE (Van Den Oord et al., 2017) module to discretize the mel-spectrogram.

8.3 EVALUATION OF SPEECH GENERATION

To further demonstrate the effectiveness of our method, we conducted validation using different test
settings. Following the evaluation testing configuration in VoiceCraft (Peng et al., 2024), we test our
method under the same conditions. As shown in Table 5, experimental results show that our method
achieve SOTA performance across various testing methods, thereby demonstrating the effectiveness
and generality of our method.

8.4 CONSISTENCY ACCURACY OF EACH LAYER

As shown in Table 6, we provide a detailed display of the consistency accuracy at each layer for
all neural audio codecs, and the accuracy of the neural audio codec with consistency constraint sur-
passes that of the baseline models at every layer. Specifically, compared to EnCodec (Défossez et al.,
2022), our method has shown an average consistency improvement of 21.47%, 29.17%, and 36.29%
in the first layer, the first 3 layers, and the first 8 layers, respectively. We can observe that con-
sistency accuracy significantly decreases as the number of layers increases, particularly in baseline
models. This may suggest that the semantic information in the shallow layers of codebooks is more
relevant to context-independent text, which results in higher consistency accuracy. In contrast, the
acoustic information in the deeper layers is more fragile and sensitive, making it more influenced by

2https://huggingface.co/fnlp/SpeechGPT-7B-com
3https://huggingface.co/fnlp/USLM
4https://huggingface.co/fnlp/AnyGPT-chat
5https://huggingface.co/pyp1/VoiceCraft_giga330M
6https://huggingface.co/pyp1/VoiceCraft_830M_TTSEnhanced
7https://huggingface.co/coqui/XTTS-v2
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Table 5: The speech generation results on LibriTTS test set, following the testing configuration in
VoiceCraft. Bold means the best result, and underline means the second-best result. Ours and Ours
w/o consistency constraint denote the same neural audio codecs with and without consistency
constraint. The subscripts of the neural codec language models (e.g., 330M, 44Kh) denote the
model size and data scale.

Neural
Audio Codec Bandwidth Neural Codec

Language Model
Objective Subjective

WER↓ SIM↑ UTMOS↑ MOS↑ SMOS↑

Ground Truth / / 0.0 71.38% 4.12 4.43 4.23

EnCodec 2.2 kbps VoiceCraft330M,9Kh 8.26 51.10% 3.54 3.58 3.47
VoiceCraft830M,9Kh 4.72 55.78% 3.73 3.72 3.43

Mel VQ-VAE / XTTS v227Kh 3.50 60.06% 3.95 3.58 3.85

SpeechTokenizer 4.0 kbps
USLM960h 8.01 56.82% 3.09 3.07 2.90

AnyGPT57Kh 25.75 25.66% 3.19 2.77 2.63

Ours w/o
consistency constraint 4.0 kbps VALL-E960h 8.51 55.90% 4.08 3.73 3.50

VALL-E44Kh 5.11 56.20% 4.12 3.92 3.40

Ours 4.0 kbps VALL-E960h 3.51 60.97% 4.32 3.97 3.73
VALL-E44Kh 3.13 61.72% 4.34 4.02 3.95

Table 6: Detailed results of consistency accuracy of each layer in neural audio codecs. Ours denotes
the neural audio codec with consistency constraint.

Neural Audio Codec
Every Layer’s Consistency

1 2 3 4 5 6 7 8

EnCodec 74.66% 61.20% 48.62% 41.30% 32.47% 26.30% 21.25% 17.89%
HiFiCodec 61.87% 55.73% 23.15% 22.34% / / / /

SpeechTokenizer 41.52% 23.13% 16.09% 11.64% 8.59% 6.21% 5.08% 5.31%
DAC 63.44% 46.17% 36.88% 32.77% 33.75% 34.92% 34.26% 30.90%

FunCodec 29.34% 10.12% 7.03% 4.10% 2.54% 1.02% 0.78% 0.59%
Ours 96.13% 91.09% 84.77% 79.57% 73.44% 68.71% 63.13% 57.19%

context (Zhang et al., 2023b). This could create challenges for downstream neural codec language
models when predicting audio tokens from these deeper layers.

8.5 EXPLORE GENERALITY OF OUR METHOD ON THE NUMBER OF CODEBOOKS.

Table 7: The speech generation results on LibriTTS test set for VALL-E based on our method with
different number of codebooks.

Neural Audio Codec Neural Codec Language Model
Number of
Codebooks Bandwidth Slice Perturbation Objective Subjective

WER↓ SIM↑ UTMOS↑ MOS↑ SMOS↑

4 2.0 kbps

/ / 1.93 69.86% 4.29 3.88 3.35

20% phase perturb 1.15 72.50% 4.24 4.06 3.40

40% phase perturb 1.39 72.54% 4.21 3.93 3.37

8 4.0 kbps

/ / 4.73 76.95% 4.10 3.73 3.50

20% phase perturb 1.84 83.71% 4.31 3.97 3.73

40% phase perturb 1.90 82.81% 4.27 3.84 3.70

We find that consistency declines significantly with deeper layers. To validate that our method is
still effective on shallow layers of codebooks, we evaluate the speech generation performance of
VALL-E (Wang et al., 2023) based on our method with different numbers of codebooks. As shown
in Table 7, with different numbers of codebooks, the improvement across all evaluation metrics
demonstrates the generalizability of our proposed method.
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Figure 5: The impact of neural audio codec’s consistency accuracy on the downstream VALL-E’s
WER. The plot demonstrates a clear trend where increasing consistency leads to lower WER.

8.6 CORRELATION BETWEEN CONSISTENCY ACCURACY AND WER

As shown in Figure 5, there is a positive correlation between consistency accuracy and WER im-
provement. Specifically, as the consistency accuracy increases, the WER correspondingly decreases.

8.7 MODEL PARAMETERA AND SCALABLE MODEL SIZE

Our neural audio codec utilizes 8 codebooks, each with a vocabulary size of 1024, and a base
dimension of 128. It operates at a frame rate of 50Hz for audio sampled at 16kHz, resulting in a
total parameter count of 66 M. On average, the speech to be encoded has a duration of 7 seconds,
leading to an estimation of FLOPs of approximately 2.57× 1012.

For the neural codec language model, both the AR model and NAR model are built upon the same
Transformer architecture. This setup includes 12 layers, 16 attention heads, an embedding dimen-
sion of 1024, and a feedforward layer dimension of 4096, collectively comprising about 365M
parameters. Typically, in the speech teneration task, the phoneme sequence has a length of 100. The
audio tokenizer extracts a sequence of audio tokens with a length of 150 from a 3-second prompt
audio, and the generated audio token sequence has a length of 550. This results in a computation of
FLOPs approximately equal to 1.66× 1011.

As shown in Table 8, we conducted experiments with models of varying parameter sizes. The
observed performance improvements further demonstrate the effectiveness of our method across
different model parameter settings.
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Table 8: The VALL-E model with different parameter sizes.

Neural Audio Codec Total number of parameters WER↓ SIM↑

Ours w/o consistency constraint 365M 8.51 55.90%

Ours with consistency constraint 365M 3.50 60.97%

Ours w/o consistency constraint 822M 7.28 57.13%

Ours with consistency constraint 822M 3.16 61.33%

17


	Introduction
	Analysis on consistency of neural audio codecs
	Experimental Design On DRI Phenomenon
	Consistency Accuracy
	Results And Analysis

	Method
	Consistency Constraint Methods
	Implementation Details

	Experiment Setting
	Experimental Configuration
	Evaluation Metrics
	Evaluation of Speech Reconstruction
	Evaluation of Speech Generation


	Result
	Speech Reconstruction Results
	Speech Generation Results
	Ablation Study

	Related work
	Conclusion
	Appendix
	Analysis of Inconsistency Caused by Receptive Field Sizes
	Evaluation baselines
	Evaluation of speech generation
	Consistency accuracy of each layer
	Explore generality of our method on the number of codebooks.
	Correlation between Consistency accuracy and WER
	Model parametera and scalable model size


